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Abstract: Hydrologic models will be an increasingly important tool for water resource managers
as water availability dwindles and water security concerns become more pertinent in data-scarce
regions. Fortunately, newly available satellite remote sensing technology provides an opportunity
for improving the spatial resolution and quality of input data to hydrologic models in such regions.
In particular, the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) dataset
provides quasi-global high resolution precipitation information derived from a blend of in situ
and active and passive remote sensing data sources. We piloted the incorporation of the CHIRPS
dataset into the Soil and Water Assessment Tool (SWAT), a hydrologic model. Comparisons of results
between estimation of streamflow using in situ rainfall gauge station data, the Climate Forecast
System Reanalysis (CFSR) dataset, and the CHIRPS dataset in the data-scarce Nzoia Basin in western
Kenya over the temporal range 1990-2000 were reported. Simulated streamflow estimates were poor
with rainfall gauge station data but improved significantly with the CFSR and CHIRPS datasets.
However, the use of the CHIRPS dataset in comparison with the CFSR dataset provided an improved
statistical performance following model calibration with the exception of one streamflow gauge
station in higher elevation regions. Overall, the use of the CHIRPS dataset had the greatest linear
correlation, relative variability, and normalized bias despite overall average Nash-Sutcliffe Efficiency
(NSE) and R? values.
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1. Introduction

Following the conclusion of the UN’s Millennium Development Goals in 2015, it was estimated
that over 2 billion people had gained access to an improved water source. However, current water
resources distribution still highlights water stress and scarcity throughout Africa and Asia, with
half of the remaining 700 million people without access to an improved water source located within
sub-Saharan Africa [1]. Therefore, the UN’s 2030 Agenda for Sustainable Development dedicated one
of the seventeen Sustainable Development Goals (SDGs) to ensuring equitable availability of water,
integrating water resource management, and encouraging more sustainable withdrawals and supply.

Within sub-Saharan Africa, economic and social growth are both reliant upon the sustainable
management of water resources [2]. However, current water resource management failures and
inadequacies can be largely linked to inadequate assessment of water resources [3]. Unfortunately,
the quantification of water resources is both complex and costly, especially within basins that cross
socio-political and economic boundaries. Although all inputs into hydrologic models introduce
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uncertainty, the accurate quantification and spatial distribution of precipitation over a watershed is
especially critical for hydrologic estimates of runoff, and, consequently, streamflow [4,5]. Unfortunately,
over the past few decades, the quantity of rainfall gauge station data in Africa has been drastically
declining. In the early 1980s, there were 2400 stations providing rainfall data to public data streams
including the Global Historical Climate Network (GHCN) and Global Summary of the Day (GSOD).
However, the number of stations declined to 500 by 2010 [6].

Basins can be considered poorly gauged based on the quantity, spatial distribution, and quality
of precipitation data. A low quantity and spatial distribution of rainfall gauge stations can cause
overgeneralization and inaccurate quantification of water availability while unreliable or incomplete
datasets can be unable to or incorrectly identify seasonal or larger range temporal patterns. In place of
high density in situ rainfall gauge stations, hydrologists now have access to precipitation estimates
derived from climate reanalysis and remote sensing instruments. Although these datasets may not
be exact substitutes to direct measurements, they are often more cost effective, timely, and reliable,
thus allowing for seasonal, temporal, and spatial patterns in rainfall to be observed and incorporated
into hydrologic models.

In a study performed in Vietnam, the use of several gridded climate reanalysis and
remotely-sensed precipitation datasets resulted in comparable model performance of simulating
discharge to the use of in situ station data [7]. In addition, in basins upstream of the Three Gorges
Reservoir in China, Yang et al. [8] compared precipitation datasets derived from land-surface models,
reanalysis datasets, and climatology models with in situ station data. They discovered that, in a
relatively flat basin, gridded precipitation datasets estimated runoff better than the in situ station data
within the SWAT model. Over the last decade, several additional studies [9-11] positively reviewed the
efficacy of the use of satellite-derived products within hydrologic models, but there was unanimous
consensus that continued studies are necessary. Moreover, remote-sensing based or land-surface model
precipitation estimates do not consistently outperform in situ data [12-14]. Thus, even when creating
hydrologic models in poorly gauged regions, it is important to determine whether or not replacing in
situ data with precipitation estimation is appropriate.

