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ABSTRACT

In this paper we examine the behavior of particular family of polynomial over a

finite field. The family studied is that obtained by composing an irreducible poly-

nomial with prime power monomials. We examine methods of testing irreducibility

via a new method of discriminant calculation. We also provide new incite into how

the members of the given family factor when not irreducible. Further, we provided

a finite field generalization to ”Roots Appearing in Quanta”, an article presented by

Perlis.
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1 INTRODUCTION

The behavior of polynomials over finite fields is a topic of major interest for

mathematicians from a variety of disciplines. Even the beginning algebraist would

recognize that arithmetic over an extension field Fqm of Fq is governed by the irre-

ducible polynomials of degree m in Fq[x].

In this paper we examine specific families of finite field polynomials obtained by

composing an irreducible polynomial with a prime power monomial. The family can

be formally defined as follows.

Definition 1.1 Let f(x) be an irreducible polynomial over Fq and let p be an odd

prime rational integer. The set {fp,k(x)} is defined to be all polynomials of the form

f(xpk

) where k is a positive rational integer. We refer to this set as the set of

monomial pth power extensions of f(x). We say that {fp,k(x)} is irreducible over Fq

if each element is irreducible over Fq.

Much of our effort will be dedicated to showing how this family can be used

to construct irreducible polynomials over the given base field. First, we provide a

collection of interesting results aimed at providing quick and useful tests to determine

whether the members of a given family are irreducible. Initially we introduce an

efficient formula for calculating the discriminants of the polynomial members of a

given family and then apply a result of Swan [2] to develop an efficient irreducibility.

Gao and Panario [1] provided conditions for when this family will be irreducible

and we discuss those at some length. Violating these conditions will be the basis for

our examination of the factorability of non-irreducible families. In addition to these

ideas, we provide an alternative algorithm which determines all of the irreducible

polynomials of appropriate degree over Fq that have irreducible extension families

when composed with xpk

for some prime p.



We then provide an interesting discussion of how these results can be cast in a

slightly different light to serve as a residue test. The Law of Quadratic Reciprocity

is well known; however, higher order reciprocity laws are not as useful for direct

computation of whether or not a given field element is a residue for a given prime.

The information presented in this paper provide a rather simple algorithm for de-

termining when the roots of an polynomial f(x) are pth residues in the splitting

field.

The remaining discussion of the paper deals with the factorization of the members

of a family given that it is reducible. In this section we present the main result of

the paper. That is, given reducibility of an extension family, one can determine the

number of factors and the degrees of each factor for every member of the family. We

then apply these results in concert with ideas from Agou [6] to provide conditions

on the number of roots that any one extension polynomial may have in a given field

extension. This is a generalization of the ideas provided by Perlis in [5].
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2 DISCRIMINANTS

Initially, it would be useful to recall the definition for the discriminant of a poly-

nomial. There are many ways to compute this number and the common derivative

representation is provided here.

Definition 2.1 Let f(x) be a polynomial in the ring R[x]. Let {α1, α2, . . . αn}

denote the set of roots of f(x). We define the discriminant of f(x), denoted D(f),

to be as follows:

D(f) =
∏

i6=j

(αi − αj) = (−1)
n(n−1)

2

n
∏

i=1

f ′(αi)

Above, the first expression is provided to convey that the discriminant of a polyno-

mial is a measure of the distance between the roots. When finding the actual value

of a discriminant, the second representation will be used.

Since the initial goal here is to examine the relationship between the discriminants

of the members of {fp,k(x)} and their respective factorizations, it would be useful

if the discriminant of f(xpk

) could be written in terms of the discriminant of f(x).

Fortunately, this is achievable.

Proposition 2.1 Let f(x) ∈ R[x] be a polynomial of degree n having α as a root.

Denote N(α) as the product of the conjugates of α. Define F (x) = f(xpk

) where

p, k ∈ Z+ and p is an odd prime. Then D(F ) can be found as follows:

D(F ) = (−1)
npk(npk

−1)
2

−
n(n−1)

2 (pk)
npk

D(f)pk

N(α)pk−1

Proof. Let f(x) = xn + an−1x
n−1 + · · · + a1x + a0 ∈ R[x]. Define F (x) as in the

proposition. Then it follows that



D(F ) = (−1)
npk(npk

−1)
2

npk

∏

i=1

F ′(βi) (1)

where the βi are the roots of F (x). Noting that F (x) = xnpk

+ an−1x
(n−1)pk

+ · · · +

a1x
pk

+ a0, it is quickly verifiable that F ′(x) = pkxpk−1f ′(xpk

). Substituting this in

(1) yields

D(F ) = (−1)
npk(npk

−1)
2

npk

∏

i=1

pkxpk−1f ′(βpk

i ). (2)

Note that by the way F (x) is defined, each root βi of F (x) is equal to pkth
root of

some αj for 1 ≤ j ≤ n. Thus, it is natural to realize the product
∏npk

i=1 f ′(βpk

i ) as the

product
∏n

j=1 f ′(αj) taken pk times. Recalling the definition for the discriminant, it

follows that this product is exactly (−1)
−n(n−1)

2 D(f)pk

. Substituting this information

into (2) yields

D(F ) = (−1)
npk(npk

−1)
2

−
n(n−1)

2 (pk)
npk

npk

∏

i=1

βpk−1
i D(f)pk

. (3)

Finally, again recall the observation that for each i, βpk

i = αj for some 1 ≤ j ≤ n.

It then follows directly that

npk

∏

i=1

βpk−1
i =

npk

∏

i=1

βpk

i β−1
i =

(

n
∏

j=1

αj

)pk




npk

∏

i=1

βi





−1

= N(α)pk

N(β)−1 = N(α)pk−1.

Here the last equality is justified by noting that the norms of f(x) and F (x) are the

same. Making a final substitution of this result into (3) establishes the proposition.

Q.E.D

This result is easily generalizable by replacing xpk

in the composition with f(x)

with any monomial of the form xn with n an odd composite positive integer. This

result is stated in the following corollary.
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Corollary 2.1 Let f(x) ∈ R[x] be a polynomial of degree m having α as a root.

Denote N(α) as the product of the conjugates of α. Let n = pe1
1 pe2

2 · · · per
r where each

pi, ei ∈ Z+ and each pi an odd prime. Define F (x) = f(xn). Then D(F ) can be

found as follows:

D(F ) = (−1)
mn(mn−1)

2
−

m(m−1)
2 (n)mnD(f)nN(α)n−1

The proof here is essentially the same as that of the proposition and is therefore

omitted.

Discriminant calculations may be further simplified if the degree of the polyno-

mial under consideration is even. This condition ensures that the discriminant of

the f(x) and F (x) have the same sign. This fact can be quickly verified by observing

that

npk(npk − 1) − n(n − 1)

2
=

n2(p2k − 1) − n(pk − 1))

2
=

n2(p2k − 1)

2
−

n(pk − 1)

2
.

