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Abstract

A copula is a useful tool for constructing bivariate and/or multivariate dis-

tributions. In this article, we consider a new modified class of (Farlie-Gumbel-

Morgenstern) FGM bivariate copula for constructing several different bivariate Ku-

maraswamy type copulas and discuss their structural properties, including depen-

dence structures. It is established that construction of bivariate distributions by

this method allows for greater flexibility in the values of Spearman’s correlation

coefficient, ρ and Kendall’s τ . For illustrative purposes, one representative data set

is utilized to exhibit the applicability of these proposed bivariate copula models.

Key Words: Bivariate Kumaraswamy distribution, Copula based construction, Kendall’s

tau, Dependence structures

1 Introduction

Over the last decade or so, there has been a growing interest in constructing various

bivariate distributions and study it’s dependence structure. For an excellent survey on

this, an interested reader is suggested to see Balakrishnan et al. (2009) and the references

therein. Of late, copula based methods of construction have also gained a considerable

amount of attention, mainly due to it’s analytical tractability in the sense of discussing
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dependence structure between two dependent random variables. A copula is a multivari-

ate distribution function whose marginals are uniform. It couples or links the marginal

distribution to their joint distribution. In order to obtain a bivariate/multivariate distri-

bution function, one needs to simply combine two (in the bivariate case) and/or several

marginal distribution functions with any copula function. Consequently, for the purpose

of statistical modeling, it is desirable to have a plethora of copulas at one’s disposal. One

of the most important parametric family of copulas is the Farlie- Gumbel- Morgenstern

(FGM, henceforth) family defined as

C(u, v) = uv[1 + θ(1 − u)(1 − v)] , (u, v) ∈ (0, 1), where θ ∈ [−1, 1]. This family of

copulas have the following properties.

• Symmetry: C(u, v) = C(v, u), ∀(u, v) ∈ [0, 1]2, and have the lower and upper tail

dependence coefficients equal to zero.

• It is positive quadrant dependent (PQD) for θ ∈ (0, 1] and negative quadrant de-

pendent (NQD) for θ ∈ [−1, 0).

However, the major drawback of FGM copula is that the the values of Spearmans

correlation coefficient (ρ) and Kendals (τ ) are somewhat restricted (ρ ∈ [−1/3, 1/3]

and τ ∈ [−2/9, 2/9]). To overcome this limited nature of dependence, several authors

proposed extensions of this family, for example, Kotz et al. (2000). This fuels to work in

this direction in the sense of considering a modified FGM class and use it as a pivot for

constructing bivariate and multivariate Kumaraswamy models.

Kumaraswamy (1980) introduced a two parameter absolutely continuous distribution

useful for double bounded random processes with hydrological applications. The Ku-

maraswamy distribution (hereafter the KW distribution) on the interval (0, 1), has its

probability density function (pdf) and its cdf with two shape parameters a > 0 and b > 0
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defined by

f(x) = δβxδ−1(1− xδ)β−1I(0 < x < 1), and F (x) = 1− (1− xδ)β (1.1)

If a random variable X has (1.1) as its density then we will write X ∼ KW (δ, β).

The density function in (1.1) has similar properties to those of the beta distribution.

The Kumaraswamy pdf is unimodal, uniantimodal, increasing, decreasing or constant

depending (similar to the beta distribution) on the values of the parameters. However,

the construction of bivariate Kumaraswamy distributions has received limited attention.

Barreto-Souza et al. (2013) introduced a bivariate Kumaraswamy distribution related to

a Marshall- Olkin survival copula and discussed some structural properties of their bivari-

ate Kumaraswamy distributions. Arnold et al. (2017 a, 2017 b) discussed some differ-

ent strategies for constructing legitimate bivariate Kumaraswamy models via conditional

specification, conditional survival function specification, and via Arnold-Ng bivariate beta

construction approach. In a separate article, Arnold et al. (2017 c) discussed a wide va-

riety of Arnold-Ng type bivariate and multivariate copulas for constructing several types

of bivariate Kumaraswamy models. Again, in Ghosh et al. (2016), the authors discussed

some copula based approach to construct several bivariate Kumaraswamy type models

along with an application to a real life data set focusing on financial risk assessment.