The purpose of this study was twofold. First, we tested the ease/applicability of the conversion
and implementation of the CHIRPS dataset, a gridded satellite-derived precipitation dataset, into a
standard hydrologic model. Second, we tested the relative performance of gridded climate reanalysis
and satellite-derived precipitation datasets to in situ station precipitation data at estimating streamflow
in a data-scarce region in eastern Africa.

2. Study Area

The study was carried out in the Lake Victoria Basin (LVB) (sub-Saharan Africa), which is a vital
shared water resource for five different countries. However, because the five nations have differing
political and environmental agendas, it has been difficult to monitor and implement water resource
management strategies within the LVB, especially without consistent and accurate quantification
of resources. Consequently, the basin is experiencing watershed degradation and declines in water
quality and quantity [15]. One of the largest tributary contributors to lake inflow [16], the Nzoia
Basin (latitudes 1°30’ N and 0°05’ S and longitudes 34° and 35°45’ E), covers a catchment area of
over 12,000 km? and originates from the eastern slopes of Mount Elgon and the western slopes of the
Cherangani Hills (Figure 1). Based on basin geomorphology and land use, it can be separated into
four zones: mountain zone, plateau zone transition zone, and lowland zone [17]. The mountain zone
includes the higher elevation regions of Mount Elgon and the Cherangani Hills, and the plateau zone
is the major farming region within the basin with smaller-scale farming continuing into the transition
and lowland zones. The lowland zone also experiences perennial flooding due to its slopes and soils.
The two most dominant soil types within the basin are acrisols and ferralsols. Acrisols are found in the
low-lying areas close to the outlet of the basin. They often create a hard surface crust, which causes
insufficient penetration of water during precipitation events and adds significantly to the region’s
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flooding potential. Ferralsols are a less weathered version of acrisols and found upstream from them in
the higher elevation regions of the basin. Ferralsols have a limited capacity to hold “available” water,
which is harmful to crop growth and during periods of drought. The average rainfall for the basin is
about 1424 mm, with high rainfall amounts between 1500 and 1750 mm occurring at higher elevations
(Mount Elgon and Cherangani Hills) and lower rainfall amounts between 800 and 1100 mm in the
lower reaches of the catchment [18]. Although Lake Victoria has a unique influence on the basin’s local
climate [19], there are generally four distinct seasons (two rainy and two dry) throughout the year
based on the annual shifting of the inter-tropical convergence zone (ITCZ).
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Figure 1. The Nzoia Basin, a subset of the Lake Victoria Basin located in western Kenya.

Currently, ~90% of the basin’s inhabitants rely on subsistence agriculture and livestock for their
livelihood [20], resulting in over 40% of the land within the basin classified as cropland (based on the
International Geosphere-Biosphere Programme classifications). The Nzoia Basin expects urban growth
and has a medium to high potential for industrial agricultural schemes [21] despite its significant
population of more than 3 million inhabitants [22]. Unfortunately, this growth is also paired with
projected water scarcity. In 2007, Kenya’s fresh water per capita was 647 m3, a value below the
United Nations recommended 1000 m3. Projections largely based on population growth indicate that
fresh water per capita has the potential to decline to 235 m® by 2025 [23].

3. Materials and Methods

In order to understand how to improve water resource assessment in relatively poorly gauged
basins, the statistical performance of SWAT model streamflow estimation was compared when utilizing
three different types of precipitation datasets as model inputs. The SWAT model has been used
previously within the Nzoia Basin [24-26] as it is open source and a powerful tool for water resource
managers. As precipitation data is often considered the largest influence in hydrologic simulation
models [4,5], it was important to understand the impact of variable precipitation inputs to the SWAT
model within the Nzoia Basin.



Water 2017, 9, 114 40f 15

The following datasets were used as inputs into the SWAT model to simulate streamflow
(Figure 2): 30 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global
Digital Elevation Model Version 2 (GDEM V2 obtained from the Land Processes Distributed Active
Archive Center (LP DAAC) Global Data Explorer), 1:1,000,000 Soil and Terrain Database for Kenya
(KENSOTER v.2) from the International Soil Reference and Information Centre, Moderate Resolution
Imaging Spectroradiometer (MODIS)" 500 m land cover product (MCD12Q1), and various precipitation
inputs that will be discussed more in depth. The World Agroforestry Centre (ICRAF) provided daily
streamflow data for four river gauge stations (Figure 3). The stations had data from 1971 to 2000,
but none of the stations had complete records over the temporal range. The Lake Victoria Basin
Commission (LVBC) provided monthly discharge data for the Nzoia at Ruambwa Ferry station over
the temporal range 1974-2008 with no missing data.
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Figure 2. Overview of main inputs to the Soil and Water Assessment Tool (SWAT): (a) Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model
Version 2 GDEMV?2; (b) Moderate Resolution Imaging Spectroradiometer (MODIS) MCD12Q1 2012
land cover dataset; and (c) International Soil Reference and Information Centre (ISRIC’s) 1:1,000,000
Soil and Terrain Database for Kenya (KENSOTER v2) Soil dataset.
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NZOIAAT RUAMBWA FERRY

Figure 3. Discharge station locations and the correlating subbasins.