Noting that n2 = 4k for some k ∈ Z and that both n and pk − 1 are even, it follows

that the above quantity is always an even number so that

(−1)
npk(npk

−1)−n(n−1)
2 = 1.

The reformulation of the discriminant for this specific case is provided in the follow-

ing corollary.

Corollary 2.2 Let f(x) be a polynomial in R[x] of degree n ∈ Z2k with discriminant

D(f). Let α be a root of f(x) and p be an odd prime. Then for F (x) = f(xpk

) we

have the following discriminant:

D(F ) = (pk)
npk

D(f)pk

N(α)pk−1

5



Leaving behind the corollaries and again considering the original proposition, we

focus on the usefulness of the discriminant representation for D(F ). It is apparent

that the factorization of D(F ) can be uncovered quickly given knowledge of the

factorization of D(f) and N(α). For example, if both are primes D(F ) may be found

simply by raising those primes to the appropriate power. Consider, for example,

f(x) = x2 + 13x + 5 ∈ Z[x]. Simple algebraic techniques verify that D(f)=149.

Noting that N(α) = 5, the discriminant of some monomial composition with f(x)

can be computed very quickly. Consider F (x) = f(x34
). It follows immediately, and

will little computational cost, that

D(F ) = (34)2·34

(149)34

(5)34−1 = 364814981580.

2.1 Applications to Irreducibility

Now our focus shifts to applying this formulation of the discriminant to obtain

some information about the factorization of the members of {fp,k(x)}. For this we

refer to a result of Swan. The proof of this theorem can be found in [2].

Theorem 2.1 Let f(x) be a monic polynomial of degree n with rational integral

coefficients. Let f̄(x) denote the polynomial obtained by reducing the coefficients of

f(x) modulo p. Assume that f̄(x) has no repeated roots. Let r be the number of

irreducible factors of f̄(x) over the residue field. Then r ≡ n mod 2 if and only if

D(f) is a square in the residue field.

This has nice implications about the general factorability of the polynomial fami-

lies under consideration since the discriminants of their members are closely related.

Suppose that the base polynomial f(x) has even degree over Fq. Recalling our

formulation of the discriminant in this case, it follows that there is only a small

checklist of things that must be verified to determine whether D(f(xpk

)) is a square

6



given that D(f) is not. Note that (pk)
npk

and N(α)pk−1 are squares as both n and

pk−1 are even. The term D(f)pk

is clearly not a square from our supposition. Thus,

D(f(xpk

)) must not be a square either. Thus, from Swan’s work it is clear that if

f(xpk

) does indeed factor over Fq it must do so into an odd number of irreducibles.

Supposing that D(f) is a quadratic residue it follows that D(f(xpk

)) must also

be a quadratic residue. It follows as an immediate consequence that f(xpk

) cannot

be irreducible and must have an even number of factors over Fq.

In the case where the degree of the base polynomial f(x) is odd, one must also

examine the Legendre Symbol
(

p

q

)

to be able to discuss the reducibility of the

elements of this family. Suppose again that D(f) is a quadratic non-residue. For

D(f(xpk

)) to be a residue, it is necessary for
(

p

q

)

= −1. If this is the case it follows

that f(xpk

) should be irreducible or factor into an odd number of irreducibles. If
(

p

q

)

= 1, D(f(xpk

)) is a non-residue and f(xpk

) factors into an even number of

irreducibles.

Now suppose that D(f) is a quadratic reside. Then the following relationships

hold. If
(

p

q

)

= 1, then D(f(xpk

)) will be a square and f(xpk

) is irreducible or it

factors into an odd number of factors over Fq. If
(

p

q

)

= −1, D(f(xpk

)) must be a

non-residue and f(xpk

) factors into an even number of irreducibles over Fq.

We now present some examples to illustrate the usage of these ideas. To do this

we implement a simple Maple code to determine the discriminants of a subset of

{fp,k(x)} over Fq and their respective number of factors. First we provide a brief

explanation of the implementation of the algorithm used.

The user inputs the base irreducible polynomial to be considered, the prime p

with which the extension family will be produced, the field characteristic q, and the

number r of members of {fp,k(x)} that will be examined. The algorithm computes

the discriminant of each member along with the subsequent factorization over Fq us-

ing the Berlekamp Factorization Algorithm [4]. Each polynomial, its discriminant,

7



and the number of factors are placed in an array and outputted to the user. The

code for this procedure follows.

Procedure: Polynomial Discriminant/Factorization Comparison

DiscrimFactor := proc(F, p, r, q)

local T, j, f, B;

T := Matrix(r + 2, 3);

T[1, 1] := Polynomial;

T[1, 2] := Discriminant;

T[1, 3] := Number_of_Factors;

for j from 0 to r do f[j] := subs(x = x^(p^j), F) end do;

for j from 0 to r do

if Gcd(f[j], diff(f[j], x)) mod q = 1 then

B[j] := Berlekamp(f[j], x) mod q

else B[j] := FAIL

end if

end do;

for j from 0 to r do T[j + 2, 1] := f[j] end do;

for j from 0 to r do

T[j + 2, 2] := discrim(f[j], x) mod q

end do;

for j from 0 to r do T[j + 2, 3] := nops(B[j]) end do;

print(T)

end proc

8



The following are a few quick results from the application of this procedure.

Example 2.1 (Even Degree Case) Consider the polynomial f(x) = x2 + 3 ∈

F5[x]. The family examined is the 3rd power extensions of f(x). For computational

ease, the k values are restricted to small integers. The results are presented in the

following table.

Polynomial Discriminant No. of Factors

x2 + 3 3 1

x6 + 3 2 3

x18 + 3 3 5

x54 + 3 2 7

x162 + 3 3 9

Simple arithmetic verifies that 1 and 4 are the quadratic residues in F5 and 2 and

3 are non-residues. Thus, the work here supports the above results. Each member

of the extension family has a discriminant that is a quadratic non-residue and thus

factors into an odd number of irreducible factors. The fact that for this polynomial

family the number of irreducible factors seems to grow arithmetically with k is

something of interest that will be discussed again later.

Example 2.2 (Odd Degree Case) Consider f(x) = x3+2x+1 ∈ F7. The family

under consideration is the 5th power extensions of f(x).The k values are again re-

stricted to small integers to help decrease the computational strain of the procedure.

The results are included in the following table.

9



Polynomial Discriminant No. of Factors

x3 + 2x + 1 4 1

x15 + 2x5 + 1 5 2

x75 + 2x25 + 1 4 7

x375 + 2x125 + 1 5 12

These results may be used in one of two ways. Given the number of factors we have

here for the polynomials in question, we see that 4 must be a quadratic residue in F7

and that 5 is not. Conversely, given knowledge of the Legendre Symbol for 4 and 5

we can determine the relationship between the number of factors of each polynomial

and its degree.

