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ABSTRACT 

Scyphozoan jellyfish are free-swimming gelatinous organisms whose nervous system 

includes a motor nerve net that controls swimming.  Swim contractions originate in a network of 

distributed pacemakers found in the marginal rhopalia, which are located around the margin of 

the bell.  Many scyphozoan jellyfish have eight rhopalia, while others have sixteen or more.  At 

any one time, the fastest pacemaker controls the output of the swim system.  The activity of a 

single pacemaker is irregular; however, by linking multiple irregular pacemakers the swim 

system exhibits regular contractions.  Thus, multiple pacemakers are believed to increase the 

frequency and regularity of swim contractions.  Pacemaker interactions in Chrysaora 

quinquecirrha, Stomolophus meleagris, Aurelia aurita, and the ephyra of Aurelia aurita were 

investigated using artificial pacemaker networks created from pacemaker ablation experiments. 

In all species, with increasing pacemaker number, the frequency and regularity of swimming 

increased.  Integrate and fire pacemaker models were used to determine if the pacemaker 

networks of three species of scyphomedusae were resetting, independent, or semi-independent.  

It is concluded that Chrysaora quinquecirrha and Stomolophus meleagris have a resetting 

pacemaker networks.  In contrast, Aurelia aurita has a semi-independent pacemaker network and 

the ephyra of Aurelia aurita has resetting pacemaker network.   
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INTRODUCTION 

 

Overview 

Cnidarians are simple multicellular marine organisms constructed at the tissue level of 

organization.  Common dogma suggests they have the simplest multicellular nervous systems in 

the animal kingdom.  The generalized cnidarian nervous system includes diffuse, non-polarized 

nerve nets made up of bipolar and multipolar neurons that communicate via chemical synapses 

(all classes) and gap junctions (hydrozoans; Satterlie, 2002).  Despite this perceived 

neurobiological simplicity, the behavioral repertoires of cnidarians can be rich. 

Scyphomedusae are weak swimmers and are at the mercy of prevailing currents and 

wind-driven surface waves (Eiane et al., 1999).  They normally are found at or near the surface, 

and are often beached.  This results in sporadic, high-density jellyfish blooms during the summer 

months.  Most species of scyphomedusae are able to deliver painful stings that can potentially 

cause serious health problems in sensitive individuals.  Due to their potential ecological 

significance, and their threat to public health, we need a full understanding of their behavioral 

physiology.  

 

Statement of Problem 

Scyphozoans normally have a minimum of eight rhopalia, although some species have 

sixteen while others have as many as sixty-four (Satterlie, 2002); this is important since each 

rhopalium contains a swim pacemaker in addition to sensory structures.  The physiology of 

pacemakers presents an interesting question about the functional significance of this apparent 

pacemaker redundancy, from the point of view of control of the swim musculature.  Previous 
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studies have shown that individual pacemakers have an irregular output (Lerner et al., 1971; 

Murray, 1977; Satterlie and Nolen, 2001).   

Frequency-dependent facilitation occurs when a pacemaker fires, this contraction leaves 

behind an altered state so that the next contraction is enhanced.  A change in the frequency of 

stimuli during these series of contractions results in an immediate change in contraction strength 

(Bullock, 1943).  Since frequency-dependent facilitation is an important determinant of muscle 

force output in scyphozoans (Bullock, 1943; Passano, 1965; Satterlie, 2002), an irregular 

pacemaker output may not produce adequate drive to the swim muscles to keep the animals in 

the water column (Lerner et al., 1971; Murray, 1977; Satterlie and Nolen, 2001).  However, 

linking multiple pacemakers in scyphomedusae and cubomedusae causes an overall increase in 

the frequency and regularity of swim contractions, which provides for efficient locomotion 

(Lerner et al., 1971; Murray, 1977; Satterlie and Nolen, 2001).  Thus, the redundancy of 

pacemakers serves an adaptive function only if fast and regular swimming contractions are more 

useful to the jellyfish than slow and irregular swimming contractions (Lerner et al., 1971).  Here, 

the investigation of pacemaker redundancy is take one-step further, to test the nature of the 

connections between pacemakers in three different species of scyphozoan jellyfish, and in the 

ephyra of one of the species. 

The simplest model to explain pacemaker interactions in producing this faster, more 

regular rhythm is that of a network of resetting pacemakers in which one pacemaker triggers a 

contraction wave in the swim musculature and resets all of the other pacemakers (Lerner et al., 

1971; Murray, 1977).  In this way, the pacemaker with the fastest rhythm will drive swimming 

until its output frequency drops and another pacemaker takes over.  An alternate model suggests 

that a regular rhythm will also emerge if there is no resetting of pacemakers, and their output is 
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totally independent (Satterlie and Nolen, 2001).  In modeling studies of cubozoan jellyfish, 

Satterlie and Nolen (2001) found the pacemaker networks fell between the resetting and 

independent models, suggesting they are semi-independent; pacemakers are capable of escaping 

from a strict resetting organization through the influence of various inputs to the individual 

pacemakers.  In keeping with past modeling results on scyphozoan jellyfish (Horridge, 1959; 

Lerner et al., 1971; Murray, 1977), I predict that regular swim activity in these rather sluggish 

swimmers is due to the redundancy of pacemakers in pacemaker networks that have strict 

resetting connections.  

 

Location and Coordination of Pacemakers 

To aid in swimming, jellyfish have both radial muscle (runs toward the bell apex) and 

circular muscle (ring-like organization around the bell; Horridge, 1954b; fig. 1A).  Swimming is 

achieved by ejecting water from the opening of the bell by contraction of circular muscles, and in 

some cases, radial muscles (Satterlie and Spencer, 1987).  Circular muscle cells are located deep 

within the subumbrella, are striated, and range from 0.2-0.3 microns in diameter (Gladfelter, 

1972; Satterlie and Spencer, 1979).  Scyphozoan contractions are relatively slow, with 

contraction and relaxation sometimes taking as long as two seconds (Bullock, 1943).  

