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ABSTRACT

Much can be said about the culinary aspects of cake baking. How much of and

which types of ingredients are used to determine the flavor of the cake. However,

is flavor the only ingredient for taste? Does a dry, crumbling cake still satisfy the

pallet? One can control the flavor of the batter, but once it is placed in the oven

for baking, what determines the consistency of the finished dessert? We consider a

simple model of the actual baking process which is based on the diffusion equation

∂T

∂t
= ∇ · (D∇T ) , (1)

where D is the heat diffusivity of the batter and T is the temperature of the cake at

time t. We begin with this model and numerically investigate solutions for various

cake geometries while also looking at the effects of varying the heat diffusivity over

space and time.
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1 INTRODUCTION

Numerous research has been devoted to the baking process. From casting metals,

to food safety, firing pottery, to creating the desired crust on bread, consistent

temperature development plays a signature roll in the outcome of many different

products. Too much or too little heat can result in problems as severe as structural

instability or sickness, or as minor as discoloration or superficial burning. However,

as seemingly replaceable as a cracked vase or defective steel rod may be, someone is

inevitably charged for the time, money and effort to do so. In a growing economy,

millions of dollars are spent trying to simulate and model fundamental processes in

order to perfect and standardize results. Whether it be in determining the ideal

temperature environment to produce consistent products of the various natures

listed above or the cooking time required to ensure safe food quality, the ability

to numerically translate a production process can help save both the time and the

money spent on extensive research.

Dealing with the culinary baking process, cake baking in particular, the model

we intend to use has previously been studied in the development of crust on bread

in both domestic and factory settings. Depending on the type of bread desired, a

specific crust-crumb ratio is needed. An evaporation front has been described as

what separates the crust from the crumb of the bread, which moves towards the

center as the water evaporates, creating the crust along the areas of dough closest

to the pan [1]. More specific to our topic, the paper by Dr. Olszewski explores the

possibility of predicting baking times of various cakes given the initial dimensions,

baking time, and heat diffusivity of previously baked cakes [2]. His simple, initial

model assumes the heat diffusivity of the batter is constant. However, noting that

there is more water evaporation from the top, uncovered layer of the batter leads

to an alternate study of ways in which the rate of diffusion changes throughout the

1



baking process.

In this thesis we would like to:

1. Numerically investigate the results Dr. Olszewski found when changing the

dimensions of the cake pan [2];

2. Numerically study the effects of varying the diffusion coefficients in space and

time as the cake bakes;

We first wish to discuss the heat equation used to model the baking process and

note the assumptions that have been made in its development. In general, we begin

with Fourier’s law of heat conduction [5] which states that the heat flux throughout

a region per unit time is proportional to the rate of change of the temperature across

the region:

φ = −K0
∂T

∂x
,

where φ represents heat flux and K0 is the thermal conductivity of the material

[5]. (The negative sign indicates the idea that heat flows from areas of higher

temperatures to those of lower temperatures which, in coordination with Newton’s

Law of Heating and Cooling, could also be the basis for a similar model of the baking

process.) Since cakes comprise of both depth and height, this three-dimensional case

then represents the change in temperature as the gradient of the temperature, or

φ = −K0∇T. (2)

We must also take into account that energy must be conserved across the

boundary, meaning the rate of change in heat energy over time must be proportional

to the change in energy across the boundary. This equates to

∂e

∂t
= −∇ · φ + Q, (3)
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where Q represents any internal source and e = cρu is the heat energy (c is the

specific heat and ρ the density of the batter) [5]. For simplicity, we let Q = 0 and

assume no heat is internally created due to radiation. Also assuming the specific

heat is independent of time and that density changes only with volume, we have

e(r, z, t) = c(r, z)ρ(r, z)u(r, z, t). When we substitute this and Equation (2) into

Equation (3), we get

cρ
∂T

∂t
= ∇ · (K0∇T ) . (4)

Separating our temporal and spatial derivatives, and assuming c and ρ are

approximately constant, we define our three-dimensional heat equation as

∂T

∂t
= ∇ · (D∇T ) , (5)

for D = K0(r,z)
cρ

.

We will first explore D as a constant rate, changing Equation (5) into

∂T

∂t
= D∇2T,

and then discuss why this is an inadequate assumption in modeling the cake baking

process.
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2 EXACT SOLUTIONS

2.1 Rectangular Cakes

We will begin our review of the known solutions of the heat equation in three-

dimensional Cartesian space (0 ≤ x ≤ W, 0 ≤ y ≤ L, 0 ≤ z ≤ H). For example, this

could correspond to 13′′×9′′×2′′ baking pan. Assuming that the diffusion parameter

D is constant, we begin with the heat equation in 3D:

∂T

∂t
= D∇2T. (6)

We will need to specify initial and boundary conditions. Let Ti be the initial batter

temperature, and write the initial condition as

T (x, y, z, 0) = Ti.

We choose the boundary conditions to be fixed at the oven temperature Tb,

T (0, y, z, t) = T (W, y, z, t) = Tb,

T (x, 0, z, t) = T (x, L, z, t) = Tb,

T (x, y, 0, t) = T (x, y, H, t) = Tb.

We will assume throughout the paper that Ti = 80◦F and Tb = 350◦F.

It is easier to solve Equation (2) when there are homogeneous boundary

conditions. In this case we can use the method of separation of variables [5]. So,

subtracting the temperature of the oven from all temperatures involved and defining

u(x, y, z, t) = T (x, y, z, t)− Tb, the heat equation becomes

∂u

∂t
= D∇2u (7)
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with initial condition

u(x, y, z, 0) = Ti − Tb

and boundary conditions

u(0, y, z, t) = u(W, y, z, t) = 0,

u(x, 0, z, t) = u(x, L, z, t) = 0,

u(x, y, 0, t) = u(x, y, H, t) = 0.

Using the method of separation of variables, we seek solutions of the form

u(x, y, z, t) = X(x)Y (y)Z(z)G(t). (8)

Substituting (8) into the left and right hand sides of (7), we attain

∂u

∂t
= XY ZG′ and ∇2u = X ′′Y ZG + XY ′′ZG + XY Z ′′G.

Therefore,

XY ZG′ = D (X ′′Y ZG + XY ′′ZG + XY Z ′′G) . (9)

By dividing both sides of (9) by DXY ZG we get

1

D

G′

G
=

X ′′

X
+

Y ′′

Y
+

Z ′′

Z
. (10)

We know the only way for the function of time (t) on the left to be equal to a function

of the variables (x, y, z) on the right is for them to equal a constant. Anticipating

an exponential decay in time, we choose our constant to be −λ2. (We could have

just as easily chosen to use −λ but would have to later restrict λ > 0 to ensure
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the quantity −λ was in fact negative.) The need of the negative sign will become

apparent momentarily.

Setting Equation (10) equal to −λ2, we get the following

1

D

G′

G
= −λ2 and

X ′′

X
+

Y ′′

Y
+

Z ′′

Z
= −λ2. (11)

Thus,

G′ + Dλ2G = 0 and
X ′′

X
= −Y ′′

Y
− Z ′′

Z
− λ2 = −µ2. (12)

Reasoning as before, we have chosen another strategically arbitrary constant, −µ2,

to further separate our spatial variables. Likewise, we can continue the process using

−ν2 and −κ2. This yields

Y ′′

Y
= −Z ′′

Z
− λ2 + µ2 = −ν2, (13)

Z ′′

Z
= −λ2 + µ2 + ν2 = −κ2. (14)

From Equations (12)-(14) we get the following set of ODE’s

G′ + Dλ2G = 0,

X ′′ + µ2X = 0, (15)

Y ′′ + ν2Y = 0,

Z ′′ + κ2Z = 0,

where λ2 = µ2 + ν2 + κ2 from Equation (14).

The solution of the first-order linear differential equation in time is of the form

G = Ae−λ2Dt, where λ2 = µ2 + ν2 + κ2 from before and A is some constant. Since

we are discussing heat flow throughout a cake, we do not expect solutions that grow
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exponentially over time, hence one insight into our choosing a negative separation

constant.

