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ABSTRACT

In this paper, the problem of minimizing the maximum number of open stacks

around a saw machine is addressed. A new heuristic and a branch-and-bound based

exact method for the problem are presented.
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1 INTRODUCTION

1.1 Scope and purpose

In an industrial environment, one general problem that occurs is how to find

a particular sequence of production jobs that minimizes production costs. The

mathematical solutions of this type of problem have been the interest of various

researchers. The problem that this paper addresses is to determine a method that

minimizes the maximum number of open orders of clients. This problem is known

as the minimization of open stack problem or MOSP.

The industrial problem that is considered here arises in a production setting

which consists of a set of products and a set of customer’s orders. For instance, in

the glass industry where different piece types (set of products) are cut that are used

for car or office windows. Suppose that the cutting patterns (set of customer’s orders)

have already been determined around a saw machine. Each pattern is composed of

piece types and as the patterns are cut, the pieces of the same type are stacked

together. However, space around the vicinity is limited and hence, the number of

distinct stacks should be small. It is assumed that a stack is open as soon as a

new piece type is cut and it remains open until all the piece types corresponding

to that stack are cut, only then can the stack be removed from the vicinity. This

rule has obvious implications on handling costs and it also minimizes risks. Thus,

it is necessary to minimize the maximum number of open stacks during the whole

production run.

1.2 Previous work

Dyson and Gregory [2] discuss the cut pattern sequence problem aiming to reduce

the number of discontinuities among piece types to be cut, i.e. if any piece type does

not occur in the next pattern in the sequence, then a cutting discontinuity exists.
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Madsen [3,4] presents a procedure to reduce the cut distance among equal piece types

and an objective to minimize the distance between corresponding piece types, called

the order spread. A spread is the number of different processed patterns between

the first and the last piece types.

Lins [5] introduces a limited version of the MOSP where a pattern contains two

piece types. Fink and Voβ [6] introduce a heuristic approach to solve the MOSP and

the order spread minimization. Foerster and Wäscher [7] analyze three heuristics in

solving for order spread minimization problem in sequencing cutting patterns.

Yuen [8,9] presents six heuristics for solving the MOSP where the third heuristic,

the Yuen3, has a very good practical behavior. Yuen and Richardson [11] present the

full explanation and some optimality conditions for these six heuristics. Faggioli and

Bentivoglio [10] yield a two-phase approach in solving the MOSP, the implementation

of the heuristic procedure and the enumeration on the patterns using a branch and

bound approach.

Yanasse [1,12] and Limeira [13] present the major concepts in the formulation

for the method presented in this paper. Faggioli and Bentivoglio [14] present the

formulation of MOSP as a linear integer programming (LIP), but Becceneri [15]

refers that a direct attack through LIP may be infeasible which is reinforced by

Yannase [16] that the problem is proven to be NP-Hard.

1.3 Open stacks problem

Consider a production setting shown in table 1, the piece types contained in each

pattern is presented. The number of times that a piece type is cut in each pattern

is not indicated since it is not relevant for the MOSP. For pattern P1, observe that

three stacks will be opened, one for p1, one for p2 and another for p4. The same

number of stacks would be open if there is a pattern with two piece types of p1, five

piece types of p2 or three piece types of p4. Observe that when closing a stack all

2



Table 1: Set of cutting process

Pattern Piece type
P1 p1p2p4

P2 p2p4p5p6

P3 p3p4

P4 p1p3p5

P5 p1p4p5

P6 p5p6

Table 2: Stacks observed following sequence

Pattern Open Closed Number of
sequenced piece types piece types open stacks

P1 p1p2p4 3
P2 p1p2p4p5p6 Finished p2 5
P3 p1p3p4p5p6 5
P4 p1p3p4p5p6 Finished p3 5
P5 p1p4p5p6 Finished p1 and p4 4
P6 p5p6 Finished p5 and p6 2

patterns containing the corresponding piece must have been cut.

Suppose that we want to find the maximum number of open stacks for sequence

P1P2P3P4P5P6. We start cutting piece types p1p2p4 of pattern P1 with three open

stacks. Pieces of pattern P2 are to be cut next where the stack of piece type p2 is

already finished at this stage with five open stacks. Following this idea, we end up

with a maximum number of open stacks of five as illustrated in table 2.

Another possible sequence is P3P4P5P1P2P6 with a maximum of four open stacks.

Observe that for this 6-pattern problem, there are already 6! = 720 possible different

sequences to check which one minimizes the maximum number of open stacks. Thus,

we are interested in finding the optimal sequence that yields the minimum of the

maximum number of open stacks.
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Table 3: Data presented in table 1 into a matrix

Pi,j =




p1 p2 p3 p4 p5 p6

P1 1 1 0 1 0 0
P2 0 1 0 1 1 1
P3 0 0 1 1 0 0
P4 1 0 1 0 1 0
P5 1 0 0 1 1 0
P6 0 0 0 0 1 1




1.4 Binary matrix presentation

In the production setting with I distinct patterns given, each one of these patterns

contains a combination of at most J piece types. The input of the data can be given

by an I x J binary matrix P , representing patterns as rows and piece types as

columns where

Pi,j =





1 if piece type j is to be cut from the pattern i,

0 otherwise.

The data in table 1 as a binary matrix is illustrated in table 3. The first entry

1 means that in pattern P1, piece type p1 is present. Thus, row 1 as pattern P1

contains piece types p1p2p4.

1.5 Graph model

The input data for the MOSP can be given by a graph. In graph G(V,E), a

node k ∈ V represents the piece type pk and two nodes i and j are adjacent (that is,

(i, j) ∈ E) if and only if the corresponding piece types pi and pj are simultaneously

present in the same pattern.

The alteration of the patterns given in table 1 into a graph is illustrated in figure

1. The nodes 1, 2, 3, 4, 5, 6 represent the piece types p1, p2, p3, p4, p5, p6, respectively.
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1 2

3

4

5
6

Figure 1: Graph of Table 1

Pattern P1 contains arcs (1,2), (1,4), and (2,4), P2 contains arcs (2,4), (2,5), (2,6),

(4,5), (4,6), (5,6), and so on.

1.6 Outline of the paper

In this paper, we consider an MOSP with at most two piece types a pattern.

The method for solving the MOSP is the incorporation of the algorithms presented

in the next sections. Each algorithm is illustrated with graphical examples.

The next sections are presented as follows. In section 2, we have the pre-

processing procedures on the input data that simplify the problem, and the al-

gorithms for trees, simple cycles and 1-trees are presented. In section 3, we present

an algorithm for the heuristic minimal cost node of a minor of graph G that uses

the idea of visiting all arcs in Gp, a minor of G. In section 4, we present the exact

method in a branch-and-bound scheme. This section is subdivided into 4 subsec-

tions with the inclusion of the detailed implementation of a lower bound. Finally,

in section 5, we present the conclusion and future work.

2 Pre-processing phase

In this section, we present the two main objectives of the pre-processing that use

the idea of a clique in a graph. We begin with a definition and then the propositions

and algorithms in the following subsections.



Definition 1 A clique in a graph G is a complete subgraph Kh of G. The size of a

clique is the number of vertices it contains which is h.