2.2 An Algorithm for Testing Irreducibility

These ideas lend themselves to a rather simple and computationally inexpensive

irreducibility test for this type of polynomial. The algorithm involved compares

favorable with a brute force method such as Or’s Test. An implementation of Or’s

Irreducibility Test is provided in [1]. The method presented in the following pages is,

at the most fundamental level, a clever simplification of that brute force procedure.

For simplicity, the discussion here will be restricted to an even degree base poly-

nomial. Suppose the polynomial f(xpk

) is to be tested for irreducibility. We require

here that the degree of the polynomial f is the multiplicative order of q modulo p

for this application to be non-trivial.

First, the discriminant of the polynomial in question is computed. If it is a

square modulo q the process terminates and the polynomial is reducible. This is a

useful tool provided that the discriminant can be found quickly. If the determinant

is non-square, rather than attempt to find factors of f(xpk

), the polynomial f(xp)

is used. The validity of this approach is due to the fact that any one member of a

10



monomial pth power extension family, defined as we have above, is reducible if and

only if all members are (the proof of this is not difficult and will be essentially proven

in subsequent sections).

So, in fact a reduction in the degree of the polynomial being tested is a key

aspect in the efficiency of this algorithm. Another which will be addressed soon, is

the efficiency of calculating the discriminant of the polynomial being considered.

As said above, at its heart this is an application of Or’s Test with a few clever

reductions. Or’s Test is used as the shell in the procedure because it its very efficient

when the polynomial under consideration is reducible with small degree factors. It

will later be shown that when a member of the given family is reducible, it has a

factor of the same degree as the base polynomial. Thus since we are typically testing

a small degree polynomial, the procedure should terminate quickly.

The code for this procedure is presented below. The user inputs are the base

polynomial, the prime p used in composition, the value k which is the power of p,

and the field characteristic q.

11



Prodcedure: Irreducibility Test for Monomial P th Power Extensions

NewTest := proc(f, p, k, q)

m := degree(f, x);df := discrim(f, x) mod q;

N := coeff(f, x, 0);

if N = 0 then Dext := 0

else

if (1/2*m*p^k*(m*p^k - 1) - 1/2*m*(m - 1)) mod 2 = 1

then dsign := -1

else dsign := 1

end if;

e[1] := m*p^k mod (q - 1);e[2] := p^k mod (q - 1);

e[3] := (p^k - 1) mod (q - 1);b[1] := p^k mod q;

Dext := dsign*b[1]^e[1]*df^e[2]*N^e[3] mod q;

print(Dext)

end if;

if quadres(Dtext, q) = 1 then print(Reducible)

else for j to ceil(1/2*m) do

if Gcd(subs(x=x^p,f), x^(q^j) - x) mod q <> 1 then

print(Reducible); break

else

if j = ceil(1/2*m) then print(Irreducible)

else

end if

end if

end do

end if

end proc

12



This algorithm could easily be adapted to the case where the base polynomial

is odd. The only change necessary would be to determine if the discriminant of the

given polynomial is non-square and terminate accordingly.

It was mentioned above that the discriminant calculation for these types of poly-

nomials could be done very efficiently. As it is necessary for the application of the

irreducibility test, an explanation of why that calculation is so simple follows.

2.3 Comparing Discriminant Calculation Speeds

In this section we will present computational evidence of the usefulness of the

discriminant formula presented. We provide a speed comparison between an imple-

mentation of our formula and the standard discriminant calculation method used in

Maple.

First, an explanation of the implementation of the formula presented above is

warranted. The algorithm used was coded in Maple for ease. Given that f(x) is an

irreducible polynomial over Fq, the goal is to compute the discriminant of a member

of {fp,k(x)}. No other assumptions about the structure of the polynomial under con-

sideration have been made. The form of the discriminant presented in Proposition

2.1 is used in this procedure. To determine the quantity (−1)
npk(npk

−1)−n(n−1)
2 , the ex-

ponent is simply reduced mod two to check its parity and then the appropriate sign

is applied to the discriminant. The base in each remaining power can be reduced

modulo q and their respective exponents reduced modulo q − 1. This is a major

reduction in the complexity of the calculation. For example, note that the quantity

pk grows exponentially as k increases. Thus, (pk)pk

becomes large extremely quickly.

However, the base quantity can be reduced base modulo q and the exponent mod-

ulo q − 1, thus efficiently bounding the quantity for any p and k. The reductions

are not costly as they can be thought of as repeated subtractions. This is a major

accomplishment as it bounds the difficulty of computing a discriminant regardless

13



of the p and k chosen.

The algorithm used for comparison with the approach presented in this paper is

the built-in procedure for finding a polynomial discriminant in Maple. This algo-

rithm calculates the discriminant using a different, yet still common method. Given

f(x) ∈ Fq of degree n the discriminant of f(x) can be found by computing the

following:

D(f) = (−1)
n(n−1)

2 R(f(x), f ′(x))

In this formula,

R(f(x), f ′(x)) =
n
∏

i=1

n−1
∏

j=1

(βi − αj)

where the βi’s are the roots of f(x) and the αj’s are the roots of f ′(x). R(f(x), f ′(x))

is commonly called the resultant of the polynomials f(x) and f ′(x). The implemen-

tation of this that Maple uses computes the discriminant and then reduces it modulo

q at the end of the procedure.

The comparison test was completed as follows. A selection of degree 2 irreducible

polynomials over F5 were chosen to act as base polynomials. We composed each

degree 2 polynomial with x3k

for a few selected k. This collection of polynomials

was used during the test. The running times were computed with the Maple ‘time‘

procedure. The difference in each running time for the two methods was the statistic

we use to judge the usefulness of our procedure. The calculation times are displayed

in the following arrays.
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Table 1: Discriminant Times for Polynomials composed with x311

Polynomial Resultant Method Time (sec.) New Method Time (sec.)
x177147 0.141 0.
x354294 + 4x177147 + 1 0.312 0.
x354294 + 2x177147 + 3 0.609 0.
x354294 + 2x177147 + 4 0.656 0.
x354294 + x177147 + 1 0.312 0.
x354294 + 4x177147 + 2 0.547 0.
x354294 + x177147 + 2 0.593 0.
x354294 + 3x177147 + 3 0.609 0.
x354294 + 3x177147 + 4 0.657 0.

Table 2: Discriminant Times for Polynomials composed with x313

Polynomial Resultant Method Time (sec.) New Method Time (sec.)
x1594323 1.936 0.
x3188646 + 2x1594323 + 4 10.765 0.
x3188646 + 4x1594323 + 2 9.328 0.
x3188646 + x1594323 + 1 4.656 0.
x3188646 + x1594323 + 2 9.765 0.
x3188646 + 3x1594323 + 4 10.656 0.
x3188646 + 2 10.250 0.
x1594323 + 2 4.405 0.
x3188646 + 3 9.546 0.