This article is a follow up paper of Ghosh et al. (2016), in which, we examine in details

the utility of well known bivariate FGM copula by a slight modification to allow greater

flexibility in modeling various types of data sets (in the sense of those results described in

details in Rodriguez-Lallena et al. (2004)). In this article we start with a standard Ku-

maraswamy quantile function from two independent Kumaraswamy distributions (with

two different sets of shape parameters) and construct the corresponding bivariate copula

with different shape parameters. The rest of the article is organized as follows: In section

2, we define the modified FGM copula and discuss it?s several structural properties. In
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section 3, we consider two special classes of modified bivariate Kumaraswamy FGM type

copulas for constructing bivariate Kumaraswamy distributions. In section 4, we establish

some dependence structures for those developed bivariate Kumaraswamy FGM type cop-

ulas. In section 5, an outline of simulation from a copula density is provided. In section

7, we consider a real life data on insurance claims and apply our developed bivariate

Kumaraswamy type copula models to illustrate their applicability. In section 7, some

concluding remarks are presented.

2 Modified bivariate FGM copula

We consider the following modified version of the bivariate (Farlie-Gumbel-Morgenstern)

FGM copula defined as

C(u, v) = uv [1 + θΦ(u)Ψ(v)] , (2.1)

where Φ(u) and Ψ(v) are two absolutely continuous functions on (0, 1) with the following

conditions, and θ ∈ [−1, 1].

• Φ(0) = Ψ(0) = Φ(1) = Ψ(1) = 0. This are known as boundary conditions.

• |∂Φ(u)
∂u
| ≤ 1 for every u ∈ [0, 1]. Similarly for the other function Ψ(v).

Theorem 1. The function in (2.1) is a valid copula provided, the functions Φ(u),Ψ(v)

satisfies all the conditions stated above. For details on the proof (on a similar structure

to this, see Rodriguez-Lallena et al.(2004)).

Proof. It is straightforward and hence omitted. First, we make a note of the following:
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• The associated bivariate copula density from (2.1) will be

c(u, v) =
∂C(u, v)

∂u∂v
= 1 + θΦ(u)Ψ(v)

{[
1 + u

∂Φ(u)

∂u

] [
1 + v

∂Φ(v)

∂v

]}
. (2.2)

• The conditional copula density of U given V = v, from (2.2), will be

c(u|v) =
∂C(u, v)

∂v
= u {1 + θΦ(u)Ψ(v) (1 + v)} . (2.3)

Similarly, one can find the conditional copula density of V given U = u.

It is noteworthy to mention that copulas are instrumental for understanding the depen-

dence be- tween random variables. With them we can separate the underlying dependence

from the marginal distributions. It is well known that a copula which characterizes depen-

dence is invariant under strictly monotone transformations, subsequently a better global

measure of dependence would also be invariant under such transformations. Among other

dependence measures, Kendall’s τ and Spearman’s ρ are invariant under strictly increas-

ing transformations, and, as we will see in the next, they can be expressed in terms of the

associated copula.

• Kendall’s τ : Kendall’s τ measures the amount of concordance present in a bivariate

distribution. Suppose that (X, Y ) and (X̃, Ỹ ) are two pairs of random variables

from a joint distribution function. We say that these pairs are concordant if large

values of one tend to be associated with large values of the other, and small values

of one tend to be associated with small values of the other. The pairs are called

discordant if large goes with small or vice versa. Algebraically we have concordant

pairs if (X − X̃)(Y − Ỹ ) > 0 and discordant pairs if we reverse the inequality. The

formal definition is:
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τ(X, Y ) = Prob
{(
X − X̃)(Y − Ỹ ) > 0

)
−
(
X − X̃)(Y − Ỹ ) < 0

)}
,

where (X̃, Ỹ ) is an independent copy of (X, Y ).

Let X and Y be continuous random variables with copula C. Then Kendall’s τ is

given by

τ(X, Y ) = 4

∫∫
[0,1]2

C(u, v)dC(u, v)− 1. (2.4)

• Spearman’s ρ: For two random variables X and Y is equal to the linear correlation

coefficient on the variables F1(X) and F2(Y ) where F1 and F2 are the marginal

distributions of X and Y respectively. Let X and Y be continuous random variables

with copula C. Then Spearman’s ρs is given by

ρs = 12

∫∫
[0,1]2

uvdC(u, v)− 3. (2.5)

Alternatively, ρs can be written as ρs = 12
∫ 1

0

∫ 1

0
[C(u, v)− uv] dudv. Also, as men-

tioned earlier, one can equivalently show that ρs(U, V ) = ρ (F1(X), F2(V )) .

