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ABSTRACT 

Light plays a major signaling role in plant growth and development, which 

directly involves plant photoreceptors. UV-B radiation (280-320nm) is also an integral 

component of sunlight that may cause damage to macromolecules or activate adaptive 

responses. Using genes known to be UV-inducible from previous microarray 

experiments, I measured gene expression after UV-B exposure using real-time PCR in 

wild-type Arabidopsis seedlings, and then compared wild-type gene expression to 

expression in a putative UV-B photoreceptor mutant. I also monitored the effect of UV-B 

on growth, which was measured by leaf rosette diameter. In two experimental settings, 

there were significant differences between treatments (Mylar and cellulose diacetate), 

genotypes (mutant and wild-type), and their interaction. Based on these results, I 

conclude that the candidate gene fits the phenotype of a UV-B photoreceptor and confers 

increased growth in the greenhouse when the photoreceptor is present in plants exposed 

to UV-B radiation. 
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INTRODUCTION 

Light plays a major signaling role in plant growth and development. 

Photoreceptors are light-sensitive proteins involved in the sensing and co-ordination of 

responses to light in a variety of organisms (Briggs and Olney, 2001). These 

photoreceptors include well-studied systems involved in plant responses to blue light 

(cryptochromes and phototropins) and red light (phytochrome system) (Taiz and Zeiger, 

1998). Phototropins mediate phototropism responses in higher plants, such as stomatal 

opening, and are activated in response to blue light (DeBlasio et al., 2005). The 

phytochrome family of photoreceptors is specific to red light (RL) and far-red (FR) light 

perception, whereas the cryptochrome family specifically perceives blue light (BL) and 

UV-A light (Quail, 2002). Although red light, mediated through phytochrome, can induce 

phototropic responses under special circumstances (Parker et al., 1989), it seems probable 

that specific BL photoreceptors play an important role in most light-responsive growth 

and movement (Hashimoto, 1994). Phytochromes that absorb red/far-red light and 

cryptochromes that sense UV-A/blue light together regulate photomorphogenetic 

processes. These processes include deetiolation (stem elongation, leaf expansion etc.), 

vegetative growth, flowering induction, and circadian rhythms (Smith, 2000; Lin, 2002; 

Morelli and Ruberti, 2002; Wang and Deng, 2002). In Arabidopsis thaliana, at least 10 

photoreceptors, including five phytochromes (phyA through phyE), three cryptochromes 

(cry1, cry2, and cry3), and two phototropins (phot1 and phot2), have been identified 

(Arabidopsis Genome Initiative, 2000).  

Over the past decades, rising UV-B fluence (radiation intensity) rates at the 

earth’s surface caused by stratospheric ozone depletion has attracted researchers to want 
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 2 

to better understand UV-B light signal perception and transduction (Suesslin and 

Frohnmeyer, 2003).  UV-B tolerance mechanisms are commonly studied because they 

are directly relevant to changes in terrestrial UV-B fluence. UV-B radiation causes a 

multitude of responses that are defined as low- and high-fluence responses similar to 

phytochrome responses (Kim et al., 1998). “High-fluence” response pathways, generally 

include DNA damage signaling, and “low-fluence” pathways are mediated through one 

or more UV-B photoreceptor proteins (Frohnmeyer and Staiger, 2003). (Fig. 1)  

Although UV-B radiation (280-320 nm) is an important component of sunlight, 

significant increases above natural levels are harmful to plants. High fluence UV-B can 

cause damage to vital cellular molecules, such as DNA and generative reactive oxygen 

species (Frohnmeyer and Staiger, 2003). Plants have the ability to partly protect 

themselves from UV with various internal response methods.  For most plants only a 

small proportion of the UV-B radiation striking a leaf penetrates very far into the inner 

tissues. Also, when exposed to an enhanced UV-B level, many species of plants can 

increase the UV-absorbing pigments in their tissues. Other adaptations to this stress 

include increased thickness of leaves, which reduces the proportion of inner tissues 

exposed to UV-B radiation (UNEP, 1998).    

One method that can be used to identify proteins with known UV photoreceptor 

characteristics in the Arabidopsis genome is a bioinformatics approach. This approach 

was used to identify proteins with known photoreceptor characteristics in the Arabidopsis 

genome (Stapleton, 2006). According to Stapleton (personal communication), the final 

list of identified proteins had no known function and no PubMed citation, but good 

annotation and EST (Expressed-Sequence-Tags) coverage. ESTs are short, unedited, 
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single pass sequence reads derived from randomly selected complementary DNA 

(cDNA) libraries (Nagaraj et al., 2007). The top-ranked final candidate gene containing 

PAC/PAS domains, but no kinase domain, was gene ID At2g02710. PAS (Per-ARNT-

Sim) domains are frequently followed by a 40- to 50-amino acid PAC motif, is likely to 

contribute to PAS structural domain (Ponting and Aravind, 1997). PAS/PAC domains are 

proposed to form a single structural element (Taylor and Zhulin, 1999) and thus are 

referred to as PAS/PAC domains (Catlett et al., 2003).  

The best-characterized low fluence UV-B-mediated responses in Arabidopsis 

thaliana are the inhibition of hypocotyl growth in seedlings, the biosynthesis of UV-

absorptive secondary metabolites such as flavonoids or sinnapate esters, and the 

stimulation of related gene expression changes (Boccalandro et al., 2001; Christie and 

Jenkins, 1996; Kim et al., 1998; Landry et al., 1995; Li et al., 1993). Brown et al. (2005) 

characterized an Arabidopsis gene, UV RESISTANCE LOCUS 8 (UVR8). They tested 

whether the mutants in the gene responded to UV-B, whether the gene was apart of a 

cascade of genes involved in a UV-B signaling pathway, and whether the proposed 

pathway of which UVR8 gene is a part, plays a role in protecting the plant from UV. 

Their results show that UVR8 is a UV-B-specific signal transduction component that 

plays an important role in mediating plant responses to UV. In particular, UVR8 works in 

combination with the protective gene expression responses (enabling plants to protect 

themselves from harmful sunlight). Thus, UVR8 defines a key light-signaling pathway in 

plants (Brown et al., 2005). Genes identified that play a role in signaling pathways can 

also play a role in other biological plant processes such as flavonoid biosynthesis.   
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In addition to flavonoid biosynthesis, which is responsible for the color of flowers 

and fruits and can function to protect plants from UV, and plant defense mechanisms, two 

morphogenic responses to UV-B have been identified in Arabidopsis, which include 

cotyledon opening and the inhibition of hypocotyl elongation (Suesslin and Frohnmeyer, 

2003). Suesslin and Frohnmeyer (2003) isolated UV-B hypersensitive mutants with 

reduced tolerance to UV-stress to investigate UV-B mediated responses in Arabidopsis. 

A UV-B light sensitive protein (ULI3) was identified, which was found to be a specific 

component involved in UV-B-mediated signal transduction of protection mechanisms 

and various morphological responses to UV-B light (Suesslin and Frohnmeyer, 2003). 

ULI mutants are specifically impaired in UV-B-mediated responses and have highly 

specific signaling function during early developmental stages in Arabidopsis (Suesslin 

and Frohnmeyer, 2003). The physiological features of the ULI3 mutant resemble those of 

other Arabidopsis mutants that had been isolated due to impaired responses to red, far-red 

or blue light and later found to be affected either in the function of a specific 

photoreceptor or in signaling triggered by this photoreceptor (Ahmad and Cashmore, 

1993; Cashmore et al., 1999; Nagatani et al., 1993; Reed et al., 1993; Somers et al., 

1991.). ULI3 gene expression was found in all active organs such as flowers and stems 

but not in roots. Suesslin and Frohnmeyer (2003) places ULI3 function close to a UV-B 

photoreceptor in signal transduction, where it might be activated by electron transfer and 

in turn activate downstream elements of UV-B signaling by membrane attachment, 

electron transfer, or both. Although experiments examining UV-B signaling responses 

have shown that proteins encoded by UVR8 and ULI3 do not directly absorb UV-B, they 
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are nevertheless essential components in signaling after photoreception (Ulm and Nagy, 

2005).  