3.1. Various Precipitation Inputs

This study analyzed the use of three different types of precipitation inputs: in situ station data,
precipitation data derived from reanalysis of numerical weather predictions, and blended satellite and
station data.

3.1.1. Rain Gauge Stations

The University of California Santa Barbara’s Climate Hazards Group (CHG) provided monthly in
situ rainfall data station gauge data. The spatial distribution of the four stations can be seen in Figure 4a.
Although the stations are spatially distributed adequately throughout the basin, none of the stations
had complete records for the temporal range of the study. The Global Historical Climate Network
(GHCN) dataset was used as the foundation for the precipitation record and any missing records
were filled with Global Summary of the Day (GSOD) and World Meteorological Organization’s Global
Telecommunication System (GTS) gauge data, respectively. The ranking is due to the unreliability of
the GSOD and GTS datasets in comparison to the GHCN dataset [6]. Despite the blending of station
data, there were still significant gaps in the precipitation record over the temporal range. All four
stations had missing data with anywhere between 30% and 65% of data missing.

3.1.2. CFSR Dataset

The National Centers for Environmental Prediction (NCEP) CFSR daily meteorological dataset
was compiled with a 38 km horizontal resolution. The dataset is derived from the reanalysis of a global,
high resolution, coupled atmosphere-ocean-land surface-sea ice system. The reanalysis occurs every
6 h and incorporates previously predicted forecast data and data from the analysis used to create the
upcoming forecast in order to eliminate trends that never came to pass. The spatial distribution of the
30 CFSR data locations throughout the Nzoia Basin is shown in Figure 4b. The dataset is available
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on the SWAT website and is recommended by the developers. However, although SWAT developers
recommend the CFSR dataset, a study comparing different precipitation products in a watershed in
eastern Africa found that the CFSR dataset in particular had poor spatial correlation in comparison to
satellite-derived and interpolated gauge precipitation datasets. In addition, the size of the Nzoia Basin
(12,000 km?) may not be suitable for the use of reanalysis data without downscaling the data [27].

N
20 40 Miles

Figure 4. Comparison of the spatial resolution of the varying precipitation inputs to the SWAT model:
(a) station precipitation dataset from the University of California Santa Barbara (UCSB); (b) CFSR
station dataset from the National Centers for Environmental Prediction (NCEP); (¢) CHIRPS dataset
from UCSB Climate Hazards Group (CHG) after MATLAB conversion from .tiff to “stations”.

3.1.3. CHIRPS Dataset

The CHIRPS dataset is a relatively new quasi-global, high resolution, daily, pentadal, and monthly
precipitation dataset. The dataset is unique in that it provides low latency, long recorded high resolution
gridded data and allows scientists to both analyze current trends and compare them to historic trends
on the scale appropriate for watershed management [6]. Essentially, CHIRPS uses a fixed Cold Cloud
Duration (CCD) value threshold and regression techniques based off of Tropical Rainfall Measuring
Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) data to create rainfall estimates that
are blended with in situ station data using a modified inverse distance weighted algorithm [28].
The incorporation of station data also helps to correct for estimates that often underestimate the
intensity of precipitation events. It should be noted that since the CHIRPS dataset was first published
in 2015, there are very few studies that evaluate and compare the CHIRPS dataset with similar
global precipitation datasets. Even a recent study in eastern Africa from 2016 [27] comparing global
precipitation datasets as an alternative to gauge data did not include the CHIRPS dataset in their
analysis. Although not geographically relevant to this study, Duan et al. [29] compared three different
types of precipitation products for a small watershed in Italy: interpolated gauge station information
like the Global Precipitation Climatology Centre (GPCC) data, datasets based off of numerical weather
predictions and atmospheric models like the CFSR product, and datasets created from a blend of
satellite-derived information and gauge station information like TRMM and CHIRPS. Overall, the study



Water 2017, 9, 114 7 of 15

found that the CHIRPS dataset, at the 0.05° spatial resolution, showed the smallest bias and relatively
better performance than all of the other precipitation products. Furthermore, the 0.05° resolution
(currently the lowest spatial resolution of all of the satellite-derived global precipitation datasets) of the
CHIRPS data makes it a favorable dataset for application in hydrological models at small basin scales.