Do to the storage necessary to compute the discriminant of a polynomial using

Maple’s resultant method, we could not compute discriminants for the degree 2

polynomials composed with x3k

for k beyond 13 with that method. To illustrate

the efficiency of the new procedure, we computed the discriminants of the degree 2

polynomials composed with x321421
.
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Table 3: Discriminant Times for Polynomials composed with x3214221

Polynomial New Method Time (sec.)
x4782969 0.
x9565938 + 4x4782969 + 1 0.063
x9565938 + 2x4782969 + 3 0.061
x9565938 + 2x4782969 + 4 0.079
x9565938 + x4782969 + 1 0.061
x9565938 + 4x4782969 + 2 0.063
x9565938 + x4782969 + 2 0.078
x9565938 + 3x4782969 + 3 0.061
x9565938 + 3x4782969 + 4 0.063

3 PROVING IRREDUCIBILITY OF {fp,k(x)} OVER Fq

We begin this section by giving conditions for when each element of {fp,k(x)}

remains irreducible over a finite field of characteristic q. It will be useful to consider

the factorization of f(x) in its splitting field. So, suppose f(x) is irreducible over

Fq and has degree m . Denote its roots α1, α2, . . . , αm. Then each ai ∈ Fq[α1] for

1 ≤ i ≤ m and we obtain the following factorization in that field extension:

f(x) =
m
∏

i=1

(x − αi).

From this we can observe that f(xpk

) is irreducible over Fq precisely if each of the

binomials xpk

− αi is irreducible over Fq[α1]. According to Lidl and Niederreiter [3],

this is the case when q ≡ m mod p and each αi is not a pth power in Fq[α1]. This

second condition is equivalent to p dividing the order of |αi| but not qm−1
|αi|

. The

usefulness of irreducible polynomials over finite fields is well known. The fact that

this family of polynomials, when irreducible, provides us with arbitrarily large degree

irreducible polynomials with little computation make it worthwhile to develop an

algorithm to verify when these conditions are satisfied. Although this algorithm is



deterministic and seemingly more useful then the tests we presented earlier, it is

not without shortcomings. To complete it, one must have a method of obtaining

the degree of the roots of the irreducible base polynomial. This requires computing

multiple GCDs or obtaining a representation of the roots in the extension field in

which they exist. We now present an algorithm, coded in Maple, that determines

when these conditions are satisfied for all polynomials of degree m where m = |q|

mod p for the odd prime p and field Fq.
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Procedure.

IrreducibilityTest := proc(p, q)

local k, m, Collection, COrd, r, f, R, ordA;

for k to p do

if irem(q^k, p) = 1 then m := k; break

else null

end if

end do;

Collection := Berlekamp(x^(q^m) - x, x) mod q;

COrd := nops(Collection);

for r to COrd do

if degree(Collection[r], x) = m then

f := Collection[r];

if m = 1 then for k to q^m - 1 do

R := ((-coeff(f, x, 0)) mod q)^k mod q;

if R = 1 then ordA := k; break

else null

end if

end do

else for k to q^m - 1 do

R := Rem(x^k - 1, f, x) mod q;

if (R = 0) mod q then ordA := k; break

else null

end if

end do; end if;

if irem(ordA, p) = 0 and

irem((q^m - 1)/ordA, p) <> 0 then

print(‘Polynomial Family is irreducible‘)

else print(‘Polynomial Family is reducible‘)

end if

else null

end if; end do; end proc
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We implement this procedure to determine an exhaustive list off all irreducible

pth power extension families for given Fq. Computationally speaking, an exhaustive

search is rather straining so we restrict p to be small here. If our goal is to obtain

irreducible polynomials of large degree we do not fail due to this restriction because

for each successful outcome we will obtain an infinite sequence of irreducible poly-

nomials of increasing degree. This restriction made on p is not a drastic step in

reducing the number of computations in the procedure. The bulk of the work in

this procedure is done when obtaining the appropriate set of irreducible polynomials

over the field under consideration

Given p and q, the procedure determines m, the multiplicative order of q modulo

p. Then, Berlekamp’s factorization algorithm [4] is used to recover all irreducible

degree m polynomials over Fq by factoring xqm

− x. This can be verified in any

graduate abstract algebra text. The order of each polynomial is computed and the

appropriate divisibility relationships are then checked to determine if the family is

or is not irreducible over Fq. For each polynomial, the appropriate result is printed.

We provide a few sample results here.

Example 3.1 Suppose we wish to determine which monomial 3rd power extension

families are irreducible over F5. The given algorithm outputs the following results.

Here an asterisk (*) is used to indicate which property is satisfied for the given

polynomial.
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Table 4: Irreducible 3rd Power Families Over F5

Base Polynomial Irreducible Reducible
x2 + x + 2 *
x2 + 2x + 3 *
x2 + 2x + 4 *
x2 + 3x + 4 *
x2 + 3 *
x2 + 2 *
x2 + 4x + 1 *
x2 + 4x + 2 *
x2 + 3x + 3 *
x2 + x + 1 *

We now consider a slightly different use of this procedure. Rather than use this

procedure to obtain irreducible polynomials over Fq, it may instead be used as a

type of residue test. Assuming that the base polynomial has degree m defined by

the aforementioned congruence, we have said above that each extension polynomial

is irreducible over Fq if and only if the roots of the base polynomial are not pth powers

in the field Fqm . Thus, if we are able to determine that some extension polynomial is

reducible over Fq then we will have recovered a pth residue in the extension field. This

is a very nice result as it provides us with a method for determining the residues, at

least in some cases, for primes much larger than 3. The fact that we are determining

residues in an extension field provides some utility, albeit with restrictions. The

main shortcoming is that we are restricted to a specific extension field for each p

and q we deal with. However, it is rather nice that we need no representation of the

extension field in order to determine which of its elements are pth powers.

In some cases we can determine residues in the base field. If it happens that

q ≡ 1 mod p, we note that our extension would be degree 1 so we are actually deter-

mining residues over Fq. We provide an example of this application of the algorithm.
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Example 3.2 Take p = 5 and q = 11 and use the algorithm to determine what

elements of F11 are 5th powers.

Table 5: Quintic Residues Over F11

Base Polynomial Non-Residue Residue
x + 6 *
x + 9 *
x + 1 *
x + 8 *
x + 5 *
x + 10 *
x + 3 *
x + 2 *
x + 4 *
x + 7 *

Note here that for each linear polynomial x+ c the algorithm determines whether −c

is a 5th residue in F11. So, it follows that the 5th residues of F11 are 10 and 1.