Proposition 1. Let (X, Y ) be a random pair with copula C(u, v) given by (2.1). Then

the expression for the association coefficients are

• ρθ = θA(u, v), where A(u, v) = 12
[∫ 1

0
uΦ(u)du

] [∫ 1

0
vΨ(v)dv

]
• Kendall’s τ will be
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τθ = 1 +

∫ 1

0

{uΦ(u)} du
∫ 1

0

{vΨ(v)} dv

+θ

(∫ 1

0

[
Φ(u)

{
u+ u2∂Φ(u)

∂u

}]
du

)(∫ 1

0

[
Ψ(v)

{
v + v2∂Ψ(v)

∂v

}]
dv

)
+θ2

(∫ 1

0

[
Φ2(u)

{
u+ u2∂Φ(u)

∂u

}]
du

)(∫ 1

0

[
Ψ2(v)

{
v + v2∂Ψ(v)

∂v

}]
dv

)
.

Proof. The proof are almost similar in approach for the two coefficients. We only consider

for the Spearmans ρθ. For our copula model in (2.1), the corresponding ρθ will be

ρθ = 12

∫ 1

0

∫ 1

0

C(u, v)dudv − 3

= 12

[∫ 1

0

v

(∫ 1

0

u(1 + θΦ(u)Ψ(v))du

)
dv

]
− 3. (2.6)

Next, consider the integral in parenthesis which, after some simplification, reduces to

∫ 1

0

u(1 + θΦ(u)Ψ(v))du =
1

2
+ θΨ(v)

∫ 1

0

uΦ(u)du. (2.7)

On substitution of (2.7) in (2.6), we get,

ρθ = 12

[∫ 1

0

v

(
1

2
+ θΨ(v)

∫ 1

0

uΦ(u)du

)]
dv − 3

= θA(u, v),

after simple algebraic operation. Hence the result. Similarly, one can get the expression

for τθ.
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Next section, we will consider some specific choices of Φ(u) and Ψ(v) to construct bivariate

Kumaraswamy type copulas.

3 Bivariate FGM Type Kumaraswamy models

In this section, we discuss in detail two different types of bivariate FGM type copula

models to construct bivariate Kumaraswamy distribution.

Modified bivariate F-G-M (Type I) Kumaraswamy model

Here, we consider the following functional form for both Φ(u) and Ψ(v):

• Φ(u) = u(1− ua1)b1 , for (a1, b1) > 0.

• Ψ(v) = v(1− va2)b2 , for (a2, b2) > 0.

Note that this particular functional form does satisfy all the conditions stated earlier for

Φ(u) and Ψ(v). In that case, the corresponding bivariate copula will be given by

C(u, v) = uv
[
1 + θ

(
u(1− ua1)b1

) (
v(1− va2)b2

)]
. (3.1)

Next, suppose X1 ∼ KW (λ1, α1) X2 ∼ KW (λ2, α2) and that they are independent. Then,

using (3.1), a bivariate dependent FGM-Kumaraswamy (Type I) distribution will be of

the following form (replacing u and v by the quantiles of X1 and X2 respectively):
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F (x1, x2)

=
(

1−
(
1− xλ11

)α1
)(

1−
(
1− xλ11

)α1
)

×
{

1 + θ
(

1−
(
1− xλ11

)α1
)(

1−
(

1−
(
1− xλ11

)α1
)b1)

×
(

1−
(
1− xλ22

)α2
)(

1−
(

1−
(
1− xλ22

)α2
)b2)}

,

for (λ1, λ2, α1, α2) > 0 and 0 < (x1, x2) < 1.

Modified bivariate F-G-M (Type II) Kumaraswamy model

Here, we consider the following functional form for both Φ(u) and Ψ(v):

• Φ(u) = uδ1(1− u)1−δ1 , for δ1 > 0.

• Ψ(v) = vδ2(1− v)1−δ2 , for δ2 > 0.