The general solution of the differential equation X ′′ + µ2X = 0 is

X = c1 cos µx + c2 sin µx, (16)

where c1 and c2 are arbitrary constants.

Applying our homogeneous boundary conditions, the first, X(0) = 0, implies

c1 = 0. The second boundary condition, X(W ) = 0, then yields c2 sin µW = 0.

Since c2 = 0 would give a trivial solution, we look at the case(s) where sin µW = 0.

We know this occurs when µW equals some multiple of π, or

µm =
mπ

W
, m = 1, 2, . . . . (17)

Again, from experience, we know that only positive eigenvalues, µ, yield nontrivial

solutions when satisfying the boundary conditions. So, substituting (17) back into

the right half of Equation (16), and given the same work has been shown for Y (y)

and Z(z), we get fundamental solutions

Xm(x) = sin
(

mπx

W

)
Yn(y) = sin

(
nπy

L

)
m,n, ` = 1, 2, . . . (18)

Z`(z) = sin

(
`πz

H

)
.

Thus, our product solutions for u are

umn`(x, y, z, t) = sin (µmx) sin (νny) sin (κ`z)e−λ2
mn`Dt,
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for

λ2
mnl = µ2

m + ν2
n + κ2

` =
(

mπ

W

)2

+
(

nπ

L

)2

+

(
`π

H

)2

,

m, n, ` = 1, 2, . . .. A linear superposition of these product solutions is also a solution,

so we write

u(x, y, z, t) =
∞∑

m=1

∞∑
n=1

∞∑
`=1

Amnl sin (µmx) sin (νny) sin (κ`z)e−λ2
mn`Dt, (19)

where the Amn`’s are arbitrary constants. To determine the Amn`’s we use our initial

condition u(x, y, z, 0) = Ti − Tb. We find

Ti − Tb =
∞∑

m=1

∞∑
n=1

∞∑
`=1

Amnl sin (µmx) sin (νny) sin (κ`z). (20)

This is a triple Fourier sine series. If we let bm(y, z) =
∑∞

n=1

∑∞
`=1 Amnl sin (νny) sin (κ`z),

Equation (20) becomes

Ti − Tb =
∞∑

m=1

bm(y, z) sin (µmx), (21)

a simple sine series. Multiplying both sides by sin (µkx) and then integrating over

the interval, we get

∫ W

0
(Ti − Tb) sin (µkx)dx =

∞∑
m=1

∫ W

0
bm(y, z) sin (µmx) sin (µkx)dx.

By orthogonality of sine functions, the integral’s vanish unless k = m so only one

term in the sum remains,

2

W

∫ W

0
(Ti − Tb) sin (µmx)dx = bm(y, z).
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Using the same technique for the remaining sine series in Equation (20) gives

Amnl =
2

W

2

L

2

H

∫ H

0

∫ L

0

∫ W

0
(Ti − Tb) sin (µmx) sin (νny) sin (κ`z)dxdydz

= (Ti − Tb)
8

π3

[
cos (mπx

W
)

m

]W

0

[
cos (nπy

L
)

n

]L

0

[
cos ( `πz

H
)

`

]H

0

= (Ti − Tb)
8

π3

[
cos mπ − 1

m

] [
cos nπ − 1

n

] [
cos `π − 1

`

]

= (Ti − Tb)
8

π3


0, for at least one m, n, ` even,[
−2
m

] [
−2
n

] [
−2
`

]
, for m,n, ` all odd.

Since only the odd multiples yield non-zero Amn` we let m = 2m′−1, n = 2n′−1,

and ` = 2`′ − 1. Thus

Amnl =
−64(Ti − Tb)

(2m′ − 1) (2n′ − 1) (2`′ − 1) π3
.

Substituting this result into Equation (20) and dropping the primes, we find

u(x, y, z, t) =
−64(Ti − Tb)

π3

∞∑
m=1

∞∑
n=1

∞∑
`=1

sin (µ̂mx) sin (ν̂ny) sin (κ̂`z)e−λ̂2
mn`Dt

(2m− 1)(2n− 1)(2`− 1)
,

where

λ̂2
mn` = µ̂2

m + ν̂2
n + κ̂2

` =

(
(2m− 1)π

W

)2

+

(
(2n− 1)π

L

)2

+

(
(2`− 1)π

H

)2

for m, n, ` = 1, 2, . . ..

Recalling T (x, y, z, t) = u(x, y, z, t)− Tb,

T (x, y, z, t) = Tb −
64(Ti − Tb)

π3

∞∑
m=1

∞∑
n=1

∞∑
`=1

sin (µ̂mx) sin (ν̂ny) sin (κ̂`z)e−λ̂2
mn`Dt

(2m− 1)(2n− 1)(2`− 1)
.

By programming these solutions into MATLAB c©, we are able to visually

represent the temperature development throughout the cake during the baking
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process. In Figure 1, vertical slices are taken at the indicated positions and times

indecated until half the length of a for 13′′ × 9′′ × 2′′ cake due to symmetry.

Figure 1: Temperature development throughout a 13′′×9′′×2′′ cake shown as vertical
slices at the indicated length. Width horizontal and height vertical are given in feet.

2.2 Cylindrical Cakes

Now that we have reviewed the process of solving the three-dimensional heat

equation in rectangular coordinates, we would like to apply the same method

to determine the known solutions in cylindrical coordinates (r, θ, z). We assume

T = T (r, z, t) is independent of θ due to symmetry. We begin as before
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with nonhomogeneous boundary conditions and thus use the same substitution of

u(r, z, t) = T (r, z, t)− Tb to obtain

∂u

∂t
= D∇2u = D

(
1

r

∂

∂r

(
r
∂u

∂r

)
+

∂2u

∂z2

)
, (22)

where 0 ≤ r ≤ a and 0 ≤ z ≤ Z. The initial condition is

u(r, z, 0) = Ti − Tb,

and the homogeneous boundary conditions are

u(a, z, t) = 0,

u(r, 0, t) = u(r, Z, t) = 0,

where r = a corresponds to the side of the cake and z = 0, Z the bottom and

top, respectively. Again, we seek solutions of the form u(r, z, t) = R(r)H(z)G(t).

Separation of variables leads to

1

D

G′

G
=

1

r

1

R

d

dr
(rR′) +

H ′′

H
. (23)

Choosing λ as the separation constant, we get

G′ −DλG = 0, (24)

and

1

r

1

R

d

dr
(rR′) = −H ′′

H
+ λ. (25)

Since negative eigenvalues yield the oscillatory solutions we expect, we continue as

before by setting both sides of Equation (25) equal to −µ2. Simplifying accordingly,

11



we have

d

dr
(rR′) + rµ2R = 0 (26)

and

H ′′

H
= λ + µ2 ≡ −ν2,

or

H ′′ + ν2H = 0. (27)

Here λ = − (µ2 + ν2).

Equation (24) has the solution G(t) = AeλDt. Again, since we do not expect

unbounded solutions over time, we would normally need to restrict λ < 0. However,

this has already been established since λ = − (µ2 + ν2) < 0.

Equation (27) subject to the fixed homogeneous boundary conditions is satisfied

by

Hn(z) = sin
(

nπz

Z

)
, n = 1, 2, 3 . . . ,

where ν = nπ

Z . Recalling that only odd terms arise in the Fourier sine series

coefficients of the constant initial condition, we proceed by rewriting H(z) as

Hn(z) = sin

(
(2n− 1) πz

Z

)
, n = 1, 2, 3 . . . (28)

with ν = (2n−1)π

Z .

Multiplying by r, Equation (26) can be written as

r2R′′ + rR′ + r2µ2R = 0.

