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Abstract: Understanding how individuals, communities, and populations vary in their vulnerability
requires defining and identifying vulnerability with respect to a condition, and then developing
robust methods to reliably measure vulnerability. In this study, we illustrate how a conceptual
model translated via simulation can guide the real-world implementation of data collection and
measurement of a model system. We present a generalizable statistical framework that specifies
linkages among interacting social and biophysical components in complex landscapes to examine
vulnerability. We use the simulated data to present a case study in which households are vulnerable
to conditions of land function, which we define as the provision of goods and services from the
surrounding environment. We use an example of a transboundary region of Southern Africa and
apply a set of hypothesized, simulated data to illustrate how one might use the framework to
assess vulnerability based on empirical data. We define vulnerability as the predisposition of being
adversely affected by environmental variation and its impacts on land uses and their outcomes as
exposure (E), mediated by sensitivity (S), and mitigated by adaptive capacity (AC). We argue that
these are latent, or hidden, characteristics that can be measured through a set of observable indicators.
Those indicators and the linkages between latent variables require model specification prior to data
collection, critical for applying the type of modeling framework presented. We discuss the strength
and directional pathways between land function and vulnerability components, and assess their
implications for identifying potential leverage points within the system for the benefit of future policy
and management decisions.

Keywords: adaptive capacity; drylands; land use; livelihoods; Southern Africa; structural equation
model

1. Introduction

The ability to detect and monitor the relationship between household vulnerability, resource
use, and land system function requires a combination of conceptual understanding and optimization
modeling techniques [1–4]. Environmental change impacts the vulnerability of people and communities
in a myriad of well-documented ways [5–7]. Specification is required, in each case, for what it means
to be vulnerable, and how vulnerability can be measured in order to improve our understanding of
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any given social–ecological system (SES). Furthermore, while intuitively vulnerability is associated
with susceptibility to some phenomenon (e.g., climate change, market fluctuations, resource access,
wildfire), defining and measuring vulnerability is extremely complex [8–10].

Theoretical traditions from political ecology, human geography and other disciplines covering
hazards and climate change inform varying definitions of vulnerability [11–15]. Such definitions
generally overlap, but attributes in their own contexts offer strengths and weaknesses for quantifying
and measuring vulnerability. In addition, a social–ecological perspective provides a holistic approach
in describing vulnerability, where human and environmental components of a given system are
interlinked [8,14]. This perspective emphasizes social and biophysical vulnerabilities and the various
adaptation mechanisms implemented by society in the face of environmental change [14,16,17].
A systems-based social–ecological framework is best placed to model the complexity of the dynamics
and linkages between human and natural components of a given system [18]. Describing and
quantifying these linkages can help formulate explicit policies and management actions that affect
vulnerability for a specific system and across multiple scales.

In this paper, we first propose an adapted definition of vulnerability to help bridge the gaps
separating disciplinary traditions and between science and practice with a specific focus on land
systems. We then demonstrate how to operationalize vulnerability in an explicit model, which
can guide empirical measurement and policy recommendations at different system scales. Finally,
we illustrate how to apply this model to inform research design and data collection using simulated
data from the Kavango–Zambezi Transfrontier Conservation Area (KAZA-TFCA) in Southern Africa.
The primary goal is to introduce an approach to quantifying vulnerability through a robust theoretical
framing coupled with a statistical model that provides easily communicable information towards
management and policy decisions in a SES.

1.1. Theoretical Framing

Multiple research traditions have framed the definition, the scale, the conceptual framing, and
the ability to measure vulnerability [5,8–10,15,19,20] (see [21] for an extensive review). Entitlement
theory [22] and the sustainable livelihoods framework [23] provide a foundational platform from
which the social dimensions of vulnerability are well articulated, while natural hazards and climate
change literature represents two dominant strands of framing for the concept of vulnerability. From
the natural hazards perspective, vulnerability stems from the risk of being exposed to an undesirable
outcome, which may result from some type of pre-existing condition or characteristic of the population
or system [12,23–25]. Vulnerability to climate change is defined and contextualized largely from
the Intergovernmental Panel on Climate Change (IPCC) assessment reports using three components
(exposure, sensitivity, and adaptive capacity) to determine the degree to which a system is susceptible
to climate change and the associated social impacts and responses [26,27]. In 2014, the IPCC
redefined vulnerability discrete from exposure, as “the propensity or predisposition to be adversely
affected”, conceptualizing it as a “product of intersecting social processes that result in inequalities in
socioeconomic status and income, as well as in exposure” [28]. This second definition addresses social
marginalization explicitly, building on work such as Kasperson and Kasperson (2001) and Birkmann
(2013) who view vulnerability as operating in a place-specific context, where those most vulnerable are
often the most marginalized along lines of wealth, education, ethnicity, gender, age, class, and health.
Different theories conceptualize vulnerability in ways that reflect their varying objectives for more
directed and effective policy measures in a specific system [6,11,12,14,29]. However, Costa and Kropp
(2013) point out the convergence of vulnerability definitions when applied empirically at the case study
level, with various components operationalized through similar indicators. More recently, various
studies modify or combine aspects of previous vulnerability frameworks or definitions along with
aspects from sustainable livelihood or resilience approaches [11,30]. Including livelihood variation
and agency are arguably necessary for quantifying system metrics that characterize vulnerability [27].
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While we acknowledge multiple useful definitions and theories informing vulnerability, we have
explicit interest in operationalizing the mechanisms that drive vulnerable outcomes for people resulting
from environmental changes (e.g., soil fertility loss, drought or flooding). We define operationalization
as the process by which components, such as vulnerability, of a social–ecological system is both
quantified empirically and made useful for decision-making. Further, this goal requires the flexibility
of a land systems (i.e., spatial composition of land units consisting of different land covers and uses)
perspective [1,31] to account for various social–ecological components and their interactions, while
also describing the system and its processes in order to meaningfully inform policy and interventions
at multiple scales ([2,4]).

