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ABSTRACT 

 

 Eleven cDNAs from a family of genes were cloned from the calcified exoskeleton of the 

decapod crustacean Callinectes sapidus.  Multiple, variant copies of a conserved 18-residue 

motif (xLxGPSGφφxxDGxxxQφ), unique to calcified crustacean exoskeleton, accounts for 

~70% of the total amino acid residues.  The proteins appear to be post-translationally cleaved by 

a trypsin-like serine protease at conserved recognition sites (RxKR).  Two to six peptides, each 

containing either two or four copies of the 18-residue motif, are expected, depending on which 

pro-protein is cleaved.   

Expression of the CsproCP gene family begins at the onset of calcification in the 

hypodermis of post-ecdysial, calcified cuticle, as shown by Northern analysis.  The genes are 

never expressed in the hypodermis of the noncalcified arthrodial membrane.  Western analysis, 

using an antibody against the 18-residue motif, shows that accumulation of peptides with this 

motif begins in the calcified cuticle several hours post-ecdysis and continues to anecdysis.  The 

size of the detected peptides agrees with the presumed post-translational cleavage.  The strong 

antibody binding to calcified cuticle proteins and the lack of binding to arthrodial membrane 

proteins from anecdysial crabs is consistent with immunohistochemical staining performed by 

Hequembourg (2002).  Interestingly, the antibody also weakly binds to proteins from the tendon, 

another calcified structure in the crab.  These results confirm that the proteins encoded by the 

CsproCP gene family are associated with calcification in Callinectes sapidus.   
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INTRODUCTION 

 

 Numerous organisms utilize minerals in support, protection, mastication, and gravity 

perception (Lowenstam and Weiner, 1989).  The mineral calcium carbonate (CaCO3) exists in 

the amorphous form or in the crystal forms calcite, aragonite, and vaterite and is found in the 

skeletal structures of many invertebrates.  In these structures, matrix macromolecules provide the 

proper environment for calcification by controlling the nucleation, orientation, and cessation of 

crystal growth.  The soluble matrix is frequently composed of anionic proteins and 

glycoproteins, whereas a chitin-protein complex makes up the majority of the insoluble matrix 

(Mann, et al., 1989). 

The crustacean exoskeleton is an excellent system to study the regulation of calcification 

(reviewed in Roer and Dillaman, 1984, 1993).  Crustaceans grow by periodically shedding 

(molting) their old exoskeleton and replacing it with a new, slightly larger one.  The molting 

process begins with enzymatic separation of the cuticle-secreting hypodermis from the 

exoskeleton and partial resorption of Ca2+ and CO3
2-.  Ecdysis marks the time when the animal 

emerges from its old exoskeleton.  The outermost layers of the new exoskeleton, the epicuticle 

and exocuticle, are deposited before ecdysis but do not calcify until post-ecdysis.  Secretion of 

the endocuticle, proximal to the exocuticle, begins shortly after the initial formation of the 

mineral in the pre-ecdysial layers.  The endocuticle is immediately calcified as it is deposited and 

becomes the thickest and most heavily calcified layer.  The molting process ends with the 

deposition of the innermost membranous layer.  Anecdysis, when no more cuticle is produced, is 

the stage at which the animal spends the majority of its life. 



In addition to temporal control, cuticle calcification is also spatially controlled since both 

calcified and noncalcified regions exist in the crustacean exoskeleton.  The calcified cuticle 

covers most of the animal; however, to allow for movement of the appendages, the joints are 

covered by flexible, noncalcified cuticle, called the arthrodial membrane.  The timing of 

arthrodial membrane deposition is similar to calcified cuticle (Williams et al., 2003), but is 

divided into two layers, the outer, lipid-rich epicuticle and the inner, chitinous procuticle 

(Neville, 1975).   

Roer et al. (1988) determined that the critically important timing of calcification is 

controlled by the cuticle and not the environment.  Studies on the blue crab, Callinectes sapidus, 

exoskeleton have shown that initial mineral deposition coincides with significant changes in the 

biochemistry of the cuticle 1 to 3 h post-ecdysis.  Specifically, the loss of two glycoproteins 

(Shafer et al., 1995) coincides with increased glycosidase activity (Roer et al., 2001).  This is 

consistent with a model proposed by Coblentz et al. (1998) where a large shielding protein is 

enzymatically degraded or deglycosylated to expose crystal nucleation sites. 

Limited information exists on the primary structure of matrix-associated proteins 

associated with calcification of the crustacean exoskeleton.  Calcification-associated peptide 

(CAP)-1 from Procambarus clarkii has anti-calcification activity and chitin-binding ability 

(Inoue et al., 2001), and a recombinant protein based on the cDNA DD4 (crustocalcin) from 

Marsupenaeus japonicus binds Ca2+ (Endo et al., 2000).  These two similar proteins are 

expressed only in the post-ecdysial cuticle and have been suggested to play roles in calcification.  

Additionally, several matrix proteins from the calcified cuticle and arthrodial membrane of 

Homarus americanus (Kragh et al., 1997; Andersen, 1998; Nousiainen et al., 1998) and Cancer 

pagurus (Andersen, 1999) have been purified and directly sequenced.  A conserved 18-residue 
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motif (xLxGPSGφφxxDGxxxQφ; x=any residue; φ=hydrophobic residue) is present in many of 

the proteins from the calcified cuticle.  Kumari et al. (1995) obtained similar sequences in the N-

terminal fragments of some Gecarcinus lateralis cuticle proteins.  This motif is not present in 

any of the arthrodial membrane proteins (Andersen, 1998; 1999) or the large number of insect 

cuticle proteins (Andersen et al., 1995).  Andersen (1999) suggested that proteins with this motif 

may act as nucleators of crystal formation or regulators of crystal growth and size after 

nucleation.   

Hequembourg (2002) used a chicken antibody made against a peptide with the sequence 

VLVGPSGIVTSDGQNVQF in immunohistochemical staining of the anecdysial cuticle of 

Callinectes sapidus.  As expected, this antibody recognized calcified cuticle proteins but not 

arthrodial membrane proteins (Fig. 1; Hequembourg, 2002).  This study reports the cloning and 

expression analysis of several cDNAs belonging to a family of genes from C. sapidus encoding 

post-translationally cleaved proteins with multiple, variant copies of the 18-residue motif 

(xLxGPSGφφxxDGxxxQφ).   
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Figure 1. Immunohistochemical staining of claw cuticle, including both the calcified 
cuticle and the arthrodial membrane, with an antibody made against the 
18-residue motif (xLxGPSGφφxxDGxxxQφ) from anecdysial C. sapidus 
(Hequembourg, 2002).  The yellow box in the picture of a blue crab claw 
represents a region where cuticle pieces were excised for staining. 
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MATERIALS AND METHODS 

 

Animals and tissue isolation 

 Adult anecdysial, stage C4 (Drach, 1939) blue crabs, Callinectes sapidus, were obtained 

from a local seafood market, and pre-ecdysial, stage D2, and 0, 3, 6, 12, 24, and 48 h post-

ecdysial crabs were obtained from a “shedding” operation in Kill Devil Hills, NC.  Cuticle was 

excised from the mid-dorsal area covering the cardiac chamber and the dorso-branchial area 

covering the gill chamber.  Pieces of both the arthrodial membrane and the adjacent calcified 

cuticle were removed from the carpus joint of the cheliped.  Cuticle pieces used for protein 

extraction were rinsed with distilled water and the underlying hypodermis was scraped free.  The 

hypodermis used for RNA extraction was removed from the mid-dorsal and arthrodial membrane 

areas where no muscle attachment sites and no other tissue types were present.  The white 

levator muscle, which originates at the median plate and inserts at the fifth periopod, and its 

heavy tendon were excised as needed (Cochran, 1935).  All tissues and cuticle pieces were stored 

either in 4°C or frozen in liquid nitrogen and stored at -80°C. 

 

DNA and RNA isolation 

 Genomic DNA was isolated from muscle tissue of one crab according to Sambrook and 

Russell (2001) except the lysis buffer was modified to contain 10 mM Tris-HCl (pH 8), 0.1 M 

EDTA (pH 8), 0.5% (w/v) SDS, and 20 µg ml-1 RNase A and the proteinase K was added 

directly to the homogenate (Barreto, 2003).  Resulting DNA was stored in 1X TE at -20°C. 

 

 Total RNA was isolated from multiple crabs from either fresh or frozen hypodermis 

using an RNeasy® Protect Mini kit (Qiagen) with the following modifications to the 
6



manufacturer’s instructions (Buda, 2004).  Frozen tissue was stored overnight at -20°C in 

RNAlater®-ICE (Ambion).  One piece of mid-dorsal hypodermis was homogenized and 

centrifuged in 1 ml RLT buffer containing 10 µl β-mercaptoethanol, and the supernatant was 

bound to the column after addition of 50% ethanol.  The arthrodial membrane hypodermis from 

two claw joints was subjected to the same protocol, except 1 ml Trizol (Invitrogen) and 70% 

ethanol were used instead.  RNA was stored in nuclease-free H2O at 4°C temporarily or at -80°C 

for long-term storage.    

  

3’ and 5’ rapid amplification of cDNA ends (RACE) 

All RACE experiments were performed on early post-ecdysial RNA from mid-dorsal 

hypodermis using the First-Choice™ RLM-RACE kit (RNA ligase mediated-rapid amplification 

of cDNA ends; Ambion) according to manufacturer’s instructions; however, BD Advantage™ 2 

Polymerase Mix (BD Biosciences) was used in PCR amplification.  Gene-specific, 3’ RACE 

sense primers (see Table 1 for primer sequences) were designed based on the amino acid 

sequences corresponding to the positions 2-8, 4-10, and 12-18 of the 18-residue motif following 

kit specifications and incorporating Callinectes sapidus codon usage preferences to minimize 

primer degeneracy.  Gene-specific, 5’ RACE antisense primers were designed from previously 

obtained 3’ RACE sequences following kit specifications.  cDNA for both 3’ and 5’ RACE was 

amplified by two rounds of PCR.  In 3’ RACE, the first round of PCR was primed with the 3’ 

RACE primers (3RC1-4) and the adapter-specific primer (3RCOUT).  The resulting products  
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Table 1 Primers used in RACE, RT-PCR, and Northern probe amplification
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were then reamplified using the same 3’ RACE primers but used a nested adapter-specific primer 

(3RCIN) instead.  The first round of PCR in 5’ RACE was primed with the primers (5RC1-

3OUT) and the adapter-specific primer (5RCOUT).  The second round was primed with the 

nested primers (5RC1-3IN) and the adapter-specific nested primer (5RCIN).  The general PCR 

program for RACE was: 3 min at 94°C; 35 cycles of 30 s at 94°C, 30 s at 50°C  (5’ RACE) or 

60°C (3’ RACE), 30 s at 72°C; and 7 min at 72°C.  The sizes of all RACE products were 

determined on 1% agarose gels according to Sambrook and Russell (2001). 