Scyphomedusae swim through the symmetrical contraction of the circular muscles, while 

asymmetrical contractions are used for turning (Horridge, 1959).  In addition, several species of 

scyphomedusae use swimming to generate eddies that deliver and trap prey in the marginal 

tentacles (Matanoski et al., 2001).  Thus, swimming is used to obtain prey and to maintain the 

animal’s position in an area where prey are found (Matanoski et al., 2001; Matanoski and Hood, 

2006).  Interestingly, as prey density increased, Chrysaora quinquecirrha’s swim frequency 
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increased, and when prey density decreased its swimming frequency decreased (Ford et al. 1997; 

Matanoski et al., 2001).  Thus, C. quinquecirrha may have some degree of prey-selected control 

over swim contractions.  

True to their radial symmetry, rhopalia are found around the margin of the bell of 

scyphozoans, oriented to allow gathering of sensory information from all directions without a 

dedicated leading body part (Horridge, 1954b; Satterlie, 2002; Romanes, 1876).  Each rhopalium 

includes a statocyst for determining orientation, pigmented light sensitive eyespots (ocelli), and 

sensory pits that are believed to be chemoreceptive.  Within each rhopalium is a “marginal nerve 

center” (pacemaker) that serves to set the frequency of swim contractions (Horridge, 1954; 

Lerner et al., 1971; Romanes, 1876).  Pacemakers are groups of cells that possess the ability to 

generate spontaneous action potentials (Horridge, 1959).  Each individual action potential from a 

pacemaker, in turn, generates a single swim contraction of the subumbrellar musculature.  Local 

sensory information is presumably integrated within a rhopalium, which can lead to changes in 

the frequency characteristics of its pacemaker output (Horridge, 1959).  Isolated rhopalia are 

capable of generating impulses independently; therefore, the animal is presumed to have some 

means of pacemaker coordination (Murray, 1977; Romanes, 1876; Satterlie and Spencer, 1987).  

The removal of a rhopalium does not alter the conduction of impulses through the muscle 

layer (Romanes, 1876; Satterlie, 2002).  Due to the redundancy of pacemakers, swimming will 

continue in spite of serious damage to the nerve nets (Lerner et al., 1971).  With the large 

number of rhopalia found in scyphomedusa, there is a constant shift of control between each of 

the rhopalia (Horridge 1956; Lerner et al., 1971; Murray, 1977).  This shift is influenced by 

sensory inputs since in an artificially tilted animal; contractions usually originate from the upper-

most rhopalium.  However, when that rhopalium is brought to the lowest position, that particular 
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rhopalium no longer drives swimming (Horridge, 1956).  Past modeling results suggest the 

activity from an active pacemaker resets all others (resetting pacemaker network), giving rise to 

the concept that the pacemaker with the fastest rhythm controls swim output (Horridge, 1959; 

Lerner et al., 1971; Murray, 1977).  

Romanes (1876) discovered that scyphomedusae have two types of nerve nets: the motor 

nerve net (MNN; fig. 1A) and the diffuse nerve net (DNN; fig. 1B).  Both the MNN and the 

DNN have symmetrical chemical synapses so each neuron can serve as the presynaptic or 

postsynaptic cell.  These features allow the nerve nets to be nonpolarized so a contraction will be 

conducted throughout the entire subumbrella, in any direction, regardless of the site of initiation 

(Horridge, 1954b; Satterlie, 2002).  The DNN can influence pacemaker output by indirectly 

stimulating the acceleration of the swim rhythm; in addition, it provides peripheral modulatory 

input directly to the swim musculature, allowing a wide range of contraction patterns (Satterlie, 

2002).  

 

The Motor Nerve Net 

The motor nerve net extends throughout the entire subumbrella, forming a network that 

connects all eight marginal rhopalia with the circular and radial swimming muscle bands 

(Carlberg et al., 1995).  In addition, the network has direct neuromuscular synapses that activate 

the swim musculature.  As mentioned above, two important properties underline the simplicity 

and important functional properties of the MNN:  (1) impulses generated in one part of the 

conduction system are transmitted through the entire net, so the spread of excitation is diffuse, 

and (2) excitation can occur in any direction throughout the nerve net (Satterlie, 2002).  
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A single impulse from a rhopalium results in an excitation wave that is conducted 

throughout the entire MNN at about 50 cm/sec (Satterlie and Spencer, 1987).  The relatively 

slow kinetics of the swim contraction produces a symmetrical contraction of the bell (Passano, 

1965).  The MNN has a refractory period that is 200-250 milliseconds long (Bullock and 

Horridge, 1965), thus limiting the possibility of tetanic contractions of the subumbrellar 

musculature.  The refractory period decreases in duration with repetitive activity, though 

suggesting there is some plasticity related to high frequency swim activity (Bullock and 

Horridge, 1965).  There are reports of parallel increases in conduction velocity within the MNN 

following repetitive activity (see Bullock and Horridge, 1965). 