We adapt a vulnerability framework from Turner et al. (2003a, b) which identifies linkages between
the social and biophysical components of a SES to reflect properties specific to exposure, sensitivity
and adaptive capacity in combination with a livelihoods framework [32]. The original framework from
Turner et al. enfolded into the concept of resilience other key components of vulnerability, including
adaptive capacity. However, arguably, it is the human agency and decision-making underlying
adaptation that we need to account for with vulnerability models. While resilience and adaptive
capacity have been used interchangeably in the literature [33], resilience, an ecologically-based term,
describes a system’s ability to adjust, modify, or change its characteristics in response to shocks
or stress [30,31]. In contrast, adaptive capacity better captures the human agency and diversity of
behaviors and responses humans make in a system [34].

With this focus in mind, we define vulnerability as the predisposition of being adversely affected
by variability in some process as a function of exposure (E), mediated by sensitivity (S) and adaptive
capacity (AC). In the land systems context, exposure represents the spatiotemporal nature of land uses
and the environmental gradients that affect them. Sensitivity represents land use outcomes, and is
influenced by the degree to which a household is exposed to the land system. This interaction is
mediated by the household adaptive capacity, or resources and ability to alter or respond to change.

We argue that this framing to describe vulnerability is useful and can be formalized into a statistical
model in order to test hypotheses by quantifying linkages of the system components. Combined,
exposure and sensitivity capture land functions but changes in adaptive capacity at the household level
can strongly influence, directly and indirectly, how strongly the reliance on land functions impacts
variation in vulnerability (Figure 1). We acknowledge that defining vulnerability involves applying
normative value judgements [10], and making assumptions regarding the level, or scale, of interest [35].
These assumptions have consequences, but assigning value to the components of vulnerability is
necessary and a land systems lens is well suited to explain mechanisms driving consequential outcomes
and to facilitate evidence-based decision-making in social–ecological systems [4].
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that can be measured directly [10] but manifested (and defined) through measurable indicators (e.g., 
nutritional intake, morbidity, and mortality, food insecurity, etc.). We contend that the components 
that combine to create that vulnerability, namely sensitivity, exposure, and adaptive capacity, are 
similar to latent characteristics that can only be defined and estimated through multiple, correlated 
but measurable, indicators. This is described by Bollen (2002) as “local independence.” Thus, a model 
structure that accounts for both direct and indirect relationships, a duality of influence reflected by 
the indicators measured, can be used for understanding how the components of vulnerability interact 
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application of SEM from Dang et al. (2014) gives insight into Vietnamese households’ intention to 
adapt to climate change based on socioeconomic factors and resource access [44]. Asah (2008) 
illustrates the generalizability and usefulness of an SEM combined with a strong SES framework for 
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Figure 1. Conceptualization of vulnerability in which a combination of exposure and sensitivity capture
land functions, but changes in adaptive capacity will influence how the reliance on land functions
impact variation in vulnerability (adapted and modified from the IPCC, 2007).

1.2. A Structural Equation Model of Vulnerability

The modeling approach we propose is a structural equation model (SEM) to examine the strength
and direction of relationships among the latent (not directly measurable) properties of vulnerability,
exposure, sensitivity, and adaptive capacity [36]. We acknowledge that the functional forms with
which to quantify or approximate household vulnerability and associated measures of exposure,
sensitivity and adaptive capacity are diverse, and vary based primarily on definitions appropriate to
specific contexts [8,37]. However, we address this challenge by treating vulnerability and associated
components as latent constructs, which is conceptually flexible in allowing a diversity of potential
definitions to be applied to these components. Being latent, vulnerability is not something that can be
measured directly [10] but manifested (and defined) through measurable indicators (e.g., nutritional
intake, morbidity, and mortality, food insecurity, etc.). We contend that the components that combine
to create that vulnerability, namely sensitivity, exposure, and adaptive capacity, are similar to latent
characteristics that can only be defined and estimated through multiple, correlated but measurable,
indicators. This is described by Bollen (2002) as “local independence.” Thus, a model structure that
accounts for both direct and indirect relationships, a duality of influence reflected by the indicators
measured, can be used for understanding how the components of vulnerability interact in a given
system [38]. Additional introduction and explanations of structural equation models are found in the
following sources [39–41].

