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ABSTRACT

Developing an accurate forecast model for the amount of power consumed will include
such factors as time of day, day of the year, the weather, among many others. Based upon
these given factors, current models use a neural network approach to forecast in the very near
future. For the purpose of business operations, this model should be accurate for predicting
power usage at least six months into the future. Using regression with time series analysis,
the goal is to build a model that reflects systematic movements in the data and predict them

so errors would be more or less random and minimized.
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1 INTRODUCTION

Power consumption is a topic that everyone can easily discuss, especially on the day
that the power bill arrives, as people have strong opinions as to what factors affect the
consumption of power. Some, in efforts to lower their bills, try to predict what their power
usage the next month will be and act accordingly. Similarly, power providers perform this
task as well.

Progress Energy is a Fortune 250 energy company serving customers in North Car-
olina, South Carolina, Georgia, and Florida. Approximately 75% of the power generated
by Progress Energy is consumed by industrial users or by residential users. The remaining
25% 1is used in the generation of electricity. Accurate forecasting of demand will allow for
a more reliable and more cost efficient delivery of energy. However, building a model to
minimize forecast errors is a challenging task since there are numerous factors that drive
power consumption.

Given historical weather and power consumption data within the state of Georgia (Fig-
ure 1) the goal is to build a forecast model that accurately predicts the power demand for
any time in the future. The emphasized regions are those for which Progress Energy pro-
vides power, with the blue dots being locations of weather stations, usually associated with

television stations.
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2 TIME SERIES BACKGROUND

“Today, time is what it was to Isaac Newton, a smoothly flowing stream bearing the
phenomenal world along at a uniform pace.” [7] With relative ease, people can plot points in
time and measure distances between them with great accuracy. Whether it is with candles,
clocks, or calendars, mankind has concerned itself with measuring the passage of time. On
the contrary, the study of time series as a science is of recent origin. Until 1925, a time series
was regarded as being generated deterministically. Any departures from trends, cycles, or
other patterns of behavior observed in nature were regarded as errors similar to errors in
observation. In 1927, George Yule embarked upon new ground with an idea that dictated
much of the subsequent work in time series analysis. While working with sun-spot numbers,
which do not fluctuate simply by chance, Yule was struck by irregularities in the series, both
in amplitude and in the distances between successive peaks and troughs. His illustration,

which lead to the theory of stochastic processes, was:

If we have a rigid pendulum swinging under gravity through a small arc, its
motion is well known to be harmonic, that is to say, it can be represented by
a sine or cosine wave, and the amplitudes are constant, as are the periods of
the swing. But if a small boy now pelts the pendulum with peas, the motion
is disturbed. The pendulum will still swing, but with irregular amplitudes and
intervals. Instead of leading to behavior in which any difference between theory
and observation is attributable to an evanescent error, the peas provide a series

of shocks which are incorporated into the future motion of the system. [7]
Definition 1 A time series is a set of observations ordered in time.

Definition 2 When a variable is defined at all points in time, we say that the time series

1s continuous. If the set of time points is countable then the time series is discrete.

Examples of a continuous time series include the temperature at a given location, the

price of a commodity on the open market, or the position of a projectile moving through



space. Some are created by collection over an established period, such as rainfall, industrial
production, or total passenger miles recorded by an airline. Others are defined only at
discrete points in time such as annual crop yields of a harvest or monthly salaries. In some
of these cases the choice of when data is collected may be limited. For example, information is
released only at specific times as with the monthly publication of many government statistics.
Under other situations, the recording times may be freely chosen. For example, surveys of
political opinion may be carried out as often as funding allows, or members of a medical staff
may check a patient’s pulse every hour. Finally, a continuous time series can be made into a
discrete time series. For example, temperature and barometric pressure, or the alpha rhythm
of the brain on an encephalograph, may be digitized and the continuous record converted
into a time series reported at regular intervals. All applications of statistical analysis involve
using a discrete time series that assumes that the data is recorded at regular points or over
regular intervals of time.

According to Kendall and Ord, there are several major types of investigation in time

series analysis.

1. Describe its behavior in a concise way.
2. Explain the behavior of a series in terms of other variables.
3. Forecast the behavior of the series in the future.

4. Control a system, either by generating warning signals of future unknown events or
by examining what would happen if we alter either the inputs to the system or its

parameters.

Regardless of which investigation type is used during time series analysis, it is useful to

consider the typical series as a potential mixture of four components:

e a trend, or long-term movement;

e fluctuations about the trend of greater or less regularity;
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e a seasonal component;
e a residual, irregular, or random effect.

It is convenient to represent the series as a sum of these four components, and one of the
objectives may be to break the series down into its components for individual study. It may
be reasonable to suppose that trends are due to permanent forces operating uniformly in
more or less the same direction, that short-term fluctuations about these long movements
are due to a different set of causes, and that there is in both some disturbance attributable
to random events, giving rise to the residual. The effects of all the causes are additive and

one must be ready to discard the model if it fails to fit the data. [7]



3 DETRENDING THE DATA SET

3.1 Background

Definition 3 Trend in a time series is a slow, gradual change in some property of the series

over the whole interval under investigation.

Trend is sometimes loosely defined as a long term change in the mean, but can also refer to
change in other statistical properties. Applying traditional time series analysis, a time series
can be decomposed into trend, seasonal or periodic components, and irregular fluctuations,
and in our data, the various parts were studied separately. Modern analysis techniques
frequently treat the series without such routine decomposition, but separate consideration

of trend is still often required.

Definition 4 Detrending is the statistical or mathematical operation of removing trend from

the series.