It is assumed, without loss of generality, that the input data for MOSP is given

by a matrix or a graph as illustrated in subsections 1.4 and 1.5.

A pattern Pi with h different piece types defines a clique Kh of size h and it

represents an obvious optimal solution when the piece types of the rest of the patterns

in MOSP are contained in Pi. In addition, an optimal solution to the problem can

also be examined as a succession of large cliques.

The two main objectives in this phase are (i) to eliminate redundancies among the

patterns and (ii) to detect conditions for which a solution can be found in polynomial

time.

(i) A redundancy occurs whenever in G, a clique is a sub-graph of another larger

one. For instance, in table 1, P6 ⊆ P2, this means that P6 can be removed during an

optimal solution search of the problem, since P6 can be inserted immediately after

P2 in an optimal sequence and no more stacks will be open. We say, P2 dominates

P6. The dominance of a pattern happens whenever Pj ⊆ Pi, where i 6= j.

(ii) After eliminating the redundancies among the patterns, we check whether

the sub-graphs of G have trees, simple cycles or 1-trees as components. If such

components occur, we apply the algorithms presented in the next subsection to

generate an optimal sequence for the piece types contained in these components.

The main idea is to explore the structure of graphs which possess ”small” cliques in

order to find its lower bound that can be the basis for the optimal solution. Generally,

an optimal solution to MOSP is given by a sequence of possibly large and overlapping

cliques, connected by components such as trees. Hence, it is important to exactly

solve the schedule of the latter components in polynomial time to incorporate them

into the final solution.
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Table 4: Reverse sequence of P1P2P3P4P5P6

Pattern Open Closed Number of
sequenced piece types piece types open stacks

P6 p5p6 2
P5 p1p4p5p6 4
P4 p1p3p4p5p6 5
P3 p1p3p4p5p6 Finished p3 5
P2 p1p2p4p5p6 Finished p5 and p6 5
P1 p1p2p4 Finished p1, p2 and p4 3

2.1 Propositions

The algorithms presented in the next subsection are based on the following propo-

sitions considering that a pattern contains at most two piece types. Each proposition

is illustrated by a simple example.

Proposition 1 Let L be the list of open piece types with a possible sequencing of

the patterns of a MOSP, P1P2 . . . Pn. The reverse order sequence of the patterns

Pn . . . P2P1 produces the same open piece types in reverse order, that is, list L in

reverse order.

Proof. Suppose the pattern sequence P1P2 . . . Pn generates a list of open piece

types L = l1l2 . . . ln where li represents the list of open piece types in Pi. Then the

reverse pattern sequence Pn . . . P2P1 generates a list of open piece types ln . . . l2l1,

that is, list L in reverse order. ¤

To illustrate the proposition, consider for instance table 2 with a pattern sequence

P1P2P3P4P5P6. Column 2 of table 2 lists the open piece types which generates a

maximum number of open stack 5. Table 4 shows that the reverse order of the

patterns lists the reverse order of the open piece types (see column 2)with the same

maximum number of open stacks.
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Proposition 2 Suppose we have a MOSP, PROB1, with N patterns to be se-

quenced. Suppose another problem, PROB2, with the same N patterns as problem

PROB1 plus a few more patterns. Then the optimal solution value of PROB2 is

greater than or equal to the optimal solution value of PROB1.

Proof. Trivial. Take the optimal solution of PROB2 and obtain a feasible

solution to PROB1 by simply ignoring, in the sequence, the patterns that belong

only to PROB2. ¤

In table 1, pattern P6 is dominated by P2. Removing pattern P6 from the problem

still yields an optimal solution of 5. This illustrates proposition 2.

Proposition 3 Let G(V, E), the graph obtained from a problem P, be a connected

non-empty graph where the nodes have minimum degree n(n ≥ 2). Then, a lower

bound on the optimal solution value to P is n + 1, that is, in an optimal solution to

P, we must have at least n + 1 open stacks at some time during cutting.

Proof. For a node of degree n, its piece type will be contained in n patterns

since all piece types are contained in at most two patterns. Then, for any sequencing

of the patterns, a piece type, say i, will remain open until all n or more patterns

containing it are cut, that is, all arcs incident to node i are sequenced. Each one

of these arcs is incident to a different node, say j, corresponding to another piece

type, which in turn, remains unfinished unless all n or more patterns containing it

are sequenced. All arcs incident to any node will have to be sequenced sometime.

Since no node can be finished unless all its n (or more) incident arcs are sequenced

and since each one of them creates an open stack, the proposition holds. ¤

Take for instance, the graph of figure 1. Node 6 has a minimum degree 3 and

the rest of the nodes have degree greater than or equal to 3. Therefore, any feasible

sequencing of the patterns will produce at least 4 open stacks at some time during

the cutting.

8



2.2 Algorithms for trees, simple cycles, and 1-trees as components

In this subsection, we present an algorithm for a few special cases of MOSP. We

begin with the simplest case and proceed to more complicated ones. Definitions and

procedures are introduced for easy understanding.

Case 1 Graph with a single node.

This case corresponds to having a pattern with one piece type. This is trivial.

Case 2 Special tree I - A tree with all nodes having degree 2 or less

If the graph has a single node then we are in case 1. Else, we sequence the

patterns in the following procedure.

Procedure WALK

Start with a pattern that finishes a piece type completely, that is, an arc incident

to a single node with degree 1 and keep sequencing next the pattern that ends any

open piece type.

Definition 2 The sequence of patterns obtained using procedure WALK is called

walk W . A walk revW is the reverse order sequence of patterns of W . The maximum

number of open piece types of a walk W is its degree denoted by w.

Consider the graph in figure 2, we start with pattern P1 since node 1 has degree 1,

then patterns P2P3 or we start with pattern P3, then patterns P2P1. The procedure

WALK applied yields a walk W = P1P2P3 = P3P2P1 with w = 2. Either of the

sequencing results in an optimal solution as explained in proposition 1.

1 2 3 4

P1 P2 P3

Alternative optimal solutions: P1P2P3 and P3P2P1

Figure 2: Illustration of procedure WALK in special tree 1
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Case 3 Simple Cycle (a polygon) - nonempty graph with all nodes of degree 2

In this case, we follow the strategy of sequencing patterns in order to finish any

open piece types. Any pattern can be chosen to start with the sequencing.

For instance in figure 3, the easiest way to find an optimal solution is to follow

the sequence P1P2P3P4P5P6 or its reverse order with a maximum of 3 open stacks

according to proposition 3. We can also have the same optimal solution for sequence

P1P6P2P3P4P5.

5

1 2

3

4

6

P1

P2

P3

P4

P5

P6

A l t e r n a t i v e  o p t i m a l  s o l u t i o n s :  P 1 P 2 P 3 P 4 P 5 P 6  o r

P 6 P 5 P 4 P 3 P 2 P 1  o r  P 1 P 6 P 5 P 4 P 3 P 2

Figure 3: Illustration of a simple cycle

Case 4 Special tree II - A tree with all nodes of degree two or less with the exception

of at most one of degree 3.

For this case, we introduce a another procedure that is also needed in the next

cases.

Procedure CONSTRUCT

Let Γk be the set of walks with the same end node k to be sequenced. If |Γk| ≥ 2

then deg(k) ≥ 3. The sequence of walks must begin with walk Wi and end with walk

revWj where Wi,Wj ∈ Γk and the degrees of Wi and Wj are respectively the largest

and the second largest.