Boccalandro et al. (2001) determined that cotyledon opening has especially useful 

features for photoreceptor mutant screens as the hypocotyl shortening-response appears 

to have both low-fluence and high-fluence components. Their results suggest that the 

effects of UV-B on cotyledon opening and hypocotyl growth inhibition are mediated 

through different photosensory mechanisms within the same developmental stage of the 

Arabidopsis seedling. Isolation and characterization of mutants with altered morphogenic 

responses to UV-B will be necessary to positively identify UV-B receptor systems 

(Boccalandro et al., 2001). These analyses could lead to the identification of the specific 

photoreceptors responsible for the inhibition of cotyledon opening. 

According to Stapleton (personal communication), to confirm a particular 

response as photoreceptor-mediated, a few conditions must be met. First, the dose-

response curve for the response peaks must be at very low fluence. This will differentiate 

the responses due to DNA damage, which increases with fluence from the responses due 

to photoperception and signaling. Second, the response should not be altered by the 

presence of DNA repair mutations. This will assist in eliminating DNA-damage response 

pathways. Finally, the response should be UV-B specific in order to focus on one specific 

response pathway (Stapleton, 2006). The genes and the interactions of the genes involved 

in the signal transduction pathway are not completely understood. Identification of some 

genes involved such as UVR8 and ULI3 are steps towards better understanding the affects 

of UV-B and signal transduction pathways involved. Understanding gene expression 
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regulation as a result of UV-B signaling is key in better understanding signal 

transduction.  

Microarrays are used to analyze the expression of several thousand genes to 

identify tissue-specific expression patterns and to identify candidate genes for further 

more detailed analysis (Girke, 2000). Knowing where and when promoters are active and 

where gene products (RNA and protein) are found can provide important clues to the in 

vivo function of genes. Various methods can be used to analyze gene expression in 

Arabidopsis, such as complementary DNA (cDNA) and oligonuclotide microarrays 

(Weigel and Glazebrook, 2002).  

Brown et al. (2005) examined the expression profiles of UV RESISTANCE 

LOCUS 8 (UVR8) by using whole-genome microarrays in Arabidopsis. This work, along 

with others, set the stage for further investigation of molecular mechanisms enabling 

plants to cope with increasing levels of UV-B, ultimately leading to a more complete 

understanding of plants’ responses UV-B. The microarray experiments monitored the 

gene expression profile of UV-B-irradiated seedlings by using high-density 

oligonucleotide microarrays comprising almost the full Arabidopsis genome. Their 

results provided evidence that UVR8 regulates the expression of various genes that are 

involved in protecting the plants from damaging UV-B. This pathway does not require 

known photoreceptors, such as phytochromes, cryptochromes, and phototropins, but 

involves ELONGATED HYPOCOTYL5 (HY5) (Ulm et al., 2004, Brown et al., 2005). 

HY5 is a basic domain/leucine zipper (bZIP) transcription factor mediating a number of 

red and blue light photoreceptor-controlled physiological responses (Osterlund et al., 

2000; Chen et al., 2004). UVR8 is also a key component that assists in the production of 
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chalcone synthase (CHS) expression. Brown et al. (2005) concluded that the UVR8 

pathway plays an important role in plant survival in the natural environment and after 

exposure to low levels of UV-B. Specifically, UVR8 regulates the protective gene 

expression responses that enable plants to survive in response to UV-B.   

Some of the light signaling pathways identified are also sensitive to other factors 

that affect the regulation of gene expression. Recent studies have established a role for 

reactive oxygen species (ROS) in regulation of gene expression in response to UV-B 

radiation (Green and Fluhr 1995; Surplus et al. 1998; A.-H Mackerness et al. 1999). 

Other factors that have been implicated in plant responses to UV-B stress are jasmonic 

acid (JA), salicylic acid (SA), and ethylene. Mackerness et al. (1999) investigated the role 

of ROS, JA and ethylene in signal pathways leading to changes in gene expression in 

Arabidopsis in response to UV-B exposure. Their results showed that ROS is also 

required for the UV-B-induced regulation of PDF1•2 genes, which are defense genes. 

They also showed that some protection for the plant against UV-B radiation occurs by 

defense mechanisms which require both JA and ethylene-dependent signaling pathways. 

Overall, some of the pathways that are involved in response to UV-B exposure indicate 

that the effects of UV-B on gene expression are unlikely to be due to various damaging 

factors, such as DNA damage. It is implied that it could be due to UV-B photoreceptor(s) 

(Macherness et al., 1999).    

Fitness is also a factor in Arabidopsis that is affected in response to UV-B. UV-B 

can influence the plant’s rate of development and induce morphological responses that 

may affect fitness. In general, plant fitness is the ability of the plant to reproduce; fitness 

is often correlated with growth rate. Ganeteg et al. (2004) developed an assay to measure 
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the fitness of Arabidopsis plants under natural conditions by measuring seed production. 

This method identified whether the photosynthetic light-harvesting complex (LHC) 

proteins affect the fitness of Arabidopsis plants in the field; LHC proteins are responsible 

for the molecular function of chlorophyll binding. Ganeteg et al. (2004) planted LHC 

protein deficient plants and their related wild-types. The mutant plants had less seed 

production. Overall, they concluded that most, and probably all, of the studied proteins 

have a significant effect on plant performance under natural conditions, which supports 

the view that each LHC protein is important for plant fitness.  

Traw et al. (2007) tested the benefit of systemic acquired resistance (SAR) and 

jasmonic acid (JA)-mediated defense in an Arabidopsis population known to contain 

pathogenic bacteria. They also tested for direct effects of agrimycin (antibiotic) and 

salicylic acid (SA) on fitness. Fitness was measured by the amount of shoot dry mass, 

silique number, and seeds per silique. SAR- and JA-mediated defenses have been shown 

to suppress the growth of many different kinds of bacteria in the lab and each is 

associated with the up-regulation of hundreds of genes with known or predicted roles in 

defense (Schenk et al., 2000). They found that Arabidopsis thaliana plants treated with 

JA received significantly lower insect damage to their siliques, but exhibited no 

differences in bacterial growth or other measures of fitness relative to controls. Overall, 

their data suggest a likely role of pathogenic bacteria in the maintenance of SAR, but no 

jasmonate-dependent resistance in nature (Traw et al., 2007).  

The effect of UV on growth in Arabidopsis thaliana has not been fully investigated; 

therefore it is not yet known whether increased UV-B positively or negatively affects 

plant growth. If the candidate gene, At2g02710, is a UV-B photoreceptor, then I expect 
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that Arabidopsis’ UV-B receptors would increase gene expression and growth in the 

wild-type in laboratory and greenhouse grown plants in response to UV-B. 

To test my hypothesis that At2g02710 is a UV-B receptor, I examined whether 

mutation of this gene resulted in a phenotype supporting the proposed function as a UV-B 

photoreceptor. To accomplish this goal, two approaches were used. First, I monitored 

genes known to be UV-inducible from previous microarray experiments. The expression 

of these genes was determined using real-time PCR in Arabidopsis wild-type siblings, 

compared to the expression in the putative UV-B photoreceptor mutant. Secondly, I 

tested the candidate gene mutants to see if growth is altered under UV by measuring 

rosette diameter from leaf tip to tip over a four week time period.  
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MATERIALS AND METHODS 

Planting Arabidopsis Seeds 

Seeds were provided by A. Stapleton from the Arabidopsis Biological Resource 

Center (ABRC) (http://www.biosci.ohio-

state.edu/~plantbio/Facilities/abrc/abrchome.htm). Seeds with an insertion mutation in 

the gene of interest (At2g02710), were ordered from the Arabidopsis stock center for 

comparison testing between the mutant and the wild-type. The insertion mutants chosen 

were named 600 and 6F. The 600 mutant was heterozygous; when selfed, we identified 

[by Polymerase Chain Reaction (PCR) test], two mutant siblings, which were named 600I 

and 600A. One wild-type sibling was identified and named 600C. The 6F insertion 

mutant was homozygous. These plants were crossed to Columbia (Col); a wild-type 

plant, selfed and 6Fsx was identified by PCR testing. Comparisons were made between 

the wild-types (Col, 600C, and 6Fsx) and the mutants (600I, 600A, and 6F).  