The main use of the procedure presented above is to determine irreducible families

of polynomials over a given finite field. However, very often the polynomial families

obtained through these types of compositions are not irreducible. With that in mind,

the remaining portion of the paper will be devoted to determining how these families

factor given that they are reducible.
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4 FACTORIZATION OF {fp,k(x)} OVER Fq

Let us again consider f(x) an irreducible polynomial of degree m in Fq[x] with

roots α1, α2, . . . , αm. We also stipulate that m is the order of q modulo p. Recall

that f(x) splits in Fqm and thus is f(xpk

) is realizable as

f(xpk

) =
m
∏

i−1

(

xpk

− αi

)

over Fqm . It has already been stated that f(xpk

) is irreducible if each root αi of f(x)

is not a pth power in Fqm .

We will now shift our focus to determining the way f(xpk

) will factor over the

base field, given that the family will be reducible. Recalling the work of Lidl and

Niederreiter [3], it happens that this family is reducible when either of the following

two conditions are satisfied:

1. p does not divide the order |α| of the roots of f(x) in F∗
qm

2. p divides qm−1
|α|

It is noteworthy to mention that p must divide qm − 1. This is quickly verifiable

since the order of q modulo p is m. It follows directly that qm ≡ 1 (p) and so

qm−1 ≡ 0 (p). Keeping this in mind, it is clear that if the first reducibility condition

is satisfied, it may not be done trivially, but rather e will not contain the factor p

present in qm − 1.

We will now examine the factorization obtained by from various extension fami-

lies as we place certain divisibility relationships on p, qm − 1, and |α|.

4.1 Factoring {fp,k(x)} when (p, |α|) = 1

We begin by stipulating that qm − 1 only contain one factor of p and that the

roots of the irreducible base polynomial are relatively prime to p. If p and the order



of the roots of f are not relatively prime, the polynomial is irreducible as the roots

cannot be pth powers. With these conditions, the polynomial family satisfies the first

reducibility condition. In the following theorem, we provide a general description of

the factorization for any member of a family of this type.

Theorem 4.1 Let p be an odd prime. Let f(x) be an irreducible polynomial with

of degree m over Fq where m is the multiplicative order of q modulo p. Suppose

p < qm − 1 and p divides qm − 1 but that pk does not divide qm − 1 for k > 1. Let α

be a root of f(x) and further suppose (p, |α|) = 1. Then f(xpk

) splits over Fq into

1 + (p − 1)k factors over Fq of degrees dividing mpk. The degrees of the irreducible

factors can be described as follows.

1. f(xpk

) will have p irreducible factors of degree m and only one of which will

have pth power roots.

2. f(xpk

) will have p − 1 irreducible factors of degree mpi−1 for 2 ≤ i ≤ k.

Proof. Suppose all the above suppositions hold. Let α be a root of f(x). Denote

the conjugates of α by αi = αqi

for 1 ≤ i ≤ m− 1. We obtain the following familiar

factorization of f(x) in Fqm :

f(x) = (x − α)(x − α1) · · · (x − αm−1).

Considering the composition f(x) with xp, the following factorization of that poly-

nomial is quickly uncovered:

f(x) = (xp − α)(xp − α1) · · · (x
p − αm−1).
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Now, given that α is a pth power in Fqm and that (p, |α|) we may obtain the

following equivalence over F∗
qm :

αpt

≡ α for some positive integer t.

This provides a cyclic sequence of pth roots of α. This idea will be useful in uncovering

the factorization of f(xpk

) for k > 1.

First, we will factor f(xp) and then extend to higher powers inductively. It is

clear that αpt−1
is a root of the polynomial xp−α over F∗

qm . This roots is a pth power

from from the equivalence above. Furthermore, the conjugates of this root, denoted

αpt−1

i for 1 ≤ i ≤ m − 1 are also pth powers. The remaining roots of xp − α may

be obtained by multiplying αpt−1
by an element β of order p in F∗

qm . This β will

necessarily not be a pth power as p does not divide the subgroup of pth powers of

F∗
qm . Thus β ·αpt−1

cannot be a pth power. It follows that the conjugates of β ·αpt−1

i

will not be pth powers as well. From these conjugates we can obtain the factors of

f(xp) over Fq. The polynomial

f1(x) = (x − αpt−1

)(x − αpt−1

1 )(x − αpt−1

2 ) · · · (x − αpt−1

m−1)

will necessarily be in Fq[x] and it will have roots that are pth powers. The remaining

polynomials

fi(x) = (x − βi · α
pt−1

)(x − βi · α
pt−1

1 )(x − βi · α
pt−1

2 ) · · · (x − βi · α
pt−1

m−1)

for 2 ≤ i ≤ m and some element βi of F∗
qm with order p will not have pth power

roots. Again, each of these polynomials will have factorizations of Fq. In contrast

from f1(x), none of these polynomials will have pth power roots.
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We have established that f(xp) factors as in claimed in (1) and trivially (2)

is satisfied. To obtain a nontrivial verification of (2), we examine a higher order

composition. For f(xp2
) note that it has the following trivial factorization:

f(xp2

) = f1(x
p)f2(x

p) · fm(xp).

Note that f1(x
p) will factor into precisely p factors of degree m. The remaining

fi(x
p) will be irreducible because the roots of fi(x) are not pth powers in F∗

qm . Thus

f(xp2
) factors are was claimed in (1) and (2).

Compositions of f(x) with higher order pth powers, say xpk

for k > 2 may be

thought of as repeated compositions of xp done k times. Our approach to showing

that f(xpk

) behaves as we have claimed is an inductive one.

It has been shown that it holds that for k = 2, the composition factors as was

claimed. Suppose it holds for some larger positive integer k. By hypothesis of

induction, f(xpk

) has a single degree m factor with pth power roots. This is the only

factor of f(xpk

) that will be reducible when composed with xp. Denote this factor

g(x). From our arguments before, g(x) will split into p factors of degree m with only

one having pth power roots. From the remaining factors we will obtain the p − 1

factors having each of the appropriate degrees as specified in (2). Thus, f(xpk+1
)

behaves exactly as it should and the claims are satisfied.

Q.E.D

Example 4.1 Consider the polynomial f(x) = x2 + 3 over F5. We illustrate the

decomposition of the first few members of the polynomial extension family in the

following diagram.

Each tier in the diagram provides the factors of f(x) obtained after another

composition with xp. It is quickly verifiable that the number of factors and their

degrees matches the results of the theorem.
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Figure 1: Factorization of the 3rd Power Extensions of x2 + 3

x
2 + 3

x
2 + 2 x

2 + x + 2 x
2 + 4x + 2

x
2 + 3 x

2 + 3x + 3 x
2 + 2x + 3 x

6 + x
3 + 2 x

6 + 4x
3 + 3

x
2 + 2 x

2 + x + 2 x
2 + 4x + 2 x

6 + 3x
3 + 3 x

6 + 2x
3 + 3 x

18 + x
9 + 2 x

18 + 4x
9 + 2

A clear cycling pattern emerges amongst the factors of the extension polynomials.

