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Abstract In modeling complicated real-life scenarios, one objective is to capture
the dependence being observed. Consequently, conditional specification is a worthy
alternative to the joint-distribution models. Since its’ inception, the use of diver-
gence measures have been instrumental in determining the closeness between two
probability distributions, especially when joint distributions are specified by the
corresponding conditional distributions. Conditional specification of distributions
is a developing area with several applications. This work gives an overview of a
variety of divergence measures including, but not limited to, Kullback-Leibler di-
vergence measure, Power-divergence statistic, Hellinger distance along with some
newly developed divergence measures and its role in addressing various compatible
conditions in search for a most-nearly compatible for a finite discrete case, and also
identifying compatibility under conditional and marginal information under some
additional information in the form of marginal and/or conditional summary. Finally,
we provide some numerical examples to illustrate each of the scenarios.

1 Introduction

The problem of determining whether two families of conditional distributions are
compatible or minimally incompatible has been considered by several authors and
the problem is well established in the literature. For an excellent survey on this topic
an interested reader is referred to the scholarly works by Arnold and Press(1989),
Arnold et al. (1999) and the references cited therein. A non-exhaustive list of per-
tinent references can be cited as follows, for example, in the works by Gelman and
Speed(1993), and Arnold and Gokhale (1994,1998). Arnold et al.(1992) provided a
useful survey of distributions being obtained in such a fashion. Several alternative
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approaches exist in the literature with regard to the problem of determination of the
possible compatibility of two families of conditional distributions, for example in
the works of Arnold and Press (1989); Arnold and Gokhale (1994); Cacoullos and
Papageorgiou (1995); Wesolowski (1995). In addition, the problem of determining
most nearly compatible distributions, in the absence of compatibility, has been ad-
dressed (Arnold and Gokhale (1998); Arnold et al. (1999, 2001)). In this paper, our
our main objective is concentrated on cases in which the conditional specifications
are incompatible. In addition, we envision a scenario in which case, from our in-
formed expert and/or practitioner who is working in this field has provided a set
of additional information in the form of conditional moments/percentiles; marginal
moments etc. We want to examine to what extent such amount of additional infor-
mation is compatible with the given two conditional probability matrices in search
for a most nearly compatible (equivalently minimally incompatible) probability dis-
tribution. It is safe to say that the problem has been explored by Arnold et al. (2001)
in which the authors derived this problem as a set of non-linear equations involving
some constraints. Our search for a compatible 𝑃 in terms of equations subject to
inequality constraints is based on the fact that we really need to find one compatible
marginal, say that corresponding to the random variable 𝑋 , and we consider the fact
that when this is combined with 𝐵 will give us 𝑃. However, in this paper, we look at
a different objective which is not discussed in Arnold et al. (2001). Here, we explore
the applicability of several measures of divergence (alias pseudo-distance measures)
in finding a most nearly compatible distributions by incorporating the additional sets
of information along with the complete specification of two conditionals. For an
excellent survey on the use of divergence measures in various aspects of distribution
theory and associated statistical inference, one is suggested to take a look at the book
by Pardo (2006). In particular, we examine the relative performance of these mea-
sures of divergence based on at what stage of iterative algorithm in search for a most
nearly compatible 𝑃, the adopted procedure converges based on a user defined level
of precision which is described later. Needless to say, compatible conditional and
marginal specifications of distributions are of fundamental importance in modeling
scenarios. Moreover in Bayesian prior elicitation contexts, inconsistent conditional
specifications are to be expected. In such situations interest will center on most nearly
compatible distributions.

The remainder of the paper is organized as follows. In Section 2,we provide some
basic preliminaries regarding compatibility of two discrete conditionals. Section 3
deals with various necessary conditions for compatibility. In Section 4, we discuss
the role of pseudo-distance measures in identifying a most nearly compatible prob-
ability distribution starting from two given conditional probability matrices under a
finite discrete set-up. In Section 5, various methods of finding most nearly compati-
ble distributions are discussed. Section 6 provides an overview on the topic of using
pseudo-divergence measures in the presence of additional marginal and/or condi-
tional information. Several illustrative examples are provided in Section 7. Finally,
some concluding remarks are presented in Section 8.
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2 Basic preliminaries

Let 𝐴 and 𝐵 be two (𝐼 × 𝐽) matrices with non-negative elements such that∑𝐼
𝑖=1 𝑎𝑖 𝑗 = 1, ∀ 𝑗 = 1, . . . , 𝐽 and