 

Reverse transcriptase-polymerase chain reaction (RT-PCR) and DNA amplification 

RT-PCR verified that the 3’ and 5’ RACE sequence overlap was not a chimeric product.  

RT-PCR utilized the same PCR program as RACE.  Intronic regions were determined by 

amplification of genomic DNA using the same primers used in RT-PCR but with the following 

PCR program: 3 min at 92°C; 10 min at 50-60°C; 30 cycles of 1 min at 92°C, 1 min at 50-60°C, 

2 min at 72°C; and 5 min at 72°C. 

 

Molecular cloning and DNA sequencing of PCR products 

 PCR products, whether from RACE, RT-PCR, or genomic PCR, were cloned into 

pGEM®-T Easy Vector (Promega) according to manufacturer’s instructions.  Colony PCR used 

SP6 and T7 vector primers and the program used in genomic DNA amplification.  Cloned PCR 

inserts were sequenced using ABI PRISM® BigDye® Terminator v3.1 Cycle Sequencing kit 

(Applied Biosystems) according to manufacturer’s instructions, and the sequences were read on 

an ABI 3100 DNA sequencer (Applied Biosystems).  Cultured clones were stored at -20°C in 5 

ml TB containing 10% glycerol. 
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Northern blotting 

 Plasmids were isolated from probe-containing, cultured clones using the Perfectprep® 

Plasmid Mini kit (Eppendorf) according to manufacturer’s instructions.  Inserts were EcoRI 

digested for 4 h at 37 °C, separated on a gel, and purified using QIAquick gel extraction kit 

(Qiagen) according to manufacturer’s instructions.  Double-stranded DNA probes (25 ng) were 

labeled with [α-32P]-dCTP using a Random Prime Labeling kit (Roche) according to the 

manufacturer’s instructions.  Radiolabeled probes were purified using a QIAquick Free 

Nucleotide Removal kit (Qiagen) according to manufacturer’s instructions and stored in 100 µl 

nuclease-free H2O at -20°C. 

 Two µg RNA Millennium™ Markers (Ambion) and 5 µg (≤10 µl) total RNA (both in 20 

µl RNA loading mix (GenHunter)) were denatured at 65°C and separated on a 1% agarose gel 

containing formaldehyde according to Sambrook and Russell (2001).  RNA was transferred to a 

positively charged nylon membrane (Immobilon™-Ny+; Millipore) and UV cross-linked at 

20,000 µJ cm-2 according to the manufacturer’s instructions.   

The blots were hybridized with 30 µl (of 100 µl) denatured, radiolabeled probe diluted in 

500 µl hybridization buffer.  All hybridizations and washes were performed in a 30 cm glass tube 

in a rotisserie oven at 68°C.  After hybridization, blots were wrapped in cellophane and exposed 

to X-OMAT x-ray film (Kodak).  Three different radiolabeled probes were hybridized to the 

same RNA blots with stripping in between each hybridization according to Millipore. 

 

Protein extraction 

 Proteins were extracted according to Andersen (1999).  Briefly, calcified cuticle, 

arthrodial membrane, tendon, and muscle were decalcified in 10% acetic acid at 4°C until no 

 11



more bubbles developed, and the residues were briefly rinsed in distilled H2O.  The proteins 

were extracted in 6 M urea in 0.1% trifluoroacetic acid (TFA) overnight at 4°C with continuous 

agitation and quantified at OD280. 

 

SDS-polyacrylamide gel electrophoresis (PAGE) and Western blotting 

 Ten-µg protein extracts were brought to a final volume of 20 µl containing a modified 1X 

LDS buffer (10% glycerol, 294 mM LDS, 278 mM Tris, 0.51 mM EDTA, 22 µM bromophenol 

blue, 3.5 µM phenol red, pH 8.5) and 1X NuPAGE™ sample reducing agent (Invitrogen).  

Electrophoresis was performed using the NuPAGE™ system (Invitrogen) according to 

manufacturer’s instructions.  Extracts and low range (14.4, 21.5, 31.0, 45.0, 66.2, and 97.4 kDa) 

standards (BioRad) were denatured at 95°C for 10 min and separated on a 4-12% Bis-Tris gel 

(Invitrogen) in 1X MES-SDS buffer at 200 V for 40 min.  The resulting gels were either stained 

with Colloidal Coomassie Blue (Invitrogen) for 3 h and destained in H2O overnight or 

immediately transferred for Western blotting.   

 Fractionated proteins were electroblotted to Invitrolon™ PVDF membrane (Invitrogen) at 

25 V for 2 h using the NuPAGE™ blotting system (Invitrogen).  The portion of the blots 

containing MW markers was removed, stained in amido black (0.1% (w/v) amido black, 10% 

methanol, 7% acetic acid) for 20 min, and destained (10% methanol, 10% acetic acid) for 2 h.  

The blots containing the extracts were rinsed in TBST (20 mM Tris, 0.5 M NaCl, 0.05% Tween 

20, pH 7.5) then blocked in TBST containing 2% (w/v) dry milk (Carnation) at room 

temperature for 1 h with continuous agitation.  The blots were probed overnight with primary 

antibody (Hequembourg, 2002) diluted to 1:1000 in blocking buffer.  After primary incubation, 

the blots were washed in TBST 3 times for 10 min each wash and incubated in alkaline 
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phosphatase-labeled, goat anti-chicken IgY secondary antibody diluted 1:5000 in blocking buffer 

for 1 h.  The blots were rinsed and then washed in TBST 3 times for 10 min each wash.  Bound 

antibodies were colorimetrically detected with NBT/BCIP reagent (Roche) according to 

manufacturer’s instructions.   

 

Bioinformatics 

 Primer design and sequence analysis was performed using Vector NTI (v8.0) (InforMax, 

Invitrogen), which utilizes ContigExpress to configure RACE and EST sequences, BLAST for 

sequence homologies, ClustalW for alignments, and SIM4 for cDNA and genomic DNA 

sequence comparisons.  Nucleotide and protein sequences for alignments and homology 

determination were downloaded from GenBank at http://www.ncbi.nlm.nih.gov.   

An expressed sequence tag (EST) database containing ~5000 sequences was developed 

from a normalized, cDNA library of the hypodermal RNA of pre- and post-ecdysial, mid-dorsal 

cuticle and arthrodial membrane of Callinectes sapidus (Invitrogen).  The optimizing of the 

sequencing protocols was performed by Ms. Amy McElhinney, and the sequencing was 

performed by Dr. Francie Coblentz and MWG Biotech.  The principle investigator of the EST 

project is Dr. Thomas Shafer.  To confirm identity of cDNA sequences from RACE and RT-PCR 

and to identify additional transcripts, the sequence Tx4GGxCCx4GGx13GAxGGx10CA where x = 

any nucleotide was used to find all the 18-residue motif-containing sequences located in the 

database. 
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Nomenclature 

 Nomenclature developed in this research is based on the presumption that the translated 

products of the transcripts described in the Results are “pro-proteins” that are enzymatically 

cleaved to produce cuticular peptides similar to those directly sequenced from C. pagurus and H. 

americanus (Kragh et al., 1997; Nousiainen et al., 1998; Andersen, 1999).  The genes and 

cDNAs are named CsproCP#.# (italics=cDNA; normal=pro-protein), where “Cs” refers to 

Callinectes sapidus, “pro” indicates that the open reading frame is an uncleaved pro-protein, 

“CP” refers to cuticle protein, the first # is the number of peptides produced by the presumed 

cleavage, and the second # designates which cDNA is indicated when there are more than one 

that produce the same number of cleaved products.  The presumed C. sapidus peptides that are 

incorporated into the cuticle after cleavage are referred to as CsCP#.#n’# (note normal font), 

where n is a letter (a-e) beginning at the N-terminus corresponding to the particular peptide 

cleaved from CsCP#.#. 
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RESULTS 

 

Cloning and characterization of multiple cDNAs  

The presence of the 18-residue motif (xLxGPSGφφxxDGxxxQφ) in many calcified 

cuticle proteins of the decapod crustaceans C. pagurus, H. americanus, and G. lateralis (Kumari 

et al., 1995; Kragh et al., 1997; Nousiainen et al., 1998; Andersen, 1999) and the 

immunohistochemical staining seen in C. sapidus itself (Fig. 1; Hequembourg, 2002) suggested 

that transcripts that encode this motif could be identified in C. sapidus.  In total, 11 transcripts 

from the post-ecdysial, mid-dorsal hypodermis were obtained whose inferred translations contain 

multiple, variant copies of the 18-residue motif.  The motif accounts for ~70% of the total amino 

acid residues in each open reading frame (ORF)  (Table 2; Figs. 2 and 3).  RACE and RT-PCR 

were initially performed to identify several of the transcript sequences.  Additional sequences 

were acquired by in silico analysis of an EST database developed from a cDNA library of the C. 

sapidus hypodermis (Table 2; Figs. 2 and 3).   