CHIRPS data is available on the Climate Hazard Group’s File Transfer Protocol (FTP) site in
a variety of spatial and temporal resolutions and file formats. Daily precipitation .tif files were
downloaded from the FTP site at a 0.05° resolution. The SWAT model requires climate inputs as
text files. As a result, the Mapping Toolbox within MATLAB was used to create a “station” at every
pixel of the precipitation .tif file in order to read the precipitation information into a sequential text
file. The Mapping Toolbox in conjunction with the basin’s DEM were necessary for maintaining the
3-dimensional spatial location of each “station”. After processing, there were a total of 825 stations
throughout the study area (Figure 4c).

3.1.4. Precipitation Dataset Comparison

Of the four stations providing precipitation information, Kitale/Kitae had the least complete
records with about 65% of the data missing. Precipitation records of in situ station data, CFSR
reanalysis, and satellite-derived CHIRPS data were compared at stations with the closest proximity
to the Kitale/Kitae station over the temporal range (Figure 5). As shown, the CHIRPS dataset had
a greater temporal correlation with the in situ station data than the CFSR dataset. As mentioned
previously, this is likely due to the CFSR dataset’s poor spatial correlation and unsuitability for
small-scale watershed studies. However, although the CHIRPS dataset does match the in situ station
better than the CFSR dataset, it still consistently overpredicted rainfall during wetter periods and
reported 0 mm of rainfall in months that the in situ station dataset reported anywhere between 13.7
and 57.67 mm of rainfall. Overall, since the CHIRPS dataset had the higher correlation with the gauge
station data and it had the greatest spatial density (Figure 4) and temporal consistency (Figure 5) of all
three datasets, it was hypothesized that the CHIRPS dataset would be the most complete and accurate
dataset for hydrologic modeling within the Nzoia Basin.
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Figure 5. Temporal correlation of CFSR and CHIRPS precipitation estimation to station precipitation
data over the temporal range 1990-1995.
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3.2. SWAT Model

The SWAT model is a semi-distributed and time continuous watershed simulation tool that
operates on a daily time step. The tool is largely based off of the concept of hydrologic response
units (HRUs). The DEM is used to define the watershed boundary and drainage network. Then,
the watershed in question is first discretized into subwatersheds, and further discretized into HRUs
that are defined by unique land use/land cover, slope, and soil attributes [30]. After discretization
and the input of climate parameters (precipitation, air temperature, relative humidity, wind speed,
and solar radiation), the following water balance equation is applied daily to each individual HRU:

t
SWiy=SW+) (Ri—Qi—ET;— P, = QRy)y, M
i=1

where ¢ is time in days, SW is soil water content, and R, Q, ET, P, and QR are daily amounts
(mm) of precipitation, runoff, evapotranspiration, percolation, and groundwater flow, respectively.
It is important to note that, of the climate parameters, precipitation was the only parameter that
changed between model iterations. The CFSR dataset was used for the remaining climate parameters.
To maintain a continuous water balance, the model used a modified Soil Conservation Service (SCS)
curve number method to simulate runoff, which is based off of curve numbers (CNs) derived
from the ISRIC soil database. In addition, since the CFSR dataset provides wind speed, relative
humidity, and solar radiation data, evapotranspiration could be estimated by the model using the
Penman-Monteith method [31].

The sequential uncertainty domain parameter fitting (SUFI-2) algorithm is an auto-calibration
technique included within the SWAT Calibration and Uncertainty Program (SWAT-CUP) [32].

4. Results

The accuracy of SWAT model iterations in representing streamflow was determined by comparing
simulated streamflow values to measured values from discharge stations provided by ICRAF and the
LVBC. Figure 6 is a comparison of the observed monthly streamflows from the Nzoia at Ruambwa
Ferry discharge station and uncalibrated simulated monthly streamflows for each of the various
precipitation inputs from subbasin 29. As shown, streamflow estimation using the in situ station
precipitation ranges up to 16,000 m3/s, with the model simulation greatly overestimating streamflow.
By comparison, using the CFSR and CHIRPS precipitation datasets allowed for a greater correlation
of streamflow peaks. The extremely poor performance of streamflow estimation using gauge station
data can be attributed to the low temporal consistency and spatial density of the data. Based on the
initial comparison of SWAT model streamflow estimation, only the CFSR and CHIRPS models were
calibrated over a smaller subset of the temporal range of the study.