For gene expression measurements the seeds were planted in a water/agar 

medium with a ½x Muarshige and Skoog Basal Salt mixture (Sigma, St. Louis, MO). The 

seeds were planted on the media in a 28mm diameter plastic dish with 10-15 seeds per 

dish. The planted seeds were placed in the refrigerator for about a week. The planted 

seeds were then exposed to light at room temperature. The light was provided by Phillips 

40-watt cool-white and grow-bulb fluorescent bulbs, which allowed the seeds to 

germinate and to expand their cotyledons.  

To measure plant growth, seeds were planted in pots with Metromix soil and 

allowed to grow until seed production. One seed per pot was planted into wet soil and 

then gently covered with saran wrap. The seeds were placed in a cold room at 4°C for 

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com


 11 

approximately 3 days to initiate germination and then were exposed to light at room 

temperature. The light was provided by cool-white and grow-bulb fluorescent bulbs, 

which allowed the seeds to germinate and to grow through their full life cycle. 

UV Treatments 

 The seedlings used for the gene expression experiments were placed under UV 

lamps for thirty minutes with two plastic covers: cellulose diacetate, which allows UV-B 

to pass through, and Mylar, which is used as a control and does not allow UV-B to pass 

through. The plants were then provided a one-hour recovery in the growth lights before 

harvesting for real time-Polymerase Chain Reaction (RT-PCR). 

For the growth experiment, the seedlings were given 30 minutes of UV everyday 

using two plastic covers. In Dobo Hall Room 104, half of the bulbs were covered with 

Mylar, a Mylar divider was used to separate the potted growth trays, and a cellulose 

diacetate cover was placed over the other half of the bulbs. The UV was provided by one 

UV313 bulb that was positioned between two cool-white and grow-bulb fluorescent 

bulbs. 

 In the UNCW Kresge greenhouse, the seedlings were also given 30 minutes of 

UV everyday. The growth apparatus was a large, metal shelf that contained two 

aluminum tables. The growth trays were on each of the separate aluminum tables 

approximately two feet off of the ground. On both tables there were two UV313 bulbs in 

one fixture that hung above the growth trays. One set of UV bulbs were covered with a 

Mylar plastic cover, while the other set of UV bulbs were covered with a cellulose 

diacetate cover.   
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RNA Extraction 

 After UV treatments and recovery in light, approximately 4-5 seedlings from each 

dish were harvested into a microfuge tube. Liquid nitrogen was added, the sample was 

ground to a powder, and Trizol (Invitrogen, Carlsbad, CA) was added. According to 

manufacturer’s instructions, chloroform was added to the Trizol; the mixture was 

vortexed for 10 seconds and was incubated at room temperature for 5 minutes. The 

sample was centrifuged at 4°C and the upper phase was pipetted into a new microfuge 

tube without disturbing the pellet. Isopropanol and 75% ethanol were added to precipitate 

the RNA and to wash all other solutions from the extracted RNA. After centrifugation 

ethanol was carefully removed without disturbing the pellet. The remaining RNA sample 

was left to air-dry for 10 minutes and resuspended in deionized water. The sample was 

heated to 65°C and vortexed to dissolve the pellet. The RNA sample was stored at -70°C. 

Real-time PCR 

 Primer dilutions were made for each primer with ultrapure water. The primers that 

were used are specific for known genes, which include actin as a control and putative 

UV-affected genes, HY5, At5g59820, At5g18470, At4g15480, At2g32020, At2g38940, 

and At2g32020 (Ulm et al., 2006).  

Overall master mixes for each primer were made, which contained 2x SYBR 

Green QRT-PCR master mix (Stratagene), ultrapure water, RT/RNase block enzyme, and 

the specific left and right primers for the individual genes. The overall master mixes and 

the different genomic RNA samples were mixed then amplified using a RT-PCR two-step 

cycling protocol (Stratagene, La Jolla). Stage 1 includes one cycle of 30 minutes at 50°C, 

stage 2 includes one cycle of ten minutes at 95°C, and stage 3 includes 40 cycles of 
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fifteen seconds at 95°C along with one minute at 60°C. A dissociation step was included 

for verification of the quality of the primers that were being used. The dissociation step is 

stage 4, which includes one cycle for fifteen seconds at 95°C, one minute at 60°C, and 

fifteen seconds at 95°C.  

For the time course experiment, a total of three replicate samples of Col RNA 

samples were used with each time course and each treatment. For the gene expression 

experiments, a total of six replicate samples of each genotype were tested with both 

treatments in each RT-PCR experiment. Some of the RNA samples resulted in an 

undetermined Ct value, therefore resulting in a decrease in replicate number. For each 

separate RT-PCR amplification of the set of eight gene primer pairs, the same six 

replicate RNA samples were used.  

The output from the RT-PCR experiments was summarized as in a threshold cycle 

(Ct) value. The threshold cycle indicates the fractional cycle number at which the amount 

of amplified copies reaches a fixed threshold. The Ct values for each primer were divided 

by the Ct value from the actin primers (i.e. control) for each sample to obtain the 

“adjusted for actin” Ct values.   

Plant Measurements 

 After two weeks of growth, digital photos were taken of the plants once a week 

using a Nikon Coolpix 995 digital camera. The camera was manually attached to a 

camera stand that consisted of a flat, wooden platform that supported the plant growth 

tray. The growth trays were always placed with the treatment title on the far left, which 

allowed approximately a two-foot distance from the camera to the plants for every 

picture. To measure growth, the plant rosette diameter was determined using Image J 
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(Wayne Rasband, NIH) image processing software. For each image a crop tool was used 

to specify the area around the plant to enhance the visibility of the leaves, and a linear 

tool was used to measure the length of the rosette from edge to edge. The same rosette 

orientation was measured in every digital photo by using manual indicator marks on the 

first photo taken. The digital photos helped maintain the leaf orientation to ensure the 

same dimensions were measured. The coefficient of variation of the same measurement 

made eight times was 1.15%.  

Statistical Analysis 

Relative Expression Software Tool (REST) was used to compare two treatment 

groups or conditions (Pfaffl, 2002). The version of REST used allowed me to adjust the 

actin housekeeping gene amounts per sample tested and determined if the putative UV-

inducible genes were up- or down-regulated by UV-B. 

Next, a bootstrap permutation method (non-parametric) was used to identify 

significant differences among genotypes and treatments and to determine if there was a 

significant interaction between genotypes and treatments. An ANOVA in JMP statistical 

software (SAS, Inc.) was also used to identify the same significance as the bootstrap 

permutation. Tukey’s HSD and Dunnett’s post hoc tests were used to identify which 

treatment (Mylar or cellulose diacetate), genotype (mutant or wild-type), and interactions 

were significantly altered in response to UV.  

For the growth measurements, the appropriate statistical analysis was a 

regression, which identified whether there was a significant relationship between the 

genotype and treatment over time based on their slopes. This was carried out using 
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GraphPad Prism (GraphPad Software, Inc.), which provides curve fitting and comparison 

methods. 