Note that this particular functional form does satisfy all the conditions stated earlier

for Φ(u) and Ψ(v). In that case, the corresponding bivariate copula (henceforth, BK-

FGM(Type II) copula) will be given by

C(u, v) = uv
[
1 + θuδ1vδ2(1− u)1−δ1(1− v)1−δ2

]
. (3.2)

In this case, like the previous one, a bivariate dependent FGM (Type II) Kumaraswamy

distribution, arising from two independent Kumaraswamy variables, will be of the follow-

ing form:

9
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F (x1, x2)

=
(

1−
(
1− xλ11

)α1
)δ1 (

1−
(
1− xλ22

)α2
)δ2

×
[
1 + θ

(
1−

(
1− xλ11

)α1
)δ1 ((

1− xλ11

)α1(1−δ1)
)

×
(

1−
(
1− xλ22

)α2
)δ2 ((

1− xλ22

)α2(1−δ2)
)]

.

Modified bivariate FGM (Type III) Kumaraswamy model:

Here, we consider the following functional form for both Φ(u) and Ψ(v):

• Φ(u) = u [log (1 + (1− u))]

• Ψ(v) = v [log (1 + (1− v))]

Note that this particular functional form does satisfy all the conditions stated earlier

for Φ(u) and Ψ(v). In that case, the corresponding bivariate copula (henceforth, BK-

FGM(Type III) copula) will be given by

C(u, v) = uv [1 + θuv {log (1 + (1− u)) log (1 + (1− v))}] . (3.3)

In this case, one can also obtain a closed form expression for the associated distribution

function.

Bivariate Kumaraswamy (Type-IV) copula

For the standard Kumaraswamy distribution with parameters (a, b), we have the pdf

(probability density function), cdf(cumulative distribution function) and the inverse cdf

are given by respectively
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fi(xi) = abxa−1
i (1 − xai )

b−1, F (x) = 1 − (1 − xai )
b and F−1

i (ui) = 1 − (1 − u
1/b
i )1/a,

a > 0, b > 0.

Hence, the associated copula for suitable parameters a and b and having two given

marginal distributions which are the standard Kumaraswamy distributions, has the fol-

lowing form:

C(u1, u2) = u1

(
1− (1− u2)1/b

)1/a
+ u2

(
1− (1− u1)1/b

)1/a

−
(
1− (1− u1)1/b

)1/a (
1− (1− u2)1/b

)1/a
. (3.4)

For details on this see Ghosh et al. (2016)

For the sake of notational simplicity and for the remainder of the article, we call (3.4)

as BK - copula (Type IV).

4 Some properties of the bivariate BK-FGM type

copulas

Here, we have the following

• For the BK-FGM (Type I) copula, closed form expression for Kendall’s τ is not

available in closed form. Numerical integration has to be considered.

• Spearman’s correlation coefficient will be

ρθ = θ (a1a2)−1 ,

provided max(a1, a2) < 3.
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For the BK-FGM (Type II) copula

• Kendall’s τ will be

τθ = B(δ1 + 2, 2− δ1)B(δ1 + 3, 2− δ1) + (δ1 − 1)[B(δ1 + 2, 2− δ1)−B(δ1 + 1, 1− δ1)]

+δ1B(δ1 + 2, 1− δ1)

(
δ1 −

1

2

)
− B(δ1 + 1, 1− δ1)

2
,

provided δ1 < 1.

• Corresponding Spearman’s correlation coefficient will be

ρθ = θ (B(δ1 + 2, 2− δ1))2 ,

provided δ1 < 2,

where B(, ) is Euler’s beta function.

Note For BK-copula (Type III), closed form expressions for both the dependence

measures are not available. In this case, one has to consider numerical integration.

For the BK-copula (Type IV)

• Kendall’s τ will be

τ = 4

(
1− Γ(1 + 1/a)Γ(1 + b)

Γ(1 + 1/a+ b)
−
(

1− Γ(1 + 1/a)Γ(1 + b)

Γ(1 + 1/a+ b)

)2
)
− 1.

(by straightforward integration)

12
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• Spearman’s correlation coefficient will be

ρs = 12

(
1− Γ(1 + 1/a)Γ(1 + b)

Γ(1 + 1/a+ b)
−
(

1− Γ(1 + 1/a)Γ(1 + b)

Γ(1 + 1/a+ b)

)2
)
− 3.