Algorithm tree II

10



Apply procedure WALK starting with a node of degree 1 and end with a node of

degree greater than 2. When the end node of walk W has degree greater than 2 then

degree w excludes the end node. With the walks obtained, apply procedure CON-

STRUCT.

Consider the graph in figure 4, we can obtain three walks with the same end

node 5. Suppose we have W1 = P1P2 with w1 = 2, W2 = P6 with w2 = 1, and

W3 = P5P4P3 with w3 = 2. Then applying procedure CONSTRUCT, we have an

optimal sequence of walks W1W2revW3 or W3W2revW1 equivalent to the sequence

of patterns P1P2P6P3P4P5 or P5P4P3P6P2P1, respectively. The maximum number of

open stacks is 2.

P1 P4P2 P3 P5

P6

1 4 5 6 7 3

2

Figure 4: Illustration of special tree II

Case 5 Trees

The algorithm for trees uses a similar concept as the algorithm tree II. We con-

struct a solution for the case trees by adding together the optimal solutions of its

subtrees. We start with a definition of a score that is needed throughout the algo-

rithm. Procedures WALK and CONSTRUCT are also applied.

Definition 3 Let Γk be a set of walks with the same end node k. The score of k is

s(k) = max{w: W ∈ Γk} + ADJUSTMENT where

ADJUSTMENT =





1 if more than one walk have the same maximum

degree(w),

0 otherwise.

11



Let Wi denote the walk i corresponding to subtreei and wi denote its correspond-

ing degree. Suppose that in figure 5, only walks W1,W2 and W3 are considered so far

with end node k. If for instance, we have w1 = w3 = 2 and w2 = 1, then the score of

k is three. In this instance, the score of k provides an approximate minimum value

of the maximum number of open stacks that will result in any optimal sequencing

of the patterns in the subtrees having end node k as the root node.

subtree3

subtree1

subtree2

subtree4

k

Figure 5: Computing the score of k

Algorithm TREES

For this case, we follow four steps. We denote L as a set of nodes with degree 1.

Step 0 (Initialization) Set the score of all nodes in the graph equal to 0. List (L)

all nodes with degree 1.

Step 1 Using the procedure WALK, determine the walks Wi, i = 1, 2, . . . , n, start-

ing from each node in L and end with a node of degree greater than two.

Include its corresponding degree wi and end node ki. If a walk contains only a

pattern then its degree w = 1.

Step 2 Delete all the nodes and patterns used in Wi from the graph excluding their

end nodes. With the resulting graph, list (L) all nodes with degree 1 and

compute the score of each end node ki from the walks obtained.

12



Step 3 If there is only one node k in L, construct a final sequence of walks with

end node k, following procedure CONSTRUCT and STOP. Otherwise, among

the nodes in the list choose one, say k, that has the smallest score. Break ties

at random. Then

3.1 From the resulting graph obtained in step 2, create a walk starting from node

k and end with a node of degree greater than two. If node k is adjacent to a

node with zero score, then this walk must be affixed right after the sequence

of walks constructed in 3.2. Otherwise, affixing is not needed.

3.2 Using procedure CONSTRUCT, create a walk equal to a sequence of patterns

using the walks obtained having an end node k. Affix to this sequence the

pattern or patterns equated from the walk created in 3.1 and consider this

as an ”extended” walk. Calculate the degree w associated to this ”extended”

walk. Store this extended walk with its corresponding degree w and end node.

3.3 Delete all the walks used in obtaining the extended walk then return to step 2.

Suppose we have to sequence 22 patterns with two piece types per pattern as

presented in table 5. The graph of this table is in figure 6.

The following are the steps of the algorithm that are applied in figure 6.

Step 0: Set each node score equal to 0. L = {1, 4, 10, 12, 14, 18, 19, 21, 23}.
Step 1: Walks determined from each node in L with degree 1.

13



Table 5: Set of patterns to be sequenced

Pattern Piece Type Pattern Piece Type
P1 p1p2 P12 p6p13

P2 p2p3 P13 p13p14

P3 p3p4 P15 p15p16

P4 p3p5 P16 p16p17

P5 p5p6 P17 p17p18

P6 p6p7 P18 p16p19

P7 p7p8 P19 p16p20

P8 p8p9 P20 p20p21

P9 p9p10 P21 p15p22

P10 p8p11 P22 p22p23

P11 p11p12

starting node Wi wi end node

1 W1 = P1P2 w1 = 2 3

4 W2 = P3 w2 = 1 3

10 W3 = P9P8 w3 = 2 8

12 W4 = P11P10 w4 = 2 8

14 W5 = P13P12 w5 = 2 6

18 W6 = P17P16 w6 = 2 16

19 W7 = P18 w7 = 1 16

21 W8 = P20P19 w8 = 2 16

23 W9 = P22P21 w9 = 2 15

Step 2: Delete all the nodes and patterns used from W1 to W9 excluding their

end nodes. The resulting graph is in figure 7. L = {8, 16}.
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Figure 6: Tree corresponding to data in Table 5

End node Score

3 2

6 2

8 3

15 2

16 3

Step 3: End nodes 8 and 16 have the same score. We select k = 8.

3.1 Starting from node 8, W10 = P7P6 with w10 = 2 and end node 6.

Since s(7) = 0, the score of the adjacent node, affixing is needed.

3.2 Using procedure CONSTRUCT: W11 = W3revW4W10 = P9P8P10P11P7P6 with

w11 = 3 and end node 6.

3.3 Walks deleted: W3W4W10. Return to step 2.

15



3

5

7

6

8

16

15

P4

P5

P6

P7

P14

P15

3

0

2

0

2
2

3

Figure 7: Graph after deleting nodes and patterns from W1 to W9

Step 2: Delete nodes 7, 8 and patterns P6P7, the resulting graph is in figure 8.

L = {6, 16}.

End node Score

3 2

6 3

15 2

16 3

Step 3: k = 6

3.1 Starting from node 6, W12 = P5P4 with w12 = 2 and end node 3.

Since s(5) = 0, then affixing is needed.

3.2 Using procedure CONSTRUCT: W13 = W11revW5W12 = P9P8P10P11P7P6P12P13P5P4

with w13 = 3 and end node 3.

3.3 Walks deleted: W5W11W12. Return to step 2.
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Figure 8: Graph after deleting node 8 and patterns P6P7

Step 2: Delete nodes 5, 6 and patterns P4P5, the resulting graph is in figure 9.

L = {3, 16}.

End node Score

3 3

15 2

16 3

3

16

15

P14

P15

3 2

Figure 9: Graph after deleting node 6 and patterns P4P5

Step 3: k = 3

3.1 Starting from node 3, W14 = P14 with w14 = 1 and end node 15.

Adjacent node 15 has score equal to 2. Affixing is not needed.

3.2 Using procedure CONSTRUCT: W15 = P9P8P10P11P7P6P12P13P5P4P3P2P1 with

17



w15 = 3 and end node 15.

3.3 Walks deleted: W1W2W13. Return to step 2.

Step 2: Delete node 3 and pattern P14, the resulting graph is left with nodes 15

and 16 connected by pattern P15. L = {15, 16}.