RESULTS 

Time Course 

A time course experiment was conducted to assess the effect of increasing the 

time of UV-B exposure on gene expression. Columbia (wild-type) was used in these 

experiments. The times of UV-B exposures used were 15 minutes, 30 minutes, and 60 

minutes with a one-hour recovery period to allow plants to express genes as a result of 

the treatment.  RT-PCR was used to measure the amount of HY5 gene expression, which 

was represented by a Ct value. A Ct value is the first cycle in which there is a significant 

increase in fluorescence above the background noise. The lower the Ct value, the more 

RNA in the sample, therefore the more gene expression has increased. To adjust for 

different amounts of RNA in different plants, actin primers were used to measure actin 

expression and the actin Ct value was divided into the HY5 expression value for each 

sample. At each time, there was a smaller Ct and thus more expression under cellulose 

diacetate as compared to Mylar (Fig. 2). The 15 min and the 60 min Mylar had high 

variance, so the 30 min time course was chosen. 

Multiple gene expression comparisons: 

Pairwise REST analysis within each genotype 

 After deciding on a time course, seven known UV-affected genes were chosen 

from previous microarray experiments to confirm if the genes were altered by UV-B 

under our exposure conditions. RT-PCR was used to measure the amount of gene 

expression that occurred among the wild-type and mutant genotypes, with each gene 
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used. The wild-type genotypes used were Col, 600C, and 6Fsx. The mutant genotypes 

used were 600I, 6F, and 600A. The genes used include HY5, At5g59820, At5g18470, 

At4g15480, At3g25250, At2g38940, and At2g32020. Relative Expression Software Tool 

(REST) was used to determine if these previously identified UV-affected genes were up- 

or down-regulated by UV-B (Table 2). The consistently regulated genes among the wild-

types were At4g15480, At3g25250, and At2g32020. All three of these genes were up-

regulated by UV-B; they showed an increase in gene expression in the wild-types. The 

consistently regulated genes among the mutants were At5g18470, At3g25250, and 

At2g38940. All three of these genes were down-regulated by UV-B. The gene that was 

consistently contrasting by UV-B was At3g25250. This gene was up-regulated by UV-B 

in the wild-type and down-regulated by UV-B in the mutants.  

Comparison of expression levels within each genotype 

 The three genes that appeared to have consistent expression differences in 

response to UV-B were examined in more detail by graphical comparison. The mutants 

appeared to have slightly lower expression and thus a higher Ct value under cellulose 

diacetate when gene At5g18470 was plotted (Fig. 3), although the differences were not 

large.  

 When the RT-PCR results for gene At3g25250 were plotted, the mutants appeared 

to have lower expression under cellulose diacetate, except 6F (Fig. 4). The wild-types had 

higher expression under cellulose diacetate. These differences between the treatments 

were not large. 

 When the RT-PCR results for gene At3g25250 were plotted, the mutants appeared 

to have lower expression under cellulose diacetate, except 600I (Fig. 5). All of the wild-

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com


 17 

types appeared to have higher expression under cellulose diacetate. However, these 

differences between the treatments were not large. There appeared to be no consistent 

pattern of expression differences between the mutant and the wild-type Arabidopsis 

plants. 

Comparison of expression levels for each genotype by non-parametric analysis 

 I next compared the effect of UV-B for each gene in each genotype using a 

statistical test, a non-parametric bootstrap. This analysis was used to identify significant 

differences among genotypes and treatments, and to determine if there was a significant 

interaction between genotypes and treatments. Of the seven genes tested, there were no 

significant differences between the mutant and the wild-type genotypes or the treatments 

(Table 3). There was a significant interaction detected with gene At3g25250 with a p-

value of 0.046 and an indication of an interaction detected with gene At2g32020 with a p-

value of 0.108.   

 Comparison of mutant and wild-type classes in response to UV-B 

 As there was no consistent difference visible between the three wild-types, I 

tentatively concluded that the wild-types were correctly identified and grouped all 

mutants and wild-types together for analysis.  An ANOVA indicated that four of the six 

genes were significantly different in expression level in the mutants, but that these 

differences were not relevant to the response to UV-B, as the interaction between 

treatment (either Mylar and cellulose diacetate) and genotype (either mutant and wild-

type) was not significant (Table 4). 

 A Tukey’s HSD test indicated that in one of the six genes there was a significant 

difference between treatments, but these differences were not consistent (Table 5). The 
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gene that showed a significant difference was At4g15480. The test also indicated that in 

five of the six genes there was a significant difference between the mutant and the wild-

type genotypes. The only gene that did not show a significant difference was the 

At4g15480 gene. There also appeared to be significant interactions with the genes 

At3g25250 and At2g32020. However, even though there were significant interactions, 

these results are inconclusive since there were no differences between treatments in the 

mutants and wild-types. 

 A Dunnett’s test indicated that for five of the six genes, there was a significant 

difference in expression level in the mutants when compared to Columbia wild-type 

(Table 6). The only gene that did not show a significant difference was the At2g38940 

gene.   

Growth comparison of mutant and wild-type genotypes: 

Growth in laboratory conditions: 

 A linear regression was used to fit a straight line through my data to determine 

whether the slopes and/or intercepts were significantly different and if their 95% 

confidence intervals overlap. This analysis indicates whether growth was significantly 

altered by UV-B over a four-week time period.  All of the mutants and the wild-types 

appear to have better growth with the Mylar treatment (Fig. 6-10). The wild-types with 

the cellulose diacetate treatment had very little growth (Fig. 6-8). Their 95% confidence 

intervals do not overlap, which indicates that the slopes and lines are significantly 

different (Table 7-11).  

 A global non-linear regression was also used, which fits a family of curves at 

once with some shared parameters between data sets (Motulsky, 1999). This analysis 
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indicates whether the interaction of the mutant and the wild-type with both treatments 

were significantly different over a four-week time period. The mutants and the wild-types 

appear to have better growth with the Mylar treatment (Fig. 11). According to the mid-

point (IC50) values, it confirms that the mutants and the wild-types showed increased 

growth under the Mylar treatment (Table 12).  

Growth in greenhouse conditions 

A linear regression was used to fit a straight line through my data to determine 

whether the slopes/intercepts were significantly different and if their 95% confidence 

intervals overlap. This analysis indicates whether growth was significantly altered by 

UV-B over a four-week time period. The wild-types appear to have better growth with 

the cellulose diacetate treatment, except for 600C, which had better growth with the 

Mylar treatment (Fig. 12-14). Two of the wild-types, 600C and 6Fsx, had 95% 

confidence intervals which overlapped, which indicated that the lines are not significantly 

different (Table 13-15). The mutants appear to have no difference in growth regardless of 

treatment (Fig. 15-16). Their 95% confidence intervals overlap, which indicates that the 

lines and the slopes are not significantly different (Table 16-17). 

 A global non-linear regression was also used, which fits/defines a family of 

curves at once with some shared parameters between data sets (Motulsky, 1999). This 

analysis indicates whether the interaction of the mutant and the wild-type with both 

treatments were significantly different over a four-week time period. The wild-types 

appear to have less growth with the Mylar treatment (Fig. 17), as they have a larger IC50 

value. However, according to the mid-point (IC50) and 95% confidence intervals, there is 
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no difference in growth between the mutants and the wild-types regardless of treatments 

(Table 18).  

 

DISCUSSION 

UV-B radiation has many direct and indirect effects on plants (Hectors et al., 

2007). In Arabidopsis thaliana, very little is known about the molecular events, such as 

gene expression and growth, affected by UV-B. Here I wanted to examine whether or not 

a candidate gene, At2g02710, fits the phenotype of a UV-B photoreceptor. This gene was 

chosen using a bioinformatics approach, since the gene had no known function and had 

not been characterized in detail. Insertion mutants were chosen for comparison testing. 