∑𝐽
𝑗=1 𝑏𝑖 𝑗 = 1, ∀𝑖 = 1, 2, . . . , 𝐼. Without loss of

generality, it can be assumed that 𝐼 ≤ 𝐽. Matrices 𝐴 and 𝐵 are said to form a
compatible conditional specification for the distribution of (𝑋,𝑌 ) if there exists
some (𝐼 × 𝐽) matrix 𝑃 with non-negative entries 𝑝𝑖 𝑗 and with

∑𝐼
𝑖=1

∑𝐽
𝑗=1 𝑝𝑖 𝑗 = 1

such that, for every (𝑖, 𝑗), 𝑎𝑖 𝑗 =
𝑝𝑖 𝑗

𝑝. 𝑗
and 𝑏𝑖 𝑗 =

𝑝𝑖 𝑗

𝑝𝑖.
, where 𝑝𝑖. =

∑𝐽
𝑗=1 𝑝𝑖 𝑗 and

𝑝𝑖. =
∑𝐼

𝑖=1 𝑝𝑖 𝑗 . If such a matrix 𝑃 exists, then, if we assume that 𝑝𝑖 𝑗 = 𝑃(𝑋 =

𝑥𝑖 , 𝑌 = 𝑦 𝑗 ), 𝑖 = 1, 2, · · · , 𝐼, 𝑗 = 1, 2, · · · , 𝐽, we will have 𝑎𝑖 𝑗 = 𝑃(𝑋 = 𝑥𝑖 |𝑌 = 𝑦 𝑗 ),
𝑖 = 1, 2, · · · , 𝐼, 𝑗 = 1, 2, · · · , 𝐽, and 𝑏𝑖 𝑗 = 𝑃(𝑌 = 𝑦 𝑗 |𝑋 = 𝑥𝑖), 𝑖 = 1, 2, · · · , 𝐼,
𝑗 = 1, 2, · · · , 𝐽. Equivalently, 𝐴 and 𝐵 are compatible if there exist stochastic
vectors 𝜏 = (𝜏1, 𝜏2, · · · , 𝜏𝐽 ) and [ = ([1, [2, · · · , [𝐼 ) such that

𝑎𝑖 𝑗𝜏𝑗 = 𝑏𝑖 𝑗[𝑖 ,

for every (𝑖, 𝑗). In the case of compatibility, [ and 𝜏 can be readily interpreted as the
resulting marginal distributions of 𝑋 and 𝑌, respectively. For any probability vector
[ = ([1, [2, . . . , [𝐼 ) , 𝑝𝑖 𝑗 = 𝑏𝑖 𝑗[𝑖 is a probability distribution on the 𝐼𝐽 cells. So, the
conditional probability matrix, denoted by 𝐴, and its elements (𝑎𝑖 𝑗 ) will be given by

𝑎𝑖 𝑗 =
𝑝𝑖 𝑗

𝐼∑︁
𝑠=1

𝑝𝑠 𝑗

=
𝑏𝑖 𝑗[𝑖

𝐼∑︁
𝑠=1

𝑏𝑠 𝑗[𝑠

, (1)

for every 𝑖, 𝑗 . If 𝐴 and 𝐵 are compatible, then

𝑎𝑖 𝑗

𝐼∑︁
𝑠=1

𝑏𝑠 𝑗[𝑠 = 𝑏𝑖 𝑗[𝑖 .

We then have

𝜏𝑗 =

𝐼∑︁
𝑠=1

𝑏𝑖 𝑗[𝑠 ,∀ 𝑗 = 1, . . . , 𝐽.

In this case, the expressions given in (1) can be rewritten as

𝑎𝑖 𝑗

𝐼∑︁
𝑠=1

𝑏𝑠 𝑗[𝑠 − 𝑏𝑖 𝑗[𝑖 = 0.
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3 Compatibility conditions

Conditions for compatibility are listed in the following theorems which are due
to Arnold and his co-authors.

Theorem 1 Suppose that 𝐴 and 𝐵 have identical incidence sets then they are com-
patible if and only if either of the following two conditions hold.