End node Score

15 2

16 3

Step 3: k = 15

3.1 Starting from node 15, W16 = P15 with w16 = 1 and end node 16.

Adjacent node 3 has score equal to 3. Affixing is not needed.

3.2 Using procedure CONSTRUCT: W17 = P9P8P10P11P7P6P12P13P5P4P3P2P1P14P21P22

with w17 = 3 and end node 15.

3.3 Walks deleted: W9W14W15. Return to step 2.

Step 2: Delete node 15 and pattern P15, the resulting graph is left with a single

node 16. L = {16}.

Step 3: k = 16, using procedure CONSTRUCT then we have one possible optimal

sequence equal to W17W6W7W16revW8 = P9P8P10P11P7P6P12P13P5P4P3P2P1P14P21P22

P17P16P18P15P19P20 with a maximum number of open stacks equal to 3.

Case 6 1-Trees - ”Almost trees”

Definition 4 A 1-tree is formed by connecting a tree with a node outside the tree

with two arcs so that a cycle is formed.
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For this case, we follow the same steps in algorithm TREES until reaching a poly-

gon subgraph. Then we apply a new procedure, procedure POLYGON. Procedure

POLYGON has three modified steps from algorithm TREES and two other proce-

dures, procedure CONSTRUCT1 and procedure CONSTRUCT2. The two other

procedures are constructed to ensure that the maximum number of open stacks is

kept to the least possible value.

Algorithm 1-TREES

We suppose that the resulting graph is a polygon after using the algorithm for

TREES. We denote Li as a set of walks where i = 1, 2, and 3.

Procedure POLYGON

Select a node k1 with the largest score in the polygon. Split the list of walks

obtained from using algorithm TREES into two lists, L1 and L2, in descending

order of degree w where L1 contains walks with end node k1 and L2 contains the

remaining walks. Consequently, we have one of the following cases with its procedure

in generating an optimal sequencing:

(i) L1 and L2 are empty.

Apply the procedure for the cycle case.

(ii) L1 is non-empty but L2 is empty.

Starting from a pattern in the polygon incident to node k1, determine a se-

quence of patterns using the procedure in cycle case and consider this as a walk

with degree w = 2 and end node k1. Then apply procedure CONSTRUCT

using all the walks obtained with end node k1.

(iii) L1 and L2 are non-empty.

Let Pa and Pb be the two incident patterns to node k1 in the polygon. Introduce

an artificial node ka incident to Pa, separating node k1 and its incident pattern
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Pb so that the resulting graph forms a tree. Set the score of k1 and ka equal

to zero. Then apply the following modified steps:

Step 1 Using procedure WALK, determine new walks Wi and Wi+1 starting from

nodes k1 and ka with end nodes that have scores greater than zero. These

walks Wi and Wi+1 are the succeeding walks from the walks obtained using

algorithm TREES. Include to these new walks their corresponding degrees w

and their end nodes. List these new walks as L3. If a walk contains only a

pattern then its degree w = 1.

Step 2 Delete all the nodes and patterns used from the walks newly obtained in

the graph excluding their end nodes. With the resulting graph, list (L) all

nodes with degree 1 and compute the score of each end node from all the

walks obtained.

Step 3 If there is only one node k in L, construct a final sequence of walks with

end node k using all the walks listed in L1, L2, and L3, following procedure

CONSTRUCT1 and STOP. Otherwise, among the nodes in L choose one, say

k, that has the smallest score. Then

3.1 From the resulting graph obtained in step 2, create a walk starting from node k

and end with a node’s score greater than zero. Add this walk to L2. If node k

is adjacent to a node with zero score, then this walk must be affixed right after

the sequence of walks constructed in 3.2. Otherwise, affixing is not needed.

3.2 Using procedure CONSTRUCT2, create a walk equal to a sequence of patterns

using the walks obtained having an end node k. Affix to this sequence the

pattern or patterns equated from the walk created in 3.1 and consider this

as an ”extended” walk. Calculate the degree w associated to this ”extended”
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walk. Store this extended walk with its corresponding degree w and end node.

Add this walk to L3.

3.3 Delete all the walks used in obtaining the ”extended” walk, rewrite L2 and L3

with the new walks excluding the deleted walks then return to step 2.

Procedure CONSTRUCT1

Let Wv be the walk having the largest degree w in L2. Let Ws and Wt be

the last walks listed in L3 with end node k where the degree wt ≥ ws. Let L1

= {Wc,Wf , . . . , We} where Wc,Wf , . . . , We are in descending order of degree w.

If degree wc = wf and it is greater than wt and wv, i.e. wc = wf > wt and

wc = wf > wv, then

a. Construct a sequence of walks with end node k1 from L1 using procedure CON-

STRUCT;

b. Construct a sequence of walks with end node k from L2 and L3 using procedure

CONSTRUCT where the second walk in the sequence must have the first

pattern that is connected to k1;

c. Construct a final sequence by affixing the sequence in b to a.

Otherwise, start with a sequence from Wc,Wf , . . . , WeWtWs, then all walks in L2

and end with revWv.

Procedure CONSTRUCT2

Let k be the node selected. Let Ws and Wt be the walks with end node k

having the largest degree w from L2 and L3, respectively. Break ties at random. If

wt ≥ ws then a sequence of walks is WtWiWl . . . WjrevWs where WiWl . . . Wj are

the walks in descending order of degree w from L2 with end node k. Otherwise,

WsWiWl . . .WjrevWt.

The following are examples in finding the optimal sequence of a 1-tree graph:
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Example 1. L1 is non-empty but L2 is empty.

Given a graph in figure 10, we begin by using the algorithm TREES.

1 2

3

4

5

P1

P3

P2

P5

P4

7

6

8

9

P7

P6

P8

P9

Figure 10: 1-tree where L2 is empty when procedure POLYGON is applied

Step 0: Each node score is set to 0. L = {1, 7, 9}.
Step 1: Walks determined from each node in L with degree 1.

starting node Wi wi end node

1 W1 = P1 w1 = 1 2

7 W2 = P7P6 w2 = 2 2

9 W3 = P9P8 w3 = 2 2

Step 2: Delete all the nodes and patterns used from W1 to W3 excluding their

end nodes. The resulting graph is a polygon. L = φ.

End node Score

2 3

Procedure POLYGON: k1 = 2. L1 = {W3,W2,W1} and L2 = φ.

Starting from node 2, W4 = P3P5P4P2 with w4 = 2 and end node 2.

Procedure CONSTRUCT: W2W3W1revW4 = P7P6P9P8P1P2P4P5P3 with a max-

imum number of open stacks equal to 3.

Example 2. L1 and L2 are non-empty.

Consider the graph in figure 11.
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Figure 11: 1-tree where L2 is non-empty when procedure POLYGON is applied

After using algorithm TREES, the resulting graph is a polygon. The following

are the walks left and their end node’s scores:

From step 1 using the algorithm TREES:

starting node Wi wi end node

7 W1 = P7P6 w1 = 2 1

8 W2 = P8 w2 = 1 2

10 W3 = P10P9 w3 = 2 3

11 W4 = P11 w4 = 1 3

For k = 12, W10 = P14P13P15P16P12 with w10 = 3 and end node 4.