4.1 Dependence properties

In this section, we focus on the following properties:

Tail dependence property: The upper tail dependence coefficient (parameter) λU is the

limit (if it exists) of the conditional probability that Y is greater than 100α th percentile

of G given that X is greater than the 100α th percentile of F as α approaches 1.

λU = limα ↑ 1P
(
Y > G−1(α)|X > F−1(α)

)
. If λU > 0 , then X and Y are upper tail dependent and asymptotically independent

otherwise. Similarly, the lower tail dependence coefficient is defined as

λL = limα↓1 P (Y ≤ G−1(α)|X ≥ F−1(α)). Let, C be the copula of X and Y . Then,

equivalently we can write λL = limu↓0
C(u,u)
u

and λU = limu↑1
C̃(u,u)

1−u .

Next, we consider the following.

• In our case (for the modified FGM bivariate Kumaraswamy (Type I)) copula model,

λL = lim
u→0

C(u, u)

u

= lim
u→0

u
(
1 + θ

(
u2(1− ua1)b1(1− ua2)b2

))
= 0. (4.1)

13
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So, X and Y are asymptotically independent. The corresponding joint survival

copula will be given by

C̃(u, u) = 2u− 1 + C(1− u, 1− u)

= 2u− 1 + (1− u)2
(

1 + θ
(

(1− u)2 [1− ((1− u)a1)]b1 [1− ((1− u)a2)]b2
))

.

Again,

λU = lim
u→1

C̃(u, u)

1− u

= lim
u→1

2u− 1

1− u
+ lim

u→1
(1− u

(
1 + θ

(
(1− u)a1+a2 [1− ((1− u)a1)]b1 [1− ((1− u)a2)]b2

))
=∞+ 0

=∞

So, (X, Y ) are not upper tail dependent.

• For the modified FGM bivariate Kumaraswamy (Type II)) copula model,

λL = lim
u→0

C(u, u)

u

= lim
u→0

u
(

1 + θ
(
uδ1+δ2 (1− u)2−δ1+δ2

))
= 0, (4.2)

provided 2 > δ1 + δ2. Hence, it is asymptotically independent provided 2 > δ1 + δ2.
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Again,

λU = limu→1
C̃(u,u)

1−u =∞

Again, by similar argument as before, λU 6= 0, implying that (X, Y ) are not upper

tail dependent.

Similarly, one can establish these properties for the modified FGM bivariate Kumaraswamy

(Type III) and (Type IV)) copula model.

Positive Quadrant Dependent (PQD) and Left-Tail decreasing (LTD) prop-

erty:

According to Amblard et al.(2002),(Theorem 3), for θ > 0 and (X, Y ) a random pair with

copula C(u, v) as defined in (2), we have the following result:

• X and Y are PQD if and only if either ∀ u ∈ (0, 1) and ∀ u ∈ (0, 1), Φ(u) [Ψ(v)] ≥ 0

or Φ(u) [Ψ(v)] ≤ 0.

• X and Y are LTD if and only if Φ(u)
u

and Ψ(v)
v

is monotone. Next, consider the

following:

Proposition 1. The modified BK-FGM (Type I, Type II and Type III) copulas

are PQD.

Proof. For the modified BK-FGM (Type I) copula, we have Φ(u) = ua1(1 − ua1)b1

and Ψ(v) = va2(1 − va2)b2 . Note that for any real (a1, a2, b1, b2) > 0, Φ(u) ≥ 0, for

all u ∈ (0, 1) as well as Ψ(v) ≥ 0, for all v ∈ (0, 1). Hence, (X, Y ) are PQD.

Similarly, one can easily check the PQD property for the other two copula models.

15

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 September 2017                   doi:10.20944/preprints201709.0115.v1

Peer-reviewed version available at J. Risk Financial Manag. 2017, 10, 19; doi:10.3390/jrfm10040019

http://dx.doi.org/10.20944/preprints201709.0115.v1
http://dx.doi.org/10.3390/jrfm10040019


Proposition 2. The modified BK-FGM (Type I and Type III) copula exhibit LTD

property while for modified BK-FGM (Type II) it is indeterministic.