Since the CFSR and CHIRPS datasets were available at a daily time step, model calibration
(1990-1995) and validation (1996-2000) were done using daily discharge data provided by ICRAF at
four different stations. After determining the sensitive hydrologic parameters to streamflow estimation,
the SWAT-CUP algorithm allows the user to optimize for various statistical tests. Table 1 indicates the
sensitive parameters for each of the model runs.

Both model runs showed significant sensitivity to the SCS curve number (essentially runoff
estimation), which is a common source of uncertainty for the SWAT model [33,34]. The model runs
using the CFSR dataset, however, showed greater sensitivity to hydrologic parameters that influence
the magnitude and timing of water recharging into the groundwater system than the model runs
using the CHIRPS dataset (GW_DELAY, ALPHA_BF, and RCHRG_DP). The precipitation analysis
at the Kitale/Kitae station showed that the CFSR dataset was overpredicting rainfall estimates more
during wetter months than the CHIRPS dataset. When the CFSR dataset was used as an input to
the SWAT model, however, streamflow was more frequently underestimated during dry periods
in comparison to SWAT model runs using the CHIRPS dataset (Figure 7). Therefore, it is likely
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that, in order to compensate for the greater amount of rainfall during the wetter months, the CFSR
model runs were depending heavily on changing parameter values for hydrologic processes related to

groundwater processes.
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Figure 6. Uncalibrated comparison of observed and simulated monthly streamflows from the Nzoia
at the Ruambwa Ferry discharge station from 1992 to 2007: (a) station precipitation dataset; (b) CFSR
station dataset; (c) CHIRPS dataset.

Table 1. Sensitive hydrologic parameters that were used during calibration and validation.

Precipitation Dataset Parameters
CFSR CN2 GW_DELAY  ALPHA_BF RCHRG_DP SURLAG
CHIRPS CN2 SOL_AWC RCHRG_DP SURLAG
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Figure 7. Calibrated comparison of observed and simulated daily streamflows from the Nzoia at
Ruambwa Ferry discharge station from 1990 to 1995: (a) CHIRPS precipitation dataset and (b) CFSR

station dataset.

The two statistical criteria that were used for evaluating model estimation of streamflow were the
Nash-Sutcliffe Efficiency (NSE) and the coefficient of determination (R?). The NSE is one of the most
highly used criteria for comparing hydrologic model performance with observed values and can be
deconstructed into three different components: linear correlation (z, ideal value = 1), normalized bias
(B, ideal value = 0), and relative variability («, ideal value = 1) [35]. As shown in Table 2, although
streamflow estimation using the CFSR dataset resulted in reasonable R? values, streamflow estimation
using the CHIRPS dataset resulted in equally reasonable R? values but improved NSE values by
comparison. Parameter ranges that were used to achieve the calibrated streamflow estimates with
CHIRPS data were then used for the validation period (1996-2000) and the statistical performance can

also be found in Table 2.

Table 2. Statistical test results for calibration and validation of varying precipitation input SWAT

model runs.

Precipitation Input Discharge Station R? NSE
CFSR Nzoia 0.62 —31.03
Rongai 0.51 —18.93
Large Nzoia 0.51 —28.51
Nzoia at Ruambwa Ferry 0.25 —0.54
CHIRPS Nzoia 0.49 —7.75
(Calibration) Rongai 0.55 —-1.07
Large Nzoia 0.49 —4.22

Nzoia at Ruambwa Ferry 0.38 0.24
CHIRPS Nzoia 0.29 —2.83
(Validation) Rongai 0.49 —-1.71
Large Nzoia 0.45 —4.83
Nzoia at Ruambwa Ferry 0.22 —0.13




Water 2017, 9, 114 11 of 15

5. Discussion

Although the results show that the incorporation of remote sensing-based precipitation data
resulted in improvements compared to the station precipitation model run, the CHIRPS model run
did not consistently outperform the CFSR model run. The CFSR model run resulted in improved
R? values at the Nzoia location, a discharge station located in the higher slope regions of the basin
(Figure 3). The CSFR model run was likely better at depicting precipitation in this region because
satellite-derived precipitation estimates have been found to have limitations in mountainous regions
of East Africa [36]. Typically, rainfall estimates derived from thermal infrared (TIR) have difficulty
discriminating between raining and non-raining clouds as orographic clouds that produce precipitation
are often warm. Algorithms that rely on data from passive microwave sensors are also subject to
misidentification based on the appearance of ice within clouds [37]. The CHIRPS dataset references five
satellite products that include information from microwave and infrared wavelengths [6]. As a result,
the CHIRPS dataset could be providing less accurate estimates of precipitation in the higher slope
regions of the Nzoia Basin and impacting streamflow estimation, which could explain the difference in
estimation efficiency shown in Figure 8.