Detrending is often applied to remove a long-term feature thought to obscure other
relationships of interest. Detrending is also sometimes used as a preprocessing step to prepare
time series for analysis by other methods. Meko [8] lists four approaches to detrending: first
differencing, curve-fitting, digital filtering, and fitting piecewise polynomials.

First differencing is simply taking the difference of the value of the series at times ¢ and
t — 1. First differencing is not suitable for time series whose level itself has importance, as
the differenced series essentially is just change in level from one observation to the next,
regardless of the level itself.

Curve-fitting is best if the time series changes in level gradually over time or the trend
is some simple function of time itself. The simplest and most widely used function of time
used in detrending is the least-squares-fit straight line. Simple linear regression is used to fit

the model



$t:a+bt+6t (1)

where x; is the original time series at time t, a,b are regression coefficients, and e, are the

regression residuals. The trend is then described by

g = a+ 0t (2)

where g, is the trend, a is the estimated regression constant, and b is the estimated regression
coefficient. The advantage of the straight-line method is simplicity, though a line may be
unrealistic in some cases. It is then that other functions of ¢ might be better depending on
the type of data.

Digital filtering is another procedure for dealing with trend by describing the trend as a
filtered version of the original series. The original series is converted to a smooth trend line

by weighting the individual observations

gt = Z Qr Tty (3)

r=—q

where x; is the original series, a, is a set of filter weights (summing to 1.0), and g, is the
smooth trend line. The weights are often symmetric, with s = ¢ and a; = a_;. If the weights
are symmetric and all equal, the filter is a simple moving average, which generally is not
recommended for measuring trend.

Fitting piecewise polynomials is an alternative to fitting a single curve to the entire time
series by fitting polynomials of time to different parts of the time series. Polynomials that

are used in this manner are piecewise polynomials. For example, the cubic smoothing spline



is a piecewise polynomial in time with the following properties:

The polynomial is cubic.

A separate polynomial is fit to every sequence of three points in the series.

The first and second derivatives are continuous at each point.

The “spline parameter” specifies the flexibility and depends on the relative importance
given to “smoothness” of the fitted curve, and “closeness of fit,” or how close the fitted

curve passes to the individual data points. [§]

De Boor provides more information on the spline curve. [3]

Once a trend line has been fit to the data, the question remains of how to remove the
trend. If a method has identified a trend line, two options are available. First is to subtract
the prediction from the original data, giving a new time series of residuals from the trend.
This difference is attractive because of its simplicity, and for giving a convenient breakdown
of the variance. The residual series is in the same units as the original series, and the total
sum of squares of the original data can be expressed as the trend sum-of-squares plus the
residual sum-of-squares. Second, a ratio is attractive for some kinds of data because the
ratio is dimensionless, and the ratio operation tends to remove trend in variance that might
accompany trend in mean. Ratio-detrending generally is feasible for non-negative time series
only, and runs the risk of explosion of the detrended series to very high values if the fitted

trend line approaches zero.[§]

3.2 Application

In the data set provided, the aspect of time is represented by two variables: forecast date
and forecast hour. These variables must be combined so that a regression can be performed.
Deciding that midnight of January 1, 1998 is the zero hour, time is incremented for each

hour that has passed. Once a year the value of the power consumed is recorded as zero, due



to daylight savings. To correct this, code was composed to analyze the two hours prior to
the zero reading and calculate a comparable value to replace the zero. (When the clock is
turned one hour ahead, there is no value recorded for 2am that morning.)

If one thinks about how power consumption may change overall, it is intuitive to conclude
that the amount of power consumed will increase over time. This is due to the influx of people
to the area, the establishment of new industry, and the advances in technology that depend
on power for operation. Figure 2 shows the power consumption plotted against the number
of hours since “zero hour.” The graph supports a subtle increase over time.

Using SAS, a linear regression of power against hours passed was calculated. The function

reported was:

Y, = 43.06280 + 0.00021863h + € (4)

Using Equation 4, a predicted data set was created. Once complete, the forecasted values
were subtracted from the actual time series. The resulting residuals are a detrended version

of the time series and are stationary.

Definition 5 A time series is classified as stationary when fluctuations are centered around

a constant mean.

With the long term growth removed, the new data set was used to locate cycles dependent

within the series. This new series is depicted by the graph in Figure 3.
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4 SEARCHING FOR CYCLES

4.1 Background

Definition 6 The spectrum s the distribution of variance of a time series as a function of

frequency.

The spectrum is studied because many natural events contain variability that is frequency-
dependent, and understanding this frequency dependence may yield information about the
underlying physical structure of the time series.

SAS performs a spectral analysis through the Spectra Procedure. This procedure per-
forms spectral and cross-spectral analysis of time series, aiding in the search for cyclical
patterns in the data. SAS produces estimates of the spectral densities using a discrete
Fourier transform to obtain the periodogram. The Fourier transform decomposition of the

series Y; is

m
_%
Y, = 5t Z ay, cos(wyt) + by, sin(wyt)] (5)
k=1
where t is the time, ¢t = 1,2,...,n; n is the number of observations in the time series; m

is the number of frequencies in the Fourier decomposition: m = % if n is even or m = ”T_l
if n is odd; ag is the mean term: ay = 2Z; a; are the cosine coefficients; b, are the sine
coefficients; and wy, are the Fourier frequencies: wy = 22—’“ The amplitude periodogram Jj, is
defined as:

n

However, the periodogram is a volatile and inconsistent estimator of the spectrum. Thus,
SAS provides the spectral density estimate by smoothing the periodogram. This smoothing

reduces the variance of the estimator but introduces bias. SAS uses a weight function, similar



to a moving average technique, for the smoothing effect. SAS allows you to specify any
number of weight constants. However, if you do not specify any weight system, the standard
periodogram, as previously described, is produced. The Spectra Procedure also can test
whether or not the data is white noise. The procedure prints two test statistics: Fisher’s
Kappa statistic [2] [5] and Bartlett’s Kolmogorov-Smirnov statistic[1] [5] [4]. Once the white
noise test determines that the data is not just reacting to white noise, the frequencies of the
spectrum then can be read without issue.