Proof. For the modified BK-FGM (Type I) copula, consider the ratio Φ(u)
u

= ua1(1−

ua1)b1 . It is monotonically decreasing provided, a1 > 1 and for any b1 > 0, and it

is true for any u ∈ (0, 1). Similar results holds for the other ratio Ψ(v)
v
, for any

v ∈ (0, 1). Hence, it is LTD for only a1 > 1 and for any b1 > 0, but not for any other

possible choices of the constants a1 and b1.

Again, for the modified BK-FGM (Type III)copula, the ratio Φ(u)
u

= log (1 + (1− u)) .

It is monotonically decreasing for any u ∈ (0, 1). Similar results will hold for the

other ratio Ψ(v)
v
, for any v ∈ (0, 1). Hence, it is LTD.

However, for the modified BK-FGM (Type II) copula, these ratios are not uniformly

increasing and/or decreasing. That is why it is indeterministic in the sense that it

could exhibit both PQD as well as LTD depending on specific choices (here, sub-

intervals for u, v ∈ (0, 1).

5 Simulation from a bivariate copula

There are several different methods (for example, acceptance-rejection sampling for bivari-

ate cases, via transformation to a known bivariate distribution etc.) that are available to

simulate/generate bivariate random samples from a bivariate copula. We can in principle,

use the following result (Joe, 1997, page 146) to simulate random samples from our mod-

ified BK-FGM type copula as follows. Let us define, the conditional copula distribution

function, (say, of V given U = u), C2|1(v|u) = ∂C(u,v)
∂u

. Next, if U and W are independent

U(0, 1) random variables, then (U, V ) = U,C−1
2|1(W |U) will have the distribution C(u, v).

This method, sometimes known as conditional distribution approach or iterative condi-
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tioning, is appealing because it involves only univariate simulation. In our case, we do

have closed form expressions of C2|1(v|u) for both types of modified BK-FGM bivariate

copula available. Consequently, we can easily apply this method. Needless to say, there

are other distinct sampling procedures that are available also, for example, importance

sampling, adaptive acceptance-rejection sampling etc., which is suitable for other class of

copulas.

6 Application in risk management

In practice, several risk managers employ VaR as a tool of risk measurement. Briefly

speaking, VaR is the maximal potential loss of a position or a portfolio on some investment

horizon at a given confidence level. Because of the enormous literature, we only provide

its definition. Let {Pt}nt=1 be the market values of an asset or a portfolio of assets over

n periods, and Xt = − log
(

Pt

Pt−1

)
be the negative log return (loss) over the t-th period.

Next, given a positive value α close to 0, the VaR of X at confidence level (1−α) is given

by

V aR = inf {x ∈ R|P (X ≤ x) ≥ 1− α} .

For a detailed study on the computation of VaR used in the pure copula method, an

interested reader is suggested to see Zi-sheng et al. (2009) and the references therein.

Here we will propose one idea based on bivariate Kumaraswamy copula (Type II). We list

the steps as follows:

1. Simulate U , V and W independently from standard uniform distribution,

2. If U ≤ λs, for the given bivariate Kumaraswamy copula (Type II), (say, Cρs,1, ) take

(X, Y )T =
(
F−1

1 (V ), F−1
2 (C−1

ρs,1,U
(W ))

)T
.
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3. If U > λs, for the given bivariate Kumaraswamy copula (Type II), (say, Cρs,2, ) take

(X, Y )T =
(
F−1

1 (V ), F−1
2 (C−1

ρs,2,U
(W ))

)T
.

Then the random vector (X, Y ) has the joint distribution

F̃ (x, y) = λsCρs,1(F1(x), F2(y)) + (1− λs)Cρs,2(F1(x), F2(y)),

where λs = ρs,2−ρs
ρs,2−ρs,1 , and its marginal distributions are F1 and F2, and linear correlation

is ρs. After this, we consider the following formula R = − log (λ1 exp(X1) + λ2 exp(X2))

to generate the random number of the negative log returns of portfolios. Here λ1 and λ2

are the weights and must satisfy λ1+λ2 = 1. Then V aRα, will be computed by calculating

the (1− α)-th quantile of R.

6.1 An application to insurance data

Here, we consider one application for the four proposed bivariate Kumaraswamy copula

models to a heavily used data set, originally considered by Frees et al. (1998), Genest

et al. (2005), Cook et al. (1981, 1986) as well as in Ghosh et al. (2016). This data set

contains two variables:

• X1: an indemnity payment

• X2: an allocated loss adjustment expense (comprising lawyers’ fees and claim inves-

tigation process).