(a) There exist stochastic vectors 𝝉 = (𝜏1, 𝜏2, ...., 𝜏𝐼 ) and 𝜼 = ([1, [2, ...., [𝐽 ) such
that [ 𝑗𝑎𝑖 𝑗 =

(
𝜏𝑖𝑏𝑖 𝑗

)
,∀𝑖, 𝑗 . In the case of compatibility, the vectors 𝝉 and 𝜼 can

readily interpreted being proportional to the marginal distributions of 𝑋 and 𝑌
respectively.

(b) There exists vectors u and v for which 𝑑𝑖 𝑗 =
𝑎𝑖 𝑗

𝑏𝑖 𝑗
= 𝑢𝑖𝑣 𝑗 ,∀𝑖, 𝑗 ∈ 𝑁.

This suggests the use of log-linear models to fit the matrix D. Indeed, if the
log-linear model has all interactions equal to zero, then we have compatibil-
ity.Otherwise,A and B are incompatible.
If 𝑁 = {1, 2, ...𝐼} × {1, 2, ...𝐽}, i.e; if all the entries in 𝐴 and 𝐵 are positive, then we
have the following theorem given by due to Arnold and Gokhale (1994).

Theorem 2 1. A and B are compatible iff they have identical uniform marginal
representations(UMRs)(Mosteller 1968).

2. A and B are compatible iff all cross product ratios of A are identical to those of
B.

Note: Some restrictions on the common incidence set of A and B is necessary for
the above theorem. For example if we consider

𝐴 =
©«

1/2 1/2 0
0 1/2 1/2

1/2 0 1/2

ª®¬
and 𝐵 =

©«
1/3 2/3 0
0 1/3 2/3

2/3 0 1/3

ª®¬
It may be verified here here that 𝐴 and 𝐵 have equal cross product ratios(there are

no positive 2 × 2 submatrices)and have identical uniform marginal representations
but A and B are not compatible.
Compatibility of 𝐴 and 𝐵 of course does not confirm a unique compatible matrix 𝑃.
The simplest sufficient condition is positivity, i.e;

(
𝑎𝑖 𝑗𝑏𝑖 𝑗

)
≥ 0 and ∀𝑖, 𝑗 .

4 Measures of divergence

In this section, we list several useful divergence measures which will be utilized
in this paper for finding the 𝜖-compatible distributions under the finite discrete
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set-up. In addition, we provide some useful relationship among these divergence
measures. Some of these results have been independently derived and discussed in
Ghosh and Sunoj (2023+) and B and Amini (2010) in the context of copula based
divergence measures. We begin our discussion with the power divergence statistics
as a measure of divergence, for pertinent details, see Cressie and Read (1984). A
divergence measure between two probability distributions 𝑝 and 𝑞 (which are of
the same dimension) returns a measure of similarity or distance between them. It
is non negative. It measures the divergence between the population distribution 𝜋 =

(𝜋1, 𝜋2, . . . , 𝜋𝑘) and the uniform distribution
(

1
𝑘
, . . . , 1

𝑘

)
, where a value closer to zero

represents wider divergence from the uniform distribution. A natural generalization,
when considered in this way, is to define a measure of divergence between two
general distributions. This concept was first considered by Kullback in his directed
divergence measure (1959). It was followed up by Arnold and Gokhale (1994, 1998)
while considering minimum incompatibility via the K-L criterion. It is of the form

𝐾

(
𝑝 : 𝑞

)
=

𝑘∑︁
𝑖=1

𝑝𝑖 log2

(
𝑝𝑖

𝑞𝑖

)
, (2)

where 𝑝 and 𝑞 are two discrete probability distributions defined on the (𝑘 − 1)
dimensional simplex

Δ𝑘 =

{
𝜋 : 𝜋𝑖 ≥ 0; 𝑖 = 1, . . . , 𝑘;

𝑘∑︁
𝑖=1

𝜋𝑖 = 1

}
.

Here, we adopt the convention that 𝑝𝑖 log2

(
𝑝𝑖
𝑞𝑖

)
= 0 when 𝑝𝑖 = 0 and for any

0 ≤ 𝑞𝑖 ≤ 1. A family of power divergence statistics indexed by _ ∈ R for 𝑝 =

(𝑝1, 𝑝2, . . . , 𝑝𝑘), 𝑞 = (𝑞1, 𝑞2, . . . , 𝑞𝑘) can be defined as

𝐼_
(
𝑝 : 𝑞

)
=

1
_(_ + 1)

𝑘∑︁
𝑖=1

𝑝𝑖

[(
𝑝𝑖

𝑞𝑖

)_
− 1

]
(3)

with the convention 𝑝𝑖 = 0 whenever 𝑞𝑖 = 0. Note that (3) generalizes (2) in the same
way the Rényi entropy (Rényi, 1961) generalizes the Shannon entropy (Shannon,
1951).