All the frequencies wy, lie in [0, 71]. According to Hamilton [6], suppose that the data was

generated by the following,
Y; = ay, cos(—wyt) + b sin(—wyt), (6)

where —wy, < 0 represents some particular negative frequency and a; and b, are the coeffi-
cients. Since cos(—wyt) = cos(wyt) and sin(—wyt) = —sin(wyt), the previous equation can

be equivalently written
Y; = ay cos(wyt) — by sin(wit). (7)

Thus there is no way of using observed data on Y; to decide whether the data was generated
by a cycle with frequency —w; as in Equation 6 or by a cycle with frequency 4w as in

Equation 7. It is simply convention that positive frequencies are chosen. Suppose the data

were generated from a periodic function with frequency wy > 7, say, wy = 37”:

3 3
Y, = ay cos(gt) — by, sin(%t). (8)
Properties of the sine and cosine function imply that the previous equation may be rewritten
Y, = ay cos(_?ﬁt) — by, sin(%ﬁt). (9)

13



Using the previous argument, a representation with cycles of frequency (37”) is indistinguish-

able from one with cycles of frequency (%) [6].

4.2 Application

Now that the data has been made stationary by removing the long-term growth, the
isolation of cycles embedded within the time series can proceed. Step one was to check the
white noise test to ensure that the data is not reacting solely as white noise. With that
complete, the series was divided into more than 30,000 frequencies between 0 and 7. For
each of these frequencies, SAS returned the period, the estimated spectral density, and the
amplitudes of the sine and cosine components. Figures 4 and 5 show plots of the periods
p = 1/freq against the spectral density. As is seen, there are specific periods in the series
that appear as spikes in the density. Among these are 12 hours, 24 hours, half a year, and
one year. Figure 6 shows a scatterplot of daily consumption of power over each of the 365
days of the year. The two troughs in the plot are spring and autumn while the crests are
summer and winter. Although the lengths of these seasons are not equal, one can agree that
their occurrence is approximately six months apart.

Focusing only on cycles with a spectral density of 40,000 or greater, a data step procedure
was created (see Appendix A for SAS code) to reconstruct the data set using only the
isolated frequencies seen in Table 1. With the reconstructed values, a new residual is found
by subtracting the residual from detrending and the spectral component. This new residual

is another time series that will be modeled as a function of weather.

14
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Table 1: Frequencies of Importance

Frequency Period Cosine Amplitude | Sine Amplitude | Periodogram
0 . -0.000169656 0 0.0006306961
0.0002867463 21912 1.5222202595 0.1288622346 | 51137.348985
0.0005734926 10956 -0.86039011 1.1138405072 | 43405.739723
0.0007168658 8764.8 -9.608029266 -3.432680537 | 2280984.9031
0.0011469853 5478 0.8615582144 -1.608903267 | 72985.635141
0.0014337316 4382.4 8.0657461951 3.2863785631 | 1662168.6303
0.0017204779 3652 1.8480853251 0.032476618 | 74861.780469
0.0018638511 | 3371.0769231 -0.554283825 1.2547913611 | 41232.509794
0.0021505974 2921.6 2.5751262875 0.5415848805 | 151731.60686
0.0025807169 | 2434.6666667 -0.744250166 -2.326741726 | 130762.82624
0.0028674632 2191.2 -0.743058439 -1.243866086 | 46000.709235
0.0030108363 | 2086.8571429 0.7951312846 -1.170930697 | 43896.582568
0.003584329 1752.96 1.4782380514 0.3704391866 | 50888.71207
0.0044445679 | 1413.6774194 0.8866382143 -1.179194607 | 47694.256162
0.0045879411 1369.5 -1.511224466 0.6643509353 | 59713.739946
0.0047313142 1328 -1.699685513 0.124467834 63641.71673
0.0053048069 | 1184.4324324 -1.341112678 -0.480806761 | 44476.065087
0.0078855237 796.8 1.4009691202 -0.242484107 | 44295.393247
0.261082522 | 24.065897858 4.0192379214 5.1870022084 | 943514.62297
0.2617993878 24 -4.155658272 -8.64183758 2014827.0783

0.2625162536

23.934462043

1.1051758925

6.6693276689

1001407.8784

0.5228819098 | 12.016451878 -1.82280099 -1.309402936 | 110373.80071
0.5235987756 12 -2.96705318 -3.788770122 | 507442.11927
0.5243156414 | 11.983593109 -0.924773803 -1.859841681 | 94533.137516
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5 MODELING THE RESIDUALS

5.1 Weather Variables

A plethora of data was made available for the project, including hourly weather data
from eight weather stations in and around the state of Georgia. Spanning a time frame of
January 1, 2001 to July 1, 2005, the weather data consisted of the following eleven variables:
temperature, dew point, humidity, heat index, wind chill, wind direction, wind speed, wet
bulb temperature, cloud cover, number of sunshine minutes, and probability of precipitation.