This data set comprises of 1500 general liability claims. Several other authors among

others, have used (for e.g., Klugman and Parsa (1999) and Chen and Fan (2005)) this

data set to demonstrate copula-model selection and fitting in an insurance context. We

conjecture that this data might well be explained by one or more bivariate Kumaraswamy
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copula models derived in this paper. For the sake of simplicity, we apply all four bivari-

ate Kumaraswamy copula models to 1466 uncensored claims. As suggested by Genest et

al. (2005), based on a comparative study on the numerical estimates of the dependence

parameter (θ), this imposed restriction has a very little or no effect on it. For the uncen-

sored sample, the observed value of Kendall’s tau is 0.4328. In the table below, we provide

results of the goodness-of-fit tests based on the statistics Sn, Tn, and Sξn with ξ = 0. For

a detailed description on each of these goodness-of-fit statistics, see Genest et al. (2005).

Table 1. Goodness of fit statistics for the insurance data.

BK copula θ Sn Tn S0n p-value (in %) Critical value (c2n)

BK copula (Type I) 0.623 3.0755 2.643 1.036 45.3 0.422

BK copula (Type II) 1.233 2.189 3.547 0.427 0.18 0.163

BK copula (Type III) 1.026 0.147 0.564 0.117 78.3 0.795

BK copula (Type IV) 0.342 0.422 0.642 0.137 88.2 0.831

Here, the dependence parameter θ is estimated in each case through inversion of

Kendall’s τ. The critical values and p-values reported in Table 1 are based on N = 30, 000

repetitions of the parametric bootstrap procedure discussed in Genest et al. (2005). From

Table 2, it appears that bivariate Kumaraswamy (Type III and Type IV) copula provides

a better fit as compared to other BK copula models.

7 Conclusion

In this paper, we consider a modified version of the FGM family of copulas and stud-

ied some important structural properties including the dependence structure. With this

modified version, we consider the construction of bivariate Kumaraswamy distributions

and discuss some of it’s structural properties as well as it’s applicability in modeling some

insurance data. However, this modified FGM class is a class of symmetric copula. It is

evident from (2.1), that depending upon suitable choices of Φ() and Ψ() functions, satis-
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fying associated boundary conditions as mentioned earlier, one can generate a plethora of

such copula models and subsequently develop a wide spectrum of bivariate Kumaraswamy

distributions. Our future work would focus on the following:

• Extension to the multivariate case and study several associated properties. It is

noteworthy to mention that, albeit complex nature of these type of models (involv-

ing several parameters), we expect that multivariate Kumaraswamy distribution

construction via such type of copula models will be much more interesting and

computationally will be more easy to handle.

• For modeling large losses, asymmetric copulas are more useful as compared to sym-

metric copulas. So, we will consider a family of asymmetric copulas as introduced

in Nelsen (2006), chapter 4, which has the following form:

C(u, v) = uv + θa(u)b(v), θ ∈ [−1, 1],

here a and b are functions defined on the interval (0, 1). The associated several

types of dependence measures will also be considered. Also, based on this, bivari-

ate and subsequently multivariate Kumaraswamy distributions construction will be

considered and then a com- parison study will be made with those bivariate and

multivariate Kumaraswamy models constructed under symmetric class of copulas.

• Since, a convex combination of any two (or more) valid copulas is also a copula.

We would be interested to study the role of such a mixture of copula in developing

bivariate and sub- sequently a multivariate Kumaraswamy type distributions. For

example, one may start with the following:

Cmixture(u, v) = θ1C
symmetric(u, v) + (1− θ1)Casymmetric(u, v),
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for a θ1 ∈ (0, 1].

• A natural multivariate extension of the above asymmetric copula would be

C(u1, u2, · · · , up) =

p∏
i=1

u1 + θ

p∏
i=1

ai(ui),

with (u1, u2, · · · , up) ∈ [0, 1]p, θ ∈ [−1, 1]. A natural question would be what

judicious choices of the functions ai(), for i = 1, 2, ..., p would result in a tractable

model. Associated model inference will be a challenging task due to involvement

of so many parameters. We plan to report all these findings in a separate article

somewhere else.
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