1. Considering the fact that a matrix can be written as an array of column vectors,
we define the power divergence statistic for matrices 𝐴 and 𝐵 as:

𝐷1 = 𝐼_
(
𝑝𝑖 𝑗 : 𝑎𝑖 𝑗 𝑝 · 𝑗

)
+ 𝐼_

(
𝑝𝑖 𝑗 : 𝑏𝑖 𝑗 𝑝𝑖 ·

)
=

1
_(_ + 1)


𝐼∑︁

𝑖=1

𝐽∑︁
𝑗=1

𝑝𝑖 𝑗

((
𝑝𝑖 𝑗

𝑎𝑖 𝑗 𝑝 · 𝑗

)_
− 1

)
+

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑝𝑖 𝑗

((
𝑝𝑖 𝑗

𝑏𝑖 𝑗 𝑝𝑖 ·

)_
− 1

) ,
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where _ ∈ R is a parameter. The power divergence statistic is undefined for
_ = −1 or _ = 0. However, if we define these two cases as continuous limits of
𝐷1 for _ → −1 and _ → 0, then 𝐷1 is continuous in _.
The name power divergence derives from the fact that the statistic 𝐷1 measures
the divergence of 𝑝𝑖 𝑗 from

(
𝑎𝑖 𝑗 𝑝 · 𝑗

)
and

(
𝑏𝑖 𝑗 𝑝𝑖 ·

)
through a weighted sum of

powers of the terms
(

𝑝𝑖 𝑗

𝑎𝑖 𝑗 𝑝· 𝑗

)
and

(
𝑝𝑖 𝑗

𝑏𝑖 𝑗 𝑝𝑖 ·

)
for all (𝑖, 𝑗) ∈ 𝑁 . We want to minimize

𝐷1 with respect to
∑︁ ∑︁

(𝑖, 𝑗 ) ∈𝑁
𝑝𝑖 𝑗 = 1.

Note: On the choice of _

In the power divergence statistic, _ is a parameter that can take any real value.
A natural question that arises here is: what should be the optimum choice of _?
There are some conflicting recommendations regarding which value of _ results
in the optimal test statistic. In all our examples of iterative study discussed
in Section 4 later, we find that the rate of convergence is very slow for most
values of _. For example, for _ = 0.2, 0.3 and 0.5, the iterative procedure for
the divergence measure 𝐷_ converges at 𝑛 = 20, 27 and 34, respectively. For
negative choices of _, 𝐷1 is quite big, and moreover the resulting matrix is not
a probability matrix. A future work will focus on providing practical guidelines
about how to choose _ and also to investigate the sensitivity of solutions in
addition to the rate of convergence) when different values of _’s are used in its’
permissible range. In the next, we provide a collection of divergence measures
which has been utilized to obtain the 𝜖-compatible distribution(s) under the finite
discrete set-up. For pertinent details, see Ghosh (2011), Ghosh & Balakrishnan
(2015), Ghosh and Nadarajah (2017) and the references cited therein.

2. Modified Renyi’s divergence measure, see Ghosh (2011)

𝐷2 =
1

(𝛼 − 1)

[ 𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

(
𝑎𝑖 𝑗 𝑝. 𝑗

)−1 log
(
𝑝𝑖 𝑗

𝑎𝑖 𝑗 𝑝. 𝑗

)𝛼
+

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

(
𝑏𝑖 𝑗 𝑝𝑖.

)−1 log
(
𝑝𝑖 𝑗

𝑏𝑖 𝑗 𝑝𝑖.

)𝛼 ]
(4)

Note: Nadarajah and Zografos (2003, 2005) provided a useful review of Renyi’s
entropy for different univariate and 𝑘-variate random variables.

3. 𝜒2 measure of divergence
It is defined as

𝐷3 =

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

[ (
𝑝𝑖 𝑗

𝑎𝑖 𝑗 𝑝. 𝑗

)2 ]
𝑎𝑖 𝑗 𝑝. 𝑗 +

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

[ (
𝑝𝑖 𝑗

𝑏𝑖 𝑗 𝑝𝑖.