Here I show that the gene expression was higher in the wild-type with the selected genes, 

when compared to the mutants. However, these genes are not significantly altered in 

expression in response to UV-B under our conditions. UV-B also increased growth in the 

wild-type in comparison to the mutants in the greenhouse experimental setting. This 

result suggests that the candidate gene fits the proposed function as a UV-B 

photoreceptor.  

In this research, I first examined a time course of exposure to UV-B. Columbia 

wild-type plants were exposed to three increasing times of UV-B exposure. As the 15-

minute and 60-minute time courses with the Mylar treatment showed high variance, the 

30 minute time course was chosen. Hectors et al. (2007) assumed that the UV-B dose 

rates used in their experiments were too low to activate UV-affected genes, suggesting 

that a little more UV may be required to activate a larger variety of UV-affected genes. In 
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contrast, 5-minute UV-B pulses were sufficient to cause growth changes without visible 

signs of DNA damage in other UV-B experiments (Suesslin and Frohnmeyer, 2003).  

 Ulm et al. (2004) conducted microarray experiments, which quantitatively 

assessed changes in response to UV-B radiation in Arabidopsis. Seven of the genes they 

identified were chosen for my study to test the response to UV-B under my UV-B 

conditions. The genes At3g25250 and At2g32020 were found to have increased gene 

expression after UV-B exposure, while At2g38940 was down-regulated, although these 

differences were not significant. Thus my UV-B exposure conditions appear to be 

different than the cutoff filter conditions used by Ulm et al. (2004).  

 I next examined whether UV-B affected gene expression of various Arabidopsis 

thaliana wild-types and mutants. The expression of these genotypes was determined 

using real-time PCR Ct values. Three of the seven genes were found to have consistent 

expression differences in response to UV-B. Columbia wild-type tended to have more 

expression of the seven genes overall, which suggests that it is reasonable to compare the 

mutants to their wild-type siblings instead of just comparing to Columbia.  

In general, the mutants had a trend toward lower expression, when compared to 

the wild-type in response to UV-B. There was no significant interaction effect on these 

genes, therefore the difference between the mutant and the wild-type is difficult to 

determine. Overall, gene expression was lower in the mutants when compared to the 

wild-types with the cellulose diacetate treatment. This may be due to the inactivation of 

the candidate gene, which therefore alters gene expression. Thus the expression changes 

observed may not be directly due to UV-B. This observation is consistent with gene 
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expression studies that have revealed that UV-B activates several genes that also mediate 

various responses besides protection, such as pathogen resistance (Ulm and Nagy, 2005).  

From the non-parametric bootstrap and ANOVA, there appear to be slight 

differences between the mutant and the wild-type. These differences were seen mainly 

when the mutants were compared to Col (wild-type), but there was a significant 

interaction with the At3g25250 gene. The significant interaction was between Col (wild-

type) with the cellulose diacetate treatment and the mutants with either treatment.    

 To identify whether UV-B differentially affects growth, plants were exposed to 30 

minutes of UV-B everyday in two different experimental settings. In Dobo room 104, the 

mutants and wild-types appeared to have better growth with the Mylar treatment when 

compared to cellulose diacetate, which was not expected. The wild-type and mutant 

plants appear to be equally responsive to UV-B under these conditions. This suggests that 

UV-B did not alter growth with any genotype; therefore there is no significant difference 

between the mutant and wild-type. The inconclusive results may be due to cracks in a 

growth tray that prevented the Col (wild-type) plants from receiving sufficient water for 

growth under the cellulose diacetate treatment.  

In the greenhouse experimental setting, UV-B increased growth in the wild-type 

in comparison to the mutant (Fig.12-14). Growth was not altered in the mutant regardless 

of treatment, which is consistent with my hypothesis. My hypothesis predicted that the 

insertion mutants with the deficiency in the assumed UV-B responsive photoreceptor, 

growth should not be altered with either treatment. When the wild-type is exposed to UV-

B, gene expression is altered, therefore growth is altered. When the insertion mutants 
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were exposed to UV-B, gene expression and growth were not altered, due to the 

candidate gene not being present.  

 With insertion mutants, due to the deficiency of the assumed UV-B responsive 

photoreceptor, growth should not be altered with the Mylar or cellulose diacetate 

treatment. ULI3 mutants also exhibited no phenotypic change relative to wild-type with 

respect to size, leaf-shape, and flowering time (Suesslin and Frohnmeyer, 2003). In the 

wild-type, UV-B alters the assumed photoreceptor, therefore altering gene expression, 

which results in altered growth. 

 The mutants with either treatment appear to have similar growth response to the 

wild-types with the cellulose diacetate treatment. The mutant growth is more than the 

wild-types with the Mylar treatment. It is possible that the insertion mutants may 

compensate for no UV-B by having less COP1 activity (Oravecz et. al., 2006). When 

plants were exposed to blue light, COP1 expression decreased, which resulted in 

increased growth (Oravecz et. al., 2006). When exposed to UV-B, COP1 expression 

increased, which resulted in increased growth. Exposure to a combination of both, UV-B 

and blue light, will result in differential growth. If UV-B increased COP1 expression by a 

factor and blue light decreases COP1 expression by a factor, the results will be the 

average of growth between the two factors, or intermediate growth.  

My hypothesis predicted that there would be increased growth in the wild-type 

when exposed to the cellulose diacetate treatment when compared to the Mylar treatment. 

Therefore, the similar or equal growth in the mutant when compared to the wild-type 

with the cellulose diacetate treatment may be due to changes in COP1 activity. Wild-type 

plants with the Mylar treatment had less growth in comparison to the cellulose diacetate 
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treatment. This could be due to variable UV-B and blue light ratios. The Mylar treatment 

does not allow UV-B to pass through; therefore the plants were exposed to blue light. The 

blue light may have decreased COP1 expression, which would result in increased growth. 

To test this possibility, the activity of COP1 would be measured in the insertion mutants. 

A comparison of COP1 levels in the wild-type would also be helpful information. It may 

also be of interest to create insertion mutants multi-deficient in COP1, other blue light 

responsive genes and our candidate gene receptor.   

 These data suggest that the candidate gene fits the proposed phenotype as a UV-B 

photoreceptor. Due to some inconsistent gene expression results, further studies are 

needed. In future work, using a larger data set by testing more genes that are known to be 

UV-affected will increase consistent results with gene expression. This will assist in the 

ability to resolve the role of the At2g02710. Comparing the effects of UV-B from the lab 

setting to Arabidopsis original geographic location may also help to identify if the plants 

have higher tolerance to UV-B. It is possible that its genes have the ability to become 

tolerable to various levels of UV-B; therefore thirty minutes of UV-B may not have much 

effect. To fully assess fitness, I would monitor growth along with other growth factors 

such as seed production, seed weight, and seed size. I would also increase the sample size 

for more consistent growth effect results. 
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Fig. 1: Proposed model for UV-B-mediated signal transduction. The model is modified 
from Brosché and Strid (2003). PR, Pathogenesis-related protein; GST, glutathione S-
transferase; ULI3, protein isolated from a UV-light-insensitive Arabidopsis mutant. 
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Table 1: The gene names and their left and right primer sequences. 
http://www.arabidopsis.org/portals/education/aboutarabidopsis.jsp. 
 
Gene Name Left Primer Sequence Right Primer Sequence 

Actin- Family protein 

produced/found in all cells. 

AtactinL: 5’- TCC GTT 

TTG AAT CTT CCT CAA- 

3’ 

AtactinR: 5’- CCG GTA 

CCA TTG TCA CAC AC -

3’ 

Hy5-Encodes a basic 

leucine zipper (bZIP) 

transcription factor that 

positively regulates 

photomorphogenesis. 

Athy5qleft: 5’- ATC AAG 

CAG CGA GAG GTC AT-

3’ 

Athy5qright: 5’- AGC ATC 

TGG TTC TCG TTC TGA 

-3’ 

At5g59820- Encodes a zinc 

finger protein involved in 

high light and cold 

acclimation. 