For example, the polynomial x2 + 2 is a factor of both f(x3) and of f(x33
). This is

not a coincidence and in general there will be some cycling of the irreducible factor

that has pth power roots in the various members of the extension families. It is

not too difficult to answer the question of why this occurs. We state the following

corollary to Theorem 4.1.

Corollary 4.1 Let p be an odd prime. Let f(x) be an irreducible polynomial with

of degree m over Fq where m is the multiplicative order of q modulo p. Suppose

p < qm − 1 and p divides qm − 1 but that pk does not divide qm − 1 for k > 1. Let

α be a root of f(x) and further suppose (p, |α|) = 1. Let t be the smallest positive

integer solution to the congruence αpt

≡ α in Fqm. Then f(xptk

) is divisible by f(x)

for all non negative integers k.

To prove the corollary, we first state a useful lemma.
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Lemma 4.1 For primes p and q, denote the multiplicative order of q modulo p by

m. Suppose p < qm − 1 and p divides qm − 1 but that pk does not divide qm − 1

for k > 1. Let α ∈ F∗
qm. Further suppose (p, |α|) = 1. Choose t to be the smallest

integer such that pt ≡ 1 mod |α|. Then xpt

− α is reducible over Fqm and factors as

follows:

xpt

− α = (x − α) g(x)

for some g(x) ∈ Fqm .

Proof of Lemma 4.1. Let the conditions of the lemma hold. As α is a pth power

in Fqm and αpt

≡ α the polynomial under consideration can be written as follows:

xpt

− α =
(

xpt−1
)p

−
(

αpt−1
)p

.

The right hand side of this equation may be factored as a difference in prime powers

to obtain

(

xpt−1
)p

−
(

αpt−1
)p

=
(

xpt−1

− αpt−1
)(

(xpt−1

)p−1 + (xpt−1

)p−2αpt−1

+ · · · + (αpt−1

)p−1
)

in Fqm . For simplicity, denoted the right most factor in the above expression g1(x).

Now, we iterate this procedure. For each 1 ≤ j ≤ t − 1, the power αpt−j

can be

realized as
(

αpt−j−1
)p

and so the polynomial xpt−j

− αpt−j

can be factored as

xpt−j

− αpt−j

=
(

xpt−j−1

− αpt−j−1
)

gj+1(x)

with gj+1 ∈ Fqm . Upon reaching j = t − 1 we will obtain the following final factor-

ization of xpt

− α in Fqm .

xpt

− α = (x − α)
t−1
∏

i=1

gj(x)
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Thus, taking g(x) =
∏t−1

i=1 gj(x), the proposition is satisfied.

Q.E.D

Proof of Corollary 4.1 Considering f(xpt

) in the splitting field for f(x), we once

again obtain the factorization

f(x) = (xpt

− α)(xpt

− α1) · · · (x
pt

− αm−1).

By the lemma, the first factor is reducible and contains the factor (x−α). Similarly,

each remaining factor (xpt

−αi) for 1 ≤ i ≤ m− 1 will contain a factor (x−αi). We

may collapse these linear factors to obtain the polynomial f(x) as a factor of f(xpt

).

This factorization is necessarily over Fq by closure of the field coefficients.

Inductively we may obtain a factor of f(x) from higher order monomial com-

positions. For example, let f(xpt

) = f(x)g(x) for some polynomial g(x). Then,

f(xp2t

) = f(xpt

)g(xpt

) and thus necessarily has f(x) as a factor. Supposing f(xpnt

)

contains a factor of f(x) it follows directly that f(xp(n+1)t
) does as well.

Q.E.D
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4.2 Factoring {fp,k(x)} when (p, |α|) > 1

We now shift our focus to dealing with another divisibility case. Namely, we

suppose that the roots of the polynomial in question are not relatively prime to p.

To achieve reducibility, we now suppose that some that for some positive integer

r > 1, pr divides qm − 1.

We begin by identifying what goes wrong in the procedure described above if

we let (p, |α|) = l for some integer l greater than one. This leads to the congru-

ence α ≡ αpk

being unsolvable modulo |α|. The solvability of this congruence was

at the heart of the proof of Theorem 4.1 and Lemma 4.1. This implies the cyclic

reduction which continuously generated one degree m irreducible polynomial that

was reducible under composition will not necessarily exist. Alternatively, for poly-

nomials satisfying Theorem 4.1, any one pth power polynomial root had a pth root

which was also a pth power. This will not be the case in many instances. We now

examine a collection of polynomials which highlight this key difference.

Example 4.2 Consider x + 7 ∈ F19[x]. Note that the root, (−7), of the given

polynomial has order 3 in F19. For this example we take p = 3. Below we provide

the factorization tree for the polynomial extension family of x + 7.

Figure 2: Factorization of the 3rd Power Extensions of x + 7 ∈ F19[x]

x + 7

x + 4 x + 6 x + 9

x
3 + 4 x

3 + 6 x
3 + 9

x
9 + 4 x

9 + 6 x
9 + 9
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Notice that at the second tier in the composition, the polynomial factors remain

irreducible and subsequently grow in degree in further compositions. Note that −7 =

12 is the root of x + 7. A quick computation shows that −9 = 10, −13 = 6, and

−15 = 4 are the cubed roots of 12 in F19. These elements are not 3rd powers in

F19 and so in higher order compositions the polynomial factors having these roots

remain irreducible under compostion and hence we obtain the factorization pattern

illustrated in the diagram.

Example 4.3 Consider x + 340 ∈ F379[x]. Note that the root, (−340), of the given

polynomial has order 21 in F379. For this example we take p = 3. Below we provide

the factorization tree for the polynomial extension family of x + 340.

Figure 3: Factorization of the 3rd Power Extensions of x + 340 ∈ F379[x]

x + 340

x + 356 x + 343 x + 59

x + 47 x + 123 x + 209 x + 7 x + 15 x + 357 x + 99 x + 158 x + 122

x
3 + 47 x

3 + 123 x
3 + 209 x

3 + 7 x
3 + 15 x

3 + 357 x
3 + 99 x

3 + 158 x
3 + 122

x
9 + 47 x

9 + 123 x
9 + 209 x

9 + 7 x
9 + 15 x

9 + 357 x
9 + 99 x

9 + 158 x
9 + 122
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Notice in this example that we achieve two levels of decomposition before the

factors no longer have pth power roots. Once the roots have this property, the factors

remain irreducible under composition and subsequent compositions to larger degree

factors.