)2 ]
𝑏𝑖 𝑗 𝑝𝑖. (5)

4. First new measure of divergence (see, Ghosh (2011))
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𝐷4 =

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

[ (
𝑝𝑖 𝑗

𝑎𝑖 𝑗 𝑝. 𝑗 + 𝑏𝑖 𝑗 𝑝𝑖.
− 1

)2 ]_
, (6)

where _ > 0 is a constant.
5. Second new measure of divergence (see, Ghosh (2011))

𝐷5 =

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

(√
𝑝𝑖 𝑗 −

√
𝑎𝑖 𝑗 𝑝. 𝑗

)2 +
𝐼∑︁

𝑖=1

𝐽∑︁
𝑗=1

(√
𝑝𝑖 𝑗 −

√︁
𝑏𝑖 𝑗 𝑝. 𝑗

)2
. (7)

Note: It is to be noted that if the two conditional matrices 𝐴 and 𝐵 are compatible
then each of these measures will be equal to zero.

5 Available methods of obtaining minimally incompatible
distributions

In this section, we describe the idea of minimal incompatibility of two given
conditional distributions, and then explain some methods of finding minimally in-
compatible distributions. For pertinent details, see Arnold et al. (1999).

5.1 𝝐-Compatibility

Suppose, we do not insist on precise compatibility, and instead wish to have 𝑝𝑖 𝑗
to be approximately consistent with two given conditional probability matrices 𝐴
and 𝐵. Let𝑊 be a weight matrix that represents the relative importance of accuracy
in determining the probabilities 𝑝𝑖 𝑗 for each (𝑖, 𝑗) . For a given weight matrix
𝑊 which might be uniform, i.e., 𝑤𝑖 𝑗 = 1,∀ (𝑖, 𝑗) if all pairs (𝑖, 𝑗) were equally
important, we may consider the following strategies expressed as non-linear and
linear programming problems.

(i) First method: Find a matrix 𝑃, with 𝑝𝑖 𝑗 ≥ 0 ∀ (𝑖, 𝑗) , such that

�����𝑝𝑖 𝑗 − 𝑎𝑖 𝑗 𝐼∑︁
𝑖=1

𝑝𝑖 𝑗

����� ≤ 𝜖𝑤𝑖 𝑗 ∀(𝑖, 𝑗) ∈ 𝑁,������𝑝𝑖 𝑗 − 𝑏𝑖 𝑗 𝐽∑︁
𝑗=1

𝑝𝑖 𝑗

������ ≤ 𝜖𝑤𝑖 𝑗 ∀(𝑖, 𝑗) ∈ 𝑁,

with the linear constraint
∑𝐼

𝑖=1
∑𝐽

𝑗=1 𝑝𝑖 𝑗 = 1.
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(ii) Second method: Second method: Seek two probability vectors [ and 𝜏 such
that��𝑎𝑖 𝑗[ 𝑗 − 𝑏𝑖 𝑗𝜏𝑖

�� ≤ 𝜖𝑤𝑖 𝑗 ∀ (𝑖, 𝑗)) ,
∑︁
𝑗

[ 𝑗 = 1,
∑

𝑖 𝜏𝑖 = 1, and 𝜏𝑖 ≥ 0,

[ 𝑗 ≥ 0, ∀ (𝑖, 𝑗) ∈ 𝑁.

(iii) Third method: Find a (marginal) probability vector 𝜏 ≥ 0, such that and 𝜏𝑖 ≥ 0,
∀𝑖.

Clearly, the above methods introduce three different concepts of 𝜖-compatibility.
If we use Method 1, and if 𝐴 and 𝐵 are 𝜖-compatible, then the matrix 𝑃∗ which
satisfies Eq. (1) will be said to be most nearly compatible. If we use Method 2 and
if 𝐴 and 𝐵 are 𝜖-compatible, then a reasonable choice for a most nearly compatible
matrix 𝑃∗ will be

𝑃∗ =
𝑎𝑖 𝑗[

∗
𝑗
+ 𝑏𝑖 𝑗𝜏∗𝑗
2

,

where [∗
𝑗

and 𝜏∗
𝑗

satisfy Eq.(2). Finally, if we use Method 3 and if 𝐴 and 𝐵

are 𝜖-compatible, then a plausible choice for a most nearly compatible 𝑃∗ will be
𝑃∗ = (𝑏𝑖 𝑗𝜏∗𝑖 ), where 𝜏∗

𝑖
satisfies Eq.(3).