At59820qleft: 5’- GAC 

GCT TTG TCG TCT GGA 

TT -3’ 

At5g59820qr: 5’- GTG 

TCC TCC CAA AGC TTG 

TC -3’ 

At5g18470- Curculin- like 

(mannose-binding) lectin 

family protein 

At5g18470qleft: 5’- GGA 

ACT TTG TGG TCC GAG 

AG -3’ 

At5g18470qr: 5’- CCC 

GGG AAG TAA TGT GTT 

TG -3’ 

At4g15480- Encodes a 

protein that might have 

sinapic acid:UDP-glucose 

glucosyltransferase activity. 

At4g15480for: 5’- GGG 

TGA TTA GAC CTC CAC 

CA-3’ 

At4g15480rev: 5’- TCG 

AGT TCC ATC CAC AAT 

GA -3’ 
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protein that might have 

sinapic acid:UDP-glucose 

glucosyltransferase activity. 

TGA TTA GAC CTC CAC 

CA-3’ 

AGT TCC ATC CAC AAT 

GA -3’ 

At3g25250- Arabidopsis 

protein kinase. 

At3g25250qleft: 5’- TGT 

TTT CCG ACG AGA TTA 

TCA -3’ 

At3g25250qr: 5’- TCT 

GGC TTC AAA TCT CTA 

TAC ACA -3’ 

At2g38940- phosphate 

transporter (AtPT2). 

At2g38940for: 5’- CAC 

AAA AGC CTG GGA CTC 

TC-3’ 

At2g38940rev: 5’- TGG 

TTG CGG ATA AAG GGT 

AG-3’ 

At2g32020- GCN5-related 

N-acetyltransferase 

(GNAT) family protein 

At2g32020qleft: 5’- TTG 

GGC CAC AGA TCC TAA 

AG -3’ 

At2g32020qr: 5’- GGA 

CGG TCG TCT TCT AAG 

CA -3’ 
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Figure 2: Measurement of gene expression with increasing UV-B levels in Columbia 
wild-type plants. The treatments used were Mylar, which was used as a control, and 
cellulose diacetate (CA), which allowed UV-B to pass through. Transcript levels for this 
gene were measured by real-time-PCR (RT-PCR) and actin was used as a control. The 
points displayed are the cycle threshold (Ct) values, which were output from RT-PCR. 
The Ct values from the HY5 primers were divided by the Ct value from the actin primers 
for each sample to get the adjusted for actin Ct values. Each point represents one replicate 
(n=2-3).  
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Table 2: Relative Expression Software Tool (REST) output, which was a pairwise 
comparison of gene expression. The treatments were Mylar, which was used as a control, 
and cellulose diacetate, which allows UV-B to pass through. The wild-type genotypes 
used were Col, 600C, and 6Fsx. The mutant genotypes used were 600I, 6F, and 600A. 
Initially, seven known UV-affected genes were used, but due to unreliability, HY5 was 
only used in Col, 600I and 6F genotypes. The rows highlighted in yellow represent the 
genes that were consistently regulated by UV-B. The rows highlighted in red represent 
the gene that consistently exhibited differential responses to UV-B treatment. These 
numbers represent the amount by which each gene is up- or down-regulated by UV-B 
plus/minus the standard error.  
 
Wild-Type  Mutant   

Line Gene Adjusted by +UV/-UV Comparison Line Gene Adjusted by +UV/-UV Comparison 

Col HY5 DOWN-regulated by -5.661±0.503 600I HY5 DOWN-regulated by -221.782±0.024 

 At5g59820 UP-regulated by +7.235±10.597  At5g59820 UP-regulated by +267.983±765.092 

 At5g18470 DOWN-regulated by -1.178±0.720  At5g18470 DOWN-regulated by -1.682±1.397 

 At4g15480 UP-regulated by +31.713±107.656  At4g15480 UP-regulated by +3.740±3.020 

 At3g25250 UP-regulated by +9.158±13.709  At3g25250 DOWN-regulated by -1.027±2.347 

 At2g38940 UP-regulated by +6.485±14.210  At2g38940 DOWN-regulated by -1.240±0.604 

 At2g32020 UP-regulated by +1.840±1.604  At2g32020 UP-regulated by +88.770±146.042 

      

600C   6F HY5 DOWN-regulated by -13.997±0.451 

 At5g59820 DOWN-regulated by -15.032±0.197  At5g59820 UP-regulated by +4.708±8.00099 

 At5g18470 DOWN-regulated by -4.033±1.229  At5g18470 DOWN-regulated by -26.373±0.098 

 At4g15480 UP-regulated by +27.569±55.929  At4g15480 UP-regulated by +4.036±6.569 

 At3g25250 UP-regulated by +1.004±4.585  At3g25250 DOWN-regulated by -1.132±4.058 

 At2g38940 DOWN-regulated by -12.084±0.182  At2g38940 DOWN-regulated by -1.821±0.905 

 At2g32020 UP-regulated by +1.245±1.984  At2g32020 DOWN-regulated by -1.376±1.229 

      

6Fsx   600A   

 At5g59820 UP-regulated by +135.956±373.331  At5g59820 DOWN-regulated by -216.617±0.012 

 At5g18470 UP-regulated by +187.663±496.072  At5g18470 DOWN-regulated by -5.162±0.280 

 At4g15480 UP-regulated by +1.199±1.230  At4g15480 DOWN-regulated by -5.344±0.226 

 At3g25250 UP-regulated by +37.143±120.841  At3g25250 DOWN-regulated by -1.371±1.241 

 At2g38940 DOWN-regulated by -2.360±0.401  At2g38940 DOWN-regulated by -15.412±0.068 

 At2g32020 UP-regulated by +192.405±603.515  At2g32020 DOWN-regulated by -139.779±0.019 
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Figure 3: Gene At5g18470 expression was measured by RT-PCR and actin was used as a 
control. The treatments used were Mylar, which was used as a control, and cellulose 
diacetate (CA), which allowed UV-B to pass through. The points displayed are the cycle 
threshold (Ct) values, which were output from RT-PCR. The Ct values from the 
At5g18470 primers were divided by the Ct value from the actin primers for each sample 
to get the adjusted for actin Ct values. The wild-type genotypes used were Col, 6Fsx, and 
600C. The mutant genotypes used were 600I, 600A, and 6F. The boxes are plotted to 
categorize the mutant genotypes for easier comparison. This shows the effects of UV-B 
on gene expression in mutant and wild-type genotypes under UV-B. Each point 
represents one replicate (n=2-6).    
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Figure 4:  Gene At3g25250 expression was measured by RT-PCR and actin was used as a 
control. The treatments used were Mylar, which was used as a control, and cellulose 
diacetate (CA), which allowed UV-B to pass through. The points displayed are the cycle 
threshold (Ct) values, which were output from RT-PCR. The Ct values from the 
At5g18470 primers were divided by the Ct value from the actin primers for each sample 
to get the adjusted for actin Ct values. The wild-type genotypes used were Col, 6Fsx, and 
600C. The mutant genotypes used were 600I, 600A, and 6F. The boxes are plotted to 
categorize the mutant genotypes for easier comparison. This shows the effects of UV-B 
on gene expression in mutant and wild-type genotypes under UV-B. Each point 
represents one replicate (n=6). 
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Figure 5:  Gene At2g32020 expression was measured by RT-PCR and actin was used as a 
control. The treatments used were Mylar, which was used as a control, and cellulose 
diacetate (CA), which allowed UV-B to pass through. The points displayed are the cycle 
threshold (Ct) values, which were output from RT-PCR. The Ct values from the 
At5g18470 primers were divided by the Ct value from the actin primers for each sample 
to get the adjusted for actin Ct values. The wild-type genotypes used were Col, 6Fsx, and 
600C. The mutant genotypes used were 600I, 600A, and 6F. The boxes are plotted to 
categorize the mutant genotypes for easier comparison. This shows the effects of UV-B 
on gene expression in mutant and wild-type genotypes under UV-B. Each point 
represents one replicate (n=2-6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

At2g32020

Treatment and Genotype

M-Col CA-Col M-600I CA-600I M-600A CA-600A M-600CCA-600C M-6F CA-6F M-6Fsx CA-6Fsx

A
ct
in
 A
d
ju
st
e
d
 C
t 
V
a
lu
e
s

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com


 36 

Table 3: Bootstrap permutation testing was used to estimate the sampling distribution to 
compare each genotype, treatment level and their interaction. Seven genes were used and 
their transcript levels were measured by RT-PCR. The Ct values from each primer was 
divided by the Ct value from the actin primers for each sample to get the adjusted for 
actin Ct values. These numbers represent the calculated p-values from the bootstrap test, 
which tells whether there was a significant difference between their treatments (Mylar 
and CA), genotypes (mutant and wild-type), and their interaction (genotype and 
treatment).  
*Significant. 
 