This is a Bessel equation of the first kind of order zero and the general solution is a
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linear combination of Bessel functions of the first and second kind,

R(r) = c1J0(µr) + c2N0(µr). (29)

Since we wish to have u(r, z, t) bounded at r = 0 and N0(µr) is not well behaved at

r = 0, we set c2 = 0. Up to a constant, Equation (29) becomes

R(r) = J0(µr). (30)

The boundary condition R(a) = 0 gives J0(µa) = 0 and thus µm = j0m

a
, for

m = 1, 2, 3 . . .. Here j0m is the mth root of the zeroth-order Bessel function above.

(J0(j0m) = 0.) This suggests that

Rm(r) = J0

(
r

a
j0m

)
, m = 1, 2, 3 . . . . (31)

Thus, we get the general solution

u(r, z, t) =
∞∑

n=1

∞∑
m=1

Anm sin

(
(2n− 1) πz

Z

)
J0

(
r

a
j0m

)
e−λnmDt (32)

with λnm =
((

(2n−1)π

Z

)2
+
(

j0m

a

)2
)
, for n, m = 1, 2, 3 . . ..

Using the initial condition to find the Anm’s, we have

Ti − Tb =
∞∑

n=1

∞∑
m=1

Anm sin

[
(2n− 1)πz

Z

]
J0

(
r

a
j0m

)
.

If we let bn(r) =
∑∞

m=1 AnmJ0

(
r
a
j0m

)
, we have

Ti − Tb =
∞∑

n=1

bn(r) sin

(
(2n− 1)πz

Z

)
.

As seen previously, this is a Fourier sine series and the Fourier coefficients are given

13



by

bn(r) =
2

Z

∫ Z

0
(Ti − Tb) sin

(
(2n− 1) πz

Z

)
dz

=
2(Ti − Tb)

Z

(
− Z

(2n− 1) π
cos

(
(2n− 1) πz

Z

))Z

0

=
4(Ti − Tb)

(2n− 1) π
.

Then, we have

bn(r) =
4(Ti − Tb)

(2n− 1) π
=

∞∑
m=1

AnmJ0

(
r

a
j0m

)
.

As before, we need the orthogonality of Bessel functions for µm = j0m

a
. We have [5]

∫ a

0
J0(µmr)J0(µkr)rdr =


0, m 6= k,

a2

2
J2

1 (j0m), m = k.

This yields for bn(r)

4(Ti − Tb)

(2n− 1) π
=

∞∑
m=1

AnmJ0

(
r

a
j0m

)
.

Integrating,

∫ a

0

4(Ti − Tb)

(2n− 1) π
J0(µkr)rdr =

∫ a

0

∞∑
m=1

AnmJ0(µmr)J0(µkr)rdr.

Using
∫ a
0 J0(µmr)J0(µkr)rdr = a2

2
J2

1 (j0m)δnm, we have

4(Ti − Tb)

(2n− 1) π

∫ a

0
J0(µmr)rdr = Anm

(
a2

2
J2

1 (j0m)

)
. (33)

In order to find
∫ a
0 J0(µkr)rdr, we let y = µkr and get

∫ a

0
J0(µkr)rdr =

∫ µka

0
J0(y)

y

µk

dy

µk

14



=
1

µ2
k

∫ µka

0
J0(y)ydy

=
1

µ2
k

∫ µka

0

d

dy
(yJ1(y)) dy (34)

=
1

µ2
k

(µka)J1(µka) =
a2

j0k

J1(j0k). (35)

Here, in (34), we have made use of the identity d
dx

(xJ1(x)) = J0(x)[5]. Substituting

(35) into Equation (33) we have

4(Ti − Tb)

(2n− 1) π

(
a2

j0m

J1(j0m)

)
= Anm

(
a2

2
J2

1 (j0m)

)
.

Solving for Anm, we find

Anm =
8(Ti − Tb)

(2n− 1)π

1

j0mJ1(j0m)
.

Substituting Anm into our original expression for u(r, z, t), Equation (32) gives

u(r, z, t) =
8(Ti − Tb)

π

∞∑
n=1

∞∑
m=1

sin
(

(2n−1)πz
Z

)
(2n− 1)

J0(
r
a
j0m)eλnmDt

j0mJ1(j0m)
.

Therefore, T (r, z, t) can be found as

T (r, z, t) = Tb +
8(Ti − Tb)

π

∞∑
n=1

∞∑
m=1

sin
(

(2n−1)πz
Z

)
(2n− 1)

J0(
r
a
j0m)eλnmDt

j0mJ1(j0m)
.

This gives the general solution for the three-dimensional heat equation in cylindrical

coordinates with constant diffusivity. Similar to the solutions showin in Figure 1 of

the previous section, Figure 2 shows various temperature progressions throughout a

standard 9′′ round cake pan.
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Figure 2: Temperature development throughout a standard 9′′ cake shown as vertical
slices through the center. Radius horizontal and height vertical are given in feet.
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3 CONSTANT D VALUES

Now that we have reviewed some exact series solutions, we can use the data collected

by Dr. Olszewski to explore the rates for which heat diffuses throughout each cake.

Since the data was found using cylindrical cakes [2], we will hereafter refer to the

three-dimensional heat equation in cylindrical coordinates. In this section we will

determine constant values of D using real baking times.

Seven different gènoise cakes were baked [2] in four different diameter pans filled

with batter to various heights, for which the ingredients are listed in Table 1. This

recipe was chosen for simplification purposes, as there is minimal rise of the batter

throughout the baking process [2].

Traditional measure Dry measure (g)
Eggs 6 large 298
Sugar 3/4 cup 176

Vanilla extract 1/2 tsp 2
All purpose flour 1 cup 144

Butter 3/4 stick 114

Table 1: Ingredients for the gènoise recipe given in traditional and metric dry
measures

The temperature of each batter was recorded every minute at the center of the cake

until reaching 203◦F, the desired center temperature determined for a done cake [2].

The cake sizes and their times taken to bake are given in Table 2. The dimensions

are given in inches, with radii rounded to the nearest tenth of an inch, and the time

is given in minutes. The height designates the depth of batter in the pan when

initially placed in the oven.

In order to find the diffusion constants needed to produce the desired center

temperature for the given baking times cake dimensions, we used MATLAB c© to

program the series solutions found in Section 2.2. Diffusion.m, found in Appendix

A, takes the given data and evaluates the final temperature at the center of the
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Diameter (in.) Radius (in.) Height (in.) Time (min.)
13.0 6.5 1.6 35
9.9 5.0 1.8 41
9.9 5.0 1.6 20
8.0 4.0 1.0 17
4.1 2.1 4.0 26
4.1 2.1 2.0 20
4.1 2.1 1.8 19

Table 2: Cake sizes and their baking times.

cake. Given the correct value of D, the desired final temperature of 203◦F will be

reached. We must also evaluate the first several zeros, j0m, in order to complete the

solutions. We have done so using besselj.m [3], found in Appendix B, in conjuction

with Diffusion.m. An example of the plot that is produced is shown in Figure 3.

The correct value for D is found when u(r, z, t) = 203◦F.

Our initial attempted D values were based on those found by Dr. Olszewski in

his non-constant diffusion case [2]. These produced well above the desired final

temperature, which led to the need of further examination of his values. The

difference found was in part due to the fact that his diffusion rates are given in

in2/min compared to our chosen ft2/min. Also, only the first term of the series

solutions were used in calculating his D values. After a series of trial and error

runs of slowly refining smaller values of D, the diffusion rates we found to satisfy

the given dimensions, baking time and center temperature, as are listed in Table 3.

Converting our diffusion rates into in2/min found that the reduction in terms used

produced as much as six times the diffusion rate needed to reach the desired center

temperature of 203◦F.