 

Gene-specific 3’ RACE primers (3RC1-4 in Table 1), based on the N- and C-terminal 

halves of the 18-residue motif, amplified multiple products.  Of these products, seven contain 

unique sequences with different lengths, each with a full or partial variant of the 18-residue motif 

in the inferred translation (Table 2; Figs. 2 and 3).  In 5’ RACE, gene-specific primers were 

based on the 3’ RACE sequences (5RC1-3 in Table 1).  These primers amplified multiple 

products resulting in three 5’ RACE sequences that correspond to 3’ RACE sequences.  The 

three cDNAs obtained using RACE, CsproCP3.1, CsproCP3.2, and CsproCP5.1, were verified 

by RT-PCR (Table 2; Figs. 2  
5
1



Table 2 The sequence details for the 11 cDNAs that code for the 18-residue motif 
(xLxGPSGφφxxDGxxxQφ).  “*” indicates that a sequence does not have a 
complete open-reading frame in its translation; therefore, some sequence 
information is unknown (?)
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Figure 2. Graphical representations of the 11 cDNA sequences from C. sapidus that 
code for proteins containing multiple, variant copies of the 18-residue 
motif (xLxGPSGφφxxDGxxxQφ): A) CsproCP2.1, B) CsproCP2.2,  
C) CsproCP2.3, D) CsproCP2.4, E) CsproCP3.1, F) CSproCP3.2,  
G) CsproCP3.3, H) CsproCP4, I) CsproCP5.1, J) CsproCP5.2, and  
K) CsproCP6.  The representations are not to scale, and all virtually 
cleaved peptides with the same color denotes sequence similarity.  
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Figure 3. The nucleotide sequences and the inferred translations of the 11 cDNAs 
from C. sapidus whose inferred translated products contain multiple, 
variant copies of the 18-residue motif (xLxGPSGφφxxDGxxxQφ):  
A) CsproCP2.1, B) CsproCP2.2, C) CsproCP2.3, D) CsproCP2.4,  
E) CsproCP3.1, F) CsproCP3.2, G) CsproCP3.3, H) CsproCP3.4,  
I) CsproCP4, J) CsproCP5.1, K) CsproCP5.2, L) and CsproCP6.  The 
nucleotide sequences in bold and underlined encode the 18-residue motif.  
The green regions in italics represent the signal peptide, and the boxed red 
regions represent the apparent cleavage sites (RxKR).  Upper case letters 
represent translated regions, and lower case letters represent the 3’ and 5’ 
untranslated regions (UTRs).  Regions in the open reading frames with the 
same color denotes sequence similarity. 
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A) CsproCP2.1  
 
1   agtagccttatcttggagtgctgaggaagaccaggacagcagcc    
 
45  ATGAAGCTTTTGGTAGCGATGTGTCTGATGGCGGTGGGCGTCAGCGCC 
-16 M  K  L  L  V  A  M  C  L  M  A  V  G  V  S  A     
93     TCATATGGGCCAGCCGGAATCGTCCATCCTGACGGGACACTGCAGCAGCTCACCCGCGAGGAGGCTGAAAATATC 
1      S  Y  G  P  A  G  I  V  H  P  D  G  T  L  Q  Q  L  T  R  E  E  A  E  N  I   
168 GCCGTTGTCGGGGCCTCTGGAGTGACATTCCACGATGGGTCACACATTCAGTTTAACCGCGACGCAGCGCTGCACCATGCTGGTATCGTACCACCCGTGCCCGTGCCAGTCATGCTGGAAACTCCA 
26  A  V  V  G  A  S  G  V  T  F  H  D  G  S  H  I  Q  F  N  R  D  A  A  L  H  H  A  G  I  V  P  P  V  P  V  P  V  M  L  E  T  P 
294 GGCCTTTATGGTGCTACTGGCATTGTCATGCCCGACGGAAACAATGTGCAGTTCACCGCTGATCAAGCTGCAAACATC 
68  G  L  Y  G  A  T  G  I  V  M  P  D  G  N  N  V  Q  F  T  A  D  Q  A  A  N  I   
372 GCCGTAATCGGGCCCTCTGGCGTCGTCATGGCTGATGGCAAGAACATACAGTTGAACGATGAAGGCGTCCCTTCCCGCAAGAAACGCGCAGTA 
92  A  V  I  G  P  S  G  V  V  M  A  D  G  K  N  I  Q  L  N  D  E  G  V  P  S  R  K  K  R  A  V   
465 CTCCTTGAGGGTCCCTCCGGTCTGATCTTCAATGATGGGCAAGTCAGGCATCTTCCTCCTGGTGTACAGATC 
125 L  L  E  G  P  S  G  L  I  F  N  D  G  Q  V  R  H  L  P  P  G  V  Q  I   
537 GTTCTTTTGACTACTTCTGGTGCCGTCCTTTCTAACGGTGACAACGTCCAGTTCAGCAAGTAA 
149 V  L  L  T  T  S  G  A  V  L  S  N  G  D  N  V  Q  F  S  K  *   168 
600 ttatcactttcataaaaatggacacaattattggcctgtaattttcgccatctgtacttcatagcttttctgtcttcttaccaccctattggtttaggaaatatgaaaagcctttcttgttcaacatgga  
 
730 agctatccagttatatgtgtgacgagtttcctgcagtccacaaaaaacaatggatgtaaacagatatcttttataatactctttctaaatgttaaaactgc(a)N  830 
B) CsproCP2.2 
 
1   cagcagccttatcttggagtgctgaggaagaccaggacagcagct 
 
46  ATGAAGCTTTTGGTAGCGATGTGTCTGATGGCGGCGGGCGTCAGCGCC 
-16 M  K  L  L  V  A  M  C  L  M  A  A  G  V  S  A 
94     TCATATGGGCCAGCCGGAATCGTCCATCCTGACGGGACACTGCAGCAGCTCACCCGCGAGGAGGCTGAAAATATC 
1      S  Y  G  P  A  G  I  V  H  P  D  G  T  L  Q  Q  L  T  R  E  E  A  E  N  I 
169 GCCGTTGTCGGTGACTCTGGAGTGACATTCCACGATGGGTCACACATTCAGTTTAACCGCGACGCAGCGCTGCACCATGCTGGTATCGTGCCACCCGTGCCCGTGCCAGTCATGCTTGAAACTCCA 
26  A  V  V  G  D  S  G  V  T  F  H  D  G  S  H  I  Q  F  N  R  D  A  A  L  H  H  A  G  I  V  P  P  V  P  V  P  V  M  L  E  T  P 
295 GGCCTTTATGGTGCTACTGGCATTGTCATGCCCGACGGAAACAATGTGCAGTTCACCGCTGATCAAGCTGCAAACGTC 
68  G  L  Y  G  A  T  G  I  V  M  P  D  G  N  N  V  Q  F  T  A  D  Q  A  A  N  V 
373 GCCGTAATCGGGCCCTCTGGCGTCGTCATGGCTGATGGCAAGAACGTACAGTTGAACGATGAAGGCCTCCCTTCCCGCAAGAAACGTTCCAAG 
94  A  V  I  G  P  S  G  V  V  M  A  D  G  K  N  V  Q  L  N  D  E  G  L  P  S  R  K  K  R  S  K 
466 CCTGTCGTTGGCGATTCAGGATACATCACCGCAAGTGGAAGGCCAGTCCAGCTTCCTCACGGTGTCACGATC 
125 P  V  V  G  D  S  G  Y  I  T  A  S  G  R  P  V  Q  L  P  H  G  V  T  I 
538 CTAATTGCTGGTGACACTGGGCTGCTGCTCTCCAACGGAGAAGCTGTGCAGCTTTACGAATAG 
149 L  I  A  G  D  T  G  L  L  L  S  N  G  E  A  V  Q  L  Y  E  *   168 
601 atatttattcaaaacacctgaaattgatttgtgctctattttccgaggcagtgatacacgtatttcttatagaggaaaagcacgtactctccattgccaagcactactaatctctccctataaataaata  
 
732 tatatattttt(a)N  742 
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C) CsproCP2.3 
 
1   cagtagccatcaaggagttctgcaagaccttacattagccacc 
 
44  ATGAAGTTTCTGGTAGTGTTGTGTTTGATGGCGGTGGGTGCCAACGCT 
-16 M  K  F  L  V  V  L  C  L  M  A  V  G  A  N  A 
92     AAATTTGGAAAACATGGCATTGTTATGCCCGACGGCGTCAATGTCCAGTTTACTCATGACCAGGCCGAAAACATC 
1      K  F  G  K  H  G  I  V  M  P  D  G  V  N  V  Q  F  T  H  D  Q  A  E  N  I 
167 CTTATGATCGGCCCCTCTGGCGCCATCACTGCTGACGGCAAGCACGTGCAGCTGGACCGAGATGGACTTCCTGTAGTCCGCGCCAAGAGAGAGGTG 
26  L  M  I  G  P  S  G  A  I  T  A  D  G  K  H  V  Q  L  D  R  D  G  L  P  V  V  R  A  K  R  E  V 
263 CTGCTGCAGGGACCCTCCAGTGTTCTGTTCAAGGACGGACAGAGCAGGTCTCTTTCTGGTGGTGTAGAAATT 
58  L  L  Q  G  P  S  S  V  L  F  K  D  G  Q  S  R  S  L  S  G  G  V  E  I 
335 GTCGAAATCACTGAGACTGGAGCCGTCTTGTCCAACGGTGACAATGTTCAGTTCCTTGTCTAG 
82  V  E  I  T  E  T  G  A  V  L  S  N  G  D  N  V  Q  F  L  V  *  101 
398 tgtttcttttttccatcacttatgctaccaatggtcgcttggactacatcaccagcaaactacttgacaacttcactctgtcatcacagtcgccggcagtatgcatgttggcaatcttctttctggcgaa  
 
528 atgaaatccaactactaaactaaatctatttatccacgaccctgtcctatctatctattttcttctacacctctatcagcacatcaactgataggagcttcatggaattatatataaattttcaataaat  
 
658 atgg(a)N  661 
 
 
 
 
 