  HY5 At5g59820 At5g18470 At4g15480 At3g25250 At2g38940 At2g32020 

Genotype 0.432 0.993 1 0.998 1 1 1 

Treatment 0.37 0.254 0.893 0.973 0.475 1 0.449 

Interaction 0.423 0.254 0.31 0.75 0.046* 0.667 0.108 
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Table 4: ANOVA comparison from JMP statistical software. This table shows calculated 
p-values from actin-adjusted data, which indicated whether the actin-adjusted gene 
expression was significantly altered when genotypes were grouped into mutant (Mut) and 
wild-type (Wt) classes. The treatments used were Mylar, which was used as a control, 
and cellulose diacetate (CA), which allowed UV-B to pass through. The 
Mut/Wt*Treatment represents the interaction of the genotypes and the treatments.   
*Significant 
 
Gene Treatment Mut/Wt Mut/Wt*Treatment 

At5g59820 0.7835 0.0228* 0.9123 

At5g18470 0.3037 0.0021* 0.8000 

At4g15480 0.0304* 0.2466 0.1824 

At3g25250 0.7222 0.0007* 0.8569 

At2g38940 0.3743 0.0543 0.8910 

At2g32020 0.0488 <.0001* 0.9558 
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Table 5: Tukey’s HSD test comparison of least-square means for actin-adjusted gene 
expression when genotypes were grouped into mutant (Mut) and wild-type (Wt) classes. 
Six known UV-affected genes were used. The Mut/Wt*Treatment represents the 
interaction of the genotypes and the treatments. Levels not connected by the same letter 
in a column are significantly different. 
 
Gene Treatment Mut/Wt Mut/Wt*Treatment 

At5g59820 Mylar
A
 Mutant

A
 Mutant, Mylar

A
 

 CA
A
 Wild-type

B
 Mutant, CA

A
 

   Wild-type, Mylar
A
 

   Wild-type, CA
A
 

    

At5g18470 Mylar
A
 Mutant

A
 Mutant, Mylar

A B
 

 CA
A
 Wild-type

B
 Mutant, CA

A
 

   Wild-type, Mylar 
B
 

   Wild-type, CA
A B

 

    

At4g15480 Mylar
A
 Mutant

A
 Mutant, Mylar

A
 

 CA
B
 Wild-type

A
 Mutant, CA

A
 

   Wild-type, Mylar
A
 

   Wild-type, CA
A
 

    

At3g25250 Mylar
A
 Mutant

A
 Mutant, Mylar

A
 

 CA
A
 Wild-type

B
 Mutant, CA

A
 

   Wild-type, Mylar
A B

 

   Wild-type, CA
B
 

    

At2g38940 Mylar
A
 Mutant

A
 Mutant, Mylar

A
 

 CA
A
 Wild-type

B
 Mutant, CA

A
 

   Wild-type, Mylar
A
 

   Wild-type, CA
A
 

    

At2g32020 Mylar
A
 Mutant

A
 Mutant, Mylar

A
 

 CA
A
 Wild-type

B
 Mutant, CA

A
 

   Wild-type, Mylar 
B
 

   Wild-type, CA
B
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Table 6: Comparison of actin-adjusted gene expression levels in mutants to a single wild-
type, the Columbia line, using a Dunnett’s test. How different the means are above the 
minimum significant difference is given as the absolute value of the means difference 
[Abs(Dif)] minus the least significant difference (Abs(Dif)-LSD); p-values of the two 
treatments are given, which indicates whether gene expression of the mutant genotypes 
was significantly different when compared to Col (wild-type) levels. 
*Positive values show pairs of means that are significantly different. 
 
 Mylar CA 

Gene Abs(Dif)-LSD  P-value Abs(Dif)-LSD P-Value 

At5g59820 0.091* 0.0082 0.127* 0.0044 

At5g18470 0.213* 0.0008 0.225* 0.0025 

At4g15480 0.239* 0.0019 0.117* 0.0036 

At3g25250 0.184* 0.0042 0.335* 0.0001 

At2g38940 -0.13 0.5437 -0.09  0.3428 

At2g32020 0.262* 0.0004 0.209* 0.0028 
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Figure 6: Linear regression of Columbia (wild-type) length of the rosette from tip to tip. 
The growth took place over a four-week time period in the lab setting under artificial 
lighting for each treatment. Error bars represent the standard error. (n=12) 
 
 
Best-fit values Mylar Cellulose Diacetate 

Slope 30.56 ± 2.342 3.719 ± 1.383 

95% Confidence Intervals of Slope  25.79 to 35.33 0.7999 to 6.637 

 
Table 7: The slopes and 95% confidence intervals of the growth linear regression for 
Columbia under artificial lighting for each treatment. The slope values are plus/minus the 
standard error. The 95% confidence interval values represent how well my data 
fit/defined the parameters, which was calculated from the standard error of the 
parameters. This table identifies whether slopes were significantly different between 
treatments and whether the lines were significantly different based on overlapping values.  
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Figure 7: Linear regression of 600C (wild-type) length of the rosette from tip to tip. The 
growth took place over a four-week time period in the lab setting under artificial lighting 
for each treatment. Error bars represent the standard error. (n=12) 
 

Best-fit values Mylar  
Cellulose 

Diacetate  

Slope 64.77 ± 3.628 18.18 ± 5.732 

95% Confidence Intervals Slope 57.43 to 72.11 5.886 to 30.48 

 
Table 8: The slopes and 95% confidence intervals of the growth linear regression for 
600C under artificial lighting for each treatment. The slope values are plus/minus the 
standard error. The 95% confidence interval values represent how well my data 
fit/defined the parameters, which was calculated from the standard error of the 
parameters. This table identifies whether slopes were significantly different between 
treatments and whether the lines were significantly different based on overlapping values. 
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Figure 8: Linear regression of 6Fsx (wild-type) length of the rosette from tip to tip. The 
growth took place over a four-week time period in the lab setting under artificial lighting 
for each treatment. Error bars represent the standard error. (n=12) 
 
Best-fit values Mylar  Cellulose Diacetate 

Slope 52.94 ± 5.098 24.12 ± 3.153 

95% Confidence Intervals Slope 42.27 to 63.61 17.65 to 30.59 

 
Table 9: The slopes and 95% confidence intervals of the growth linear regression for 
6Fsx under the artificial light setting for each treatment. The slope values are plus/minus 
the standard error. The 95% confidence interval values represent how well my data 
fit/defined the parameters, which was calculated from the standard error of the 
parameters. This table identifies whether slopes were significantly different between 
treatments and whether the lines were significantly different based on overlapping values. 
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Figure 9: Linear regression of 600A (mutant) length of the rosette from tip to tip. The 
growth took place over a four-week time period in the lab setting under artificial lighting 
for each treatment. Error bars represent the standard error. (n=12) 
 