Since cakes of relatively the same radius were hypothesized to have similar

diffusivity [2], the trial process was initially minimized. However, as can be seen

in Table 3, Cakes 4 and 7 are of the same radius but their D values are more similar

18



Figure 3: The first graph shows an initial trial of diffusion.m using D = 17.9× 10−5

ft2/min. Refining our results led to the final solution of D = 17.9073×10−5 ft2/min.
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Height (in.) Radius (in.) Time (min) D (ft2/min)
1 4.0 2.1 26 17.91×10−5

2 2.0 2.1 20 11.08×10−5

3 1.8 2.1 19 9.81×10−5

4 1.8 5.0 41 4.72×10−5

5 1.6 6.5 35 4.37×10−5

6 1.0 4.0 17 3.51×10−5

7 1.0 5.0 20 2.99×10−5

Table 3: Diffusion constants determined from given dimensions and known baking
time to reach 203◦F.

to those of Cakes 5 and 6, respectively. Noting that the heights of Cakes 4, 5 and 6,

7 are also closer in value lead to the reordering of Table 3 by Height rather than by

Diameter as in Table 2.

In general, the diffusivity is shown to be largest in cakes with smaller radii as

stated in by Dr. Olszewski, except for when the height is also less, as with Cakes 5

and 6. Since moisture evaporates from both the top and sides of the cake, the drier

batter that is left behind causes a decrease in heat diffusion [1][2]. This brings to

question whether or not the decrease or increase in diffusion is more greatly affected

by the change in radius or height. The data in Table 3 would suggest that the

height of the cake has the strongest influence on the heat diffusivity of the batter.

Yet seeing how the D values of Cakes 6 and 7 were altered by the radius would

suggest otherwise, or at least not in all cases.

Although the height decreases down the table, the radii vary in comparison from

one to the next. This led us to the explore the effect on the heat diffusion of the

cakes due to the ratio of height to radius. The results shown in Table 4 show that

the ratio of the height to radius has a direct correlation to the rate of diffusion; as

the ratio decreases, so does the diffusion rate. Similarly, an inverse relationship is

seen when comparing the ratio of radius to height. (Note: The ratios of Cakes 5 and

6 do not follow the increasing pattern but when rounded are equal.)
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D ft2/min H/R R/H

1 17.91×10−5 1.9048 0.525
2 11.08×10−5 0.9524 1.05
3 9.81×10−5 0.8571 1.1667
4 4.72×10−5 0.36 2.7778
5 4.37×10−5 0.2462 4.0625
6 3.51×10−5 0.25 4.0
7 2.99×10−5 0.202 5.0

Table 4: Diffusion constants compared to the ratios of radius and height values.

Figure(4) shows the dependence of the diffusion rate on x = H/R is approxi-

mately linear.

D =
(
8.765× 10−5

)
x + 1.797× 10−5. (36)

This linear regression gives a correlation coefficient of r ≈ .994.

Figure 4: A strong positive linear approximation of D ft2/min, given the ratio of
H/R.

Likewise, it was found that the comparison of x = R/H to the diffusion rate

followed a logarithmic approximation, with a correlation coefficient of r ≈ −.977.

21



Figure 5 shows this relationship approximated by

D = 1.220× 10−4 −
(
6.227× 10−5

)
ln(x). (37)

Figure 5: A logarithmic approximation of D ft2/min, given the ratio of R/H.

From Figures 4 and 5, and Table 4 we can conclude that for similar cakes, (those

with the same height and varying radii, and vise versa) a decrease or increase in the

varying parameter causes a decrease or increase in volume, respectively. This could

lead one to think diffusion is then affected by the volume of batter and not simply

by the ratio of height to radius as is concluded in Figure 5. However, upon a closer

look, one can see that for cakes of the same radius and varying height (as in Cakes

1-3) diffusion decreases as the height decreases. Yet for Cakes such as 3 and 4, a

decrease in radius with the same height causes an increase in diffusion. Therefore,

we can conclude that volume does not affect the rate, which one could have also seen

by noting the square of the radii of Cakes 5-7 and the product of their respective

heights to be greatly out of order.
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However, keeping the term volume loosely in mind, for our given data, a greater

H/R ratio corresponds to a more compact, or “circularly square” cake. As this ratio

decreases, the cake flattens and elongates, and the diffusion rate decreases. Since

no data was collected for a cake of greater height than diameter, we can merely

use Equation (37) to estimate that an increase in this ratio, corresponding to a tall

cake, would also increase the diffusion rate. However, we can not state this for

certain due to the possibilty that these rates could possibly plateau for proportions

approximately equal to one and then decrease in the same fashion as the cakes

increase in height and decrease in radius.

A similar synopsis can be shown for larger R/H ratios. A greater ratio

corresponds to the elongated cake mentioned previously, and does in fact correspond

to the lessened diffusion, as seen in Table 4. This re-instates that the rate of diffusion

changes with the proportion of dimensions, or geometry of the cake, which brings

up the question of a diffusion change in correspondence with the change in surface

area. For example, the described “square” cake has a greater lateral surface area

than that of the elongated cakes. Table 5 shows the ratios between the lateral and

radial surface areas, denoted as SAh = 2πRH and SAr = πR2 respectively, and the

diffusion rates of each cake.

D ft2/min SAh/SAr SAr/SAh

1 17.91×10−5 3.8095 0.2625
2 11.08×10−5 1.9048 0.525
3 9.81×10−5 1.7143 0.583
4 4.72×10−5 0.72 1.3889
5 4.37×10−5 0.4923 2.0313
6 3.51×10−5 0.5 2.0
7 2.99×10−5 0.4 2.5

Table 5: Diffusion constants compared to the ratios of the surface areas SAh and
SAr.

From Table 5 we can see results similar to those found in Table 4, which should
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be expected as the ratios of each surface area reduces to 2H
R

and R
2H

, respectively. We

again find a stronger linear correlation (r ≈ .994) between the lateral surface area

ratio, SAh/SAr, and the diffusion values, compared to the logarithmic correlation

(r ≈ −.977) between the radial ratio SAr/SAh and diffusion. Figure 6 shows the

linear correlation of D as approximately

D =
(
4.382× 10−5

)
x + 1.797× 10−5,

as well as the logarithmic correlation as approximately

D = 7.880× 10−5 −
(
6.226× 10−5

)
ln(x).

Figure 6: Approximations of D (ft2/sec), given the ratios of SAz/SAr and SAr/SAz.

Thus, we once again show that taller cakes have greater diffusion throughout the

baking process. These findings can also be used to discuss, in general, how even

though cookies and other pastries have substantially less batter to be baked, they

take a relatively long time to do so [2]. The lesser ratio of lateral surface area causes
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a reduced rate of diffusion, which in turn causes a slower heating process. However,

this brings us to some of the assumptions which have been made throughout this

process which we must include in order to fully summarize the results found thus

far. Although cookies have a substantial baking time per their unit volume, they

also contain a higher liquid content. Our current results are based simplistically on

the idea that diffusion is affected by spatial positioning of the batter and do not

take into account moisture and the process of vaporization that is also occurring

simultaneously. In the following chapters, we will discuss how this process also

affects the rate of diffusion, invalidating our current constant diffusion premise.
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4 FINITE DIFFERENCE SCHEME

In the previous chapters we have discussed the heat equation assuming that the

heat diffusivity remains constant throughout the baking/heating process. This

assumption simplifies the heat equation to where it can be solved by hand using the

found series solutions. However, in this and the following chapter we will explore

the more realistic cases in which diffusion is not assumed constant.

We recall from the derivation of our modeled heat equation as

∂u

∂t
= ∇ · (D∇u) , (38)

for D = K0(r,z)
cρ

. Then

∂u

∂t
=

1

r

∂

∂r

(
rD

∂u

∂r

)
+

∂

∂z

(
D

∂u

∂z

)

=
1

r

(
D

∂u

∂r
+ r

∂D

∂r

∂u

∂r
+ rD

∂2u

∂r2

)
+

∂D

∂z

∂u

∂z
+ D

∂2u

∂z2
. (39)

To solve this equation, we use a finite difference method. We have chosen to

use a center difference scheme [4] for the spatial derivatives on the right and the

typical forward difference scheme for the time derivative. One could just as easily

use strictly one method or the other.