For k = 17, W12 = P19P18P20P21P17 with w12 = 3 and end node 4.

End node Score

1 2

2 1

3 2

4 4
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Applying (iii) in procedure POLYGON, we have the resulting graph in figure 12

with k1 = 4.

1

35

2

4

P1

P2

P3P4

P5

43

2 1

2

0

0

0

Figure 12: Tree after procedure POLYGON is applied

L1 = {W10,W12} and L2 = {W1,W3,W2,W4}.
Step 1: Walks determined from nodes 4 and 43:

starting node Wi wi end node

4 W13 = P4P5 w13 = 2 1

43 W14 = P3 w14 = 1 3

and L3 = {W13,W14}.
Step 2: Delete nodes 4, 43, 5 and patterns P3P4P5. The resulting graph is left

with nodes 1, 2, 3 and patterns P1P2. L = {1, 3}.

End node Score

1 3

2 1

3 2

Step 3: k = 3

3.1 Starting from node 3, W15 = P2 with w15 = 1 and end node 2. S(2) = 1,

affixing is not needed.

3.2 Using procedure CONSTRUCT2: Extended walk W16 = W3W4revW14 =

P10P9P11P3 with w16 = 2 and end node 2.
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3.3 Walks deleted: W3W4W14, L2 = {W1,W2, W15} and L3 = {W13,W16}. Return

to step 2.

Step 2: Delete node 3 and pattern P2. The resulting graph is left with nodes 1,

2 and pattern P1. L = {1, 2}.

End node Score

1 3

2 2

Step 3: k = 2

3.1 Starting from node 2, W17 = P1 with w17 = 1 and end node 1. S(1) = 3,

affixing is not needed.

3.2 Using procedure CONSTRUCT2: Extended walk W18 =W16W15revW2 =

P10P9P11P3P2P8 with w18 = 2 and end node 1.

3.3 Walks deleted: W2W15W16, L2 = {W1,W17} and L3 = {W13,W18}. Return

to step 2.

Step 2: Delete node 2 and pattern P1. The resulting graph is left with a single

node 1.

End node Score

1 3

Step 3: Single node k = 1 is left. L1 = {W10,W12}, L2 = {W1,W17} and L3 =

{W13,W18}.
Wv = W1 with w1 = 2, Ws = W18 with w18 = 2 and Wt = W13 with w13 = 2.

Since w10 = w12 > w13 and w10 = w12 > w1, then applying procedure CON-

STRUCT1, we have

a. The sequence of walks with end node k1 = 4 is equal to W10revW12 =

P14P13P15P16P12P17P21P20P18P19,

b. The sequence of walks with end node k = 1 is equal to W18W13W17revW1 =

P10P9P11P3P2P8P4P5P1P6P7 and
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c. Then, the optimal sequence equals W10revW12W18W13W17revW1 = P14P13P15P16

P12P17P21P20P18P19P10P9P11P3P2P8P4P5P1P6P7 with a maximum number of open

stacks equal to 4.

3 The heuristic of minimal cost node

This section presents the heuristic of minimal cost node that uses the idea of

visiting each arc in Gp once. We begin with definitions of terms and introduce the

heuristic.

Definition 5 Arc contraction is an operation by removing an arc (u, v) from a graph

G and joining nodes u and v into a single node. All other arcs incident to u or v

become incident to the single node.

Definition 6 A graph G is isomorphic to a graph H if there exists a one-to-one

function Ψ from V (G), the vertex set of G, onto V (H) such that arc (u, v) ∈ E(G),

the arc set of G, if and only if (Ψ(u), Ψ(v)) ∈ E(H).

Definition 7 A graph Gp is called a minor of a graph G if Gp is isomorphic to a

graph that can be obtained by zero or more arc contractions from G in any order.

Consider the graphs G and Gp as illustrated in figure 13. The graph Gp is

obtained from G by arc contraction of arcs (m,n) and (r, s). Thus, graph Gp is a

minor of G.

The heuristic of minimal cost node uses arcs in Gp, a minor of graph G, as the

basis for determining the least number of arcs to be sequenced in order to close the

node. The order in which the arcs are removed from Gp follows the order in which

the patterns are sequenced [12].
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o q t
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V4 V5 V6

G

Gp

Figure 13: Illustration of a minor of G

Algorithm

To begin with the algorithm, we denote the following:

• V is a set of nodes of Gp;

• E is the set of arcs of Gp;

• Ω(k) is the degree of the node k ∈ V excluding the arcs incident to k already

visited;

• SETV is an ordered set of nodes of V yet to be sequenced. The nodes are

ordered in an increasing order of degree Ω(k). A node k ∈ V is in SETV if

and only if Ω(k) ≥ 1;

• ARC is an ordered set of arcs of Gp already visited;

• OPEN is the set of nodes in V already open (at least one arc incident to this

node is in set ARC and not all arcs incident to this node is in the set ARC);

• s is the number of arcs in ARC (the number of arcs already visited);

• ξ′ is the maximum number of open stacks generated by the heuristic.

For a given graph Gp, we sequence the patterns to be cut in the following steps:
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Step 0: Initialization. Label each node of Gp with its corresponding degree Ω.

OPEN and ARC are empty. Set ξ’ and s equal to zero.

Step 1: List in SETV all the nodes from Gp in non-decreasing order of degree Ω.

Select two adjacent nodes n and m in Gp that have the smallest degree Ω. List

these nodes in OPEN and arc (n,m) in ARC. Delete arc (n,m) in Gp and with

the resulting graph, update the new degree Ω of nodes n and m. Set ξ’ = 2

and s = 1.

Step 2: List in SETV all the nodes left in the graph. If SETV is empty, then STOP.

Otherwise, find a node p with the smallest degree Ω adjacent to the nodes in

OPEN. If there are more than one adjacent nodes, choose a node p adjacent

to a node with the smallest degree Ω) in OPEN. Add node p in OPEN. Add

the arcs incident to node p in ARC and delete these arcs in the graph. With

the resulting graph, label each node with its corresponding degree Ω. If Ω(n)

= 0, then delete this node in OPEN and in the graph.

Step 3: List the nodes in OPEN excluding the nodes with degree Ω = 0 and ARC

including the new arcs. Generate the new ξ’ and s. Return to step 2.

To illustrate the heuristic with an example, consider the MOSP graph G = Gp

in figure 14 where each pattern has two piece types. V = {1, 2, ..., 9} and E =

{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (2, 4), (2, 6), (3, 7), (3, 9),

(4, 6), (5, 7), (5, 8), (8, 9), (6, 9), (7, 9), (8, 9)}.
Step 0: Figure 15 shows the initialization. OPEN = {} and ARC = {}. ξ’ = 0

and s = 0.

Step 1: SETV = {2, 3, 4, 8, 5, 6, 7, 9, 1}. Two adjacent nodes n = 2 and m =

4. OPEN = {2, 4} and ARC = {(2, 4)}. ξ’ = 2 and s = 1. The resulting graph is

in figure 16.
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Figure 14: Graph Gp for the example
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Figure 15: Initialization

Step 2: SETV = {2, 4, 3, 8, 5, 6, 7, 9, 1}. p = 6, add node 6 in OPEN. Add

arcs (2, 6) and (4, 6) in ARC. Delete these arcs, the resulting graph is in figure 17.