D) CsproCP2.4 
 
1   agtagccaacaaggagttctgcaagaccttacattagccacc 
 
43  ATGAAGTTTCTGGTAGTGTTGTGTTTGATGGCGGTGGGTGCCAACGCT 
-16 M  K  F  L  V  V  L  C  L  M  A  V  G  A  N  A 
91     AAATTTGGAAAACATGGCATTGTTATGCCCGACGGCGTCAATGTCCAGTTTACTCATGACCAGGCCGAAAACATC 
1      K  F  G  K  H  G  I  V  M  P  D  G  V  N  V  Q  F  T  H  D  Q  A  E  N  I 
166 CTTATGATCGGCCCCTCTGGCGCCATCACTGCTGACGGCAAGCACGTGCAGCTGGACCGAGATGGACTTCCTGTAGTCCGCGCCAAGAGAGAGGTG 
26  L  M  I  G  P  S  G  A  I  T  A  D  G  K  H  V  Q  L  D  R  D  G  L  P  V  V  R  A  K  R  E  V 
262 CTGCTGCAGGGACCCTCCAGTGTTCTGTTCAAGGACGGACAGAGCAGGTCTCTTTCTGGTGGTGTAGAAATT 
58  L  L  Q  G  P  S  S  V  L  F  K  D  G  Q  S  R  S  L  S  G  G  V  E  I 
334 GTCCAAATTACCAACACCGGAGCCATATTGTCCAACGGTGACAATGTTCAGTTCCGTGTCTAG 
82  V  Q  I  T  N  T  G  A  I  L  S  N  G  D  N  V  Q  F  R  V  *  101 
397 tgtttctttttcccatcacttatgctaccgagggtcgcttggtctacatcaccaacaaacaactttaacaacttcactgtctctgacaatatgcttgctggcgctcttctttccggcgaaatgaaatcca  
 
527 gctgctaaattaaaaatatttatccacgaccctgtcctatctatctattttcttctacacctccatcagcacatctactgattggagcttcatggaattatatataaattttcaataaacatg(a)N 649 
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E) CsproCP3.1 
 
1   aaaagtcatttcagtagccttatcttggagtgctgaggaagaccaagactgcagtc 
 
57  ATGAAGCTTTTGGTAGCATTGTGCGTGATGGCAGTGGGTGTCAGCGCC 
-16 M  K  L  L  V  A  L  C  V  M  A  V  G  V  S  A 
105    CAGTACGGAGAATCTGGTATCATCTTTCCTGACGGGACGCTGAGGCAACTCACCCCAGAGGAGGCTGCCAACATC 
1      Q  Y  G  E  S  G  I  I  F  P  D  G  T  L  R  Q  L  T  P  E  E  A  A  N  I 
180 GCTGCTATCGGGCAGTCTGGAGTGGTCTTTAAGGATGGATCAAACAAGCAGTTTGACATGGATTTTGCCGCCCTGCACAACAACCTCCCCGCCCCAGCCAGGCCCGAGGAAGTGACCTTC 
26  A  A  I  G  Q  S  G  V  V  F  K  D  G  S  N  K  Q  F  D  M  D  F  A  A  L  H  N  N  L  P  A  P  A  R  P  E  E  V  T  F 
300 GGTCCCTACGGCTATCATGGCATCATAAAGCCCGACGGCAACAACGTGCAGTTCTCCCATGACCAGCACAGCAACGTT 
66  G  P  Y  G  Y  H  G  I  I  K  P  D  G  N  N  V  Q  F  S  H  D  Q  H  S  N  V 
378 GTCCTGGTCGGCCCCTCAGGTGTCATTACTGCTGACGGCAAGAACTTGCAGCTGGATCAGGATGGCCTCCCTCTCCCACTCCGCAGGAAGCGCGCCGTG 
92  V  L  V  G  P  S  G  V  I  T  A  D  G  K  N  L  Q  L  D  Q  D  G  L  P  L  P  L  R  R  K  R  A  V 
477 GCCCTCGAGGGTCCCTCCGGCGTATTGTTCGCAGACGGCCAGCTGAGACACCTCCCTGTGGGCGTGACTGTC 
125 A  L  E  G  P  S  G  V  L  F  A  D  G  Q  L  R  H  L  P  V  G  V  T  V 
549 GTCAGTGTGGGTCCCTCTGGCGCCACTCTCTCCAACGGCAAACACGTCCAGTTCCGTGAGAAGCGCTCAGCACCCTCTACG 
149 V  S  V  G  P  S  G  A  T  L  S  N  G  K  H  V  Q  F  R  E  K  R  S  A  P  S  T 
630 GCAGTGATTGATGAGAGTGGCATCATCACCCCAAGCGGACGGCCAATTCACCTTCCCCTGGGCACATACGTT 
176 A  V  I  D  E  S  G  I  I  T  P  S  G  R  P  I  H  L  P  L  G  T  Y  V 
702 GTTAATCACGGGCCTTCTGGAATTTTGCTCAACACCGGAGAGTCTATTCAATTCGAATTATAA 
200 V  N  H  G  P  S  G  I  L  L  N  T  G  E  S  I  Q  F  E  L  *   219 
765 gttcataacaacaatattatatgaaatggtgttagcaataagacctcatccttgtttctgaaggagatatattttagtacaatgacataagagattatggtttcatatgttgatgcactatcataaacat  
 
895 tatgagatcagatccacaaatatatttcatatcatgact(a)N  933 
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F) CsproCP3.2 
 
1   aaaagtgtcccagtagccgcatcttggagtgctgaggaagaccaggatcgcagcc 
 
56  ATGAAGTTTTTGGTAGCATTGTGCGTGATGGCAGTGGGTGTCAGCGCC  
-16 M  K  F  L  V  A  L  C  V  M  A  V  G  V  S  A 
104    CAGTACGGAGAATCTGGTATCATCTTTCCTGACGGGACGCTGAAGCAACTCGCCCCAGAGGAGGCTGCCAACATC 
1      Q  Y  G  E  S  G  I  I  F  P  D  G  T  L  K  Q  L  A  P  E  E  A  A  N  I 
179 GCTGAGCTCGGGGAGTCTGGAGTGGTCTTTAAGGATGGATCACACAAGCAGTTTGACATGGAGTTTACCGCCCTGCACAACAACCTCCCCGCCCCAGCCAGGCCCGAGGAAGTGACCTTC 
26  A  E  L  G  E  S  G  V  V  F  K  D  G  S  H  K  Q  F  D  M  E  F  T  A  L  H  N  N  L  P  A  P  A  R  P  E  E  V  T  F 
299 GGTCCCTACGGCTACCATGGCATCATAAAGCCCGACGGCAACAACGTGCAGTTCTCCCATGACCAGCACAGCAACGTT 
66  G  P  Y  G  Y  H  G  I  I  K  P  D  G  N  N  V  Q  F  S  H  D  Q  H  S  N  V 
377 GTCCTGGTCGGCCCCTCAGGTGTCATTACTGCTGACGGCAAGAACTTGCAGCTGGATCAGGATGGCCTCCCTCTCCCACTCCGCAGGAAGCGCGCTGTG 
92  V  L  V  G  P  S  G  V  I  T  A  D  G  K  N  L  Q  L  D  Q  D  G  L  P  L  P  L  R  R  K  R  A  V 
476 GCCCTCGAGGGTCCCTCCGGCGTGAAGTTCGCAGACGGCCAGCTGAGACACCTCCCTGTGGGCGTGACTGTC 
125 A  L  E  G  P  S  G  V  K  F  A  D  G  Q  L  R  H  L  P  V  G  V  T  V 
548 GTCAGTGTGGGTCCCTCTGGCGCCACTCTCTCCAACGGCGACAACGTCCAGTTCCGTGAGAAGCGCGCTGCACCCTCTCAG 
149 V  S  V  G  P  S  G  A  T  L  S  N  G  D  N  V  Q  F  R  E  K  R  A  A  P  S  Q 
629 GCCGTTGTAGGAGAAGGTGGCATCATCACCCCAGGTGGAGTCCAGTTTCAGCTTCCCCATGGTGTGTATATT 
176 A  V  V  G  E  G  G  I  I  T  P  G  G  V  Q  F  Q  L  P  H  G  V  Y  I 
701 GTCTCTAAAGGGCCTTCTGCAGCTCTGCTCTCCAACGGACAAGCTGTTCAGTATGAATTCTAG 
200 V  S  K  G  P  S  A  A  L  L  S  N  G  Q  A  V  Q  Y  E  F  *  219 
764 tttcaacacaacgatgttctaggatgagctgttagcagtagggtgttggctttttgaaagacaatgttttcattacagtgacacaatggattatagcttcatgtgctgacttactatcagaaactttatg  
 
894 agagccgattttcaaatatatgtatatatatcacaat(a)N  930 
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G) CsproCP3.3 
 
1   cagtagccagcaaggagttctgcaggacctcacttcaagaacc 
 
44  ATGAAGATTTTGGTAGTGTTGTGTTTGATGGCGGTGGGTACCAACGCT 
-16 M  K  I  L  V  V  L  C  L  M  A  V  G  T  N  A 
92     AAATTTGGAAAACATGGCATTGTTATGCCCGATGGCGTCAATGTCCAGTTTACTCATGACCAGGCCGAAAACATC 
1      K  F  G  K  H  G  I  V  M  P  D  G  V  N  V  Q  F  T  H  D  Q  A  E  N  I 
167 CTTATGATCGGCCCCTCTGGCGCCATCACTGCTGACGGCAAGCACGTGCAGCTGGACCGAGATGGACTTCCTGTAGCCCGTGCTAAGCGTGCTGTG 
26  L  M  I  G  P  S  G  A  I  T  A  D  G  K  H  V  Q  L  D  R  D  G  L  P  V  A  R  A  K  R  A  V 
263 CTATTGGAGGGACCTTCTGGGGTGCTCTTTGAGGACGGACAGTGGAGACACCTTCCTCCTGGTGTGGAGATC 
58  L  L  E  G  P  S  G  V  L  F  E  D  G  Q  W  R  H  L  P  P  G  V  E  I 
335 GTTCTTATGTCAAAGACTGGCGCCATCCTTTCCAACGGTGACAACGTCCAGTTCCGCAAGAAGCGTTCCTCTCCCCTCATCGAC 
82  V  L  M  S  K  T  G  A  I  L  S  N  G  D  N  V  Q  F  R  K  K  R  S  S  P  L  I  D 
419 TCTATTAAGGGCCCCTCAGGATATATCACACCCACTGGACAGCTGTTCCAGCTTCCTCCTGGCGTTACAGTC 
110 S  I  K  G  P  S  G  Y  I  T  P  T  G  Q  L  F  Q  L  P  P  G  V  T  V 
491 GCCATCGAGGGACCTTCCAGCGCTCTTCTTTCCGATGGAACTGCCATCCAGTTCTTCGCATAA 
134 A  I  E  G  P  S  S  A  L  L  S  D  G  T  A  I  Q  F  F  A  *    156 
555 atttcctgaatccataccctgctggtgcatcaccaacagcaatcaataaacatctccaataaacataatcactactgaggacttcatggtgcttgatgcacaatatttccaat(a)N  666 
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H) CsproCP4 
 