We can approximate, for example, in the positive radial direction, u(r + ∆r), as

u|r+ ≈ u + ∆ru′ +
∆r2

2
u′′ + · · · ,

where u, u′, and u′′ are evaluated at r and the primes denote the derivatives of u

with respect to r. Likewise, the in the r −∆r direction,

u|r− ≈ u−∆ru′ +
∆r2

2
u′′ + · · · .
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Thus we can arrange a combination of the two to approximate the first and second

derivatives as

∂u

∂r
=

u|r+ − u|r−
2∆r

∂2u

∂r2
=

u|r+ − 2u + u|r−
∆r2

.

Applying the same technique to D and in the z direction, we can approximate the

right hand side of Equation (38) by

1

r

(
D

un
i+1 − un

i−1

2∆r
+ r

Di+1 −Di−1

2∆r

un
i+1 − un

i−1

2∆r
+ rD

un
i+1 − 2un

i,j + un
i−1

∆r2

)

+
Dj+1 −Dj−1

2∆z

un
j+1 − un

j−1

2∆z
+ D

un
j+1 − 2un

i,j + un
j−1

∆z2
. (40)

Here, the superscript notation, un, denotes the current time step. To save space,

the subscript notation is abbreviated to only include one of the two spatial directions

at a time. Thus un
i = un

i,0 and un
j = un

0,j, as well as in the i ± 1 and j ± 1 terms,

respectively. Similarly, Di = Di,0 and Dj = D0,j. An expanded version can be seen

in Appendix C.

Similarly, the time derivative on the left hand side of Equation (38) can be

approximated to be

un+1
i,j − un

i,j

∆t
,

where un+1
i,j denotes the positive (forward) time given the current values for r and z.

Thus Equation (37) becomes

un+1
i,j − un

i,j

∆t
=

1

r

(
D

un
i+1 − un

i−1

2∆r
+ r

Di+1 −Di−1

2∆r

un
i+1 − un

i−1

2∆r
+ rD

un
i+1 − 2un

i,j + un
i−1

∆r2

)

+
Dj+1 −Dj−1

2∆z

un
j+1 − un

j−1

2∆z
+ D

un
j+1 − 2un

i,j + un
j−1

∆z2
.
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To simplify, we let Dur represent the r derivatives and Duz the z, which condenses

to

un+1
i,j = un

i,j + ∆t[
1

r
Dur + Duz]. (41)

We will look at Dur first. From (40) we have

Dur = D
un

i+1 − un
i−1

2∆r
+ r

Di+1 −Di−1

2∆r

un
i+1 − un

i−1

2∆r
+ rD

un
i+1 − 2un

i,j + un
i−1

∆r2

=
2 (∆r) Dun

i+1 − 2 (∆r) Dun
i−1 + rDi+1u

n
i+1 − rDi+1u

n
i−1 − rDi−1u

n
i+1 + rDi−1u

n
i−1

4∆r2

+
4rDun

i+1 − 8rDun
i,j + 4rDun

i−1

4∆r4

Then, combining like temperature terms, un, we can rewrite Dur as

Dur = un
i−1

(Di−1ri + 2Di,j (ri−1 + ri)−Di+1ri)

4∆r2
− 2un

i,j

Di,jri

∆r2

−un
i+1

(Dj−1ri − 2Di,j (ri + ri+1)−Dj+1ri)

4∆r2
.

Here, the ri±1 are used to further simplify our combined un±1’s. For example, in

the ui−1 term we have 4Dr − 2D(∆r) which can be rewritten as 2D(2r − ∆r) =

2Dri−1 + 2Dri. Following the same method for Duz, we have

Duz = un
j−1

Dj−1 + 4Di,j −Dj+1

4∆z2
− 2un

i,j

Di,j

∆z2
+ un

j+1

Dj−1 + 4Di,j + Di,j

4∆z2
.

Thus, the solution for Equation (38) is written as

un+1
i,j = un

i,j + ∆t[
1

r
Dur + Duz],

for

Dur = un
i−1

(Di−1ri + 2Di,j (ri−1 + ri)−Di+1ri)

4∆r2
− 2un

i,j

Di,jri

∆r2
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−un
i+1

(Dj−1ri − 2Di,j (ri + ri+1)−Dj+1ri)

4∆r2
,

and

Duz = un
j−1

Dj−1 + 4Di,j −Dj+1

4∆z2
− 2un

i,j

Di,j

∆z2
+ un

j+1

Dj−1 + 4Di,j + Di,j

4∆z2
.

At this point we have not thoroughly investigated the truncation error of this scheme.

We will leave this for future analysis.

We have used a combination of heatcylfd.m and heatcylFD.m, found in Appendix

C, to implement this scheme. Given the cake dimensions and baking times we can

determine the types of nonconstant diffusivities which will yield the desired 203◦F

in the specified amount of time. We have chosen to use Cake 1 (height 4 inches and

radius 2.1 inches) to numerically model this scheme. These findings will be discussed

in the following chapter.
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5 NUMERICAL SOLUTIONS

Previously, we have assumed that heat diffuses at a constant rate throughout the

baking process. However, since cakes begin as moist batter and develop into drier

cake consistencies, we must take into account the fact that different materials transfer

heat at different rates. Dr. Olszewski does this by assuming that moisture flows

through the batter from bottom to top (or evaporates from top to bottom), causing

the top half of the cake to be the drier consistency than bottom half [2]. He then

adapts his original process to incorporate two values of D to correspond to these two

halves of different consistency determined by a boundary z = constant, independent

of r. To do so he assumes D to be dependent upon time.

We would like, however, to explore the idea that the two consistencies do not

separate the cake in half, but instead form in symmetric ”‘rings”’ as implied from

Figures 1 and 2. Since the cake pan would likely have the same effect on the

surrounding batter as the oven temperature does on the exposed top, we feel the

baking process should be fairly consistent and symmetric throughout. Also, as these

areas heat and decrease in temperature difference from their surroundings, their

diffusivity decreases and thus is dependent primarily upon position and temperature.

How much so and to what degree these changes occur would then depend upon

the amount of time exposed to the higher surrounding temperatures. Thus, we

would like to find a diffusion equation to model these aspects of the baking process.

The derivation of the heat equation from Chapter 1 allows us to do just this.

We have chosen to model D for three different cases: 1) Having two constant

diffusion values correspond to the two states of batter, thus changing dependent

upon the temperature; 2) Softening the gap between these values via a piecewise-

linear function; and 3) Further refining the change with a smooth non-linear curve.
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5.1 Piecewise Constant D Case

We begin by assigning D1 as the initial diffusivity of the moist batter and D2 as that

of the drier cake. We know that as water in the batter reaches 212◦F, evaporation

occurs leaving behind the drier cake consistency. Thus, by denoting T1 as the initial

temperature of the batter (80◦F) and T2 as the boiling temperature (212◦F), for

our piecewise constant D case we let D1 represent the diffusivity as portions of the

batter heat to this boiling point, for T1 ≤ T < T2,

Figure 7: Heat diffusion change between two constant rates given the current
temperature.

and D2 by the diffusion throughout the higher temperature, T2 ≤ T ≤ 350◦, portions

batter for the duration of the baking process. Since the temperature difference

between the batter and oven is greatest initially and then decreases as the batter

heats, D1 > D2.

Our next step is to determine the actual values of D1 and D2 for which the

diffusion rates change. Recalling from Chapter 3, the original constant D was found

to be 17.9073×10−5 ft2/min for our specified cake. Supposing this rate to be an

average throughout, we followed a similar trial and error process as in the single

constant case. Several ranges of D values were found to produce the desired 203◦F

center temperature for the baking time of 26 minutes. A sample of these ranges is

shown in Table 6.