An SEM approach has been applied to different social–ecological contexts and at the household
level [38,42–44] and specifically in the African context [45]. For example, a theoretical framing and
application of SEM from Dang et al. (2014) gives insight into Vietnamese households’ intention to adapt
to climate change based on socioeconomic factors and resource access [44]. Asah (2008) illustrates the
generalizability and usefulness of an SEM combined with a strong SES framework for an agriculturalist
system in the Lake Chad basin [38]. Specifying and measuring the correct, underlying indicators will
be system specific, but a generalizable model form provides a platform from which key relationships
between system components are interrogated for the system under study.

Despite these examples, SEM is not well represented in the land change modeling community [46].
This may be a byproduct of unfamiliarity with the statistical assumptions or difficulty in constructing
concrete, but still useful sets of measures that reflects the complexity of land systems and land change.
Yet, SEM provides an appealing approach for marrying theoretical relationships with measurable aspects
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of land systems, allowing us to theorize trade-offs in land use activities and subsequent land system
processes as it links social and biophysical components of a system at multiple scales. The ability
of the SEM to assess direct and indirect relationships means that one identified or hypothesized
association can be modeled to interact with another causal relation. Therefore, one measured or
latent component to the model might affect or be associated with changes in another component via
multiple paths, which is exactly the kind of complexity captured by the proposed vulnerability model
discussed here. The statistical power to decompose correlations and covariance between measured
components, and trace the structure of associations through paths incorporated into the model while
accounting for direct and indirect relationships, is the critical piece for quantifying how the components
of vulnerability interact with one another. The next section introduces the conceptual approach along
with further detail of the statistical structure we propose for quantifying household-level vulnerability
in a land systems context.

2. Conceptual Approach and Methods

2.1. A Structural Model for Household Vulnerability

The model diagram in Figure 2 identifies the direct and indirect pathways of exposure, sensitivity,
and adaptive capacity that, taken together, compose vulnerability. For the purpose of a land system
example, we posit (and illustrate below) that in a rural setting, dryland systems households are
sensitive to variations in exposure (e.g., land uses and their dependence on precipitation or vegetative
productivity). The outcomes of these land uses in terms of agricultural products and amount of
resources gathered (sensitivities) will be mediated by a household’s dependence on agricultural,
livestock production, and natural resource gathering. That dependence may vary with the household’s
adaptive capacity, or the other resources a household may rely on outside and in conjunction with
the land function system. Thus, there are direct pathways or hypothesized associations between
vulnerability and the other three components of the structural model. We also assume that an indirect
effect on vulnerability exists from adaptive capacity and exposure through their combined effects with
sensitivity (Figure 2). The proposed model, as a framework for vulnerability analyses, implies that the
structural relationships should reflect the hypothesized pathways of dependence between latent and
measured characteristics of vulnerability.
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Figure 2. This systems diagram is one representation of vulnerability where it is directly dependent on
exposure, sensitivity and adaptive capacity (solid blue (positive) and red (negative) lines). However,
adaptive capacity and exposure also influence vulnerability through sensitivity. The solid grey line
represents potential correlational/covariance structures between Exposure and Adaptive Capacity.
These three components are linked in the theoretical formulation of what constitutes household
vulnerability; arrows and their thickness represent hypothetical, quantitative associations between
unmeasured, latent characteristics.
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2.2. The Measurement Model

Assuming the structural model captures the nature of vulnerability in the system to an exposure
of interest, the next step is to specify the measurement model for the structural components of the SEM.
The specification of the model is a critical step since it is through this process that we are translating a
proposed theory into a quantifiable framework, and defining what aspects of household vulnerability
we are assessing. By fitting an SEM and its hypothesized dependence structure to measured indicator
data, we determine whether our theoretical model will reflect the findings when the model is fitted
with observed or measured data. We are arguing that the vulnerability framework consists of directly
unmeasurable, latent aspects of the household (vulnerability, sensitivity, exposure, and adaptive
capacity), that are often seen as aggregates of multiple household factors. In order to operationalize
this framework, we must find measurable proxies or “indicators” that strongly correlate with these
latent characteristics, and importantly, can be quantified at the household level.

In our proposed SEM approach to quantifying household vulnerability, measured indicator
variables capture quantifiable information about the latent characteristics. With an identified model
specification, these indicators are measured through empirical approaches and are assumed to be
“predicted” by the unmeasurable, latent household characteristics (i.e., circles). These quantifiable
features can be collected at the household level using combinations of household surveys, interviews,
remote sensing, etc., and might be the outcomes of a mixed methods approach. In practice, the measures
could be continuous or discrete, but are assumed to be quantifiable and relatable within and between
structural components under assumptions of multivariate normality (though these assumptions might
be relaxed when fitting the model with varying algorithms) [47–50].