1   <---AACATC 
1       N  I 
7   GCTGAGTTCGGGGAGTCTGGAGTGGTCTTTAAGGATGGATCAAACAAGCAGTTTGACATGGATTTTGCCGCCCTGCACAACAACCTCCCCGCCCCAGCCAGGCCCGAGGAAGTGGCCTTC 
3   A  E  F  G  E  S  G  V  V  F  K  D  G  S  N  K  Q  F  D  M  D  F  A  A  L  H  N  N  L  P  A  P  A  R  P  E  E  V  A  F 
127 GGTCCCTACGGCTATCATGGCATCATAAAGCCCGACGGCAACAACGTGCAGTTCTCCCATGACCAGCACAGCAACGTT 
43  G  P  Y  G  Y  H  G  I  I  K  P  D  G  N  N  V  Q  F  S  H  D  Q  H  S  N  V 
205 GTCCTGGTCGGCCCCTCAGGTGTCATTACTGCTGACGGCAAGAACCTGCAGCTGGATCAGGATGGCCTCCCTCTCCCACTCCGCAGGAAGCGCGCTGTG 
69  V  L  V  G  P  S  G  V  I  T  A  D  G  K  N  L  Q  L  D  Q  D  G  L  P  L  P  L  R  R  K  R  A  V 
304 TCCCTCGAGGGTCCCTCCGGCGTGTTGTTCGCAGATGGCCAGAAGAGACACCTCCCTGTGGGCGTGACTGTC 
102 S  L  E  G  P  S  G  V  L  F  A  D  G  Q  K  R  H  L  P  V  G  V  T  V 
376 GTCAGTGTGGGTCCCTCTGGCGCCACTCTCTCCAACGGCAAACACGTCCAGTTCCGTGAGAAGCGCGCTGCTTCTGGC 
126 V  S  V  G  P  S  G  A  T  L  S  N  G  K  H  V  Q  F  R  E  K  R  A  A  S  G 
454 GCTGTGGTTGGCTCCGCTGGTTTCATCACTCCTAGTGGAGTGCCTGTCCAGCTTGCTCCCGGCGAGGCAGTC 
152 A  V  V  G  S  A  G  F  I  T  P  S  G  V  P  V  Q  L  A  P  G  E  A  V 
526 GTTGCTAATGGACCTTCTGGTCTTGTTCTCAGCACTGGCAAGAACGTCCAGTTCGACCGCAGGAAGCGTGCAGCACCCTCCAAG 
176 V  A  N  G  P  S  G  L  V  L  S  T  G  K  N  V  Q  F  D  R  R  K  R  A  A  P  S  K 
610 GCTACTGTTGGAGAGAGCGGCATCATCACTCCTGGTGGACGKCTGATTCAGTTCCCCCACGACGTGTCTGTT 
204 A  T  V  G  E  S  G  I  I  T  P  G  G  R  L  I  Q  F  P  H  D  V  S  V 
682 GTCCTTGCTGGTCCCTCTGCTGCTATTCTCTCCAACGGAGACATCGTTCAGTATGAATTTTAA 
228 V  L  A  G  P  S  A  A  I  L  S  N  G  D  I  V  Q  Y  E  F  *  247 
745 ttcccttaaactgatggtctaggaagagatgctggtagtagatagaacactgactttgtttccgaaggacactcactttagtaccatgacacaatggactgtagcttcatgtgctcattcaataatacag  
 
875 gaaacatcatgagatctgatgttcaaatatattttatattctcag(a)N  920 
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I) CsproCP5.1 
 
1   ccgcatcttggagtgctgaggaagaccaggatcgcagcc 
 
40  ATGAAGTTTTTGGTAGCATTGTGCGTGATGGCAGTGGGTGTCAGCGCC 
-16 M  K  F  L  V  A  L  C  V  M  A  V  G  V  S  A 
88     CAGTACGGAGAATCTGGCGTCATCTATCCTGACGGGACGCTGAGGCAACTCACCCCAGAGGAGGCTGCCAACATC 
1      Q  Y  G  E  S  G  V  I  Y  P  D  G  T  L  R  Q  L  T  P  E  E  A  A  N  I 
163 GCTGAGTTCGGGGAGTCTGGAGTGGTCTTTAAGGATGGATCAAACAAGCAGTTTGACATGGAGTTTGCCGCCCTGCACAACAACCTCCCCGCCCCAGCCAGGCCCGAGGAAGTGGCCTTC 
26  A  E  F  G  E  S  G  V  V  F  K  D  G  S  N  K  Q  F  D  M  E  F  A  A  L  H  N  N  L  P  A  P  A  R  P  E  E  V  A  F 
283 GGTCCCTACGGCTATCATGGCATCATAAAGCCCGACGGCAACAACGTGCAGTTCTCCCATGACCAGCACAGCAACGTT 
66  G  P  Y  G  Y  H  G  I  I  K  P  D  G  N  N  V  Q  F  S  H  D  Q  H  S  N  V 
361 GTCCTGGTCGGCCCCTCAGGTGTCATTACTGCTGACGGCAAGAACCTGCAGCTGGATCAGGATGGCCTCCCTCTCCCACTCCGCAGGAAGCGCGCTGTG 
92  V  L  V  G  P  S  G  V  I  T  A  D  G  K  N  L  Q  L  D  Q  D  G  L  P  L  P  L  R  R  K  R  A  V   
460 TCCCTCGAGGGTCCCTCCGGCGTGTTGTTCGCAGATGGCCAGAAGAGACACCTCCCTGTGGGCGTGACTGTC 
125 S  L  E  G  P  S  G  V  L  F  A  D  G  Q  K  R  H  L  P  V  G  V  T  V 
532 GTCAGTGTGGGTCCCTCTGGCGCCACTCTCTCCAACGGCAAACACGTCCAGTTCCGTGAGAAGCGCGCTGCTTCTGGC 
149 V  S  V  G  P  S  G  A  T  L  S  N  G  K  H  V  Q  F  R  E  K  R  A  A  S  G 
610 GCTGTGGTTGGCTCCGCTGGTTTCATCACTCCTAGTGGAGTGCCTGTCCAGCTTGCTCCCGGCGTGACAGTC 
175 A  V  V  G  S  A  G  F  I  T  P  S  G  V  P  V  Q  L  A  P  G  V  T  V 
682 GCTTCTAGTGGACCTTCCGGTATTGTTCTCAGCACTGGCGAGAACGTCCAGTACGACCGCAAGAAGCGCTTTGCTTCTGGC 
199 A  S  S  G  P  S  G  I  V  L  S  T  G  E  N  V  Q  Y  D  R  K  K  R  F  A  S  G 
763 GCTGTGGTTGGTTCCGCTGGTTACATCACTCCTAGTGGAGTGCCTGTCCAGCTTGCTCCCGGCGAGGCAGTC 
226 A  V  V  G  S  A  G  Y  I  T  P  S  G  V  P  V  Q  L  A  P  G  E  A  V 
835 GTTGCTAATGGACCTTCTGGTCTTGTTCTCAGCACTGGCAAGAACGTCCAGTTCGACCGCAGGAAGCGTGCAGCACCCTCCAAG 
250 V  A  N  G  P  S  G  L  V  L  S  T  G  K  N  V  Q  F  D  R  R  K  R  A  A  P  S  K 
919 GCTACTGTTGGAGAGAGCGGCATCATCACTCCTGGTGGACGGCTGATTCAGTTCCCCCACGACGTGTCTGTT 
278 A  T  V  G  E  S  G  I  I  T  P  G  G  R  L  I  Q  F  P  H  D  V  S  V 
991 GTCCTTGCTGGTCCCTCTGCTGCTATTCTCTCCAACGGAGACATCGTTCAGTATGAATTTTAA 
302 V  L  A  G  P  S  A  A  I  L  S  N  G  D  I  V  Q  Y  E  F  *   321 
1054 ttcccttaaactgatggtctaggaagagatgctggtagtagatagaacactgactttgtttccgaaggacactcactttagtaccatgacacaatggactgtagcttcatgtgctcattcaataacata  
 
1113 ggaaacatcatgagatctgatgttcaaatatattttaatattctc (a)N   1227 
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J) CsproCP5.2 
 