6 Pseudo-divergence measures under additional information

Until now, we have discussed the power divergence statistic as a measure of
divergence to obtain minimally incompatible (or equivalently Y-compatible) joint
probability distributions from the set of two conditionals. Here, we want to find a
procedure from which we would like to get the joint probability distribution from
the two conditionals but with some additional information provided on the marginal
and conditional probabilities and expectations, i.e., we want to see whether a given
set of constraints involving marginal and conditional probabilities and expectations
of functions are compatible or minimally incompatible. The finite discrete case
(the main focus of the paper) may be viewed as one involving solutions of linear
equations in restricted domains. We will consider cases where the given conditional
probabilities and expectations are specified. Cases of imprecise specification will be
considered later on. So far, in all divergence criteria we minimized the given function

based on only one linear constraint:
𝐼∑︁

𝑖=1

𝐽∑︁
𝑗=1

𝑝𝑖 𝑗 = 1. Instead, Suppose we are given

(by our well-informed expert engaged in this study) the following set of marginal
and conditional information (one may call this a set of precise information):

1. 𝑃
(
𝑋 ∈ 𝐴𝑖

)
= 𝛿𝑖 for specified sets 𝐴1, 𝐴2, . . . , 𝐴𝑛1 ,

2. 𝑃
(
𝑋 ∈ 𝐵𝑖

�� 𝑋 ∈ 𝐶𝑖

)
= [𝑖 , 𝑖 = 1, 2, . . . , 𝑛2 for specified sets of 𝐵1, 𝐵2, . . . , 𝐵𝑛2 ,

and 𝐶1, 𝐶2, . . . , 𝐶𝑛2 ,
3. 𝐸

(
𝜖 𝑗

(
𝑋
) )

= b 𝑗 , 𝑗 = 1, 2, . . . , 𝑛3 for specified functions 𝜖1, 𝜖2, . . . , 𝜖𝑛3 ,
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4. 𝐸
(
𝜑𝑖

(
𝑋
) �� 𝜙𝑖 (𝑋 )

= _𝑖
)
= 𝜔𝑖 , 𝑖 = 1, 2, . . . , 𝑛4 for specified functions 𝜑1, 𝜑2, . . . , 𝜑𝑛4

and specified constants _1, _2, . . . , _𝑛4 ,
5. 𝑃

(
a𝑖

(
𝑋
)
∈ 𝐸𝑖

�� 𝛾𝑖 (𝑋 )
∈ 𝐹𝑖

)
= 𝛽𝑖 , 𝑖 = 1, 2, . . . , 𝑛5 for specified functions

a1, a2, . . . , a𝑛5 and specified sets 𝐸1, 𝐸2, . . . , 𝐸𝑛5 and 𝐹1, 𝐹2, . . . , 𝐹𝑛5 .

Note that the above sets of information can be rewritten as follows.

• 𝑃
(
𝑋 ∈ 𝐴𝑖

)
=

∑︁
𝑋∈𝐴𝑖

𝑝
(
𝑋
)
= 𝛿𝑖 ,

• 𝑃
(
𝑋 ∈ 𝐵𝑖

�� 𝑋 ∈ 𝐶𝑖

)
= [𝑖 if and only if

∑︁
𝑋∈𝐵𝑖∩𝐶𝑖

𝑝
(
𝑋
)
− [𝑖

∑︁
𝑋∈𝐶𝑖

𝑝
(
𝑋
)
= 0,

• 𝐸
(
𝜖 𝑗

(
𝑋
) )

=
∑︁
𝑋

𝜖 𝑗
(
𝑋
)
𝑝

(
𝑋
)
= b 𝑗 ,

• 𝐸
(
𝜑𝑖

(
𝑋
) �� 𝜙𝑖 (𝑋 )

= _𝑖
)
= 𝜔𝑖 if and only if

∑︁
𝜙𝑖 (𝑋)=_𝑖

𝜑𝑖
(
𝑋
)
𝑝

(
𝑋
)
−𝜔𝑖

∑︁
𝜙𝑖 (𝑋)=_𝑖

𝑝
(
𝑋
)
=

0,
• 𝑃

(
a𝑖

(
𝑋
)
∈ 𝐸𝑖

�� 𝛾𝑖 (𝑋 )
∈ 𝐹𝑖

)
= 𝛽𝑖 if and only if

∑︁
a𝑖 (𝑋)∈𝐸𝑖∩𝛾𝑖 (𝑋)∈𝐹𝑖

𝑝
(
𝑋
)
−

𝛽𝑖
©«

∑︁
a𝑖 (𝑋)∈𝐹𝑖

𝑝
(
𝑋
)ª®®¬ = 0.