CHIRPS precipitation at Nzoia Discharge Station (1990-1995)
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Figure 8. Comparison of streamflow estimation using the CHIRPS dataset: (a) close to the river
headwaters and (b) close to the basin outlet.

It is important to note, however, that the literature for the CHIRPS dataset does not suggest
that its performance in complex topography is poor [6,38]. When comparing the performance of
the various statistical tests for the CFSR and CHIRPS model runs, the mathematical measure of the
efficiency criteria is important. The coefficient of determination (R?) is used to understand how much
of the observed variance is expressed in the simulated data. Therefore, high R? values can be obtained
even when there is a relatively significant difference between simulated and observed magnitudes as
long as the timing and shape of the magnitudes are present. The efficiency E from the NSE statistical
test is a sum of the absolute squared differences between predicted and observed data normalized
by the variance in the observed dataset [39]. Since the differences between predicted and observed
data are squared, the statistical test weights larger differences more than smaller ones. For example,
the R? values at the Nzoia discharge station and the Nzoia at Ruambwa Ferry discharge station were
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0.49 and 0.38, respectively. However, it is clear that the simulated streamflow at the Nzoia discharge
station (Figure 8a) overestimated flows to a greater magnitude during wetter periods. In contrast,
the magnitude of flows was matched more accurately at the Nzoia at Ruambwa Ferry discharge station
(Figure 8b).

Lastly, especially with low and negative NSE values, decomposition of the NSE can provide
important statistical insight as to why model simulation of streamflow is or is not matching
observed values. Figure 9 shows the temporal correlation between observed streamflow and
simulated streamflows using the CHIRPS and CFSR datasets. The streamflow estimation using
the CFSR dataset had more data points falling along the area near the regression line as streamflow
increased, but streamflow estimation using the CHIRPS dataset had a better correlation with observed
streamflow when flows were less than 200 m3, a pattern observed in Figure 7 as well. The values for
relative variability can be considered “good” for both streamflow estimations, indicating that neither
precipitation datasets resulted in anomalously high streamflow values. The values for normalized bias,
however, were much better for streamflow estimates using the CHIRPS dataset than for streamflow
estimates using the CSFR dataset. The bias within the streamflow estimates using the CFSR dataset
could be linked back to the dataset’s overestimation of precipitation in the wetter months. Finally,
although the linear correlation value that indicates the simulation data’s ability to reproduce the timing
and shape of discharge is greater for streamflow estimates using the CHIRPS dataset, it is still not
ideal and explains why the overall NSE value is so low. The inability to reproduce timing and shape of
discharge can be linked to the CHIRPS dataset’s tendency to consistently overpredict rainfall during
wetter months and anomalously report 0 mm of rainfall during some dry periods.
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Figure 9. Comparison of linear regression and efficiency criteria of observed streamflow versus
(a) simulated streamflow using the CHIRPS dataset or (b) simulated streamflow using the CSFR dataset
at the Nzoia at Ruambwa Ferry discharge station over the calibration period (1990-1995). (RV = relative
variability, NB = normalized bias, r = linear correlation).
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6. Conclusions

Overall, the incorporation of CHIRPS data within the SWAT model showed the most statistically
significant improvements with regards to streamflow volume estimation, but did not achieve
“satisfactory” efficiency criteria or consistently outperform the gridded climate reanalysis product with
regards to streamflow timing and shape and in higher slope regions of the Nzoia Basin. The relatively
poor performance of streamflow estimation using the CSFR dataset can be largely attributed to the
size of the watershed and the dataset’s inherently poor spatial correlation. Therefore, the inclusion of
CHIRPS data within the SWAT model is only suggested for relatively flat, poorly gauged, small-scale
watersheds and with an understanding of its limitations. However, for the purposes of improving
physical water availability to inform water resource management strategies, the combination of
CHIRPS data and the SWAT model can be a powerful tool for water resource managers in data
scarce regions.
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