1   aagcctcagcaggagttctggaccactaaacagsacaacc 
 
41  ATGAAGATTCTGGCAGCTATCTGTCTGCTCGCCGCTAGTGCGAGTGCA 
-16 M  K  I  L  A  A  I  C  L  L  A  A  S  A  S  A 
89     CAGGTTGGGCAATCGGGGATCGTTAGTCCTGATGGAAACAACATCCAGTTCACACACGACTTTGCTCATAGCATT 
1      Q  V  G  Q  S  G  I  V  S  P  D  G  N  N  I  Q  F  T  H  D  F  A  H  S  I 
164 ATCCTCAGTGGACCTTCTGGCATCGTGACAAGTGATGGTAAGAACCTCCAGCTGACCGGAGGCCAGGCTGCCCTCCACGCTGCCTCCCCACAAGCACCTCAGCCTGTGCCCCAGCTTGTCATTTCTCGC 
26  I  L  S  G  P  S  G  I  V  T  S  D  G  K  N  L  Q  L  T  G  G  Q  A  A  L  H  A  A  S  P  Q  A  P  Q  P  V  P  Q  L  V  I  S  R 
293 AGCGTCGTCGGTCCCTCAGGAATCGTGAGTCCTGCTGGT---AATGTTCAGTTCACCCATGAGATGGTTGACGACAAC 
69  S  V  V  G  P  S  G  I  V  S  P  A  G  -  N  V  Q  F  T  H  E  M  V  D  D  N 
368 GTGTTGGTTGGTCCCTCTGGCATTGTGACCAAGTCCGGACAAAACATCCAGTTTAACGACCAAGGGCTTCCTCGCACCAAGCGCAGCGCCGGCTACGTCCTGCCTGCA 
94  V  L  V  G  P  S  G  I  V  T  K  S  G  Q  N  I  Q  F  N  D  Q  G  L  P  R  T  K  R  S  A  G  Y  V  L  P  A 
476 GGTAACCTGGGACATTCTGGCATCGTTAGGGCTGATGGAACCTATGAGCAATTCAGCCACGACTTCGCTCACGATATT 
130 G  N  L  G  H  S  G  I  V  R  A  D  G  T  Y  E  Q  F  S  H  D  F  A  H  D  I 
554 CTGCTCATGGGACCTTCAGGCTTCGTGACCAAGAGCGGAAAGAACATCCAGCTGACCGCCGACCTCCACAGAGTCAAGCGT 
156 L  L  M  G  P  S  G  F  V  T  K  S  G  K  N  I  Q  L  T  A  D  L  H  R  V  K  R   . 
635 GACCTCAAGGGTCCCTCTGGCATGATCCTTAAGGACGGCACTCAGGTGCAGTTCATGACTGGCGAAACCACAGTC 
183 D  L  K  G  P  S  G  M  I  L  K  D  G  T  Q  V  Q  F  M  T  G  E  T  T  V 
710 CTTCTTGATGGCCCATCTGGACTGGTGCTCAGCGACGGTACTCTGGTGCAGAGGCGTGCCAAGCGT 
208 L  L  D  G  P  S  G  L  V  L  S  D  G  T  L  V  Q  R  R  A  K  R   . 
776 GATCTGGTTGGTCCCTCTGGCATGATCCTTAAAGACGGCACCCAGGTGCAGTTTAAGGAGGGCTTTGCCACTGTC 
230 D  L  V  G  P  S  G  M  I  L  K  D  G  T  Q  V  Q  F  K  E  G  F  A  T  V 
851 GTACTGGATGGCCCCTCTGGAATGCTGCTCAGCGACGGCACTCTGGTGCAGAAGCGTTCCAAGCGT 
255 V  L  D  G  P  S  G  M  L  L  S  D  G  T  L  V  Q  K  R  S  K  R     . 
917 AATCTCGTGGGTCCCTCTGGCATGATCACTGCTGACGGAACCCCTATCCAGTTCCCCGCCCACGCTGAGGCC 
277 N  L  V  G  P  S  G  M  I  T  A  D  G  T  P  I  Q  F  P  A  H  A  E  A 
989 GTCGTCACTGGCCCATCTGGCATCGTCTTCTCCAACGGACAGAACGTTCAGCTTCCTTAG 
301 V  V  T  G  P  S  G  I  V  F  S  N  G  Q  N  V  Q  L  P  *    319 
1049 acagaccagcgcatgtgcaccaggactctagtctctatgttcttcctgccgacttctctgcatttctgacaaacgctaagtattcatcacgatgtacagatcaaagatttccgtatatatacgaataaa  
 
1178 tgtactgaaatg(a)N   1189 
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K) CsproCP6 
 
1                 <---GGCGTCATCTATCCTGACGGGACGCTGAGGCAACTCACCCCAGAGGAGGCTGCCAACATC 
1                     G  V  I  Y  P  D  G  T  L  R  Q  L  T  P  E  E  A  A  N  I 
61  GCTGAGCTCGGGGAGTCTGGAGTGGTCTTTAAGGATGGATCAAACAAGCAGTTTGACATGGATTTTGCCGCCCTGCACAACAACCTCCCCGCCCCAGCCAGGCCCGAAGAAGTGACCTTC 
21  A  E  L  G  E  S  G  V  V  F  K  D  G  S  N  K  Q  F  D  M  D  F  A  A  L  H  N  N  L  P  A  P  A  R  P  E  E  V  T  F 
181 GGTCCCTACGGCTATCATGGCATCATAAAGCCCGACGGCAACAACGTGCAGTTCTCCCATGCCCAGCACAGCAACGTT 
61  G  P  Y  G  Y  H  G  I  I  K  P  D  G  N  N  V  Q  F  S  H  A  Q  H  S  N  V 
259 GTCCTGGTCGGCCCCTCAGGTGTCATTACTGCTGACGGCAAGAACCTGCAGCTGGATCAGGATGGCCTCCCTCTCCCACTCCGCAGGAAGCGCGCTGTG 
87  V  L  V  G  P  S  G  V  I  T  A  D  G  K  N  L  Q  L  D  Q  D  G  L  P  L  P  L  R  R  K  R  A  V 
358 TCCCTCGAGGGTCCCTCCGGCGTGTTGTTCGCAGATGGCCAGAAGAGACACCTCCCTGTGGGCGTGACTGTC 
120 S  L  E  G  P  S  G  V  L  F  A  D  G  Q  K  R  H  L  P  V  G  V  T  V 
430 GTCAGTGTGGGTCCCTCTGGCGCCACTCTCTCCAACGGCAAACACGTCCAGTTCCGTGAGAAGCGCGCTGTG 
144 V  S  V  G  P  S  G  A  T  L  S  N  G  K  H  V  Q  F  R  E  K  R  A  V 
502 TCCCTCGAGGGTCCCTCCGGCGTATTGTTCGCAGACGGCCAGAAGAGACACCTCCCTGTGGGCGTGACTGTC 
168 S  L  E  G  P  S  G  V  L  F  A  D  G  Q  K  R  H  L  P  V  G  V  T  V 
574 GTCAGTGTGGGTCCCTCTGGCGCCACTCTCTCCAACGGCAAACACGTCCAGTTCCGTGAGAAGCGCGCTGCTTCTGGC 
192 V  S  V  G  P  S  G  A  T  L  S  N  G  K  H  V  Q  F  R  E  K  R  A  A  S  G 
652 GCTGTGGTTGGCTCCGCTGGTTTCATCACTCCTAGTGGAGTGCCTGTCCAGCTTGCTCCCGGCGTGACAGTC 
218 A  V  V  G  S  A  G  F  I  T  P  S  G  V  P  V  Q  L  A  P  G  V  T  V 
724 GCTTCTAGTGGACCTTCCGGTATTGTTCTCAGCACTGGCGAGAACGTCCAGTACGACCGCAAAAAGCGCTCTGCTTCTGGC 
242 A  S  S  G  P  S  G  I  V  L  S  T  G  E  N  V  Q  Y  D  R  K  K  R  S  A  S  G  
805 GCTGTGGTTGGTTCCGCTGGTTTCATCACTCCTAGTGGAGTGCCTGTCCAGCTTGCTCCCGGCGTGACAGTC 
269 A  V  V  G  S  A  G  F  I  T  P  S  G  V  P  V  Q  L  A  P  G  V  T  V 
877 GCTTCTAGTGGACCTTCCGGTATTGTTCTCAGCACTGGCGAGAACGTCCAGTACGACCGCAGGAAGCGTGCAGCACCCTCCAAG 
293 A  S  S  G  P  S  G  I  V  L  S  T  G  E  N  V  Q  Y  D  R  R  K  R  A  A  P  S  K 
961 GCTACTGTTGGAGAGAGCGGCATCATCACTCCTGGTGGACGACTGATTCAGTTCCCCC--->   1018 
321 A  T  V  G  E  S  G  I  I  T  P  G  G  R  L  I  Q  F  P          339 



and 3).  RT-PCR primers (F3SE and F3AS in Table 1) for CsproCP5.1 additionally 

amplified the partial transcript CsproCP6, which contains a repeat of a 132 bp region 

present only once in CsproCP5.1 (Table 2; Figs. 2 and 3).  Although the size of 

CsproCP6 is unknown, it is nearly identical to CsproCP5.1 except for the additional 

repeat; therefore, the predicted size of CsproCP6 is ~132 nucleotides longer than 

CsproCP5.1. 

A search of the EST database using a degenerate sequence based on the 18-

residue motif was performed to further verify the RACE contigs and to obtain additional 

sequences.  This search generated 169 sequences.  Contigs were determined, and the 

multiple ESTs for each contig helped to account for PCR errors.  The cDNAs 

CsproCP2.1, CsproCP2.2, CsproCP2.3, CsproCP2.4, CsproCP3.3, and CsproCP5.2 

each contain an intact ORF and are contigs of five or more sequences (Table 2; Figs. 2 

and 3).  CsproCP4 is from a single clone in the library and does not contain an intact 

ORF (Table 2; Figs. 2 and 3).  The sequences obtained by RACE and RT-PCR were also 

located in the EST database.  In most cases, the database did not contain more sequence 

information; however, it did contribute to an additional 80 bps to the 5’ end of 

CsproCP5.1.   

A 4-residue motif (RxKR) exists in each of the translations one to five times and 

appears to be a recognition site for a trypsin-like serine protease (Figs. 2 and 3).  

Assuming cleavage occurs at all of the recognition sites, the 11 pro-proteins could be 

cleaved into 37 peptides.  Thus, the nomenclature for the different CsproCP cDNAs 

reflects the putative cleavage of the CsproCP pro-proteins into their respective CsCP 

peptides.  The N-terminally cleaved, “a” peptides contain either two or four copies of the 
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18-residue motif, but all other putatively cleaved peptides contain only two copies of the 

motif (Table 2; Figs. 2 and 3).   

 

Genomic DNA amplification and cDNA sequence comparison 

To examine the possibility of alternate splicing, amplification of genomic DNA 

was attempted using all nine combinations of the three sets of RT-PCR primers (Table 1).  

Primers F2SE and F1AS amplified genomic DNA corresponding to CsproCP3.1, and 

primers F2SE and F2AS amplified DNA corresponding to CsproCP3.2 (Fig. 4).  The two 

genomic sequences contain introns that interrupt the signal peptide in each pro-protein 

(Fig. 4).  The different length (118 bp and 103 bp) and sequence of each intron indicates 

that CsproCP3.1 and CsproCP3.2 are coded by different genes; however, it cannot yet be 

determined if alternate splicing is responsible for any of the other transcripts. 

 

Tissue- and stage-specific gene expression 

The expression of the some of the CsproCP genes was determined by Northern 

analysis.  The probes were designed according to specificity of transcript hybridization.  