Neurons found within the MNN are bipolar or multipolar and have cell body diameters of 

around 15μm (Anderson and Schwab, 1983).  Individual neurons have stable resting potentials (-

60 to -70 mV) and action potentials with 10 – 20 msec durations (Anderson and Schwab, 1982).  
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Figure 1.  Fluorescence micrograph of the motor nerve net (MNN) of Aurelia aurita, using 
immunohistochemistry labeling of an antibody to Tubulin.  (A) Detailed picture of the motor 
nerve net of the subumbrella swim muscles.  Depicts the neurons running from the rhopalium to 
the motor nerve net.  (B) Diffuse nerve net (DNN) of Aurelia aurita, using 
immunohistochemistry labeling an antibody to FMRF.  
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The Diffuse Nerve Net 

The diffuse nerve net (DNN) of scyphomedusae is found throughout the subumbrella, 

exumbrella, manubrium, tentacles, and oral arms.  This system aids in the coordination of 

localized movements such as feeding, passes impulses relatively slowly, and is capable of 

altering the firing activity of pacemakers (Passano, 1965).  

Conduction velocity in the DNN is slow (in the 15cm/s range), variable, and subject to 

facilitation (Bullock and Horridge, 1965).  Even though the conduction of impulses occurs across 

the subumbrella, the DNN cannot directly produce a contraction of the swim musculature, 

although they can up-modulate ongoing swimming activity.  The only point of interaction 

between the DNN and the MNN is in the rhopalia, through DNN-induced changes in pacemaker 

output.  Contractions of the DNN can cause tentacle shortening, acceleration of swim beats, and 

contractions of the manubrium (Bullock and Horridge, 1965). 

 

Pacemaker Activity 

The activity of a single pacemaker is irregular; however, by linking multiple irregular 

pacemakers the swim system exhibits regular contractions (Lerner et al., 1971; Murray, 1977; 

Satterlie and Nolen, 2001).  Thus, multiple pacemakers increase the frequency and regularity of 

swim contractions (Horridge, 1954a, 1954b, 1956; Lerner et al., 1971; Murray, 1977; Romanes, 

1876).  In addition, as the numbers of pacemakers are increased, the sensitivity to sensory inputs 

(disturbances) increases.  There is a constant shift of control between the rhopalia, which may 

explain why scyphomedusae have such a large number of rhopalia (Murray, 1977; Satterlie, 

2002).  
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What prevents the system becoming chaotic?  This is believed to be dependent on the 

resetting response from discharging pacemakers (Pantin and Dias, 1952; Murray, 1977).  If more 

than one pacemaker discharges at a time two separate contraction waves are initiated in the 

subumbrella.  When the two-waves collide, they cancel each other at the point of collision due to 

“mutual refractoriness” (Satterlie, 2002).  Even in these cases like this, only a single, 

symmetrical contraction of the subumbrella is produced (Murray, 1977; Satterlie 2002).  This 

raises the possibility that a network of totally independent pacemakers could still produce a 

regular, efficient output within the swimming system.  

Other studies have reveled affects that are not consistent with a simple resetting 

mechanism (Horridge, 1959; Satterlie and Nolen, 2001).  Satterlie and Nolen suggested three 

possibilities for constructing pacemaker networks: independent, resetting, or a semi-independent.  

An independent neural network consists of pacemakers that do not directly interact with one 

another.  As mentioned previously, in a resetting pacemaker network, activity in one pacemaker 

will reset all of the other pacemakers and thus the pacemaker with the fastest rhythm will control 

the swim contractions (Murray, 1977).  A semi-independent neural network is one that shows 

full resetting connections, but allows modulation of the resetting connections so that they 

become temporarily independent, such as though sensory or modulatory inputs.  Thus, individual 

pacemakers may be under the resetting influence at times (resetting) or free from the resetting 

influence at other times (independent).   

 

Potential Contributions and Limitations of the Study 

The main objectives of this project are to (1) understand the swimming behavior of three 

species of scyphozoan jellyfish, by investigating of the role of pacemaker number on swimming 
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frequency, regularity of swimming, and (2) identify whether these species posses have resetting, 

independent, or semi-independent pacemaker networks.  Modeling experiments were conducted 

on pacemaker interactions in Chrysaora quinquecirrha, Stomolophus meleagris, Aurelia aurita, 

and the ephyra of Aurelia aurita (to give a developmental perspective).  In the modeling 

experiments, artificial pacemaker networks were based on the data from single pacemaker 

preparations, with internal sources of variation included so that individual model pacemakers 

produced similar interpulse intervals (IPI).  These pacemakers were then either connected into 

resetting networks or allowed to free run without any inter-pacemaker interactions.  In addition, 

the models allowed insertion of variable levels of partial resetting.    

Due to the high number of pacemakers in scyphomedusae, and the existing modeling 

results from previous work (Horridge, 1959; Lerner et al., 1971; Murray, 1979), I predict that 

pacemaker networks of these three species will be biased toward shorter interpulse intervals and 

will be of the resetting type.  In a similar investigation showed that the swim pacemaker network 

of cubomedusae fell between the resetting and independent models, suggesting a semi-

independence of swim pacemakers (Satterlie and Nolen, 2001).  Cubomedusae have only four 

swim pacemakers (four rhopalia), and the combination of the small pacemaker number and semi-

independent connections allowed a great biphasic modulatory potential for these active 

swimmers.  I suggest the higher pacemaker number of scyphomedusae, and their relatively 

sluggish swimming and turning abilities, may not reflect a pacemaker network organization like 

that of cubomedusae. 
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MATERIALS AND METHODS 

Pacemaker interactions in Chrysaora quinquecirrha (Desor, 1848), Stomolophus 

meleagris (L. Agassiz, 1862), Aurelia aurita (Linnaeus, 1758), and the ephyra of Aurelia aurita 

were investigated using artificial pacemaker network models created with data from pacemaker 

ablation experiments.  Models outputs were then compared to actual data from experiments.  A 

total of 145 scyphozoan jellyfish were used: 59 Aurelia aurita, 40 ephyra of Aurelia aurita, 22 

Chrysaora quinquecirrha, and 24 Stomolophus meleagris.  C. quinquecirrha and S. meleagris 

were collected using dip nets, by hand, or bottom trawls.  Some individuals of C. quinquecirrha 

came from a culture located at the North Carolina Aquarium at Fort Fisher.  All adult A. aurita 

and its ephyra came from a year round culture at the Center for Marine Science, Wilmington, 

NC.  Jellyfish sizes ranged from 5 mm bell diameter (ephyra) to 15 cm bell diameter.  All 

observations were made on healthy jellyfish whose pacemakers were in good condition.   