However, the pre-specification is critical within an SEM approach once a combination of indicators
representing the core, theoretical features of the conceptual framework are chosen. The principle
of pre-specification, well known in psychology and other sciences, is considered to be a practice to
improve reproducibility and reduce the likelihood of “hypothesizing after the results are known.” [51].
SEM as a statistical technique is based on estimating the variance/covariance structures between
both measured and unmeasured components. In the case of the vulnerability framework proposed,
these might include many possible measurable items. It is therefore necessary to make an effort to
pre-specify the indicators to be used, how they relate to the vulnerability being assessed, and how
such items would be measured to satisfy the quantification and distributional assumptions of the
statistical technique. This should be done prior to analyzing and ideally even collecting the indicator
data. In non-experimental settings, and especially in land systems household survey data that is
cross-sectional, this may be difficult or impractical. For example, responses may be conditioned on
spurious assumptions of language, culture or systemic bias, or measure something unintended as a
result of some externality. These might only be discovered after data collection, but by pre-specifying an
analysis to fit a conceptual modeling framework like our proposed vulnerability model, with measured
indicators and potential alternative specifications, the researcher might reduce the potential for “data
snooping” and finding spurious associations due to chance alone.

3. Illustration from a Motivating, Agripastoral Context

3.1. The Kavango–Zambezi Transboundary Dryland System

We illustrate the application of using an SEM to model vulnerability by describing a particular
land system context in which it may be applied. We then describe a vulnerability model that is
pre-specified, and simulate a synthetic dataset with a correlation structure to test assumptions of power
and indicator relationships.

The land system context is the rural, dryland region within the Kavango–Zambezi Transfrontier
Conservation Area (KAZA-TFCA) of Southern Africa (Figure 3). The system represents significant
variation along livelihood, political, and biophysical dimensions. Spanning parts of Angola, Namibia,
Botswana, Zambia, and Zimbabwe (~520,000 km2), the area has one of the largest elephant populations
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in the world and includes 36 protected areas interspersed with communal and private lands ([52]). It is
also home to an estimated 2.3 million people in 2019 [53]. Excluding cities, the highest population
densities are near main transport arteries, including rivers and roads, creating challenging management
efforts for human-wildlife relations.
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The KAZA_TFCA system is exemplary of how multi-level management differentially impacts these
landscape dimensions, through underlying systems processes. The region includes open woodland,
scrub and grasslands, characteristic of a heterogeneous semi-arid savanna [54–56]. Spanning a mean
annual rainfall gradient of 400–1000 mm, the semi-arid savanna vegetation cover follows the gradient
of an increasingly woody component with increasing mean annual rainfall [57]. However, that broad
trend is disrupted by other mitigating factors such as fire and land management initiatives, grazing by
wildlife and livestock, and soil-nutrient characteristics [58–61].

KAZA-TFCA is a varied landscape, both in terms of the land use and land cover but also
with respect to governance. While national policies and community zoning initiatives influence
broader patterns of vegetation heterogeneity, household land use decisions help shape the gradient
of grass–shrub–tree for localized areas. The potential disconnects between the local level land use
decisions and regional level zoning and resource use allocation is an important piece to understanding
the KAZA-TFCA system as household vulnerability is variably affected by regional level zoning and
land use policy. This is because there are multiple levels of management, some of which are working
collectively towards common goals, and often geared toward a balance of conservation and development
objectives. These goals are centered on the tourism industry, which is a substantial economic engine in
the region. Engagement in the tourism sector provides one potential livelihood strategy to diversify and
reduce the dependence on smallholder cropping. However, that alternative strategy is not accessible to
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all households in KAZA-TFCA leading to disparity and inconsistencies between development efforts
directed at vulnerable households and regional level conservation initiatives.

In conceptualizing the KAZA-TFCA system, we contend that household vulnerability, defined by
food security with respect to land function, is captured through the combined influence of exposure,
sensitivity, and adaptive capacity (Figure 4a). In simulation, we represent a typical household as
primarily reliant on rain-fed crop production in the semiarid environment. Vulnerability as a latent,
household characteristic is predictive of measured indicators that relate to food security. Vulnerability,
as defined by food security, is linked to land use and environmental conditions of exposure. These
exposure indicators include hectares cropped, number of grazers and the number of total resource
types gathered. There is also a set of exogenous exposure predictors that inform the exposure in
the system that represent proxies for the biophysical constraints that influence land uses (Figure 4a).
In our simulated model, these variables are rainy season length, flooding, and dry season vegetation
productivity, three variables that capture landscape functions tied to agricultural and livestock activities.