Some variables had to be eliminated for various reasons. Due to an inability to forecast
and issues with multicolinearity, wet bulb temperature was eliminated. Cloud cover and
sunshine minutes are minutes in an hour that there is cloud cover or sunshine, respectively.
Through inspection, the sum of these two variables, within each hour, did not equal sixty.
Therefore, a clear understanding on how cloud cover is measured could not be made. Due to
these reasons, along with difficulty in predicting, this variable was also eliminated from use.
In the data provided, probability of precipitation was primarily missing. At other times,
the variable was at 0 or 100; it appears that this variable actually recorded whether or not
it actually did rain on a given day. Heat index and wind chill are terms that people hear
frequently during summer and winter; however, they are just combinations and interactions
of other variables in the list. Use of these variables will be retained but an investigation of

interactions present within their formulas was performed.

5.2 Application

With the overall linear trend and the internal cycles removed, the original time series has
been reduced into a list of residuals which will now be explained using the weather variables.
Indicator variables were created for hour of day (midnight-11pm), day of the week (Sunday-

Saturday), and month of the year (January-December). All of these indicator variables are



binary in nature.

With upwards of fifteen weather variables, scatterplots of the residual value against each
weather variable were created. The plot of the residual against temperature can be seen in
Figure 7. The plots of heat index and wind chill also had similar displays. It can be seen
that residuals have at least a quadratic relationship with temperature.

Weather, especially temperature, comes in trends. At the same time, the aspects of
weather that a person reacts to is different. For example, there are those that make their
decisions based solely on the high or low temperature of the day. There are some who listen
to only the temperature of the hours immediately around the current time. There are those
that look to the average temperature of the current day and those of previous days. To
correctly adjust for this, variables were created that reflected these ideas.

Beginning with the binary variables then proceeding to weather, the model was created
by systematically isolating those variables that were deemed significant with an alpha level of
0.05. For the weather variables that seemed to follow more of a non-linear relationship, model
fits were achieved by continually adding terms of higher power until a non-significant value
was achieved. SAS’s regression procedure indicated that the quartic term of temperature
was the last power of significance. All of these variables that were significant for the model
were kept and the search continued as the adjusted r-squared value increased.

Systematically progressing through the other weather variables, all variables and inter-
actions whose p-value was below 0.05 were kept. When the heat index variable was added,
its p-value was low enough to keep in the model and the r-squared value increased. Since
the plot of heat index against the residuals was very similar to temperature, power terms of
the heat index variable were added until the p-value surpassed 0.05. The same was true for
wind chill.

The coefficients for the model are presented in Table 2. With this model, the final error

was calculated and utilized in testing the overall validity of the model.
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Table 2: Regression Coefficients for Residual Model

Variable Coeflicient Variable Coeflicient
am4 -1.59848 pml 1.26592
amb -1.35444 pm2 0.62367
am6 2.41209 pm4 -1.17938
am8 -1.61240 pmb -1.16056
am9 -1.77832 pm8 1.08644
am10 -1.39349 pm9 2.20576
noon 0.77613 pm10 1.27616
January 41.92404 July 30.46393
February 46.91118 August 31.01620
March 45.91622 September 36.51017
April 42.12628 October 45.39062
May 38.76690 November 49.01250
June 32.09803 December 42.90409
Wednesday 0.85000 Friday -0.80523
Thursday 0.34551 Temperature 2.75096
Temperature? -0.06478 Temperature® 0.00062309
Temperature® -0.00000176 Avg.Temp.Today 4.97022
Avg. Temp.Today” -0.08329 Avg. Temp.Today” 0.00055849
Avg.Temp.Yest. 0.60479 Avg.Temp.2DaysAgo 0.28699
High Temp -1.60502 High Temp” 0.01276
Low Temp -0.20230 Low Temp? 0.00153
HeatIndex -4.24547 HeatIndex” 0.05976
HeatIndex® -0.00026842 Avg.HeatIndex -0.58120
Avg.HeatIndexYest. | -0.55708 | Avg.HeatIndex2DaysAgo | -0.14067
WindChill -0.32577 Avg. WindChill -0.41562
Avg . Humidity 0.04873 Avg.Humidity Yest. 0.02391
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6 TESTING THE MODEL

To judge the validity of the model, the aspect of Mean Absolute Percent Error, MAPE,

will be utilized. This number is found by completing the following:

MAPE = —

n <
=1

1 Zn: | error of prediction i (10)

actual power load value

where n is the number of predictions made. Throughout the process of creating the model,
calculations of the MAPE were taken to monitor the improvement. Table 3 shows the
improvement of MAPE during all three stages.

To create this model, data from Mitchell Region, located in the southwestern part of the
state, was used. The weather data is from KABY, which has a weather station on the border
of the Mitchell and Sumter Regions. All but two years of data was used in the creation of
the model. These two years were reserved to test the model. With this model forecasting
further into the future than a single month, the predictions of each hour were summed and
comparisons were made by day and week. Table 4 shows the quartiles and the mean of the
MAPE. Figures 8 and 9 show the scatterplot of the final error compared by day and week.

The model was then applied to the data from Sumter. Since these two areas are close
in proximity and share similar weather patterns, the hope was that the model will perform
equally. When the model was subjected to the data from the Sumter Region, the MAPE
increased due to the model being dependent on the average power consumed and the linear
growth of the region. Any differences between Sumter and Mitchell in these two concepts

will dramatically affect the model.