Probe 1GN (primers 1GNSE and 1GNAS; Table 1) was designed to detect the transcripts 

CsproCP3.1, CsproCP3.2, CsproCP4, CsproCP5.1, and CsproCP6; therefore, acting as a 

general probe.  It encompasses the nucleotide sequence 121 to 593 in cDNA CsproCP3.1, 

which encodes the majority of the cleaved peptides CsCP3.1a and CsCP3.1b (Figs. 2E 

and 3E).  This region shares ~94% homology with the corresponding nucleotide regions 

in the four other cDNAs.  Probe 1SP (primers 1SPSE and 1SPAS; Table 1) encompasses 

the nucleotide sequence 621-881 in CsproCP3.1, which encodes CsCP3.1c and part of  
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Figure 4. The intron regions from genomic DNA that interrupt the signal peptides of 
CsproCP3.1 (A) and CsproCP3.2 (B).  The different lengths and 
sequences show that different genes encode these two transcripts. 
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A) CsproCP3.1 intron 
 
37  ATGAAGCTTTTGgtatgattcttcacttgctggtgttcaatattttttttcctttttttgcaagtcaatgtgaggactacttttc  
-16 M  K  L  L 
122 agctgttgacgtgcctttctcatgccctccgtgtgactccaacagGTAGCATTGTGC  179 
-12                                              V  A  L  C 
 
 
B) CsproCP3.2 intron 
 
37  ATGAAGTTTTTGgtatgattcttcattgatggtgttcagtgatctttacagtcaatatgataaagtctttacgctggtgtcacgc   
-16 M  K  F  L 
122 ctttctcatgccctccgtgtgactccaacagGTAGCATTGTGC  164 
-12                                V  A  L  C 
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the 3’ untranslated region (Fig. 2E and 3E).  This region does not share significant homology 

with any of the other cDNAs; therefore, 1SP should only detect CsproCP3.1 (Fig. 2E and 3E).  

Probe 3SP (primers 3SPSE and 3SPAS; Table 1) was designed to detect the transcripts 

CsproCP5.1 and CsproCP6.  It encompasses the nucleotide sequence 613-842 in CsproCP5.1, 

which encodes CsCP5.1c and CsCP5.1d (Fig. 2I and 3I).  This region is shared with the 

CsproCP6 region encoding CsCP6c and CsCP6d and is not found in any of the other cDNAs.   

 The three probes only detected transcripts in hypodermal RNA of cuticle that is in the 

process of calcification (Fig. 5B-D).  No transcripts were detected in the RNA from pre-ecdysial 

and anecdysial mid-dorsal hypodermis, and none were detected at any stage in the arthrodial 

membrane hypodermis (Fig. 5B-D).  The transcripts were weakly detected in mid-dorsal 

hypodermis at 3 h and 12 h post-ecdysis and strongly detected at 48-h post-ecdysis (Fig. 5B-D).  

Hybridization of probe 1GN yielded three bands whose sizes agreed well with that of 

CsproCP3.1 and CsproCP3.2 (~930 bps), CsproCP5.1 (1227 bps), and CsproCP6 (~1360 bps) 

(1, 2, and 3 respectively; Fig. 5B).  Although probe 1GN should have recognized CsproCP4, 

whether it was detected or not is unknown because its size is unknown.  The transcript detected 

by probe 1SP putatively corresponds to CsproCP3.1 (1; Fig. 5B, C), and the transcripts detected 

by probe 3SP putatively correspond to CsproCP5.1 and CsproCP6 (2 and 3 respectively; Fig. 

5B, D).   

 

Tissue- and stage-specific protein expression 

SDS-PAGE and Western blotting were performed to determine the protein content and 

the presence of the 18-residue motif in cuticle proteins extracted at various  
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Figure 5. Northern expression of the gene family encoding the 18-residue motif on 
calcified cuticle (C) vs. noncalcified arthrodial membrane (A) at various 
time points in the molting cycle.  Lane 1 is the RNA marker.  Lanes 2 and 
3 are from a pre-ecdysial (D2) crab.  Lanes 4 and 5 are from a 3 h post-
ecdysial crab.  Lanes 6 and 7 are from a 12 h post-ecdysial crab.  Lanes 8 
and 9 are from a 48 h post-ecdysial crab.  Lanes10 and 11 are from an 
anecdysial (C4) crab.  A) Blot containing 5 µg transferred RNA and 2 µg 
RNA markers and the gene expression determined by probes B) 1GN, C) 
1SP, and D) 3SP.  1 putatively corresponds to both CSproCP3.1 and 
CSproCP3.2 in B but only to CSproCP3.1 in C.  2 putatively corresponds 
to CSproCP5.1, and 3 putatively corresponds to CSproCP6. 
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times before and after the initiation of calcification and the deposition of the endocuticle.  The 

proteins were extracted from the acetic acid-treated tissues with 6M urea in 0.1% TFA as in 

previous studies (Kragh et al., 1997; Andersen, 1998, 1999; Nousiainen et al., 1998).  However, 

the present study used different tissues and cuticle types.   

Coomassie staining of proteins indicated a loss of certain major protein bands and a gain 

of others from pre- to post- to anecdysis (Fig. 6A).  For example, there is a decrease of 25 and 18 

kDa bands and a high molecular weight (MW) band, while a 12 and 40 kDa band and several 

low MW bands increase.  The arthrodial membrane and calcified cuticle proteins of anecdysial 

crabs show quite different banding patterns; whereas, the tendon and muscle proteins are more 

homogenous. 

 Western analysis showed strong binding of the 18-residue motif antibody to dorso-

branchial and claw cuticle proteins at 12 kDa during anecdysis but no binding to arthrodial 

membrane proteins (Fig. 6B).  None of the proteins from pre-ecdysial (D2), and 0, 3, 12, and 24-

h post-ecdysial cuticle were detected, but weak binding did occur in 48-h post-ecdysial cuticle.  

No binding occurred in muscle proteins, but interestingly, weak binding did occur in tendon 

proteins at the same molecular weight as the cuticle proteins. 
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Figure 6. Gel electrophoresis (A) of protein extracts from various cuticle and tissue 
types in C. sapidus, and the Western analysis (B) of the presence of the 
18-residue motif in those proteins.  Lane 1 is the molecular weight marker.  
Lane 2 is pre-ecdysial (D2) proteins from the calcified, dorso-branchial 
cuticle (Dbc).  Lane 3 is from the Dbc of a crab right after ecdysis (0).  
Lane 4 is from the Dbc of a 3 h post-ecdysis crab.  Lane 5 is from the Dbc 
of a 12 h post-ecdysis crab.  Lane 6 is from the Dbc of a 24 h post-ecdysis 
crab.  Lane 7 is from the Dbc of a 48 h post-ecdysis crab.  Lane 8 is from 
the Dbc of an anecdysial (C4) crab.  Lane 9 is from the claw cuticle (Cl) of 
an anecdysial crab.  Lane 10 is from the arthrodial membrane (Am) of an 
anecdysial crab.  Lane 11 is from the tendon (Te) of an anecdysial crab.  
Lane 12 is from the muscle (Mu) of an anecdysial crab.
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DISCUSSION 

 

 This study investigated the molecular mechanisms associated with the spatial and 

temporal control of calcification in the Callinectes sapidus exoskeleton.  An 18-residue motif 

(xLxGPSGφφxxDGxxxQφ) was observed in proteins from the calcified cuticle of some decapod 

crustaceans, but this motif was not observed in proteins from the flexible, noncalcified arthrodial 

membrane found at the joints (Kumari et al., 1995; Kragh et al., 1997; Andersen, 1998, 1999; 

Nousiainen et al., 1998).  An antibody made against the 18-residue motif showed similar patterns 

in immunohistochemical staining of the cuticle from C. sapidus (Fig. 1; Hequembourg, 2002).  

Thus, the 18-residue motif (xLxGPSGφφxxDGxxxQφ) was a prime candidate for the molecular 

analysis of calcification in C. sapidus. 

Eleven cDNAs that code for multiple, variant copies of the 18-residue motif 

(xLxGPSGφφxxDGxxxQφ) have been cloned and characterized from the hypodermis of early 

post-ecdysial, calcifying cuticle.  The copies of this motif account for ~70% of the total amino 

acid residues in each ORF.  The inferred translations share strong homology with the previously 

identified, calcified cuticle proteins containing the 18-residue motif.  However, the full-length 

proteins from Homarus americanus (Kragh et al., 1997; Nousiainen et al., 1998), and Cancer 

pagurus (Andersen, 1999) are much smaller than the translated products of the cDNAs reported 

here.   

 

In addition to the highly repeated 18-residue motif, a 4-residue motif (RxKR) exists one 

to five times in each of the cDNA translations.  These four residues are not present in any of the 

directly-sequenced C. pagurus, H. americanus, and G. lateralis proteins.  Therefore, the working 

hypothesis is that all the open reading frames code for pro-proteins that are post-translationally 
2
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cleaved into smaller peptides.  Each cleaved peptide contains either two or four copies of the 18-

residue motif, and it is these peptides that are the C. sapidus homologs of the C. pagurus, H. 

americanus, and G. lateralis proteins.  The cleavage appears to be mediated by a trypsin-like 

serine protease, because this protease is known to cleave proteins at the C-terminal side of 

arginine and lysine.   

Several serine proteases have been characterized in crustaceans and function in digestion 

(Vanwormhoudt et al., 1995; Klein et al., 1996; Roy et al., 1996; Hernandez-Cortes et al., 1997), 

immunity (Soderhall and Cerenius, 1998; Kanost, 1999), or sensory perception (Levine et al., 

2001).  Specifically, serine proteases with trypsin-like and CUB domains are often secreted and 

can function in the processing of extracellular proteins (Bond and Beynon, 1995).  Levine et al. 

(2001) cloned and characterized csp from the olfactory organ of the spiny lobster Panulirus 

argus, which encodes a hormonally regulated CUB-serine protease.  They speculated that this 

protease could be involved in molting by aiding in the enzymatic breakdown of the old cuticle 

during pre-ecdysis or by degrading cuticular anchoring proteins.   

Another 4-residue (RYRR) recognition site for enzymatic digestion was found in the 

open reading frame of the Galaxin transcript from the calcified exoskeleton of a reef coral 

(Fukuda et al, 2003).  Additionally, the CAP-1 transcript codes for a C-terminal arginine and 

lysine that are not present in the mature CAP-1 protein (Inoue et al., 2003).  A recombinant 

protein with the two, paired basic residues from the CAP-1 cDNA showed higher anti-

calcification activity than a recombinant protein without them.  It was suggested that these two 

residues are removed by carboxypeptidase B or E and might contribute to a change in protein 

conformation leading to easier association with the calcium carbonate microcrystal. 
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Assuming cleavage occurs, I have virtually cleaved the C. sapidus pro-proteins into their 

respective peptides and aligned them with the full-length C. pagurus and H. americanus cuticle 

proteins that contain the 18-residue motif.  Due to the large number of sequences, the alignments 

are not shown, but rather the hierarchical clustering they produce.  This clustering is meant to 

show sequence similarity and not imply phylogeny (Fig. 7).  The C. sapidus sequences appear to 

group into five main clusters.  The “a” and “b” peptides each group into one distinct cluster.  