Best-fit values Mylar  Cellulose Diacetate 

Slope 51.58 ± 5.690 34.12 ± 2.861 

95% Confidence Intervals Slope 40.02 to 63.14 28.33 to 39.90 

 
Table 10: The slopes and 95% confidence intervals of the growth linear regression for 
600A under the artificial light setting for each treatment. The slope values are plus/minus 
the standard error. The 95% confidence interval values represent how well my data 
fit/defined the parameters, which was calculated from the standard error of the 
parameters. This table identifies whether slopes were significantly different between 
treatments and whether the lines were significantly different based on overlapping values. 
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Figure 10: Linear regression of 6F (mutant) length of the rosette from tip to tip. The 
growth took place over a four-week time period in the lab setting under artificial lighting 
for each treatment. Error bars represent the standard error. (n=12) 
 
Best-fit values Mylar  Cellulose Diacetate 

Slope 44.38 ± 3.639 27.07 ± 1.727 

95% Confidence Intervals Slope 36.83 to 51.93 23.54 to 30.61 

 
Table 11: The slopes and 95% confidence intervals of the growth linear regression for 6F 
under the artificial light setting for each treatment. The slope values are plus/minus the 
standard error. The 95% confidence interval values represent how well my data 
fit/defined the parameters, which was calculated from the standard error of the 
parameters. This table identifies whether slopes were significantly different between 
treatments and whether the lines were significantly different based on overlapping values. 
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Figure 11: Global non- linear regression analysis of all rosette growth data from the lab 
setting under artificial lighting for each treatment. The mutants and the wild-types were 
grouped together. The group of wild-type (Wt) genotypes used were Col, 600C, and 
6Fsx. The group of mutant genotypes used were 600A and 6F. Error bars represent the 
standard error. (n=12) 
 
 

 Mylar-Wt  Cellulose Diacetate-Wt Mylar-Mutant Cellulose Diacetate-Mut 

IC50 0.7786 0.9305 0.7315 0.8476 

95% Confidence 
Interval -0.7251 to 2.282 -0.5701 to 2.431 -0.7632 to 2.226 -0.6516 to 2.347 

 
Table 12: Comparison of slopes for non- linear regression analysis of all growth data in 
the artificial light setting. Shared parameters and the curve mid-point (IC50) was 
calculated and examined for differences between the mutant and wild-type genotypes 
under each treatment condition. The 95% confidence interval values represent how well 
my data define the parameters.  
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Figure 12: Linear regression of Columbia (wild-type) length of the rosette from tip to tip. 
The growth took place over a four-week time period in the UNCW greenhouse setting 
under artificial lighting for each treatment against the background daylight in the 
greenhouse. Error bars represent the standard error. (n=12) 
 
Best-fit values Mylar  Cellulose Diacetate 

Slope 49.39 ± 4.524 68.04 ± 2.995 

95% Confidence Intervals Slope 40.20 to 58.58 61.99 to 74.09 

 
Table 13: The slopes and 95% confidence intervals of the growth linear regression for 
Columbia in the greenhouse. The slope values plus/minus the standard error. The 95% 
confidence interval values represent how well my data fit/defined the parameters, which 
were calculated from the standard error of the parameters. This table identifies whether 
slopes were significantly different between treatments and whether the lines were 
significantly different based on overlapping values. 
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Figure 13: Linear regression of 600C (wild-type) length of the rosette from tip to tip. The 
growth took place over a four-week time period in the UNCW greenhouse setting under 
artificial lighting for each treatment against the background daylight in the greenhouse. 
Error bars represent the standard error. (n=12) 
 
Best-fit values Mylar  Cellulose Diacetate 

Slope 54.97 ± 17.98 23.20 ± 5.278 

95% Confidence Intervals Slope 18.68 to 91.26 12.48 to 33.92 

 
Table 14: The slopes and 95% confidence intervals of the growth linear regression for 
600C in the greenhouse. The slope values plus/minus the standard error. The 95% 
confidence interval values represent how well my data fit/defined the parameters, which 
were calculated from the standard error of the parameters. This table identifies whether 
slopes were significantly different between treatments and whether the lines were 
significantly different based on overlapping values. 
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Figure 14: Linear regression of 6Fsx (wild-type) length of the rosette from tip to tip. The 
growth took place over a four-week time period in the UNCW greenhouse setting under 
artificial lighting for each treatment against the background daylight in the greenhouse. 
Error bars represent the standard error. (n=12) 
 
Best-fit values Mylar  Cellulose Diacetate 

Slope 53.92 ± 2.425 62.80 ± 2.800 

95% Confidence Intervals Slope 49.04 to 58.81 57.04 to 68.56 

 
Table 15: The slopes and 95% confidence intervals of the growth linear regression for 
600C in the greenhouse. The slope values plus/minus the standard error. The 95% 
confidence interval values represent how well my data fit/defined the parameters, which 
were calculated from the standard error of the parameters. This table identifies whether 
slopes were significantly different between treatments and whether the lines were 
significantly different based on overlapping values. 
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Figure 15: Linear regression of 6F (mutant) length of the rosette from tip to tip. The 
growth took place over a four-week time period in the UNCW greenhouse setting under 
artificial lighting for each treatment against the background daylight in the greenhouse. 
Error bars represent the standard error. (n=12) 
 
Best-fit values Mylar  Cellulose Diacetate 

Slope 53.52 ± 3.870 52.05 ± 3.469 

95% Confidence Intervals Slope 45.62 to 61.41 44.98 to 59.13 

 
Table 16: The slopes and 95% confidence intervals of the growth linear regression for 6F 
in the greenhouse. The slope values plus/minus the standard error. The 95% confidence 
interval values represent how well my data fit/defined the parameters, which were 
calculated from the standard error of the parameters. This table identifies whether slopes 
were significantly different between treatments and whether the lines were significantly 
different based on overlapping values. 
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Figure 16: Linear regression of 600A (mutant) length of the rosette from tip to tip. The 
growth took place over a four-week time period in the UNCW greenhouse setting under 
artificial lighting for each treatment against the background daylight in the greenhouse. 
Error bars represent the standard error. (n=12) 
 
Best-fit values Mylar  Cellulose Diacetate 

Slope 55.06 ± 5.089 57.34 ± 2.755 

95% Confidence Intervals Slope 44.68 to 65.44 51.79 to 62.90 

 
Table 17: The slopes and 95% confidence intervals of the growth linear regression for 
600A in the greenhouse. The slope values plus/minus the standard error. The 95% 
confidence interval values represent how well my data fit/defined the parameters, which 
were calculated from the standard error of the parameters. This table identifies whether 
slopes were significantly different between treatments and whether the lines were 
significantly different based on overlapping values. 
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Figure 17: Global non- linear regression analysis of all rosette growth data from 
greenhouse growth setting. The mutants and the wild-types were grouped together. The 
group of wild-type (Wt) genotypes used were Col and 6Fsx. This data does not contain 
the wild-type, 600C, due to inability to characterize as mutant or wild-type based on 
growth pattern in the linear regression analysis. The group of mutant genotypes used 
were 600A and 6F. Error bars represent the standard error. (n=12) 
 

 
 
 
 
 
Table 18: Comparison of slopes for non- linear regression analysis of all growth data in 
the greenhouse setting.  Shared parameters and the curve mid-point (IC50) was calculated 
and examined for differences between the mutant and wild-type genotypes under each 
treatment condition. The 95% confidence interval values represent how well my data 
define the parameters. 
 

 Mylar-Wt  
Cellulose Diacetate-

WT Mylar-Mutant  
Cellulose Diacetate-

Mut 

IC50 5.560 3.929 2.824 2.945 

95% Confidence Intervals -1.724 to 3.214 0.1019 to 1.087 -0.2115 to 1.113 0.2703 to 0.6677 
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