A 10-gallon aquarium was filled with filtered seawater and one jellyfish was put into the 

aquarium for 1 hour to acclimate.  Acclimation was considered successful if the medusa 

exhibited constant swimming beats regardless of number of rhopalia, and no cyclical changes in 

swimming.  In similar experiments by Romanes (1877) and Horridge (1959), the swimming rate 

became constant about 30 minutes after removal and remained so for several hours.  

A data trial involved measurement of interpulse intervals (IPI’s), separated into 250 

millisecond bins.  The data were presented as frequency histograms.  Before each trial, the bell 

diameter, number of current rhopalia, and place and method of capture was recorded for each 

jellyfish.  Due to the morphological characteristics (rigidity of the bell) of S. meleagris, bell 

length as well as bell diameter was recorded.  
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Ablation Techniques 

A single trial consisted of ablating an appropriate number of rhopalia prior to data 

collection.  Ablation randomization was accomplished by rolling an 8-sided die to determine 

which rhopalia would be removed (each species has 8 rhopalia).  Rhopalia were ablated by 

cutting small pie-shaped pieces from the margin of the bell using scissors.  The jellyfish was then 

orientated with the number 1 rhopalium at the 12 o’clock position, number 3 in the 3 o’clock 

position, number 5 in the 6 o’clock position, and number 7 in the 9 o’clock position (fig. 2).  The 

number of rhopalia that were ablated was based on the number of rhopalia needed for each trial 

(i.e. trial consisting of 3 rhopalia then 5 rhopalia were ablated).  

Trials lasted up to 1,000 swim contractions or for one hour (depending on which one 

came first).  A computerized program “event timer” developed by Jason Richardson was used to 

record swim contractions, with each contraction registered by the push of the computer spacebar.  

The event timer logged the number of contractions, the time between each contraction (IPI), the 

length of the trial, and put each interpulse interval into appropriate 250-millisecond bins.  

Individual Aurelia aurita and the ephyra of Aurelia aurita were used once in each trial.  Due to 

the limitations in collecting C. quinquecirrha and S. meleagris, individuals were used for two 

trials each.  In these particular cases, the initial jellyfish trials started with 8 rhopalia and after the 

initial trial, either 1, 2, 3, 4, 5, 6, or 7 rhopalium/rhopalia were ablated.  Therefore, all possible 

numbers of pacemakers were removed.  

Data were incorporated into artificial pacemaker models developed by Dr. Thomas 

Nolen, of State University of New York, at Suny New Paltz.  The models create species-specific 

artificial pacemaker networks that allowed comparison of the pacemaker networks of the three 

scyphomedusae species, and allowed testing whether the networks had resetting, independent, or 



 13

semi-independent  pacemaker interactions. By Models of individual pacemakers were based on 

the ablation trials from single pacemaker animals of the appropriate species.  Identical, 

individual model pacemakers were then linked in a resetting pacemaker network, or allowed to 

free run without interactions with other pacemakers (independent network).  The models 

produced IPI data just like the experimental animals.  Due to the high number of pacemakers in 

scyphomedusae, it was predicted that the neural networks of these three species would be biased 

toward shorter interpulse intervals and have resetting pacemaker networks. 

 

Integrate and fire pacemaker model 

The integrate and fire model is the simplest model of a spiking neuron that takes into 

account the dynamics of its input (Dayan and Abbott, 2001; fig. 3).  The basis of the integrate-

and-fire model is a simple compartmental model of a neuron: where Iin is the input current (i.e., 

from a synapse), C is the membrane capacitance, R is the net membrane resistance due to all 

passive channels, and Vrest is the resting potential of the neuron (typically about -70 mV; fig. 3).  

Thus, if no current is injected (Iin = 0) and the  
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Figure 2.  Orientation the ephyra of A. aurita just before ablation of its rhopalium/rhopalia; this 
orientation was used for all of the jellyfish in the study. 
 

 

 

 

 

 

 

 

 

 

Figure 3.  The basis of the integrate and fire model is the simple compartmental model of a 
neuron. 
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system has come to equilibrium then the membrane potential (Vm), will equal the resting 

potential, Vrest. 

In the model, each integrate and fire pacemaker has a membrane potential (Vm) that 

varies between rest and threshold, and has a probability of firing that varies between 0 and 1.  

For a single pacemaker, the probability of firing, P, is given by: P = 1 – (Th – Vm), where Vm is 

the membrane potential and Th is the threshold for firing.  (Thus, the probability of firing is 

determined by how close Vm is to Th).  Vm varies as a function of (random) synaptic input, both 

excitatory and inhibitory.  So, for a single pacemaker, its membrane potential, Vm at time t is 

given by: Vm = V0 + ξe(t) – ξi(t).  Where V0 represents the membrane potential at t-1, ξe(t) and 

ξi(t) are white noise sources of synaptic excitation and inhibition.  When P approaches one, an 

action potential is recorded and Vm is reset to resting.  

For a network pacemaker receiving inhibitory inputs from N pacemakers, the probability 

that the ith pacemaker will fire is: Pi = 1 – (Th – Vi), where Vi is the membrane potential of the ith 

pacemaker, and Th is that pacemaker's threshold.  Pi varies between 0 and 1; when Pi goes to 

one, an action potential is propagated around the nerve net and the ith pacemaker is reset to rest.  