As we vary the diffusion rates, we notice an inverse correlation between D1 and

D2 which suggests some validity of maintaining an overall average rate of diffusion
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D1 ft2/min D2 ft2/min T (◦F)

18.5× (10)−5 16.5× (10)−5 203.1
19.0× (10)−5 16.0× (10)−5 202.8
20.0× (10)−5 15.2× (10)−5 203.1
20.5× (10)−5 14.7× (10)−5 202.8
21.0× (10)−5 14.5× (10)−5 203.5
21.5× (10)−5 14.0× (10)−5 203.2
24.0× (10)−5 12.2× (10)−5 202.8

Table 6: Center temperatures given a variety of D ranges between two constant
rates.

throughout the baking process as mentioned above. Since the center temperature

differences between these values is negligible, any could be used to model our two

constant D case. However, we would like to analyze the baking implications of using

any arbitrary range of diffusion rates.

The two larger range values shown in the last entry of Table 6 would seem to

imply a steady high, unchanging D1 rate of heating for the first half of the process

and then dropping to the low, unchanging rate of D2 for the remaining baking time.

To one who is familiar with baking, or cooking in general, this scenario would seem

to yield a possible over-drying, or burning, of the cake closest to the pan and top

surface, leaving it less than desirable. Conversely, choosing a shorter range would

seem to yield results similar to the single constant diffusion rate for which we are

trying to redefine. Thus, we have chosen to use the following two constant D model:

�

�

�

�
D =


D1 = 20.0× (10)−5 for T1 ≤ T2,

D2 = 15.2× (10)−5 for T2 ≤ T < 350◦F.

Having a reasonable difference between diffusion rates, we feel this scenario best

represents the gradual baking environment needed to obtain the final, moist cake

consistency which is most commonly sought after.

Figure 8 are thermal layers throughout the cake, taken as vertical slices through
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the center of the cake for the indicated times by implementing the piecewise constant

D function into the cylindrical cake solutions in heatcylfd.m and heatcylFD.m, found

in Appendix C.

Figure 8: Center temperatures given piecewise constant diffusivity. Height vertical
and radius horizontal are shown in feet.

Each figure represents a “slice” through the center of the cake, r = 0, for the

specified times and reveals the positional and temperature symmetry as mentioned

above. The lower right image shows the center temperature at 26 minutes to be

approximately 203◦F. Although this is more realistic than the single constant D

case, the immediate change from one constant diffusion rate to another is still

unreasonable, since both the heating and baking processes are gradual. Thus in

the following sections we would like to continue to redefine our diffusion process.
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5.2 Linear Approximation of D Values

Having noted the idea of a gradual change in heat throughout the baking process,

we would like to now examine the possible rates for which this change between

consistencies and their diffusivities occur. We again suppose D2 to be the rate

of diffusion through the drier cake portions for temperatures greater than 212◦F

and let D1 to be that of the moist batter. We now assume that the diffusivity

decreases linearly from D1 to D2 for T ≤ 212◦F. The starting point of this decrease

is assumed to be T3 = T2− c, for c ≥ 0 an arbitrary temperature difference from T2.

The corresponding diffusion parameter D could thus be represented by the following

piecewise function:

D =


D1 for T1 ≤ T < T3,
β(T − T4) + b for T3 ≤ T < T2,
D2 for T2 ≤ T < 350◦,

for β = D2−D1

T2−T3
, b the midpoint of D1 and D2, and T4 the midpoint of T3 and T2.

Therefore,

β(T − T4) + b =
D2 −D1

T2 − T3

[
T − T3 + T2

2

]
+

D1 + D2

2
.

Technically speaking, this decrease should begin as soon as the cake is placed in the

oven and begins to heat. However, we will explore for which values of c, if any, yield

our desired 203◦F center temperature.

Given the current range of diffusion rates, D2 = 15.2 × 10−5 ft2/min to

D1 = 20.0 × 10−5 ft2/min, from Section 5.1, one should expect any value other

than c = 0◦F to decrease the amount of initial heat diffusion and therefore cause

a decrease in the final temperature. Using the same code ( found in Appendix C)

as in the previous section, by increasing c in increments of 25◦F, we recorded the
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center temperature attained at the baking time of 26 minutes. As was expected,

the final center temperature decreased by approximately 2◦F on average, leaving an

unsatisfactory value of c, given our current range of diffusion rates. We only obtain

similar temperature results when c ≈ 0.

We have chosen to examine the original idea that the diffusivity is immediately

altered as the batter is placed in the oven and begins to heat, causing a decrease

in the rate of diffusion. We must then determine a new range of diffusion rates

which will result in the desired center temperature. We choose c = 132◦F, which

corresponds to T3 = T1. Our updated diffusion equation then becomes:

D =

{
β(T − T4) + b for T1 ≤ T < T2,
D2 for T2 ≤ T < 350◦,

where

β(T − T4) + b =
D2 −D1

T2 − T1

(
T − T1 + T2

2

)
+

D1 + D2

2
.

We note that the center temperature of the batter changes minimally (< 1◦F) until

approximately 3 minutes into the baking process. Thus, we could have chosen to

let c = 129◦F and adapted the original D respectively. However, the temperature

difference at the center between these two cases was found to be < 1◦F so we continue

with the c = 132◦F case.

Now we must find a new range of diffusion rates which will yield the desired

center temperature in the allotted baking time. Using the same trial and error, and

evaluation of realistic D rates, as before,

D1 = 25× 10−5ft2/min and D2 = 17× 10−5ft2/min
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were found to produce approximately 203◦F at 26 minutes as shown in Figure 4.

Figure 9: Center temperatures given linear D, for T3 = T1. Height vertical and
radius horizontal in feet.

We again analyze the corresponding baking scenario derived given this range

of diffusion rates. As the initial batter at T1 is exposed to the oven temperature,

it begins to heat accordingly which decreases the rate of heat diffusion throughout

these heated regions. In our previous model, we hesitated to use larger D1 values due

to the possible over-drying of the outer regions. However, since we are now assuming

the rate of D1 to decrease at a constant rate, the more exposed portions of batter

are initially heated quickly but then lessen as the temperature difference decreases,

causing reduced heat diffusion. Our previous model did not take into account this

heat gain acquired between T1 and T2. Although a decent approximation of the

heating process, we feel this new variation

�

�

�

�
D =


β(T − T4) + b for T1 ≤ T < T2,

D2 = 17× (10)−5ft2/min for T2 ≤< 350◦.

for �

�

�

�
β = D2−D1

T2−T3
D1 = 25× 10−5ft2/min

T4 = T3+T2

2
b = D1+D2

2
,
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better accommodates the actual heat increase and diffusion decrease associated with

the initial portion of the baking process.

This being said, we also find a flaw in the linear approximation. Although we have

now taken into account the initial temperature gain, we fail to note the continuing

change even after portions of the batter reach and exceed their boiling point at T2.

The following section will then show an attempt to refine our diffusion problem once

more, and find a suitable function for D that accommodates all aspects of the baking

process.

5.3 Non-Linear Approximation of D Values

We continue to refine our diffusion model by smoothing out the linear function to

incorporate higher temperature diffusion. As mentioned in the previous sections, any

diffusion occurring throughout high temperature regions (> T2) remains unchanged

through the duration of the baking time. We wish to smooth out our current piece-

wise continuous approximation. We choose a non-linear hyperbolic tangent function

of the form

D = a tanh [β(T − T4)] + b, for

a = D1−D2

2
, β = D2−D1

T2−T3
, b = T3+T2

2
.

Since our linear function passes through a central point of (T4,
D1+D2

2
), these

coefficients ensure the placement and amplitude of our hyperbolic corresponds to

the range and temperature values of the linear function as seen above. We must also

make sure that the slope of our new function is the same as the linear model’s β at
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T = T4. Thus we need

D′(T4) = aβ sech 2 [β(T − T4)] = β.

However, one can see that this yields a slope of aβ, given that sech 2 [β(T4 − T4)] = 1.

To compensate, we divide β in the function above by a which results in

D = a tanh

[
β

a
(T − T4)

]
+ b.

This current notation corresponds to that of α = 3 in heatD.m of Appendix C. By

using plotD.m, found in Appendix D, we can visualize the coordination of our linear

and hyperbolic tangent curves in Figure 5 given the temperature and previous range

of D values. Here we can see the continuing change in diffusion rates as regions

reach and exceed their boiling point at T2.