Step 3: OPEN = {2, 4, 6} and ARC = {(2, 4), (2, 6), (4, 6)}. ξ’ = 3 and s =

3. Return to step 2.

Step 2: SETV = {2, 4, 6, 3, 8, 5, 7, 9, 1}. p = 1, add node 1 in OPEN. Add

arcs (1, 4), (1, 2), (1, 6) and delete these arcs in the graph. The resulting graph is

in figure 18. The degree Ω(n = 2, 4) = 0, delete nodes 2 and 4 in OPEN and in the

graph.

Step 3: OPEN = {1, 6} and ARC = {(2, 4), (2, 6), (4, 6), 1, 4), (1, 2), (1, 6)}.
ξ’ = 4 and s = 6. Return to step 2.

Step 2: SETV = {6, 3, 8, 5, 7, 1, 9}. p = 9, add node 9 in OPEN. Add arcs (1,
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Figure 16: Resulting graph after arc (2,4) is deleted
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Figure 17: Resulting graph after arcs (2,4) and (2, 6) are deleted

9), (6, 9) and delete these arcs in the graph. The resulting graph is in figure 19.

Step 3: OPEN = {1, 9} and ARC = {(2, 4), (2, 6), (4, 6), 1, 4), (1, 2), (1, 6),

(1, 9), (6, 9)}. ξ’ = 3 and s = 8. Return to step 2.

Step 2: SETV = {8, 3, 1, 9, 5, 7}. p = 3, add node 3 in OPEN. Add arcs (1, 3),

(3, 9) and delete these arcs in the graph. The resulting graph is left with nodes 1,

3, 5, 7, 8, and 9.

Step 3: OPEN = {1, 3, 9 } and ARC = {(2, 4), (2, 6), (4, 6), (1, 4), (1, 2), (1,

6), (1, 9), (6, 9), (1, 3), (3, 9) }. ξ’ = 3 and s = 10. Return to step 2.

Step 2: SETV = {3, 1, 9, 8, 5, 7}. p = 7, add node 7 in OPEN. Add arcs (1,

7), (3, 7), (7, 9) and delete these arcs in the graph. The resulting graph is left with

nodes 1, 5, 7, 8, and 9.
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Figure 18: Resulting graph after arcs (1, 4), (1, 2), and (1, 6) are deleted
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Figure 19: Resulting graph after arcs (1, 9) and (6, 9) are deleted

Step 3: OPEN = {1, 7, 9 } and ARC = {(2, 4), (2, 6), (4, 6), (1, 4), (1, 2), (1,

6), (1, 9), (6, 9), (1, 3), (3, 9), (1, 7), (3, 7), (7, 9) }. ξ’ = 4 and s = 13. Return to

step 2.

Step 2: SETV = {7, 1, 9, 8, 5}. p = 5, add node 5 in OPEN. Add arcs (1, 5), (5,

7), (5, 9) and delete these arcs in the graph. The resulting graph is left with nodes

1, 5, 8, and 9.

Step 3: OPEN = {1, 5, 9 } and ARC = {(2, 4), (2, 6), (4, 6), (1, 4), (1, 2), (1,

6), (1, 9), (6, 9), (1, 3), (3, 9), (1, 7), (3, 7), (7, 9), (1, 5), (5, 7), (5, 9)}. ξ’ = 4 and

s = 16. Return to step 2.

Step 2: SETV = {1, 5, 9, 8}. p = 8, add node 8 in OPEN. Add arcs (1, 8), (5,

8), (8, 9) and delete these arcs in the graph. No nodes left in the graph.
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Step 3: OPEN = { } and ARC = {(2, 4), (2, 6), (4, 6), (1, 4), (1, 2), (1, 6), (1,

9), (6, 9), (1, 3), (3, 9), (1, 7), (3, 7), (7, 9), (1, 5), (5, 7), (5, 9), (1, 8), (5, 8), (8,

9)}. ξ’ = 4 and s = 19. Return to step 2.

Step 2: SETV = { }. Stop.

Finally, we have an optimal sequence of arcs (2, 4), (2, 6), (4, 6), (1, 4), (1, 2),

(1, 6), (1, 9), (6, 9), (1, 3), (3, 9), (1, 7), (3, 7), (7, 9), (1, 5), (5, 7), (5, 9), (1, 8),

(5, 8), (8, 9) with a maximum number of open stacks equal to four.

4 The exact method

To have an idea of how we determine the exact method for solving a given

MOSP, consider the graph G in figure 20. In this example, we can easily identify

the maximum clique of size 4. Considering only this clique and deleting all other

arcs and nodes of the original graph, the resulting graph has all nodes with degree

3. Hence, by proposition 3, we have at least 4 open stacks at some time during the

cutting process. Moreover, by proposition 2, 4 is the lower bound on the number of

open stacks for the original graph. The exact method follows this way of exploring

the graph. However, for a more complicated graph, we need to explore the structure

of graphs which holds ”small” cliques as stated in section 2.
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Figure 20: A graph to illustrate lower bound

In this section, we present an algorithm for solving the MOSP in a branch and



bound approach. It includes the concept of equivalent solutions, the algorithm for

heuristic arc contraction that gives a guaranteed lower bound for a given minor of

G and the process of the branch and bound scheme.

4.1 Equivalency proposition

The concept of the following proposition generates shortcuts in the enumeration

for the optimal sequencing for a given Gp.

Let Nb(i) be the ”neighborhood” of a node i, the set of nodes that are adjacent

to node i, and Ñb(i) = Nb(i) ∪ {i} in Gp. Then, we say that nodes i and j are

equivalent whenever Nb(i) = Nb(j) or Ñb(i) = Ñb(j).

Equivalency proposition. If Gp has two different nodes, say i and j, with

Nb(i) = Nb(j) or Ñb(i) = Ñb(j), then from a given feasible solution of the problem

where pi is not immediately followed by pj or vice versa, it is possible to construct

a new sequence with pi and pj appearing consecutively. Moreover, the maximum

number of open stacks by the new sequence is less than or equal to the original

sequence.

Proof. We assume without loss of generality that 1,. . . , i,. . . , j,. . . , n, i 6= j is a

feasible sequence of the n vertices of Gp, and Nb(i) = Nb(j). When we sequence all

the incident arcs to i, the set of open stacks associated to its neighboring vertices

is the same set that would be opened by pj. Therefore, it is possible to sequence j

immediately before i, since the total number of open stacks remains the same. A

similar argument can be used to prove the case when Ñb(i) = Ñb(j). ¤

With equivalency proposition, we can reduce equivalent nodes in Gp to construct

a new graph Gp in determining a new lower bound. Furthermore, it can assist in

the enumeration of the feasible solution schema.

In figure 20, part (a), an initial Gp is given. Since nodes 2 and 4, nodes 5 and 3

are equivalent nodes, then we can reduce the initial Gp as shown in part (b). From
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part (b), we see another equivalence among nodes 7 and 3. Then, we get another

graph after reduction method is applied in part (c). Observe that |Gp| decreases

from 8 to 5, and the number of arcs decreases from 15 to 7. In this instance, a level

of hierarchy on the equivalence relations exists that must be realized. Nodes 3 and

7 are equivalent only after the first reduction is applied. Hence, we can sequence 3

and 7 but node 3 must precede node 7 in the sequence.