The ith pacemaker's membrane potential, Vm at time t is given by: Vm = V0+ ξe(t) – ξi(t) – Σ 

δij(t'), where V0 represents the membrane potential at t-1, ξe(t) and ξi(t) are white noise sources 

of synaptic excitation and inhibition, Σ δij(t') is the sum of synaptic inputs from the other N 

pacemakers.  Finally, δij(t') = sα2t'e-αt' where s and α indicate the strength and duration of a 

postsynaptic potential, and t' is the time after the jth pacemaker fired. 

 The integrate and fire pacemaker model provides a pacemaker output and a network 

output stochastically, simulating the time varying Vm of hypothetical pacemakers using a Do 

Loop using Igor Pro 6.0 software (Wavemeterics Inc).  Model parameters such as threshold, 
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synaptic noise and refractory period were changed, as were pacemaker interactions, such as 

resetting, via the Σ δij(t') term.  Parameters (particularly the noise function) were changed to 

adjust the mean interpulse interval (IPI) for a model pacemaker to be close to that of real 

jellyfish/single rhopalium data.  The mean, standard deviation (S.D.) of the IPI distribution, and 

the ratio of S.D. to mean, called the coefficient of variation (CV= S.D./mean IPI) were 

calculated. 

The degree of resetting by pacemakers was varied (0%, 50%, and 100%) using the 

intergrate and pacemaker model.  The model networks were run until there were 1,000 IPIs and 1 

trial was carried out for each network.  Means and S.D. of the IPI distribution parameters were 

calculated for each trial.  For comparisons with the real animal data, average values for each of 

the model distribution parameters were plotted (IPI Mean, S.D., CV) +/- 1 standard deviation.  

Model networks were programmed with Igor Pro 6.0 software (Wavemeterics Inc, Lake 

Oswego, Oregon).  Each network consisted of individual oscillators running together and each 

oscillator was designed to fire with an output that cycled from baseline to threshold with a 

constant slope.  To add variability, random increments and decrements were added to the 

probability; therefore, when the probability reached threshold, a pacemaker impulse was 

generated.  Igor Pro 6.0 produced noise generators that were reseeded for each iteration and 

produced a Gaussian output.  For each experimental run, the model sampled between 800 and 

1000 IPIs and provided an appropriate IPI distribution.  Each time the model was run for each set 

of characteristics, the IPI distribution was similar; however, the mean and standard deviations 

were different.  Thus, the model was able to produce consistency in the IPI distributions even 

though the raw data were different in each run.   
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Statistical Analysis  

Linear regression of the coefficient of variation (CV) of the interpulse intervals versus the 

number of pacemakers was calculated and plotted for the different models (0% resetting, 50% 

resetting, and 100% resetting) and animals.  Pairwise comparisons of the animals interpulse 

interval with the three models: independent (0% resetting), 50% resetting, and 100% resetting, 

were made using a t-test.    
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RESULTS 

 Swim behavior was similar for all three species of jellyfish Aurelia, Chrysaora, and 

Stomolophus, and for the ephyra of Aurelia.  A considerable difference in buoyancy was noted 

however.  Both Aurelia and Chrysaora were near neutral buoyancy, so they remained in the 

water column if swim frequency decreased or stopped for short periods of time.  Stomolophus, 

and the Aurelia ephyra, were negatively buoyant, and sank to the bottom of the aquarium if 

swimming was interrupted for even brief periods. 

 In all medusae examined, removal of rhopalia decreased the overall frequency and 

regularity of swimming (see appendix).  These changes were observed as increases in the means 

and standard deviations of interpulse intervals (IPIs) with decreases in rhopalial number.  If all 

rhopalia were removed, the swim systems were paralyzed, with only occasional, weak 

contractions of the circular musculature, with one exception.  Stomolophus (the cannonball 

jellyfish) had an extremely fast swimming rhythm, and after removal of all rhopalia, coordinated 

swim contractions continued, but contractions were not strong enough to lift the animals from 

the bottom of the aquarium.  This presents an interesting contrast to the other species, both in the 

location of pacemakers and in the overall excitability of the swim systems.  Stomolophus has 

more of a rounded shape, with a solid mass of oral arms that hang well below the opening of the 

bell (which is round in shape instead of disc shaped, like the other species).  In addition, it is 

much more “solid”, in terms of tissue density, than the other species, perhaps producing this 

negative buoyancy.  On casual observation, the swim contractions of Stomolophus were highly 

efficient at ejecting water from the bell, compared to Aurelia and Chrysaora (based on impact of 

each contraction on movements of the bell).  It is possible the high frequency  
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Figure 4.  Interpulse interval (IPI) data from experimental animals.  The interpulse intervals 
were separated into 250 ms bins.  Mean number of contractions for one rhopalium trials (Aurelia 
aurita, n=11).  Note that bin 20 = >4,750 msec.  
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Figure 5.  Interpulse interval (IPI) data from experimental animals.  The interpulse intervals 
were separated into 250 ms bins.  Mean number of contractions for eight rhopalia trials (Aurelia 
aurita, n=9).  As the number of pacemakers increase, the distribution of interpulse intervals 
moves towards shorter intervals.  
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contractions and the greater excitability of the swim system of Stomolophus are necessary to 

keep this more “solid” medusa in the water column.   

 

Aurelia aurita (adult medusae) 

Interpulse interval profiles produced by single rhopalium preparations had long tails and 

a high IPI variation (fig 4).  When pacemakers were added to the network, the mean IPI and the 

regularity of swimming increased, and the distribution of interpulse intervals moved toward 

shorter intervals.  For example, single pacemaker preparations swam with a mean IPI of 5530 

msec +/- 2530 msec S.D., while the 8-rhopalium preparations had a mean IPI 1880 msec +/- 

1180 msec S.D. (fig. 12A).  This is consistent with the modeling results of Horridge (1959), 

Lerner et al. (1971), and Murray (1977) that suggested that long interpulse intervals are less 

frequent when many pacemakers are present.   