Table 3: MAPE In-sampling Test Values

Stage of Model MAPE
Removal of Trend 0.3187867
Spectral Analysis 0.1513085

Regression on Residuals | 0.0998232
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Table 4: MAPE Forecast Test Values

Minimum | 1st Quartile | Median | 3rd Quartile | Maximum | Mean
By Day 0.0006 0.0466 0.0928 0.1535 0.4352 0.1081
By Week | 0.0012 0.0485 0.0925 0.1372 0.3263 0.0992
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Figure 8: Scatterplot of Final Error Against Day
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7 CONCLUSION

Currently, Progress Energy uses an “hour ahead” model and a “day ahead” model to
forecast consumption of power. Both of these models forecast all hours from the current
time until seven days into the future.

The “Day-Ahead” model is a regression that utilizes the following variables:
e Calendar days (Sunday through Saturday)
e Calendar month (January through December)

e Indicator variable for Holidays (New Year’s Day, Fourth of July, Labor Day, Thanks-
giving, Friday after Thanksgiving, Christmas Eve, Christmas Day, Days Christmas

Lights are in use)
e Overall growth due to time

e Weather variables (Temperature, Heat Index, Wind Chill, Cloud Cover, Max-Min daily
temperature, “Parameter Bucket”, Hot Degree and Cold Degree Days, Yesterday’s av-
erage temperature, Day before yesterday’s average temperature, Average temperature

so far for today)

The “Hour-Ahead” model consists of 26 Neural Networks where one node represents each
hour to predict and the final two nodes represent daily energy consumed and the daily peak

of consumption. The daily energy model consists of:
e Calendar days (Sunday through Saturday)
e Calendar months (Jan-Mar, May-Dec)
e Sunrise and sunset

e Time trend



Constant (Intercept)

Average daily temperature

Average daily temperature squared

Hot and cold day buildup
e Average wind chill and heat index

The daily peak model was composed of four nodes. Two are named “hot” nodes and the

other two are “cold” nodes. The “hot” nodes utilize:

e Daily max temperature

e Cold Degree Days

e Max heat index

e Heat index buckets

e Hot buildup

e Day type (Weekday= Tues, Wed, Thurs; Weekend= Sat, Sun)
The “cold” nodes contain:

e Daily low temperature

e Hot Degree Days

e Min wind chill

e Wind chill buckets

e Cold buildup

e Day type (weekday and weekend)
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Each Neural Network that is used to forecast a particular hour is composed of three nodes.
The first node is exactly like the daily energy model. Nodes 2 and 3 utilize the daily energy
predicted, the daily peak predicted, and includes three hours of lagged actual temperature
and actual power load. In its raw format, these models perform at an MAPE of around 6%.
After the predictions are created, they are passed to human eyes and are corrected based
on previous predictions or similar style days. After this process, the MAPE reduces to just
under 4%. [10]

As one can see, the new model is not as complex as the current design but gives an
accurate prediction for up to two years with a MAPE of approximately 10%. The model
closely mimics the “Day-Ahead” model currently used with a few exceptions. When the
spectral analysis was performed, the holidays were taken into account. There are not too
many holidays that do not occur on the same day each year. Also, many families light
Christmas lights around the same time period every year, which again was taken into account.

Unfortunately, the model seems to work best for Mitchell, the region whose data created
the model. However, using this procedure, a model for each region can be created to predict
power consumption. A suggestion to improve upon this fact would be to include aspects
of the counties into the model: the percentage of industry in the county, its population, its
location, etc. Placing items such as these into the model would enhance the versatility of

the model and allow one model to work for all the counties.
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8 APPENDIX A - SAS CODE

Code used to isolate and prep data from Mitchell County and from KABY weather

station.

data trial.mitchellmod trial.mitchelltest;
set outdata.Mitchell;
retain time O;
powerbl= lag(load_value);
powerb2= lag(powerbl);

if load_value eq O then do;
if powerbl gt powerb2 then do;
load_value = powerbl + (powerbl-powerb2)*0.5;
end;
if powerbl 1t powerb2 then do;
load_value = powerbl - (powerb2-powerbl)*0.5;
end;
end;
if year(forecast_date) le 2002 then output trial.mitchellmod;
if year(forecast_date) gt 2002 then output trial.mitchelltest;
time=time+1;
keep load_value forecast_date forecast_hour time;

run; quit;
Code used to detrend the data and create our first testing variable for MAPE.

proc reg data=trial.mitchellmod;
model load_value= time;

run; quit;

data trial.detrendmit;



set trial.mitchellmod;
predict=43.06280+.00021863*time;
flux=load_value-predict;
testl=abs(flux)/load_value;

run; quit;
Code used to perform Spectral Analysis on Time Series.

proc spectra data=trial.detrendmit out=trial.specdemit coeff;
var flux;

run; quit;

data trial.newspec;
set trial.specdemit;
c=1;
if ( _n_ =1 ) then do; ¢=0.5; output; end;
if (p_01 gt 40000) then output;

run; quit;

proc gplot data=trial.specdemit;
*where period 1t 15000;
plot p_0l1 * period;
symbol i=join;

run; quit;
Code used to reconstruct data set using only the specified frequencies.

data trial.reconstruct;
time=0;
fluxB=0;

run; quit;
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Jmacro reconstruct;
hdo gq=1 %to 43824;
data trial.t;
set trial.newspec end=finish;
retain fluxB O;
time=&q;
*1if _n_ eq 1 or finish then c=0.5;
*else c=1.0;
fluxB= fluxB + c*(cos_01*COS(freq*time) + sin_O01*SIN(freqg*time));
keep time fluxB;
if finish then output;
run;

quit;

data trial.reconstruct;
set trial.reconstruct trial.t;
run;
quit;
%end ;

%mend;

Y%reconstruct;

Code used to create binary time variables and create adjusted weather variables for the

regression portion.