5

7

3 1 2

8

4

6

(a)

7

3 1

8

4

6

(b)

7

1

8

4

6

(c)

Figure 21: Identification of equivalencies

Therefore, if node i and j in Gp with the condition that Nb(i) = Nb(j) or Ñb(i) =

Ñb(j), for the sake of finding an optimal sequencing, we can delete node i or node j

and all arcs incident to it.

4.2 Heuristic arc contraction

We need to determine the best lower bound by following the algorithm for heuris-

tic arc contraction. We denote the following:

• lbp = max {|Pj|, j = 1, 2, ..., n} where |Pj| = degree of the pattern Pj.
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• lbd = 1 + min {degree (n)| n is a node of Gp},

• lbc = max {Ki | Ki is a minor of Gp},

• |G| = order of Gp,

• dmin = minimum degree of the nodes in Gp.

Bounds lbp and lbd are instant. Since for lbp, the number of unfinished stacks can

not be less than the maximum number of piece types of any pattern of a MOSP. lbd

is derived from the fact that a piece type pi, of minimum degree in Gp, is incident

to all those pj’s where pi and pj’s belonging to the same pattern. Since some piece

type has to be sequenced first at least this number of stacks will be opened.

The bound lbc, as stated in [17], indicates that a lower bound is obtained if Gp

is a complete graph.

Algorithm

Step 0 Initialization. Determine the lbp, lbd, |Gp|, and lb where lb = max {lbp, lbd}.

Step 1 If Gp is a complete graph, then lbc = lb. Stop. If |Gp| ≤ lb, then lbc = lb.

Stop. Else, let S be the node set of G in non-decreasing order of degree (n).

Step 2 Choose an arc (i, j) in Gp that has the smallest node degree in S. Contract

arc (i, j) and with the resulting graph, if dmin ≥ 2 and dmin + 1 > lb, then

the new lb = dmin + 1. Return to step 1.

Consider the following patterns: P1 = {p1, p3, p6}, P2 = {p1, p4, p5}, P3 =

{p2, p4, p7}, P4 = {p2, p5, p6}, P5 = {p3, p4}. The corresponding graph is shown

in figure 22 where nodes 1, 2, 3, 4, 5, 6, 7 represent piece types p1, p2, p3, p4, p5, p6, p7

respectively. The value for the lbc is generated using the algorithm in the following

way:

Step 0: Initialization. lbp = 3, lbd = 3, |G| = 7 and lb = 3.
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Figure 22: A graph to illustrate the Heuristic arc contraction algorithm

Step 1: Gp is not a complete graph. |Gp| > lb. S = {7, 3, 1, 2, 5, 6, 4}.
Step 2: Arc (7, 2) is selected. Contract arc (7, 2) and the resulting graph is

shown in figure 23. The dmin = 3, thus the new lb = 4. Return to step 1.
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7
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1 =

Figure 23: A graph after first contraction

Step 1: |Gp| = 6 > lb. S = {2, 3, 1, 5, 6, 4}.
Step 2: Arc (3, 4) is selected. Contract arc (3, 4) and the resulting graph is

shown in figure 24. The dmin = 3, thus the new lb is still 4. Return to step 1.
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Figure 24: A graph after second contraction

Step 1: |Gp| = 5 > lb. S = {1, 2, 4, 5, 6}.
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Step 2: Arc (1, 6) is selected. Contract arc (1, 6) and the resulting graph is

shown in figure 25. The dmin = 3, thus the new lb is still 4. Return to step 1.
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341
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Figure 25: A graph after third contraction = K4

Step 1: Gp is a complete graph. Thus, lbc = 4. Stop.

The set S needs to be updated in every iteration to keep the lower bound as

large as possible. For instance in a three-regular graph as shown in figure 26, if set

S is sorted just once, two different cliques, K3 and K4 are obtained as illustrated in

figures 27 and 28, respectively.
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Figure 26: Initial graph G=Gp
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Figure 27: Minor of G generating K3
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Figure 28: Minor of G generating K4

4.3 A branch and bound scheme

We use a greedy method for the branch and bound scheme. By first branching

from a node 0 and searching the next most favorable node for branching in order to

find an optimal solution for a given MOSP. In branching, we need to choose a node

that result in the least possible number of incomplete piece types. For illustration,

we denote the following:

• S is the set of all piece types of the open stack problem;

• Si
u is the set of unfinished piece types at branching node i, i = 0, 1, 2, ..., n;

• Si
o is the set of currently open stacks at branching node i where So ⊆ Su ⊆ S;

• LB1 is the maximum number of open piece types in each pattern;

• vk
j is the number of open stacks that results when going from node j to k, a

successor of j;

• LB2 = min{vk
j };

• LB3 is the number of open stacks that resulted when branching from the

predecessor of j. If p is the predecessor of j then the lower bound is vk
j ;

• LBj = max{LB2, LB3, LBp} j > 0, where p is the predecessor of node j, and

the overall lower bound for node j including its predecessor node;
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• LB0 = max{LB1, LB2};

• UP j = |Si
u| = upper bound on the number of open stacks at each node which

is the total number of piece types of the problem still left to be cut.

• vup is the value of the best solution so far for the open stacks problem. Initially,

vup = |S|.

In the branching scheme, each node i will be identified by the sets Si
u and Si

o (see

figure 29).

node i

[So, Su]
i       i

node s

[So, Su]
s      s

j

Figure 29: Identification of a node in the branching scheme

For each piece type pj ∈ Si
u, create a new branching node say s, with Ss

u =

Si
u \{pj} and Ss

o is the set of open unfinished stacks that is obtained from all the

patterns containing piece type pj that are sequenced.

We start the enumeration at node 0 with starting sets S0
o = ∅ and S0

u = S =

{1, 2, ..., m} (see figure 30). Then choose the most favorable node using a greedy

criterion for branching. When any lower bound in node j is greater than or equal to

vup, node j can be fathomed. When LBj ≥ UP j, node j can be fathomed and vup

is updated with LBj if vup > LBj.

Consider for the following instance of a MOSP: P1 = {p1, p2}, P2 = {p1, p4},
P3 = {p1, p3}, P4 = {p2, p5}, P5 = {p3, p4}, P6 = {p2, p4}, P7 = {p3, p5}, P8 =

{p2, p3}, P9 = {p1, p5}, P10 = {p2, p6}. We start with node 0, where S0
o = ∅ and
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node 0

[So, Su]
0      0

node 2

[So, S\{2}]
2

node 1

[So, S\{1}]
1 node m

[So, S\{m}]
m

1

2

......