From the two examples we can gather that for different base polynomials we

will not eliminate all pth power roots at the same level of composition. We spend a

moment now classifying exactly when this phenomena will occur for a given polyno-

mial in an extension family. First we define a few useful terms that will help in this

process.

Definition 4.1 Let p be a positive prime integer. Let r be a positive integer. Define

Er(p) to be the power of p present in the prime factorization of r.

Definition 4.2 Let p and q be positive prime rational integers. Let m be a positive

integer. Define Eq,m(p) to be the power of p present in the prime factorization of

qm − 1.

We state the following theorem as an answer to the question above.

Theorem 4.2 Let p be a positive prime integer. Let f(x) be an irreducible poly-

nomial over Fq[x] whose roots are pth powers in Fq. Suppose that m is the mul-

tiplicative order of q modulo p. Let α0 be a root of f(x). Let Eq,m(p) = T and

E|α0|(p) = t > 0. Then the factors of f(xpT−t

) have no roots that are pth powers.

Moreover for k < T − t, f(xpk

) has pth power roots.

Proof. Suppose the conditions from the theorem hold. We have that |α0| = ptg

for some positive integer g. As this root is a pth power, there exists p elements of

Fq, denoted β0,j for 1 ≤ j ≤ p, such that βp
0,j = α0. Now, given the order of α0 we

can determine the order of β0,j . Note that

|β0,j| = |α0| · (p, |β0,j|) = p|α0|.
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It follows that E|β0,j |(p) = t + 1. Similarly the conjugates of α0, denoted αi for

0 ≤ i ≤ m − 1, have pth roots βi,j for 1 ≤ j ≤ p. It follows for each of those roots

that E|βi,j |(p) = t + 1. The collection {βi,j|0 ≤ i ≤ m − 1, 1 ≤ j ≤ p} comprise

the roots of the polynomial f(xp). Similarly, for a root of f(xp2
), call it β, we have

E|β|(p) = t + 2. In general, for a root β of f(xpi

), E|β|(p) = t + i. We obtain pth

power roots for each f(xpi

) provided that t + i ≤ T − 1. This is true as the order of

the subgroup of pth powers of F∗
q is qm−1

p
. Thus, f(xpT−t

) has no roots that are pth

powers.

Q.E.D
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5 ROOT DISTRIBUTION

In this section we provide a parallel discussion to the ideas presented by Perlis

in [5]. Perlis answered the question, for α a root of an irreducible polynomial f with

coefficients coming from a field Q, how many roots of f lie in Q(α). Perlis denotes

this quantity rK(f), called the root quantum number of f over Q and noted that it

was independent of the root chosen. The main result presented in his paper is that

the roots of f appear in bundles of size rK(f) in fields laying between K and the

splitting field.

The goal here is to generalize the idea above to fit a class of polynomials over a

finite field. If we take f to be an irreducible polynomial over Fq the result of Perlis

is trivially true. That is, if we look at Fq(α), for any root α of f , all the roots of f

lay in this field as it is the splitting field for f . So for an irreducible polynomial in

the finite field setting, the root quantum number Perlis defined would simply be the

degree of the irreducible polynomial. It would be interesting if we could find a less

trivial class of polynomial for which the ideas that Perlis developed hold. It turns out

that the class of polynomials discussed in this paper have root distributions much

like irreducible polynomials over fields of characteristic zero. In fact, the ideas that

Perlis developed hold for even more general class of polynomial. Before examining

that fact, we state the following definition which is due to Agou [6].

Definition 5.1 If f is a polynomial over Fqs and x0 is a root of f such that Fqs [x0] ⊆

Fqs [x] for all other roots x of f , then we say that f is hyponormal. The degree

[Fqs(x0) : Fqs ] is called the minimal degree of f over Fqs. Denote this quantity rFqs (f).

As the notation in the definition suggests, the minimal degree of a polynomial f

of the described form over Fqs will be the root quantum number in the finite field

setting. It is worthwhile to note the difference for our definition of root quantum

number and that given by Perlis. Here we define this number by the smallest degree



irreducible factor. If we were to use the definition provided by Perlis, that the root

quantum number is the number of roots in the extension Fqs [x0], we would quickly

observe that the divisibility relations he developed fails. To verify this, all one needs

to do is consider a hyponormal with an irreducible factor of degree five and two

linear factors. Before stating analogous theorems to those given by Perlis, we pause

to examine this phenomenon in an example.

Example 5.1 Consider f(x) = x2 + 3 over F5. We will examine the root distri-

bution for F (x) = f(x32
) in the various extension fields up to F56. First, note the

factorization

F (x) = (x2 + 3)(x6 + x3 + 2)(x2 + 3x + 3)(x6 + 4x3 + 2)(x2 + 2x + 3).

The smallest irreducible factor of F (x) is x2 + 3 (or x2 + 2x + 3). So the minimal

degree for F (x) over F5 is 2. Thus, in any extension field of F5 there should be an

even number of roots of F (x). To get the factorization of F (x) over F25 we use the

fact that F25
∼= F5(α) where α is a root of any irreducible degree 2 polynomial. We

take α to be a root of x2 + 3 for simplicity. The following factorization of F (x) can

be uncovered over F25.

F (x) = (x3 + α + 2)(x + 2α + 4)(x + 4α) ·

(x3 + 4α + 2)(x + 3α + 1)(x3 + α + 3)(x + 2α + 1) ·

(x3 + 4α + 3)(x + α)(x + 3α + 4)

Here we see that F (x) has six roots present in this field, namely all the roots of the

irreducible degree two factors over F5. If we factor F (x) over F56 we obtain the

following factorization. In this setting, we take α to be a root of x6 + x3 + 2.
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F (x) = (x + 4α3 + 2)(x + 2α4 + 3α)(x + 4α5) ·

(x + 2α4 + 4α)(x + 4α5 + 4α2)(x + 3α3 + 3) ·

(x + 3α4 + 2α)(x + 2α3)(x + α3 + 3)(x + α5)(x + 3α5 + 4α2) ·

(x + 3α4 + α)(x + α)(x + α5 + α2)(x + 4α) ·

(x + 2α5 + α2)(x + 3α3)(x + 2α3 + 2)

As F56 is the splitting field for F (x), it contains all the roots of this polynomial. There

are an even number of such roots. An examination of f(x) composed with even higher

monomial powers would give even more concreteness to the idea presented above. We

restricted to a small power for brevity.

Now, for the finite field setting, we state an analogous theorem to that given by

Perlis in [5].

Theorem 5.1 Let f(x) be a hyponormal polynomial over Fqs.Let L be a field exten-

sion over Fqs. Then the number of roots of f(x) in L is a multiple of rFqs (f).