The sensitivity of a household to exposure may then relate closely to those environmental variables,
representing outcomes of different land use activities. In this case, we chose proportion of crops
produced that are sold, proportion of goods that are gathered and then sold (i.e., resources), and
livestock yield. The mitigating influence of adaptive capacity captures how households variably adapt
to stressors through accessing different forms of capital assets (e.g., financial, human, natural, physical,
social). This realization allows us to explicitly consider human agency and diversity in behavior
(i.e., adaptive response). Those capital assets capture the range of livelihood resources available to a
household, especially in a rural context [22,62,63]. By extension, the capital assets provide a structure
to assess the ability of those capitals—either individually [64] or collectively [65,66]—to provide a
household with a buffer against shocks and unplanned change [34]. We include a set of indicators
that represent financial, human, social and physical capitals that we feel collectively characterize
a household’s ability to diversify and adapt. Natural capital is intrinsic to elements of exposure,
sensitivity, and adaptive capacity due to the fundamental reliance on the environment; we therefore
do not attempt to assign natural capital to specific measured variables but rather acknowledge its
association with many model components that we measure variably.

For the KAZA-TFCA context, we assume that all indicators are measured at the household level.
In the model, these directly relate to household vulnerability as they co-vary. In other contexts, and
under similar assumptions as we propose with the SEM, approaches such as multilevel statistical
models may also be effectively used to evaluate household vulnerability as a function of predictors
existing at various levels or at different spatial or temporal scales. These approaches would also
come with inherent tradeoffs (e.g., [67,68]). We discuss these considerations in Section 4 in the
context of interventions for testing management and policy decisions specific to the conservation and
development initiative that are paramount in regions such as KAZA-TFCA.
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Figure 4. Based on the structural and exogenous components from our conceptual model (Section 2),
(a) represents an illustration of a structural equation or path model of hypothetical associations
using correlations or “regressed on” relationships between latent and measured components. Three
exogenous environmental variables are also included which we assume will influence land use exposure,
as indicated by arrows pointing towards its latent component. The color and width of arrows reflect
the correlation structure imposed by our hypothesized indicators. (b) The total number of pathways,
and the strength of the predictive associations between these latent and exogenous variables may
be estimated quantitatively from the measured indicators. Positively associated relationships are
illustrated in blue, and negative associations in orange, with arrows pointing in the direction of
dependency or “regressed-on” relationships.
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3.2. Testing Assumptions and Simulating Hypothesized Outcomes

To operationalize vulnerability, the simulation exercise illustrated for the KAZA-TFCA region
is a useful tool to assess whether different model specifications, and their resulting potential data
realizations, fit our hypothesized, intuitive, or expected relationships between parts of the system.
Furthermore, we can assess the strength of hypothesized correlations in conjunction with basic power
analyses for survey size and model complexity exploration. This is important, especially in an SEM
modeling context, as alternative models should be explored (different indicators used and varying
pathways defined) prior to bringing that specification to the data. It is often trivial to modify the model
design to fit some aspect of the data a posteriori, which may be undesirable unless pure prediction is
the goal.

For the purpose of simulation, we estimated from systematic testing that a sample of 600
household observations was the sample size requirement to fit the SEM to the KAZA-TFCA system [69].
The sample size also represents an approximately adequate sample for capturing household dynamics
in community-based areas of KAZA-TFCA using a model of this complexity but with potentially weak
correlations between components, which is typical in social data contexts [40,70]. Selected indicators are
detailed in Table 1, and correspond to those in the hypothetical vulnerability model in Figure 4a. These
indicators represent socio-economic information for rural households and biophysical characteristics
for a semi-arid, savanna landscape of KAZA-TFCA (Figure 3a) [71,72]). Most households are located
in sparsely settled, remote villages where reliance on natural resources is high, integration in the cash
economy is low, and livelihoods are based on subsistence crop and livestock production.

Standardized coefficient estimations based on simulated data from the structural relationship in
Figure 2 are presented in Figure 4a. The color and width of arrows reflect the correlation structure
imposed by our hypothesized indicators. Using such a simulation and hypotheses about the strengths
of correlated indicators provides insight into how our sampling frame responds to our hypothesized
model specification. The illustration suggests the strength of association (negative is red, positive is
blue) that a measured variable has on the different latent characteristics and reflects the correlation
and covariance of both measured and unmeasured (estimated) components of the model. The colored
arrows point in the direction of dependency or “regressed-on” dependence relationships while grey
arrows represent correlative relationships. The thickness of an arrow represents the relative strength of
a path relationship.

Located in the supplemental text (S1) is the code and the quantitative correlation/covariance
structure produced by the hypothesized model. The fit of the model against the simulated data can be
used in conjunction with variable household survey sizes, and various parametric permutations for
indicator measures to design the survey and sampling frame. Most importantly, different generative
models can be used to simulate data that can be fit to the multiple alternative model and indicator
designs. This feature of the SEM framework and formulation allows researchers to explore how
conclusions based on model fit to real data under “wrong” or “incorrect” theoretical relationships
might change conclusions about the strength of the theory or the model.