In integrate and fire models of pacemaker networks constructed from artificial 

pacemakers with IPI profiles identical to real Aurelia single-pacemaker preparations, addition of  

pacemakers also decreased mean IPI and reduced variance, regardless of the type of pacemaker 

network simulated (resetting or independent).  Comparison of real data for one through eight 

pacemaker preparations to both resetting and independent model networks showed that the real 

data were closer to the resetting model.  However, the real data were intermediate between the 

two models (fig. 12; table 1).  Only the 50% resetting model (semi independent) was not 

statistically significantly different from Aurelia (table 1; P>0.05).  In contrast, the other models 

were significantly different from the real animal networks.  The best fit of real data to modeled 

data was found with a 50%  
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Figure 6.  Interpulse interval (IPI) data from experimental animals.  The interpulse intervals 
were separated into 250 msec bins Mean number of contractions for one rhopalium trials 
(Aurelia aurita ephyra, n=5).  Note that bin 20 = >4,750 msec. 
 
 

 
 
 
Figure 7.  Interpulse interval (IPI) data from experimental animals.  The interpulse intervals 
were separated into 250 msec bins.  Mean number of contractions for eight rhopalia trials 
(Aurelia aurita ephyra, n=5).  As the number of pacemakers increase, the distribution of 
interpulse intervals moves towards shorter intervals.  
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resetting network, suggesting the pacemaker networks in adult Aurelia are semi-independent—

the pacemakers show some degree of independence, but with a degree of resetting as well.    

 

Aurelia aurita (ephyra) 

As with adult medusae, preparations with larger numbers of pacemakers had shorter 

mean IPIs, with less variance suggesting a positive correlation between rhopalium number and 

swim regularity and frequency (figs 6, 7).  Single pacemaker preparations had a mean IPI of 

3620 msec +/- 3320 S.D. while animals with all eight rhopalia had a mean IPI of 690 msec +/- 24 

msec S.D. (fig. 13A).   

A comparison of real ephyra data to resetting, independent, and 50% resetting model 

networks (based on pacemakers with IPI profiles similar to those of single-rhopalium 

preparations) gave a best fit with the model of the 50% resetting and 100% resetting network 

(fig. 13C). 

The 50% resetting model (semi independent) and the 100% resetting model were not 

statistically significantly different from the ephyra data (table 1; P>0.05).  In contrast, the 

independent model (0% resetting) was significantly different from the data.  Thus, either the 

resetting or the semi-independent models can satisfactorily explain the ephyra network, although 

the resetting network gives the better fit (fig. 14; table 1). 
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Figure 8.  Interpulse interval (IPI) data from experimental animals.  The interpulse intervals 
were separated into 250 msec bins.  Mean number of contractions for one rhopalium trials 
(Chrysaora quinquecirrha, n=3).  Note that bin 20 = >4,750 msec. 
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Figure 9.  Interpulse interval (IPI) data from experimental animals.  The interpulse intervals 
were separated into 250 msec bins.  Mean number of contractions for eight rhopalia trials 
(Chrysaora quinquecirrha, n=20).  As the number of pacemakers increase, the distribution of 
interpulse intervals moves towards shorter intervals. 
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Chrysaora quinquecirrha 

 Similar to Aurelia, addition of pacemakers to the swim system increased the frequency 

and regularity of swimming (figs 8, 9).  Single pacemaker preparations had a mean IPI of 11100 

msec +/- 8400 msec S.D., while intact animals (all 8 rhopalia) had an IPI of 1930 msec +/- 810 

msec S.D.  Thus, in Chrysaora, the influence of rhopalial number on the regularity and 

frequency of swim contractions was dramatic.  

A comparison of real data with resetting, 50% resetting and independent models 

(constructed with pacemakers with IPI profiles similar to Chrysaora single-rhopalium 

preparations), indicated the pacemaker networks in the real animals are of the resetting type (fig. 

15).  The experimental data showed a best fit with models exhibiting 100% resetting interactions.  

When the data was compared to the independent network and the 50% resetting network.  The 

independent network was extremely significant (P<0.001) while the 50% resetting model was 

very significant (P<0.01).  In contrast, the 100% resetting model was not significantly different 

(P>0.05) when it was compared to the animal data (table 1). 

 

Stomolophus meleagris 

 Even though Stomolophus preparations were much more excitable (higher frequency 

contractions in intact animals and in all ablation experiments), a positive correlation between 

pacemaker number and frequency and regularity of swimming was still evident (figs 10, 11).  In 

single peacemaker preparations, the mean IPI was 860 msec +/- 400 msec S.D., while in intact 

medusae, the mean IPI was 710 msec +/- 190 msec  
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Figure 10.  Interpulse interval (IPI) data from experimental animals.  The interpulse intervals 
were separated into 250 msec bins.  Mean number of contractions for one rhopalium trials 
(Stomolophus meleagris, n=6).  Note that bin 20 = >4,750 msec. 
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Figure 11.  Interpulse interval (IPI) data from experimental animals.  The interpulse  intervals 
were separated into 250 msec bins.  Mean number of contractions for eight rhopalia trials 
(Stomolophus meleagris, n=16). 
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S.D.  Despite this relationship, Stomolophus medusae were able to swim nearly as well with one 

rhopalium as with eight, due to their extreme overall excitability. 

A comparison of real data to resetting, 50% resetting, and independent models 

constructed with Stomolophus-appropriate pacemakers showed a best fit with the resetting 

model, suggesting that the real pacemaker networks in Stomolophus are of the resetting type (fig. 