Figure 10: Linear and Hyperbolic Tangent curves given temperature and D values.

Satisfied with our new D approximation, we implemented the curve into the same

codes as before found in Appendix C. Also noting the reduced range of D values

spanned by our hyperbolic function, it came to no surprise that given the current
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values, the center temperature of the cake only reached approximately 190◦F. Thus

once again manipulating our range of diffusion rates, we found that for

D1 = 23× 10−5ft2/min and D2 = 16.3× 10−5ft2/min,

we attained a center temperature of approximately 203◦F as seen in Figure 6.

Figure 11: Center temperatures given hyperbolic D. Height vertical and radius
horizontal are shown in feet.

We would like to note this range of D values was the smallest possible range for

which we could satisfy the 203◦F center temperature requirement at the baking time

for 26 minutes given the cake dimensions in question. Other, larger ranges produced

similar results as in the previous sections, however we once again speculate that a

smaller range of diffusion best suites an environment for quality baking standards.

Thus we feel the diffusion function

�� ��D = a tanh(β(T − T4)) + b,

for �

�

�

�
D1 = 23× 10−5 ft2/min D2 = 16.3× 10−5 ft2/min

a = D1−D2

2
, β = D2−D1

T2−T3
, b = T3+T2

2
,
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is a satisfactory model for our specified cake dimensions. In the next section we

will compare each of our approximations to see how much change actually occurs

between the varying functions.

5.4 Comparison of Diffusion Models

For the three models highlighted in the previous sections of this chapter, we can

compare the temperature differences obtained between each function. Referring to

the contour plots at the bottom of heatFDcyl.m, each function defined is plotted and

labeled as C1, C2, and C3 respectively. Each plot is then paired with one of the

either remaining and the absolute value of their temperature differences is recorded

and shown as a line contour for easier viewing. We have then manually selected

various points on these contour rings to illustrate the temperature changes between

these two plots. Figures 7-9 show the maximum temperature differences between

each pair of functions.

One might expect for the two constant D value function and the hyperbolic

tangent function to contain the largest temperature difference due to the number of

refinements made to reach the hyperbolic case. However, as can be seen in Table

5, the maximum temperature difference, calculated from the center temperature to

the outer ring corresponding to the outer boundary of the cake, occurs between the

two constant D and linear cases.

D Range Figure 1 Figure 2 Figure 3

D(3) 18◦F 11◦F 7◦F
D(2) 17◦F 9◦F 7.5◦F
D(1) 19◦F 13◦F 6◦F

Table 7: Maximum temperature difference (to the nearest ◦F) between diffusion
functions given their corresponding contour plots and range of D values associated
with each function respectively.
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Figure 12: Temperature differences between two D and linear models. Height
vertical and radius horizontal are shown in feet.
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Figure 13: Temperature differences between two D and hyperbolic models. Height
vertical and radius horizontal are shown in feet.
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Figure 14: Temperature differences between linear and hyperbolic models. Height
vertical and radius horizontal are shown in feet.
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6 CONCLUSIONS

After initially assuming that heat diffuses at a constant rate throughout the baking

process, we realized that this theory does not take into account the different diffusion

rates of the different consistancies that form as the batter heats. However, we

generally stated that similar cakes (those of equal height or ratio) have similar

diffusion rates. From this basis we expanded our search to incorporate the changing

diffusions of the varying consistencies. Beginning with the two constant D case, we

found a suitable range of D values that satisfied the given dimensions and baking

time to reach the desired center temperature of 203◦F. We determined this case to

be equally unrealistic in that it assumes the batter is either moist or dry and that

each diffuses at a rate of D1 or D2 ft2/min, respectively. However, we know that the

batter changes continuously as it heats and therefore so should its rate of diffusion.

Thus we refined our results and looked at a linear approximation of the rate

of diffusion instead. Here we also determined an adequate range of diffusion, but

once again our model failed to incorporate the continuing change of diffusion of

batters which reach temperatures greater than 212◦F, at which point the moister

in the batter was determined to evaporate. To incorporate this change, we again

wished to smooth the transition from the greater diffusion of the initial moist batter

to the lesser diffusion of the drier batter. We found a hyperbolic tangent curve to

compliment our linear approximation and determined that this model best suited the

ever changing diffusion that takes place throughout the baking process. Comparing

the three models, we found that the two constant D and hyperbolic tangent cases

showed the least temperature difference, thus the greatest similarities.

Apart from our focus on determining non-constant diffusion rates, Dr. Ol-

szewski’s initial goal of determining these rates in order to predict baking times

[2] was also taken into consideration. Various runs using the dimensions from
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Cakes 2 and 3 were made to see if the baking times could be predicted relatively

accurately using our three models, the hyperbolic tangent curve in particular. Center

temperatures were evaluated at the expected baking times for the specified cakes

but on various occasions this resulted in an excess of 300◦F when using the range

of diffusion rates found for our three models. These findings were concluded to be

due to the fact that Cake 1 was used to determine the diffusion ranges for all three

models and has been shown to have the highest rate of diffusion. Noting that the

lowest range of diffusion values (found for the two constant D case) yielded the

lowest center temperature during our trial process, we leave room for future work

to investigate whether or not using one of the mid-range, constant D cakes could

then be used to find similar diffusion ranges and then be applied to predict similar

baking times.

Future work is also left to explore our initial model using the heat equation

without the assumption that density and specific heat depend solely on spatial

direction but also time dependent and not approximately constant. Also, one could

vary the boundary conditions from the fixed case we assumed and instead consider

mixed conditions which would take into account that heat does not always flow in a

single direction. This being said, many alternate routes could be taken to determine

the effects of conduction, convection, and radiation which are also not taken into

account with our model. An extensive system of partial differential equations would

be needed to incorporate the many intricate factors and processes which take place

during the baking process.

On top of the already mentioned, other topics to be explored include: incorpo-

rating the conductivity of various baking pans, conduction vs. convection ovens, the

moisture content of various recipes, cupcakes, angel food cake (which we previously

mentioned would require Bessel equations of the second kind), and many other

branches into the numerous applications of the baking process.
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APPENDIX

A. Diffusion

Determination of a diffusion constant given the cake size and known baking time to
reach a center temperature of 203◦F.

%Temperatures

Ti=80;

Tb=350;

%Cake dimensions (in feet)

a=2.1/12;

H=4/12;

%Point of evaluation

r=0;

z=H/2;

%Baking time

t=26;

%Number of terms

N=1000;

M=1000;

n=1:N;

m=1:M;

%Evaluate zeros of Bessel functions

j0=besselzero(0,M,1);

j1=j0.*besselj(1,j0);

%Set up arrays

S=sin((2*n-1)*pi*z/H)./(2*n-1);

B=besselj(0,r/a*j0(m))./(j1(m));

%Diffusion constant

D=17.9073e-5;

for j=1:10

D=D+j*(1.0e-8);

E1=exp(-((2*n-1)*pi/H).^2*D*t);

E2=exp(-(j0(m)/a).^2*D*t);

u(j)=Tb+8*(Ti-Tb)/pi*B’*E2*E1*S’;

d(j)=D;

end

plot(d,u,’x’)

title(’Temperature at Center vs Diffusion Constant’)

xlabel(’Diffusion Constant (ft^2/min)’)

ylabel(’Temperature (F)’)
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B. Besselzeros

Called in diffusion.m to find the first k zeros of the Bessel function J(n,x).

function x=besselzero(n,k,kind)

k3=3*k;

x=zeros(k3,1);

for j=1:k3

% Initial guess of zeros

x0=1+sqrt(2)+(j-1)*pi+n+n^0.4;

% Do Halley’s method

x(j)=findzero(n,x0,kind);

if x(j)==inf

error(’Bad guess.’);

end

end

x=sort(x);

dx=[1;abs(diff(x))];

x=x(dx>1e-8);

x=x(1:k);

function x=findzero(n,x0,kind)

n1=n+1; n2=n*n;

% Tolerance

tol=1e-12;

% Maximum number of times to iterate

MAXIT=100;

% Initial error

err=1;

iter=0;

while abs(err)>tol & iter<MAXIT

switch kind

case 1

a=besselj(n,x0);

b=besselj(n1,x0);

case 2

a=bessely(n,x0);

b=bessely(n1,x0);

end
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x02=x0*x0;

err=2*a*x0*(n*a-b*x0)/(2*b*b*x02-a*b*x0*(4*n+1)+(n*n1+x02)*a*a);

x=x0-err;

x0=x;

iter=iter+1;

end

if iter>MAXIT-1

warning(’Failed to converge to within tolerance. ’,...