data trial.avgtmpmod trial.avgtmptest;
set outdata.avgtmp;
if year(forecast_date) le 2002 then output trial.avgtmpmod;
if year(forecast_date) gt 2002 then output trial.avgtmptest;

run; quit;
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data trial.hilowmod trial.hilowtest;
set outdata.highlow;
if year(forecast_date) le 2002 then output trial.hilowmod;
if year(forecast_date) gt 2002 then output trial.hilowtest;

run; quit;

data trial.weathermod;
merge trial.avgtmpmod trial.hilowmod;
by forecast_date;

run; quit;

data trial.powermod;
merge trial.detrendmit trial.reconstruct;
where time gt O AND time ne 43824;
by time;

run; quit;

data trial.powermod;
set trial.powermod;
diff= flux- fluxB;
test2= abs(diff)/load_value;

run; quit;

data trial.model;
merge trial.powermod trial.weathermod;
by time;

run; quit;

data trial.model;
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set trial.model;

dow=weekday (forecast_date);

month=month(forecast_date);

if forecast_hour eq O then do;
mid=1; aml=0; am2=0; am3=0; am4=0; amb=0; am6=0;
am7=0; am8=0; am9=0; am10=0; am11=0; noon=0;
pml1=0; pm2=0; pm3=0; pm4=0; pmb=0; pm6=0; pm7=0;
pm8=0; pm9=0; pm10=0; pm11=0;

end;

if forecast_hour eq 1 then do;
mid=0; aml=1; am2=0; am3=0; am4=0; amb=0; am6=0;
am7=0; am8=0; am9=0; am10=0; aml11=0; noon=0;
pm1=0; pm2=0; pm3=0; pm4=0; pm5=0; pm6=0; pm7=0;
pm8=0; pm9=0; pml10=0; pm11=0;

end;

if forecast_hour eq 2 then do;
mid=0; aml=0; am2=1; am3=0; am4=0; amb=0; am6=0;
am7=0; am8=0; am9=0; am10=0; aml11=0; noon=0;
pml1=0; pm2=0; pm3=0; pm4=0; pmb5=0; pm6=0; pm7=0;
pm8=0; pm9=0; pm10=0; pml11=0;

end;

if forecast_hour eq 3 then do;
mid=0; aml=0; am2=0; am3=1; am4=0; amb=0; am6=0;
am7=0; am8=0; am9=0; am10=0; aml11=0; noon=0;
pml1=0; pm2=0; pm3=0; pm4=0; pmb5=0; pm6=0; pm7=0;
pm8=0; pm9=0; pm10=0; pmi11=0;

end;

if forecast_hour eq 4 then do;
mid=0; aml=0; am2=0; am3=0; am4=1; amb=0; am6=0;

am7=0; am8=0; am9=0; am10=0; aml11=0; noon=0;
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pml1=0; pm2=0; pm3=0; pm4=0; pmb5=0; pm6=0; pm7=0;
pm8=0; pm9=0; pml10=0; pm11=0;

end;

if forecast_hour eq 5 then do;
mid=0; aml=0; am2=0; am3=0; am4=0; amb=1; am6=0;
am7=0; am8=0; am9=0; am10=0; am11=0; noon=0;
pml1=0; pm2=0; pm3=0; pm4=0; pmb=0; pm6=0; pm7=0;
pm8=0; pm9=0; pm10=0; pm11=0;

end;

if forecast_hour eq 6 then do;
mid=0; aml=0; am2=0; am3=0; am4=0; amb=0; am6=1;
am7=0; am8=0; am9=0; am10=0; aml11=0; noon=0;
pm1=0; pm2=0; pm3=0; pm4=0; pm5=0; pm6=0; pm7=0;
pm8=0; pm9=0; pml10=0; pm11=0;

end;

if forecast_hour eq 7 then do;
mid=0; aml=0; am2=0; am3=0; am4=0; amb=0; am6=0;
am7=1; am8=0; am9=0; am10=0; am11=0; noon=0;
pml1=0; pm2=0; pm3=0; pm4=0; pmb5=0; pm6=0; pm7=0;
pm8=0; pm9=0; pm10=0; pml11=0;

end;

if forecast_hour eq 8 then do;
mid=0; aml=0; am2=0; am3=0; am4=0; amb=0; am6=0;
am7=0; am8=1; am9=0; am10=0; aml11=0; noon=0;
pml1=0; pm2=0; pm3=0; pm4=0; pmb5=0; pm6=0; pm7=0;
pm8=0; pm9=0; pm10=0; pmi11=0;

end;

if forecast_hour eq 9 then do;
mid=0; aml=0; am2=0; am3=0; am4=0; amb=0; am6=0;

am7=0; am8=0; am9=1; am10=0; am11=0; noon=0;
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pml1=0; pm2=0; pm3=0; pm4=0; pmb5=0; pm6=0; pm7=0;
pm8=0; pm9=0; pml10=0; pm11=0;

end;

if forecast_hour eq 10 then do;
mid=0; aml=0; am2=0; am3=0; am4=0; amb=0; am6=0;
am7=0; am8=0; am9=0; am10=1; am11=0; noon=0;
pml1=0; pm2=0; pm3=0; pm4=0; pmb=0; pm6=0; pm7=0;
pm8=0; pm9=0; pm10=0; pm11=0;

end;

if forecast_hour eq 11 then do;
mid=0; aml=0; am2=0; am3=0; am4=0; amb=0; am6=0;
am7=0; am8=0; am9=0; am10=0; amll=1; noon=0;
pm1=0; pm2=0; pm3=0; pm4=0; pm5=0; pm6=0; pm7=0;
pm8=0; pm9=0; pml10=0; pm11=0;