Most of the C-terminal peptides cluster together, and some of the inner peptides from CsproCP4, 

CsproCP5.1, and CsproCP6 cluster together.  The peptides from CsproCP5.2 cluster together and 

are distinct from the other C. sapidus sequences.  In general, the C. sapidus peptides are more 

homologous with themselves than with the C. pagurus and H. americanus peptides, as expected, 

and most of the C. sapidus peptide groups have corresponding C. pagurus and/or H. americanus 

proteins. 

The high number of homologous repeat regions and the repeated region present in 

CSproCP6 suggested possible alternate splicing.  Genomic DNA products corresponding to 

CsproCP3.1 and CsproCP3.2 were amplified, and both sequences contain different sized introns 

that interrupt the signal peptide.  This result and the fact that no introns divide the open reading 

frames between the similar peptides imply that these two transcripts came from two separate 

genes.  Although alternate splicing has not been determined for the other transcripts, it appears 

that the transcripts encoding proteins with the 18-residue motif (xLxGPSGφφxxDGxxxQφ) are 

from a family of genes.  The cuticle  
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Figure 7. Hierarchical clustering of the virtually cleaved C. sapidus translations 
(CsCPs) and all 18-residue motif-containing proteins from C. pagurus 
(CpCP#) and H. americanus (HaCP#).  C. sapidus sequences for arginine 
kinase and beta-tubulin were used as outgroups.  Same color denotes 
sequence similarity.
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protein genes of insects often have their signal peptides interrupted by introns as well (reviewed 

in Willis, 1996).  These insect genes also tend to be tandemly arranged on the chromosome 

(Willis, 1999).  Therefore, because of the intron location and the equal gene expression, it is 

possible that the CsproCP genes are also found in clusters under the control of one regulator.  As 

yet, I have no evidence to support this speculation. 

Northern analysis shows that many CsproCP genes are only expressed in the hypodermis 

of cuticle that is in the process of calcification.  Expression does not occur in the hypodermis of 

cuticles that are not in the process of calcification, which include the pre-ecdysial and anecdysial 

cuticle, as well as the arthrodial membrane.  Gene expression begins at ~3 h post-ecdysis when 

calcification is initiated.  Expression is low at 3 and 12 h post-ecdysis, but increases dramatically 

at 48 h post-ecdysis.  The expression during post-ecdysis and the lack of expression in the 

arthrodial membrane is consistent with the immunohistochemical staining performed by 

Hequembourg (2002).   

Multiple probes for Northern blotting were used in this investigation to attempt to 

determine the total number and sizes of transcripts as well as whether or not there are any 

expression differences between those transcripts.  Three probes, amplified from existing 3’ 

RACE or RT-PCR cDNA, were initially designed to recognize one, a subset, or all of the 

transcripts encoding the 18-residue motif.  Hybridization of probe 1GN, designed to recognize 

all of the transcripts, produced three bands whose sizes agreed well with the transcripts 

CsproCP3.1 and CsproCP3.2, CsproCP5.1, and CsproCP6.  CsproCP3.1 and CsproCP3.2 have 

very similar sizes; therefore, one band could correspond to two transcripts.  Although probe 1GN 

was originally designed to recognize all the transcripts from the CsproCP gene family, the 

additional transcripts, CsproCP2.1-2.4, CsproCP5.2, and CsproCP3.3, were acquired after probe 
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1GN was designed and implemented.  Sequence analysis suggests that the probe probably would 

not recognize these additional transcripts.  Probe 1SP was designed to be specific for 

CsproCP3.1, and it produced one band of the same size as one band in the RNA blot probed with 

1GN.  The size agreed well with CsproCP3.1 and CsproCP3.2; however, probe 1SP probably 

only recognized CsproCP3.1.  Probe 3SP was designed to recognize CsproCP5.1 and CsproCP6.  

3SP detected two bands, also present in the 1GN Northern, whose sizes agreed well with 

CsproCP5.1 and CsproCP6.  Additional Northern blotting needs to be performed with a more 

general probe that will recognize all the transcripts.  The equal expression of the detected 

transcripts supports the notion that the CsproCP genes are under the control of one regulator; a 

common feature in insects. 

Previous studies on the electrophoretic patterns of the pre- and post-ecdysial, calcified 

cuticle proteins have concentrated on the soluble proteins from stage D3 to 5 h post-ecdysis 

(Shafer et al., 1994, 1995; Coblentz et al., 1998; Tweedie, 2001).  In this study, 10% acetic acid 

was used to decalcify the tissues and remove the soluble proteins, and the resulting residues were 

subjected to 6M urea in 0.1% TFA to extract the insoluble proteins.  Additionally, the study 

examined a broader time course from pre- and post-ecdysial crabs that encompassed D2 to 48 h 

post-ecdysis as well as anecdysial crabs.  More tissues including the arthrodial membrane, 

tendon, and muscle were also examined.  Coomassie staining of fractionated proteins showed 

some interesting patterns including a loss and gain of 12-25 kDa and high MW proteins and 

specifically, a gain in low MW (≤12 kDa) proteins.  The arthrodial membrane and calcified 

cuticle protein patterns of anecdysial crabs are extremely different as expected by the different 

functions of each cuticle type.  The protein banding patterns are not the focus of this 

investigation, and any further analysis would be mere speculation. 
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Western blotting was used to compare the immunohistochemical staining of the proteins 

from anecdysial, claw cuticle and arthrodial membrane.  Consistent with Hequembourg (2002), 

the antibody strongly detected proteins in the calcified cuticle but did not bind to arthrodial 

membrane proteins.  Binding of the antibody to anecdysial claw and dorso-branchial cuticle 

showed that there were minimal differences in protein content from the different calcified cuticle 

regions of the crab.  Therefore, it assumed that all calcified cuticle includes proteins containing 

the 18-residue motif.  Although gene expression levels are high at 48 h post-ecdysis, only weak 

binding of the antibody occurred at 48 h post-ecdysis.  Apparently the protein has not had time to 

accumulate within the cuticle.  By anecdysis, the proteins have accumulated in the cuticle; 

therefore, it is not necessary for crabs to express these genes at this stage.  The increase of the 12 

kDa and low MW proteins seen in PAGE strongly correlates with the increase in signal of the 12 

kDa band in Western blotting.  Thus, it is speculated that the 12 kDa PAGE bands are proteins 

that contain the 18-residue motif.  Given the predicted sizes of the cleaved peptides, 12 kDa for 

four 18-residue motif-containing peptides and 5 kDa for two motif-containing peptides, it was 

expected that the antibody would have detected both sizes.  However, only the 12 kDa peptides 

were detected.  The peptide with the sequence VLVGPSGIVTSDGQNVQF used as the antigen 

is more similar to the 5 kDa cleaved peptides with two 18-residue motifs than to the 12 kDa 

peptides.  It is unclear at this time why the antibody only recognized the larger peptides. 

Muscle and tendon tissues were intended to be negative controls.  The antibody did not 

bind to muscle proteins as expected; however, the antibody weakly recognized proteins from the 

tendon at the same MW as the calcified cuticle.  Yamaguchi et al. (2003) determined that crab 

tendon is composed of 42% calcium phosphate.  The results suggest that proteins with the 18-
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residue motif are involved in multiple aspects of decapod crustacean calcification and are not 

limited to calcium carbonate mineralization in the cuticle.  

It should be noted that proteins containing the 18-residue motif were isolated from all 

four layers of the G. lateralis cuticle (Kumari et al., 1995), and electron microscopy studies used 

colloidal-gold labeled antibodies specific to the 18-residue motif that detected antigens in the 

epi- and exocuticle as well as the endocuticle (Hequembourg, 2002).  These results are in 

contrast to both the immunohistochemical staining from light microscopy (Fig. 1; Hequembourg, 

2002) and the results found here.  Some genes encoding proteins with the 18-residue motif might 

be expressed at earlier times than those found in this study, and thus explaining the presence in 

the other cuticle layers.  Alternatively, some proteins might be transported to the outer layers 

through the epithelial projections that are intertwined within the cuticle by way of the pore canals 

(Roer and Dillaman, 1984; 1993).  Regardless, the elevated gene expression at 48 h post-ecdysis 

and the immunohistochemical staining (Fig. 1; Hequembourg, 2002) show that proteins with the 

18-residue motif are at least concentrated in the endocuticle. 

Various investigations in this laboratory have examined the proteins that are involved in 

the initial calcification of the exocuticle.  The proteins encoded by the CsproCP genes might be 

involved in initial calcification because expression coincides with its onset.  However, the post-

ecdysis expression of the genes does not fit with our model of large, shielding proteins that are 

degraded to expose nucleation sites present in the pre-ecdysial layers (Coblentz et al., 1998).  

The genes investigated here coding for the 18-residue motif are not present in the new cuticle 

before ecdysis and so cannot be the proposed nucleation sites. The function of the CsproCP 

proteins may be initiated when, after their synthesis, a trypsin-like serine protease cleaves the 

pro-proteins at the last arginine of the 4-residue motif, producing their respective peptides.  Then 
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the four residues (RxKR) are removed by a constitutive enzyme such as carboxypeptidase B or 

E, similar to CAP-1 (Inoue et al., 2003), to cause an advantageous conformational change in the 

peptide.  The regular spacing of predicted β-sheets (data not shown), corresponding to the 

repeated 18-residue motif, may provide Ca2+ binding sites or interact with the crystal faces after 

nucleation to orient growth.  In conclusion, it has been shown that the CsproCP gene family 

encodes proteins with a highly repeated structure that are involved in calcification of mineralized 

structures in the blue crab, Callinectes sapidus.  Additional work, such as functional studies 

through RNAi and in vitro mineralization assays, needs to be performed on these genes and 

proteins to further understand their specific roles in calcification. 
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