’Try a different initial guess’);

x=inf;

end
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C. Numerical Solutions

I. Finite Difference Scheme - heatcylf.m

Solution of Heat Equation in cylindrical coordinates with Dirichlet BCs using explicit
finite difference scheme.

function u = heatcylf(D1, D2, t, r, z, init, bdry,alpha)

% Solution of Heat Equation in cylindrical coordinates

% with Dirichlet BCs using explicit finite difference

K = length(r);

M = length(z);

N = length(t);

dr = mean(diff(r));

dz = mean(diff(z));

dt = mean(diff(t));

u = zeros(N,K,M);

u(1,:,:) = init;

D=D1*ones(size(init));

for n = 1:N-1

for i=2:K-1

for j=2:M-1

% Diffusion Terms

Dur(i,j) = u(n,i-1,j)*(D(i-1,j)*r(i)+ 2*D(i,j)*(r(i-1)+ r(i))

-D(i+1,j)*r(i))/4/dr^2 ...

- 2*u(n,i,j)*D(i,j)*r(i)/dr^2 ...

- u(n,i+1,j)*(D(i-1,j)*r(i)-2*D(i,j)*(r(i)+r(i+1))

-D(i+1,j)*r(i))/4/dr^2;

Duz(i,j) = u(n,i,j-1)*(D(i,j-1)+4*D(i,j)-D(i,j+1))/4/dz^2 ...

- 2*u(n,i,j)*D(i,j)/dz^2 ...

- u(n,i,j+1)*(D(i,j-1)-4*D(i,j)-D(i,j+1))/4/dz^2;

u(n+1,i,j) = u(n,i,j) + dt*(Dur(i,j)/r(i)+Duz(i,j));

end

end

% Boundary Conditions

u(n+1,K,2:M-1) = bdry(1);

u(n+1,2:K-1,1) = bdry(2);

u(n+1,2:K-1,M) = bdry(3);

%u(n+1,1,2:M-1) = bdry(4);

u(n+1,1,2:M-1) = u(n,2,2:M-1);
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% Diffusion Matrix

U(:,:)=u(n,:,:);

D=heatD(D1,D2,U,alpha);

end

II. Contour Solution Plots - heatFDcyl.m

Inputs the given cake dimensions and diffusion values into heatcylf.m and plots
vertical slices taken at the center of the cake at the specified times given by Tmax.
For the dimensions listed below, the center of the cake should be ≈ 203◦F at
Tmax=26.

clear

for alpha=1:3

figure(alpha)

N=3000;

K=20;

M=10;

R=2.1/12;

H=4/12;

Tmax = [12; 18; 23; 26];

minT=80;

maxT=350;

%alpha=1

%D2=19e-5;

%D1=16e-5;

%alpha=2

%D2=15.2e-5;

%D1=20.0e-5;

%alpha=3

D2=16.3e-5;

D1=23e-5;

for k = 1:length(Tmax)

tvals = linspace(0, Tmax(k), N);

rvals = linspace(0, R, K);

zvals = linspace(0, H, M);

init = (80-350)*ones(K,M);

uvals = 350 + heatcylf(D1, D2, tvals, rvals, zvals, init, [0,0,0,0],alpha);

U(1:K,1:M) = uvals(N-1,:,:);

for i=1:K

C(i+K-1,1:M) = U(i,1:M);
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C(K+1-i,1:M) = U(i,1:M);

rr(K+1-i) = -rvals(i);

rr(i+K-1) = rvals(i);

end

%figure

subplot(2,2,k)

contourLevels = [80:20:350];

[c,h] = contourf(rr,zvals,C’,contourLevels); colorbar

set(gca, ’CLim’, [minT, maxT]);

title([’Temeratures for t= ’ num2str(Tmax(k)) ’ min’])

end

if alpha==1

C1=C;

elseif alpha==2

C2=C;

else

C3=C;

end

end

figure(4)

[c,h] = contour(rr,zvals,abs(C2-C1)’,6);

clabel(c,h,’manual’);

set(gca, ’CLim’, [0, max(max(abs(C2-C1)))])

title([’Temerature Differences Linear D vs Two Values’])

figure(5)

[c,h] = contour(rr,zvals,abs(C3-C1)’,6);

clabel(c,h,’manual’);

set(gca, ’CLim’, [0, max(max(abs(C3-C1)))])

title([’Temerature Differences Tanh D vs Two Values’])

figure(6)

[c,h] = contour(rr,zvals,abs(C3-C2)’,6);

set(gca, ’CLim’, [0, max(max(abs(C3-C2)))])

clabel(c,h,’manual’);

title([’Temerature Differences tanh D vs Linear D’])

[max(max(abs(C2-C1))) max(max(abs(C3-C1))) max(max(abs(C3-C2))) ]

III. Diffusion Functions Defined - heatD.m

Called in heatcylf.m to be input as the diffusion matrix given α = 1 : 3, heatD.m
defines each derived diffusion function in Chapter 5 for their specific values and
constraints.
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function d = heatD(D1, D2, temp,alpha)

[k,m]=size(temp);

% Initialized constants

a=(D1-D2)/2;

b=(D1+D2)/2;

%c=1;

%c=25;

%c=50;

%c=75;

%c=100;

c=132;

T1=80-350;

T2=212-350;

T3=T2-c;

T4=(T2+T3)/2;

TT=2*(temp-T4)/(D1-D2);

% Slopes

beta=(D1-D2)/(T3-T2);

if alpha==1

% Function for two constant values D1>=D2

for i=1:k

for j=1:m

if temp(i,j)>T2

d(i,j)=D2;

else

d(i,j)=D1;

end

end

end

elseif alpha==2

% Function for a linear ramp of slope beta through (T4,(D1+D2)/2)

for i=1:k

for j=1:m

if temp(i,j)>T4

d(i,j)=D2;

elseif temp(i,j)<T3

d(i,j)=D1;

else

d(i,j)=beta*(temp(i,j)-T4)+b;

end

end

end

elseif alpha==3

% Function for a smooth ramp of slope beta through (T4,(D1+D2)/2)
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d=a*tanh(beta*TT)+b;

end
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D. Non-Constant Plots

Plots linear and hyperbolic tangent curves given temperature and D value range.

% Routine to plot piecewise linear and tanh ramps

% for varying diffusion ranges

%

T=linspace(-270,0,100);

% Diffusion Constants with D1>D2

%alpha=1

%D2=19e-5;

%D1=16e-5;

%alpha=2

%D2=15.2e-5;

%D1=20.oe-5;

%alpha=3

D2=16.3e-5;

D1=23e-5;

% Initialized constants

a=(D1-D2)/2;

b=(D1+D2)/2;

c=132;

T1=80-350;

T2=212-350;

T3=T2-c;

T4=(T2+T3)/2;

TT=2*(T-T4)/(D1-D2);

% Plot smooth ramp of slope beta through (T4,(D1+D2)/2)

beta=(D1-D2)/(T3-T2);

f=a*tanh(beta*TT)+b;

hold

plot(T+350,f)

hold

% Plot linear ramp of slope beta through (T4,(D1+D2)/2)

for i=1:100

if T(i)>T2

d(i)=D2;

elseif T(i)<T3

d(i)=D1;

else

d(i)=beta*(T(i)-T4)+b;

end

end
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hold

plot(T+350,d,’r’)

hold
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