end;

if forecast_hour eq 12 then do;
mid=0; aml=0; am2=0; am3=0; am4=0; amb=0; am6=0;
am7=0; am8=0; am9=0; am10=0; aml11=0; noon=1;
pml1=0; pm2=0; pm3=0; pm4=0; pmb5=0; pm6=0; pm7=0;
pm8=0; pm9=0; pm10=0; pml11=0;

end;

if forecast_hour eq 13 then do;
mid=0; aml=0; am2=0; am3=0; am4=0; amb=0; am6=0;
am7=0; am8=0; am9=0; am10=0; aml11=0; noon=0;
pml=1; pm2=0; pm3=0; pm4=0; pmb5=0; pm6=0; pm7=0;
pm8=0; pm9=0; pm10=0; pmi11=0;

end;

if forecast_hour eq 14 then do;
mid=0; aml=0; am2=0; am3=0; am4=0; amb=0; am6=0;

am7=0; am8=0; am9=0; am10=0; aml11=0; noon=0;

37



pml1=0; pm2=1; pm3=0; pm4=0; pmb5=0; pm6=0; pm7=0;
pm8=0; pm9=0; pml10=0; pm11=0;

end;

if forecast_hour eq 15 then do;
mid=0; aml=0; am2=0; am3=0; am4=0; amb=0; am6=0;
am7=0; am8=0; am9=0; am10=0; am11=0; noon=0;
pml1=0; pm2=0; pm3=1; pm4=0; pmb=0; pm6=0; pm7=0;
pm8=0; pm9=0; pm10=0; pm11=0;

end;

if forecast_hour eq 16 then do;
mid=0; aml=0; am2=0; am3=0; am4=0; amb=0; am6=0;
am7=0; am8=0; am9=0; am10=0; aml11=0; noon=0;
pm1=0; pm2=0; pm3=0; pm4=1; pm5=0; pm6=0; pm7=0;
pm8=0; pm9=0; pml10=0; pm11=0;

end;

if forecast_hour eq 17 then do;
mid=0; aml=0; am2=0; am3=0; am4=0; amb=0; am6=0;
am7=0; am8=0; am9=0; am10=0; aml11=0; noon=0;
pml1=0; pm2=0; pm3=0; pm4=0; pmb=1; pm6=0; pm7=0;
pm8=0; pm9=0; pm10=0; pml11=0;

end;

if forecast_hour eq 18 then do;
mid=0; aml=0; am2=0; am3=0; am4=0; amb=0; am6=0;
am7=0; am8=0; am9=0; am10=0; aml11=0; noon=0;
pml1=0; pm2=0; pm3=0; pm4=0; pmb5=0; pm6=1; pm7=0;
pm8=0; pm9=0; pm10=0; pmi11=0;

end;

if forecast_hour eq 19 then do;
mid=0; aml=0; am2=0; am3=0; am4=0; amb=0; am6=0;

am7=0; am8=0; am9=0; am10=0; aml11=0; noon=0;
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pml1=0; pm2=0; pm3=0; pm4=0; pmb5=0; pm6=0; pm7=1;
pm8=0; pm9=0; pml10=0; pm11=0;

end;

if forecast_hour eq 20 then do;
mid=0; aml=0; am2=0; am3=0; am4=0; amb=0; am6=0;
am7=0; am8=0; am9=0; am10=0; am11=0; noon=0;
pml1=0; pm2=0; pm3=0; pm4=0; pmb=0; pm6=0; pm7=0;
pm8=1; pm9=0; pml10=0; pm11=0;

end;

if forecast_hour eq 21 then do;
mid=0; aml=0; am2=0; am3=0; am4=0; amb=0; am6=0;
am7=0; am8=0; am9=0; am10=0; aml11=0; noon=0;
pm1=0; pm2=0; pm3=0; pm4=0; pm5=0; pm6=0; pm7=0;
pm8=0; pmO9=1; pml10=0; pm11=0;

end;

if forecast_hour eq 22 then do;
mid=0; aml=0; am2=0; am3=0; am4=0; amb=0; am6=0;
am7=0; am8=0; am9=0; am10=0; aml11=0; noon=0;
pml1=0; pm2=0; pm3=0; pm4=0; pmb5=0; pm6=0; pm7=0;
pm8=0; pm9=0; pml10=1; pml11=0;

end;

if forecast_hour eq 23 then do;
mid=0; aml=0; am2=0; am3=0; am4=0; amb=0; am6=0;
am7=0; am8=0; am9=0; am10=0; aml11=0; noon=0;
pml1=0; pm2=0; pm3=0; pm4=0; pmb5=0; pm6=0; pm7=0;
pm8=0; pm9=0; pm10=0; pmil=1;

end;

if dow eq 1 then do;

sunday=1; monday=0; tuesday=0; wednesday=0;

thursday=0; friday=0; saturday=0;
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end;

if dow

end;

if dow

end;

if dow

end;

if dow

end;

if dow

end;

if dow

weekday=0; weekend=1;

eq 2 then do;
sunday=0; monday=1; tuesday=0; wednesday=0;
thursday=0; friday=0; saturday=0;

weekday=1; weekend=0;

eq 3 then do;
sunday=0; monday=0; tuesday=1; wednesday=0;
thursday=0; friday=0; saturday=0;

weekday=1; weekend=0;

eq 4 then do;
sunday=0; monday=0; tuesday=0; wednesday=1;
thursday=0; friday=0; saturday=0;

weekday=1; weekend=0;