Additionally, we summarize the hypothesized "total path" effect from a model fit to the simulated
data (i.e., the sum of total direct and indirect pathways) (Figure 4b). This shows the relative path
strengths (S1) we might expect between the respective latent components. The "total path" effect
describes how household exposure to land system factors influences household vulnerability as
mediated by its sensitivity and mitigated by adaptive capacity. The arrows point in the direction of
dependency or “regressed-on” relationships, meaning, for example, that the blue arrows pointing
from exposure and sensitivity to vulnerability (Figure 4a) represent positive, direct pathways for
how exposure and sensitivity relate to vulnerability. In contrast, adaptive capacity has two pathways
identified with red arrows (Figure 4a), one with a direct path to vulnerability (thinner, red line) and
the other, a thicker, red line drawn to sensitivity to indicate that the effect of adaptive capacity on
vulnerability will be a product not only of the predictive capacity of adaptive capacity alone, but also
as it relates to sensitivity. To trace the total path effect on vulnerability for each covariate, Figure 4b
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notes the number of potential pathways and whether those path effects are positive or negative. In this
case, higher exposure will have a positive effect on vulnerability. Furthermore, while sensitivity is also
associated with an increase in vulnerability, it is a weaker relationship. However, as adaptive capacity
goes down (which negatively influences vulnerability), sensitivity will go up. We also hypothesize
that the external environmental components and their variation across households have a small but
statistically significant effect on exposure and therefore vulnerability, and are important to control for
when assessing the other components and their relationships.

Table 1. Proposed, hypothetical measures for simulating an SEM for a land system example of a food
security-related vulnerability model.

Indicator For Name Data Source Quantified As

Vulnerability # Mo. Food Insecure Last Yr. HH Survey Numeric, continuous between 1–12

Vulnerability # Mo. Food Insecure In
Average Yr. HH Survey Numeric, continuous between 1–12

Vulnerability Current Yr. Food Cat. HH Survey Ordered categorical, 1–10

Sensitivity Crop Yields HH Survey Numeric, continuous, bounded at 0 kg/ha,
quantified across all crop types

Sensitivity Grazer Yields HH Survey Numeric, continuous, bounded at 0 measured
in offspring per unit livestock

Sensitivity Total Resources Gathered HH Survey Numeric, continuous, bounded at 0 kg

Adapt. Cap. Prop. Income From Welfare HH Survey
Calculated as a proportion, assumed to be

non-zero for nearly all of the population, and a
distribution between 0–1

Adapt. Cap. # of Healthy HH Workers HH Survey Summarized as the number of HH members
capable of working a majority of the week

Adapt. Cap. Highest Education of Any
HH Member HH Survey Ordered categorical, summarized by the level

of education by country

Adapt. Cap. Durable Assets Index HH Survey
Numeric, continuous, scaled to 0–1, calculated
as a composite index from a host of questions

regarding ownership of durable assets

Adapt. Cap. Social Connection Index HH Survey

Numeric, continuous, scaled to 0–1, calculated
as a composite index from a host of questions

regarding participation in community and
social groups/committees, etc.

Exposure Hectares Cropped HH Survey Numeric, continuous, bounded at 0

Exposure # of Grazers HH Survey Numeric, continuous, bounded at 0

Exposure # of Resources Types
Gathered HH Survey Numeric, continuous, bounded at 0

Pred. of Exposure Rainy Season Length Remotely Sensed

Numeric, continuous, estimated from modeled,
satellite supplemented pentadal rainfall

estimates, and associated with a household by
averaging to a HH buffer

Pred. of Exposure Distance to Floodplain Edge Remotely Sensed

Numeric, continuous, estimated from
satellite-derived floodplain delineation, and

associated with a household by averaging to a
HH buffer

Pred. of Exposure Median Dry Season NDVI Remotely Sensed

Numeric, continuous, and constitutes and
estimate of dry-season vegetation productivity,
a proxy for agropastoral potential, associated

with a household by averaging to a HH buffer.

4. Discussion

4.1. Vulnerability in the Agripastoral Context

In presenting a hypothetical structural equation model that treats household vulnerability as
a composite of exposure, sensitivity, and adaptive capacity, we acknowledge that methodologically



Land 2019, 8, 111 12 of 19

and conceptually we are fusing two established approaches. However, in choosing to represent these
latent constructs, especially in terms of exposure and sensitivity, as the intersection of land use and its
outcomes, we argue that this approach can be situated firmly within land systems contexts. Doing it in
this way better operationalizes such theory and facilitates better decision-making around states and
change in household vulnerability and land management. While pooling such land functions within
households across multiple land uses may not be appropriate in contexts outside of the KAZA-TFCA
case presented as illustration, the intersectional aspect of the theory and model choices made can
be tailored to address specific aspects of land functions as they relate to household vulnerability in
other contexts.