Thus, if we arrange the values of the joint density 𝑝
(
𝑋
)

of 𝑋 as a vector of
dimension Ω = card(𝑋1) × card(𝑋2) × · · · × card(𝑋𝑘), where 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑘),
then we can write every piece of information given above in the form:

𝑀𝑝 = \, (8)

where the matrix𝑀 in Eq.(8) is of order (𝑟 + 1)×Ω, assuming 𝑟 pieces of information
are given and rank 𝑟 +1 ≤ Ω. The 𝜽 is of order (𝑟 +1) ×1. Both 𝑀 and \ are assumed
to be known. The “natural” constraint 𝑝 · 1 = 1 is incorporated in Eq.(8) by letting
the first row of 𝑀 consist of all unit elements and the first element of \ equal to
unity. The system in Eq.(8) is assumed to be consistent in the sense that there exists
a positive probability vector satisfying (??). If 𝑟 + 1 is large, it is highly unlikely
that 𝑟 + 1 pieces of information will be compatible with the given information, in
the sense that Eq.(8) has a solution 𝑝∗ with non-negative coordinates adding up to
one. In general, it would be more rational to seek approximate equality in Eq.(8)
subject to 𝑝 ≥ 0 and 𝑀𝑝 = \. In other words, we are seeking an almost compatible
distribution.
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6.1 Power divergence statistic under conditional and marginal
information

Our search for a most nearly compatible distribution (equivalently Y compatible)
𝑝 can be viewed as a problem of minimizing 𝐷

(
𝑀𝑝, \

)
for a suitable distance

measure 𝐷 subject to the restriction that 𝑝 ≥ 0 and 𝑀𝑝 = \. One such reasonable
distance measure is the power divergence statistic. The determined minimum value
of the objective function, in each of the examples, described later, provides a measure
of incompatibility of the given information.

In this case, we have𝑃𝐼×𝐽 =

(
𝑝

1
, 𝑝

2
, . . . , 𝑝

𝐼

)1×𝐼
, where 𝑝

1
= (𝑝11, 𝑝12, . . . , 𝑝1𝐽 )1×𝐽 ,

𝑝
2
= (𝑝21, 𝑝22, . . . , 𝑝2𝐽 )1×𝐽 , and so on up to 𝑝

𝐼
= (𝑝𝐼1, 𝑝𝐼2, . . . , 𝑝𝐼 𝐽 )1×𝐽 , and we

have the linear restriction of the form

𝐼∑︁
𝑢=1

𝑀𝑡𝑢𝑝
𝑢
= \𝑡 ,

for 𝑡 = 1, 2, . . . , (𝑟 + 1). The power divergence statistic (PDS) in this case reduces to

𝐷1

(
𝑝

)
=

1
_(_ + 1)

𝐼∑︁
𝑢=1

[
𝑝
𝑢

(( 𝑝
𝑢

𝑎
𝑢
𝑝 · 𝑗

)_
− 1

)
+ 𝑝

𝑢

(( 𝑝
𝑢

𝑏
𝑢
𝑝𝑖 ·

)_
− 1

)]
.

Now we consider the following Lagrangian function

𝐹 = 𝐷1

(
𝑝

)
+

𝑟+1∑︁
𝑡=1

𝜏𝑡

(
𝐼∑︁

𝑢=1
𝑀𝑡𝑢𝑝𝑢 − \𝑡

)
,

where 𝜏𝑡 , 𝑡 = 1, 2, . . . , (𝑟 + 1) are (𝑟 + 1) Lagrangian multipliers. To minimize 𝐹,
we consider simultaneous solution of

𝜕𝐹

𝜕𝑝
𝑢

= 0. (9)

Consequently, the optimal value of 𝑝
𝑢

is

𝑝∗
𝑢
=

( (
1

(𝑎𝑢 𝑝· 𝑗)_
+ 1
(𝑏𝑢 𝑝𝑖 ·)_

) 1
_
)−1

( ∑︁
𝑢∈𝑁


(

1(
𝑎
𝑢
𝑝 · 𝑗

)_ + 1(
𝑏
𝑢
𝑝𝑖 ·

)_ ) 1
_

−1 )−1

.