Proof. Let f(x) be a hyponormal polynomial over Fqs , with x0 a root defined as

above. Recall that if we have Fqs [x0] ⊆ Fqs [x] for all other roots x, it follows directly

that the degree of the irreducible factor having x0 as a root divides the degree of the

irreducible factor having x as a root. Thus all factors of f(x) have degrees divisible

by the factor having x0 as a root. Hence in any extension, the number of roots will

be a multiple of Fqs .

Q.E.D

The clusters of roots present in the various extension fields containing the poly-

nomial roots, which Perlis referred to as ”roots appearing in quanta”, is evident from
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the factorizations we have explored in the preceding examples of the paper. Perlis

also discussed how knowledge of a particular root quantum number for a polynomial

could be used to limit the types of factorizations that could occur. This can also be

done in the finite field situation to a lesser degree. The reason this type of thought

process is less useful here is due to the fact that there is only one extension of each

degree in the finite field setting. In the characteristic zero setting, the possibility

exists that the given polynomial has roots of the same degree corresponding to dif-

ferent field extensions. Regardless, one could take the root quantum number for a

polynomial, or the minimal degree, to act as a base for possible factor degrees.
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6 CONCLUSION

In this paper, we provide a thorough examination of the behavior of the family

{fp,k(x)} for an irreducible polynomial f and appropriate prime p has been given.

We discussed a variety of ways for determining irreducibility for a given family, some

of which are made very efficient do to the discriminant calculation presented in this

paper. Favorable time comparisons were presented between the method presented in

this paper and Maple’s discriminant calculation algorithm. However, the asymptotic

complexity of the method presented in this paper was not examined whatsoever.

Even though explicit methods for determining irreducibility were provided in [3],

the methods presented in this paper can be used with no representation of the roots

of the base polynomial in its splitting field thereby providing some justification for

their use.

Following this, much work was devoted to uncovering many useful properties of

the irreducible factors of these families when they are not irreducible. Much can now

be said about the number and degree of the irreducible factors of a given family.

These ideas presented in this paper point to a variety of possible directions one

could take further research. Possible topics include examining compositions of irre-

ducible polynomials with non monomial polynomials over a finite field. For example,

one could examine the composition of an irreducible polynomial with xpk
1 + ypr

1 for

primes p1 and p2.

Another possible topic would be to consider the same families introduced in

this paper over various fields simultaneously. One could look for a class of fields

{Fq1 , Fq2 , . . . , Fqr
} for which the family {fp,k(x)} remains irreducible. It would be

equally interesting to fix the field under consideration and look for a set of primes

{p1, p2, . . . , pr} for which the respective families {fp,i(x)} factor in a similar way.

One could further extend the work stemming from Perlis to look for an even



larger class of polynomials for which the ideas he discussed hold in the finite setting.

At first thought, Q-polynomials, discussed in [3] would seem to be a logical place to

begin that search.
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APPENDIX A: Explanations of the Work of Lidl and Niederreiter

In this section we present the results provided by Lidl and Niederreiter in [3] that

lay the foundation for the ideas presented in this paper. We begin by presenting a

collection of ancillary results and end with the major foundational theorem. Simple

proofs are provided in the Appendix, however, all results are proven in [3].

Theorem 6.1 Let f ∈ Fq[x] be an irreducible polynomial over Fq of degree m with

f(0) 6= 0. Let |α| be a root of f in F∗
qm. Then ord(f) = |α|.

Proof. From basic finite field theory, Fqm is the splitting field for f . We have already

established all the roots of f have the same order in F∗
qm . Let α be an arbitrary root

of f . As f is the minimal polynomial for its roots, it follows that αe = 1 if and only

if f(x) divides xe − 1. The claim above follows directly.

Q.E.D

Theorem 6.2 The number of irreducible polynomials in Fq[x] of degree m and order

e is equal to φ(e)/m if e ≥ 2 and m is the multiplicative order of q modulo e which is

equal to 0 any time m, e 6= 1. In particular, the degree of an irreducible polynomial

in Fq[x] of order e must be equal to the multiplicative order of q modulo e.

Proof omitted.

Lemma 6.1 Let s ≥ 2 and e ≥ 2 be relatively prime integers and let m be the

multiplicative order of s modulo e. Let t be an odd prime which divides e but not

4(sm − 1)/e. Then the multiplicative order of s modulo et is mt.

Proof. Suppose the assumptions from the lemma hold, the let d = (sm − 1)/e

and so smt = 1 + det. So, applying a binomial expansion we obtain

smt = 1 +

(

t

1

)

· de +

(

t

2

)

· d2e2 + · · · +

(

t

t − 1

)

· dt−1et−1 + dtet.



Note in the right-hand expression all terms but but the first are divisible by et.

Thus smt ≡ 1 mod et. It follows directly that the multiplicative order of s, call it k,

divides mt. Furthermore, as sk ≡ 1 mod e, k is divisible by m. This means that k

can only be m or mt by the primarily of t. If k = m then sm ≡ 1 mod et and so t

divides d, a contradiction. Therefore, k = mt.

Q.E.D

Theorem 6.3 Let f1(x), f2(x), . . . , fN (x) be all the distinct monic irreducible poly-

nomials in Fq[x] of degree m and order e, and let t be an odd prime which divides e

but not (qm − 1)/e. Then fi(x
t) are all the distinct irreducible polynomials in Fq[x]

of degree mt and order et.

Proof. From above, we have that the irreducible polynomials of degree m and order e

exist if and only if m is the multiplicative order of q modulo e and that N = φ(e)/n.

By the lemma it follows that the multiplicative order of q modulo et is mt. Since

φ(et)/mt = φ(e)/m, it follows that the number of monic irreducible polynomials in

Fq[x] of degree mt and order et is N . So if each fi(x
t) is irreducible, we are done.

Since the roots of each fi(x) are the eth roots of unity over Fq, it follows that fi(x)

divides xe − 1. Thus, fi(x
t) divides xet − 1. If follows quickly that xet − 1 is a

cyclotomic polynomial over Fq (see [3], Theorem 2.45). Moreover, the degree of each

irreducible factor of xet − 1 is mt. Since, fi(x
t) has degree mt, it follows that it is

irreducible over Fq[x]. Furthermore, since fi(x
t) divides xet − 1, the order of fi(x

t)

is et.

Q.E.D

To translate this result into more applied terms, we can think of this result in the

following way. A given irreducible polynomial f(x) of degree m and order e will

provide an irreducible extension polynomial when composed with xt if the orders of
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the roots of f(x), e, contains every factor of t present in qm−1. This is equivalent to

having the roots of f(x) not be tth powers in F∗
qm . Having roots that are tth powers

is enough to ensure reducibility of the extension.

This theorem holds when the prime t is replaced with the prime power tk for any

positive integer k or even in the more general setting where t is some composite odd

integer. The proof of this theorem provided in [3] is for the most general setting.
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