4.2. Introducing Interventions, Assessing Leverage Points

Additionally, the proposed approach provides a systematic way to test policy and management
initiatives aimed at alleviating household vulnerability. The flexibility of the SEM approach provides
a means of assessment in how policy interventions may impact system dynamics. Those impacts
may be tested a priori to an intervention in order to identify best options for inserting leverage points
without large social or financial risk. Alternatively, post-intervention impacts can be measured through
the strength of observed relationships based on a follow-up assessment. For example, additional
mediating variables that might impact either the unmeasured, latent characteristics or individual
measured covariates (e.g., drought relief in the form of food subsidies, livelihood support in the form
of agricultural techniques) can be included in the model. If an intervention was designed to target any
one component of the system and applied to a subset of households, it could be included as another
variable in the model to estimate its influence while holding constant the structural relationships
between vulnerability components. Most importantly, values of unmeasured, latent variables can
be estimated from a model fit to measure indicators and covariates. In similar ways to vulnerability
indices, these estimates of latent features can be compared across households. Since the structural
parts of the fitted model and its coefficients can be interpreted as one might a traditional linear model,
the impacts of potential interventions aimed at changing a household’s sensitivity or adaptive capacity
can be assessed. The effect of an intervention aiming to change a household’s state in any one latent
characteristic (e.g., moving a household from poor to exceptional adaptive capacity), can be estimated
by applying the coefficients through all connected pathways and then estimating the potential change
in that household’s latent vulnerability score. Changes in these latent characteristics can then also be
used to estimate changes in measured indicators.

Past interventions might also be added to the model to test effects of policies targeting specific
indicators, or more broadly an entire latent characteristic. Using the KAZA-TFCA food security
example, an intervention such as the provision of food subsidies to alleviate hunger directly (a direct
impact to the latent characteristic of vulnerability) or the adoption of conservation agriculture as
a means to alleviate sensitivity to exposure introduced by climate variation (Figure 5), we might
gain quantitative insight into which interventions to prioritize. To accomplish this quantitatively, we
can simulate the outcomes of a particular intervention on the estimated values of a latent variable,
as translated through the predicted system of path effects.

Food subsidies (Scenario 1) highlights a short-term (i.e., more immediate) targeted effort towards
an indicator of the latent construct vulnerability. Specifically, food rations are distributed to individual
households in communities; the interventions are typically determined at the national level, so subsidies
may reach some KAZA-TFCA communities but not others. We argue that the temporality of an
intervention targeted at the latent construct of vulnerability provides only short-term relief to a
household. While the intervention could be highly impactful towards initial hunger and mortality of
a household, the long-term sustainability of that household, the resilience towards future situations
of similar context, does not get addressed with this type of intervention. In contrast, conservation
agriculture (Scenario 2), the intercropping of nitrogen-fixing crops between rows of typically farmed
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maize or sorghum crops, aimed towards the latent construct of sensitivity, has the potential to introduce
a longer-term adaptive intervention.
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Be estimating the effects of a hypothesized intervention, we assume that the intervention in question
is going to target a structural component in the model. Such an intervention would therefore translate,
according to the strength of the correlations with the measured, indicator variables, to outcomes
in those variables. Thus, it is important to consider the temporal aspect of a given intervention on
the correlative strengths that connect the measured and structured parts of the vulnerability model.
Any intervention will influence the strength of association between measured indicators and their
latent constructs, but the relationships will change based on which latent construct is targeted (e.g.,
vulnerability, sensitivity, or adaptive capacity) and the timeframe needed to observe a change in
the overall vulnerability model. A vulnerable condition is not static but oftentimes we are forced
to assess and measure that state as a snapshot in time [73]. These types of longitudinal impacts,
or studies of vulnerability across time might be well served by the proposed conceptual framing.
Recent studies emphasize the importance of new methodologies to generate insight into longitudinal
studies of vulnerability and associated features of these systems have been proposed [74]. We believe
that the considerations and advances in incorporating pre–post impact assessments, trend analyses,
and longitudinal data in general can be incorporated into the SEM-based framework. In its most
general case, however, we are most interested in the combined effect on vulnerability and its indicators
that results from any single intervention that affects a household’s adaptive capacity or sensitivity.
The impact of such an intervention on the latent and measured outcomes of household vulnerability
may include not just the direct paths linking these structural components, but also the indirect paths,
such as the two pathways between adaptive capacity and vulnerability (direct and the one through
sensitivity) (Figure 4a,b).

A challenge with the proposed method is the need to correctly specify and evaluate candidate
model structures that reflect potential underlying causal and correlative associations [40,75]. The model
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described in Figure 2 is just one such specification, and forms the basis of a strong understanding of
the SES based on previous work in the region, the current literature, and a theoretical underpinning
of how various livelihood capital components accentuate or mediate interactions with biophysical
features in agricultural areas to create or mitigate household vulnerability.