......

m

Figure 30: Branching from node 0

S0
u = {p1, p2, p3, p4, p5, p6}. At node 0, LB1 = 2, UP 0 = 6 and vup = 6. Branching

at node 0 produces 6 new nodes as shown in figure 31.

node 0

[So, Su]
0      0

node 3

[So, S\{p3}]
3

node 1

[So, S\{p1}]
1

node 6

[So, S\{p6}]
6

node 2

[So, S\{p2}]
2

node 4

[So, S\{p4}]
4

node 5

[So, S\{p5}]
5

p1

p2

p3 p4

p5

p6

Figure 31: Branching from node 0

For these nodes we have:

S1
o = {p2, p3, p4, p5}, UP 1 = 5, v1

o = 5, LB3 = 5;

S2
o = {p1, p3, p4, p5, p6}, UP 2 = 5, v2

o = 6, LB3 = 6;

S3
o = {p1, p2, p4, p5}, UP 3 = 5, v3

o = 5, LB3 = 5;

S4
o = {p1, p2, p3}, UP 4 = 5, v4

o = 4, LB3 = 4;

S5
o = {p1, p2, p3}, UP 5 = 5, v5

o = 4, LB3 = 4;

S6
o = {p2}, UP 6 = 5, v6

o = 2, LB3 = 2.

Hence, at node 0, LB2 = min{vi
o, i = 1, 2, ..., 6} = 2 and LB0 = max{LB1, LB2} =
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2.

Following the scheme we fathom nodes 1, 2, and 3 since the lower bound on these

nodes equal the currently upper bound for the optimal value of the problem.

We then branch the most favorable node which is node 6(see figure 32).

node 6

[So, Su]
6      6

node 9

[So, S\{p3}]
9     6

node 7

[So, S\{p1}]
7     6

node 8

[So, S\{p2}]
8     6

node 10

[So, S\{p4}]
10   6

node 11

[So, S\{p5}]
11   6

p1

p2

p3

p4

p5

Figure 32: Branching from node 6

For these nodes we have:

S7
o = {p2, p3, p4, p5}, v7

o = 5;

S8
o = {p1, p3, p4, p5}, v8

o = 5;

S9
o = {p1, p2, p4, p5}, v9

o = 5;

S10
o = {p1, p2, p3}, v10

o = 4;

S11
o = {p1, p2, p3}, v11

o = 4.

Hence, at node 0, LB2 = min{vi
o, i = 1, 2, ..., 6}= 4 and LB6 = max{LB2, LB3, LB0}

= 4 and UP 6 = 5. Since UP 6 > LB6, then we can not fathomed node 6 but nodes

7, 8 and 9 are fathomed.

We then branch the next favorable node which is node 10 and for these nodes

we have:

S12
o = {p2, p3, p5}, v12

o = 4;

S13
o = {p1, p3, p5}, v13

o = 4;

S14
o = {p1, p2, p5}, v14

o = 5;
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S15
o = {p1, p2, p3}, v15

o = 5.

Hence, at node 10, LB2 = 4, LB10 = 4 and UP 10 = 4. Since LB10 = UP 10,

any solution from this node and through has an optimal value of 4. We, therefore,

update vup to 4 and fathom node 10 and consequently, all its successors. Nodes 4

and 5 are also fathomed since their lower bounds equal to the current upper bound.

Then the procedure ends with an optimal value of 4 and the optimal sequence follows

by sorting the patterns that contain piece type p6 first, the patterns that contain

piece type p5 is next and the patterns that complete any other uncompleted piece

types until all piece types are completed. One possible solutions for the sequence is

P10P4P7P9P1P2P3P5P6P8 with a lower bound 4.

4.4 Exact Method: branch and bound approach

In practice, the following algorithm can take a long time to solve larger number

of patterns that forms a large and overlapping cliques.

Algorithm

Step 0 Determine the graph G. All components that are trees are removed and

call this removed set D.

Step 1 Execute the pre-processing on G to obtain Gp following section 2.

Step 2 Execute the Heuristic of Minimal Cost Node to obtain ξ’ and the sequence

of patterns following section 3.

Step 3 Execute the Heuristic Arc Contraction to get the lower bound lbc following

subsection 4.2.

Step 4 If ξ’ = lbc (upper bound = lower bound) then the optimal solution is found

in step 2. Else, look for the equivalence set E and implement the reduction

process among the equivalent nodes as illustrated in subsection 4.1 to construct
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a new graph Gp. Then execute the Heuristic Arc Contraction to get the new

lbc. After which, execute a branch and bound in order to obtain the optimal

solution and insert the deleted equivalent nodes.

Step 5 Insert the vertices of D into the final sequence.

To illustrate the algorithm, consider the following instance of MOSP:

P1 = {p1, p3}, P2 = {p2, p3},P3 = {p3, p5}, P4 = {p4, p5}, P5 = {p5, p6},
P6 = {p5, p7}, P7 = {p5, p10}, P8 = {p5, p12}, P9 = {p5, p11}, P10 = {p6, p9},
P11 = {p6, p11}, P12 = {p6, p8}, P13 = {p6, p10}, P14 = {p6, p7}, P15 = {p7, p8},
P16 = {p7, p12}, P17 = {p7, p10}, P18 = {p8, p9}, P19 = {p9, p12}, P20 = {p9, p11},
P21 = {p8, p11}, P22 = {p10, p11}, P23 = {p11, p12}, P24 = {p8, p12}, P25 = {p8, p10},
P26 = {p10, p13}, P27 = {p13, p14}, P28 = {p13, p15}, P29 = {p13, p16}.

16 15

1413

10

12
11

8
9

6 7

5

4

3

21

Figure 33: Graph that illustrates the branch and bound

Step 0: The graph is shown in figure 30 where pi represents node i. Removed set

D = {P1, P2, P3, P4, P26, P27, P28, P29}.
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Step 1: Pre-processing. No redundancy occurs among the patterns. The graph

G shows two components as trees and when these trees are removed, we have Gp

as shown in figure 31. We have optimal sequences P1P2P3P4 and P26P27P28P29 for

the two trees that are removed which will be inserted in the final sequence with the

same maximum number of open stacks equal to 2.

10

12
11

8
9

6 7

5

Figure 34: Graph Gp

Step 2: Heuristic of Minimal Cost Node generates ξ’ = 6, s = 21 and one optimal

sequence P19P20P23P18P21P24P10P11P12P9P5P8P22P25P13P7P14P6P15P16P17.

Step 3: Heuristic Arc Contraction generates lbc = 6.

Step 4: Since ξ’ = lbc = 6, then we have an optimal solution in step 2.

Step 5: Insert the patterns from D, we have a final sequence P19P20P23P18P21P24P10

P11P12P9P5P8P22P25P13P7P14P6P15P16P17P26, P27, P28, P29P1P2P3P4 with a maximum

number of open stacks 6.

5 Conclusion and future work

In this paper, the algorithms presented focus on the graphical model of a given

MOSP. Each algorithm generates an optimal solution except for the heuristic of

minimal cost node which generates the optimal sequence and its upper bound for



the maximum number of open stacks.

In some industrial environments such as glass, wood or steel industries, the opti-

mal solutions using the heuristic are acceptable. The heuristic is a way to motivate

a more efficient exact method for the MOSP with the utilization of a more profound

computer programs, even though this is NP-hard problem [16].

In some real industrial settings, the maximum number of open stacks might

be limited. And with this limitation, the optimal sequencing of the patterns may

not satisfy the requirements. This arises to a more intricate study of two NP-hard

problems, the cutting stock problem and the pattern sequencing problem. In [18],

the formulation for the cutting and sequencing problem is suggested and in [19], the

heuristic method for this problem is proposed.
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