16).  There were significant differences when the cannonball data were compared to the 

independent and 50% resetting models (P<0.001); however there was not a significant difference 

when the data was compared to the 100% resetting model (P>.05; table 1).  
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Table 1.  Comparison between the coefficient of variations of the models (independent- 0% 
resetting, semi independent -50% resetting, and 100% resetting) to the coefficient of 
variations of the animals. 
 
Aurelia aurita (adult moon jellyfish)  
              Comparison                                                 P value   
  ==================================  =========== 
        Moon jellyfish vs. Independent                        *** P<0.001 
        Moon jellyfish vs. 50% Resetting                       ns P>0.05 
        Moon jellyfish vs. 100% Resetting                     ** P<0.01 
       
 
Ephyra of Aurelia aurita 
              Comparison                                                 P value   
  ==================================  =========== 
        Ephyra vs. Independent                                    *** P<0.001 
        Ephyra vs. 50% Resetting                                   ns P>0.05 
        Ephyra vs. 100% Resetting                                 ns P>0.05 
 
       
Chrysaora quinquecirrha (Sea Nettles) 
              Comparison                                                    P value   
  ==================================  =========== 
       Sea Nettles vs. Independent                                 *** P<0.001 
       Sea Nettles vs. 50% Resetting                              **  P<0.01 
       Sea Nettles vs. 100% Resetting                             ns  P>0.05 
 
Stomolophus meleagris (Cannonball) 

              Comparison                                                  P value   
  ==================================  =========== 
       Cannonball vs. Independent                                 *** P<0.001 
       Cannonball vs. 50% Resetting                             *** P<0.001 
       Cannonball vs. 100% Resetting                             ns  P>0.05 
 
*Unpaired t test with Welch correction; paired t test. 
*** Extremely significant; ** very significant; ns – not significant       
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Figure 12.  Relationship between the mean interpulse interval (IPI) (A), the standard deviation 
(S.D.) of the interpulse interval (B), and the coefficient of variation (CV) (C) and the number of 
pacemakers for the observed data from Aurelia aurita, a resetting pacemaker model and an 
independent pacemaker model.   
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Figure 13.  Relationship between the mean interpulse interval (IPI) (A), the standard deviation 
(S.D.) of the interpulse interval (B), and the coefficient of variation (CV) (C) and the number of 
pacemakers for the observed data from the ephyra of Aurelia aurita, a resetting pacemaker 
model and an independent pacemaker model.   
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Figure 14.  Slopes of the coefficient of variation for the ephyra of Aurelia aurita against the 
different models (resetting, semi independent, and independent models).   
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Figure 15.  Relationship between the mean interpulse interval (IPI) (A), and the coefficient of 
variation (CV) (B), and the number of pacemakers for the observed data from Chrysaora 
quinquecirrha (B), a resetting pacemaker model and an independent pacemaker model.   
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Figure 16.  Relationship between the mean interpulse interval (IPI) (A), and the coefficient of 
variation (CV) (B), and the number of pacemakers for the observed data from Stomolophus 
meleagris, a resetting pacemaker model and an independent pacemaker model.   
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DISCUSSION 
 

The experimental data from ablation studies presented here confirm that when only a 

single rhopalium produce irregular patterns of pacemaker impulses to the swim systems, which 

are characterized by large means (compared to the intact animals) and large standard deviations.  

However, the records from one-rhopalium preparations also indicate that they can produce very 

regular pacemaker output for variable periods of time.  In particular, a single rhopalium can 

control the intact swim system if it receives enough excitatory sensory or modulatory input 

(Lerner et al., 1971).  Horridge (1959) showed that when an individual rhopalium in Aurelia 

aurita was artificially stimulated, the jellyfish produced rapid and regular swim contractions.  

Horridge (1959) also showed that an individual pacemaker (rhopalium) had an average 

frequency that was less than half its maximal frequency.  

Activities of individual pacemakers, as well as multiple pacemakers, were tested by using 

ablation experiments.  Similar to the observations of Lerner et al., (1971), the redundancy of 

pacemakers permitted swimming to continue despite the removal of several pacemakers.  The 

results presented here are in agreement with those of Horridge (1954b), Lerner et al., (1971), and 

Murray (1977), which showed that multiple pacemakers increase both the overall swim 

frequency and the regularity of swimming.  

Maintaining a regular swim output is important for efficient neuromuscular activity since 

the swim muscles of scyphozoan jellyfish have been shown to produce tension that depended 

heavily on frequency-dependent facilitation (Bullock, 1943).  If the swim frequency is too low, 

facilitation is reduced or non-existent, producing weaker contractions.  Whereas higher 

frequencies, contractility increases.  Similar results were obtained for other jellyfish, with the 

efficiency of the swim musculature tied to similar frequency-dependent facilitatory mechanisms 
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(Satterlie and Nolen, 2001).  In particular, the strength of contractions during normal swimming 

in intact cubomedusae was found to be around 80% of the maximal contraction strength 

(Satterlie, 1979).   

The question addressed here is how multiple pacemakers are linked to control a common 

effector sheet (swim musculature) in scyphozoan jellyfish.  Early observations gave rise to the 

concept of a resetting network, and early models used this assumption to further demonstrate the 

value of multiple pacemakers in the scyphozoan swim system (Horridge, 1959; Lerner et al., 

1971; Murray, 1977).  However, two observations underline the need to further examine 

pacemaker linkages in these jellyfish.  First, an artificial network in which pacemakers have 

absolutely no interactions (independent network) will still produce an increase in regularity and 

overall frequency when pacemakers are added to the system, even though the overall variability 

will be less than that in a resetting network (Satterlie and Nolen, 2001).  Second, a similar 

modeling analysis of pacemaker interactions in cubomedusan jellyfish demonstrated that the 

pacemakers are linked in a semi-independent network, in which the connections are resetting, but 

individual pacemakers are sometimes freed from the resetting influence (they operated 

independently; Satterlie and Nolen, 2001). 