eq 5 then do;
sunday=0; monday=0; tuesday=0; wednesday=0;
thursday=1; friday=0; saturday=0;

weekday=1; weekend=0;

eq 6 then do;
sunday=0; monday=0; tuesday=0; wednesday=0;
thursday=0; friday=1; saturday=0;

weekday=1; weekend=0;

eq 7 then do;
sunday=0; monday=0; tuesday=0; wednesday=0;

thursday=0; friday=0; saturday=1;
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weekday=0; weekend=1;

end;

if month eq 1 then do;
jan=1; feb=0;
aug=0; sep=0;

end;

if month eq 2 then do;
jan=0; feb=1;
aug=0; sep=0;

end;

if month eq 3 then do;
jan=0; feb=0;
aug=0; sep=0;

end;

if month eq 4 then do;
jan=0; feb=0;
aug=0; sep=0;

end;

if month eq 5 then do;
jan=0; feb=0;
aug=0; sep=0;

end;

if month eq 6 then do;
jan=0; feb=0;
aug=0; sep=0;

end;

if month eq 7 then do;
jan=0; feb=0;

aug=0; sep=0;

mar=0;

oct=0;

mar=0;

oct=0;

mar=1;

oct=0;

mar=0;

oct=0;

mar=0;

oct=0;

mar=0;

oct=0;

mar=0;

oct=0;

apr=0;

nov=0;

apr=0;

nov=0;

apr=0;

nov=0;

apr=1;

nov=0;

apr=0;

nov=0;

apr=0;

nov=0;

apr=0;

nov=0;
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may=0; jun=0;
dec=0;
may=0; jun=0;
dec=0;
may=0; jun=0;
dec=0;
may=0; jun=0;
dec=0;
may=1; jun=0;
dec=0;
may=0; jun=1;
dec=0;
may=0; jun=0;
dec=0;

jul=0;

jul=0;

jul=0;

jul=0;

jul=0;

jul=0;

jul=1;



end;

if month eq 8 then do;
jan=0; feb=0; mar=0; apr=0; may=0; jun=0; jul=0;
aug=1; sep=0; oct=0; nov=0; dec=0;

end;

if month eq 9 then do;
jan=0; feb=0; mar=0; apr=0; may=0; jun=0; jul=0;
aug=0; sep=1; oct=0; nov=0; dec=0;

end;

if month eq 10 then do;
jan=0; feb=0; mar=0; apr=0; may=0; jun=0; jul=0;
aug=0; sep=0; oct=1; nov=0; dec=0;

end;

if month eq 11 then do;
jan=0; feb=0; mar=0; apr=0; may=0; jun=0; jul=0;
aug=0; sep=0; oct=0; nov=1; dec=0;

end;

if month eq 12 then do;
jan=0; feb=0; mar=0; apr=0; may=0; jun=0; jul=0;
aug=0; sep=0; oct=0; nov=0; dec=1;

end;

tmp2= tmp*tmp; tmp3= tmp*tmp2; tmp4=tmp*tmp3;
tmpavg2=tmpavg*tmpavg; tmpavg3=tmpavg*tmpavg?2;
tmpavgéd=tmpavg*tmpavg3; avgtpbl=lag24(tmpavg) ;
avgtpb2=1lag24 (avgtpbl) ; avgtpb3=lag24(avgtpb2);

heat2= heat_index*heat_index; heat3= heat_index*heat?2;
tmpbackl= lag(tmp); tmpback2= lag2(tmp);

tmpback3= lag3(tmp); highbl= lag24(high);

highb2= lag24(highbl); highb3= lag24(highb2);
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lowbl= lag24(low); lowb2= lag24(lowbl); lowb3= lag24(lowb2);
high2 = high*high; high3= high*high2; high4 = high*high3;
low2= low*low; low3= lowkxlow2; lowd= lowkxlow3;

hiavgbl= lag24(hiavg); hiavgb2= lag24(hiavgbl);

hiavgb3= lag24(hiavgb2); humavgbl= lag24(humavg) ;

humavgb2= lag24(humavgbl); humavgb3= lag24(humavgb2);
windavgbl= lag24(windavg); windavgb2= lag24(windavgbl);
windavgb3= lag24(windavgb2); wind2= wind_chill*wind_chill;
wind3= wind_chill*wind2; wind4= wind_chill*wind3;

run; quit;

43



REFERENCES

Bartlett, M.S. 1966, An Introduction to Stochastic Processes, Second Edition, Cam-

bridge: Cambridge University Press.

Davis, H.T. 1941, The Analysis of Economic Time Series, Bloomington, IN: Principia

Press.

de Boor, C. 1978, A Practical Guide to Splines, New York: Springer-Verlag.

Durbin, J. 1967, “Tests of Serial Independence Based on the Cumulated Periodogram,”

Bulletin of International Statistics Institute, 42, 1039-1049.

Fuller, W.A. 1976, Introduction to Statistical Time Series, New York: John Wiley and

Sons, Inc.

Hamilton, J.D. 1994, Time Series Analysis, New Jersey: Princeton University Press.

Kendall, K. and Ord, J.K. 1990, Time Series, Third Edition, London: Hodder and

Stoughton Limited.

Meko, D.M. Applied Time Series Analysis. University of Arizona. 11 October 2005.

(http://www.ltrr.arizona.edu/ dmeko/geos585a.html).

SAS Institute Inc. 1993, SAS/ETS® User’s Guide, Version 6, Second Edition, Cary,
NC: SAS Institute Inc.

Settlage, M. “UNCW Thesis Assistance.” E-mail to the author. 12 January 2006.