Another overriding consideration in any social–ecological model is the scales of interest and the
data being used. Though the indicators must be measured at the household level, some indicators,
especially for exposure in the climate context, may only vary across coarser, regional extents [58,59].
If this is the case, then the scale of data collection must match the variability in the indicators used,
and the type of vulnerability being specified must reflect those scalar considerations. Thus, depending
on the scale of assessment (e.g., household, community, region), the multi-scale dynamics of measured
indicators needs to be explicitly accounted for in model development. How researchers address
these scalar issues may depend greatly on the range of relevant temporal and spatial scales, and how
these relate to the latent or structural components of the model. Researchers must ask whether those
structural components, if they were measurable, adequately predict those measured indicators at the
scale of measurement. Additionally, we must address whether the correlations and covariance between
measured components are the result of processes effecting pattern, or alternatively if they might be
induced by such things as modifiable areal unit issues, or temporal periodicity. These types of issues
are inherent to spatiotemporal analyses, and to the extent these data are included in vulnerability
analyses, they must be addressed within the proposed framework as well.

Another noteworthy aspect to the SEM approach is the need for large sample sizes. In designing
the SEM (Figure 4a), a minimum of 68 parameters is needed (covariance between indicators is not shown
in Figure 3a for clarity), and undertaking a basic power analysis using the hypothesized correlation
structure and strength of associations among components, simulated data indicate that these associations
could be roughly estimated using between 250 and 600 individual household observations. While a
proposed sample size of 1000 household surveys should be adequate, community-level differences or
country-specific features that would involve partitioning data into sub-groups will require an increased
sample size to ensure unbiased and accurate estimates of the conditional associations.

Lastly, it is also important to note that the model form presented is not the only potential
configuration of the relationships between vulnerability, exposure, sensitivity and adaptive capacity,
nor the only statistical model that might be applied. Other types of approaches have been explored in
social–ecological systems [30,37,76,77]. For example, Pandey et al. operationalize vulnerability by a set
of indices that assess both vulnerability and the ability to adapt to certain conditions. They measure a set
of indicators for three dimensions of vulnerability (exposure, sensitivity, adaptive capacity) with specific
indicators divided into various capitals (human, natural, physical, social, financial). To create indices,
they aggregate indicators of respective vulnerability components with a balanced weighted average
approach [77]. Their approach provides a level of specificity necessary to identify nuances in livelihood
coping strategies and a quantifiable means for examining differences in household vulnerability.
Metcalf et al. (2015) also employ a livelihoods framework coupled with a vulnerability framework but
rely on secondary datasets and a representative set of surveys rather than direct household information
for their analysis. Their assessment is focused at the community level and applies the codependency
framework [30,76] which links separate vulnerability models for the ecosystem and socioeconomic
components of a system.

5. Conclusions

We present a novel approach linking theory to empirical estimation to policy, coupling a conceptual
framework of household vulnerability to a statistical model in a land systems context. Following the
application of field-based observations from a given system, our approach allows for the prediction
and assessment of the impact of, for example, policy decisions to allocate funds for food subsidies
or implementing a longer-term ground strategy aimed at conservation agricultural initiatives (as
in Figure 4a). Additionally, the model may be used as a predictive tool for the latent components
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of vulnerability, sensitivity, exposure and adaptive capacity in response to land system changes.
The model is also useful to assess the impacts after an intervention and identify the strength of
relationships post-intervention.

The power of an empirical model formulation based on correlation and covariance such as the
one that structural equation modeling provides, is that the paths between components, as quantified
in Figure 4a, can provide insight into how a policy or programmatic intervention may act as a
system lever to directly affect indicators of household or community vulnerability. These pathways
represent opportunities for policy and associated interventions at multiple levels to more appropriately
target actions to affect positive outcomes. While the framework provides an interesting design for
engaging public stakeholders in discussions about community vulnerability and adaptive response
(in this particular case, to climate change), the relationships measured are as independent correlative
associations with no direct means of intervention assessment. These cases demonstrate the importance
of combining the theoretical frameworks of livelihoods and vulnerability in a quantifiable manner
for examining SES dynamics at either a household or community level. We take that one step further
by presenting a quantifiable approach that assesses all system components otherwise difficult to
directly measure (i.e., vulnerability, adaptive capacity, sensitivity, exposure) by measuring potential
underlying causal and correlative associations of different indicator variables. However, regardless of
approach, the design of measuring vulnerability must be flexible enough to accommodate various SES
structures [8].

We used examples from a dryland African SES where livelihoods are highly dependent on local
natural resources to illustrate a coupled theoretical and applied vulnerability approach. This approach
allows us to explain the variability in measured indicators across the different households surveyed
and describe, at the household level, how independent households vary across the region. Further,
we can also estimate the degree to which a latent characteristic of exposure, adaptive capacity or
sensitivity relate to vulnerability at the household level. Importantly, the flexibility of the model allows
adjustments to examine alternative hypotheses by adjusting the number or type of indicator informing
any of the four latent constructs in the SEM. We provide a representative agrarian rural household
model for purposes of explaining how the process of framework-to-empirical testing happens.
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