 

Aurelia aurita  

Instead of the Aurelia aurita having a resetting pacemaker network like previously 

thought (Lerner et al., 1971; Murray, 1977), the model shows that they have a semi-independent 

network similar to cubomedusae.  The advantage of having a semi-independent network is that it 

reduces the variability in swim frequency, and at the same time, increases the flexibility of 

swimming (Satterlie and Nolen, 2001).  Having a semi-independent network also allows Aurelia 
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aurita to benefit from both the resetting and independent pacemaker networks.  Compared to the 

other species of jellyfish, Aurelia exhibits the highest degree of flexibility while Stomolophus 

exhibits the least degree of flexibility, which further supports the semi-independent network in 

the former.  

The method of feeding may also play a critical role in the organization of the pacemaker 

network as Aurelia uses its short marginal tentacles to feed and its oral arms are mainly used to 

move prey into its gastrovascular cavity.  This type of feeding may require more flexible 

swimming behavior since the marginal tentacles are not set out to “fish” for prey at a great 

distance from the bell margin. 

 

Aurelia aurita ephyra  

The pacemaker network of the ephyra of Aurelia aurita differs from that of the adults in 

that it is of the resetting type.  The morphology of the ephyra changes dramatically as it makes 

the transition into its adult form, as does swimming behavior.  In particular, the ephyra are 

negatively buoyant, so swimming regularity is advantageous to staying in the water column.  The 

ephyra do have a higher swim frequency, and this has been suggested to be a requirement for 

remaining in the water column in order to feed (Horridge, 1956).  The ephyra lack marginal 

tentacles, and must relay on their manubrium to catch prey.   

 

Chrysaora quinquecirrha 

 Chrysaora quinquecirrha has a resetting pacemaker network.  They are voracious 

predators that use long marginal tentacles as well as extremely long oral arms to collect prey.  

Both tentacles and oral arms can extend a meter from the swimming bell.  This allows more of a 
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passive prey apprehension mechanism, although swimming currents still help in directing prey to 

the feeding structures (Matanoski and Hood, 2006).  Because of the length of the tentacles and 

oral arms, changing in swimming activity (as from a more flexible swimming system) will not be 

directly or quickly transferred to the tentacles. 

 

Stomolophus meleagris 

As mentioned above, having pacemakers that interact through resetting linkages is 

advantageous if swim regularity and high swim frequency is favored over swim flexibility 

(Satterlie and Nolen, 2001).  Stomolophus meleagris display 100% resetting behavior, which  

may be a consequence of the rigidity of the swimming bell of Only the lower portions of the bell 

contract during swimming activity, so less surface area is available for large asymmetric 

contractions, which are necessary for turning behavior.  In addition, a high swim frequency is 

necessary to prevent Stomolophus from sinking.  Its feeding behavior involves use of rather 

elaborate oral arms since Stomolophus lacks marginal tentacles.  Water circulation through the 

oral arms and swimming bell enhances feeding, rather than directional movement of the medusa 

through the water.  In this instance, a resetting pacemaker network would better serve both 

swimming and feeding behavior.  

In contrast, in an independent pacemaker network that has many pacemakers (in this case 

scyphomedusae) would produce high variability and shorter interpulse intervals (Satterlie and 

Nolen, 2001).  Jellyfish that have an independent pacemaker network can potentially have 

inefficient locomotion due to high variability of swim contractions (Satterlie and Nolen, 2001).  

The coefficient of variation (CV) would also have to increase as pacemakers are added to the 

system (Satterlie and Nolen, 2001).  In the three species of the scyphomedusae, the coefficient of 
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variation did not increase as pacemakers were added to the system therefore, we can rule out an 

independent network in these scyphozoan species. 

Both resetting and semi independent pacemaker networks are found in scyphomedusae, 

and the type of network may be related to the ecology of the species.  This is interesting since the 

basic organization of the rhopalia pacemakers is consistent within the class Scyphozoa, while 

their connectivity may be species specific, and even developmentally specific.   
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A. Interpulse interval (IPI) data from experimental animals.  The interpulse intervals were 
separated into 250 msec bins.  Mean number of contractions for two rhopalia trials (Aurelia 
aurita, n=6). Note that bin 20 = >4,750 msec. 
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B. Interpulse interval (IPI) data from experimental animals.  The interpulse intervals were 
separated into 250 msec bins.  Mean number of contractions for three rhopalia trials (Aurelia 
aurita, n=6).  
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4 Rhopalia (Aurelia aurita )
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C. Interpulse interval (IPI) data from experimental animals.  The interpulse intervals were 
separated into 250 msec bins.  Mean number of contractions for four rhopalia trials (Aurelia 
aurita, n=6). Note that bin 20 = >4,750 msec. 
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D. Interpulse interval (IPI) data from experimental animals.  The interpulse intervals were 
separated into 250 msec bins.  Mean number of contractions for five rhopalia trials (Aurelia 
aurita, n=7).  
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E. Interpulse interval (IPI) data from experimental animals.  The interpulse intervals were 
separated into 250 msec bins.  Mean number of contractions for six rhopalia trials (Aurelia 
aurita, n=8). Note that bin 20 = >4,750 msec. 
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F. Interpulse interval (IPI) data from experimental animals.  The interpulse intervals were 
separated into 250 msec bins.  Mean number of contractions for seven rhopalia trials (Aurelia 
aurita, n=10).  
 

 