For an iterative study, we consider the following
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𝑝𝑛+1
𝑢

=

(
1(

𝑎𝑢 𝑝
𝑛
· 𝑗

)_ + 1
(𝑏𝑢 𝑝

𝑛
𝑖 ·)_

) 1
_

∑︁
𝑢∈𝑁

©«
1(

𝑎
𝑢
𝑝𝑛· 𝑗

)_ + 1(
𝑏
𝑢
𝑝𝑛
𝑖 ·
)_ ª®®¬

1
_

,

for 𝑛 = 0, 1, . . . with the initial choice of 𝑝 (0)
𝑖 𝑗

= 1
𝐼 𝐽

for all (𝑖, 𝑗) ∈ 𝑁 . We may use the

stopping rule for this iterative algorithm as
����𝐷 (𝑛+1)

1

𝐷
(𝑛)
1

− 1
���� ≤ 10−6. In all the examples

we considered, our process was found to converge for a wide range of _.

6.2 Kullback-Leibler divergence criterion under conditional and
marginal information

In this case, the K-L divergence statistic is

𝐷2 (𝑝) =
𝐼∑︁

𝑢=1

[
𝑎
𝑢

log

(
𝑎
𝑢
𝑝 · 𝑗

𝑝
𝑢

)
+ 𝑏

𝑢
log

(
𝑏
𝑢
𝑝𝑖 ·

𝑝
𝑢

)]
.

Again, we consider the following Lagrangian function

𝐹2 = 𝐷2

(
𝑝

)
+

𝑟+1∑︁
𝑡=1

𝜏𝑡

(
𝐼∑︁

𝑢=1
𝑀𝑡𝑢𝑝𝑢 − \𝑡

)
,

where 𝜏𝑡 , 𝑡 = 1, 2, . . . , (𝑟 + 1) are (𝑟 + 1) Lagrangian multipliers. To minimize 𝐹2,
we consider simultaneous solution of

𝜕𝐹2
𝜕𝑝

𝑢

= 0,

same as in (9). So, the optimal value of 𝑝
𝑢

is

𝑝∗
𝑢
=

(
𝑎𝑢+𝑏𝑢
1
𝑝𝑖 ·

+ 1
𝑝· 𝑗

)
(∑︁
𝑢∈𝑁

𝑎
𝑢
+ 𝑏

𝑢

1
𝑝𝑖 ·

+ 1
𝑝· 𝑗

) .
For an iterative study, we consider the following
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𝑝 (𝑛+1)
𝑢

=

(
𝑎𝑢+𝑏𝑢
1
𝑝𝑛
𝑖 ·
+ 1

𝑝𝑛· 𝑗

)
©«
∑︁
𝑢∈𝑁

𝑎
𝑢
+ 𝑏

𝑢

1
𝑝𝑛
𝑖 ·
+ 1

𝑝𝑛
· 𝑗

ª®¬
for 𝑛 = 0, 1, . . . with the initial choice of 𝑝 (0)

𝑖 𝑗
= 1

𝐼 𝐽
for all (𝑖, 𝑗) ∈ 𝑁 . We use

the following stopping rule
����𝐷 (𝑛+1)

2

𝐷
(𝑛)
2

− 1
���� ≤ 10−6. Here also our iterative algorithm is

convergent.

6.3 Modified Renyi’s measure of divergence under the marginal and
conditional information

Proceeding as before, in this case, the statistic will be

𝐷3 =
1

(𝛼 − 1)

[ 𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

(
𝑎
𝑢
𝑝. 𝑗

)−1 log
(
𝑝𝑖 𝑗

𝑎
𝑢
𝑝. 𝑗

)𝛼
+

𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

(
𝑏
𝑢
𝑝𝑖.

)−1 log
(
𝑝𝑖 𝑗

𝑏
𝑢
𝑝𝑖.

)𝛼 ]
.

(10)
Next, we consider the following Lagrangian function

𝐹3 = 𝐷3

(
𝑝

)
+

𝑟+1∑︁
𝑡=1

𝜏𝑡

(
𝐼∑︁

𝑢=1
𝑀𝑡𝑢𝑝𝑢 − \𝑡

)
,

where 𝜏𝑡 , 𝑡 = 1, 2, . . . , (𝑟 + 1) are (𝑟 + 1) Lagrangian multipliers. Now, to minimize
𝐹3, we consider simultaneous solution of

𝜕𝐹3
𝜕𝑝

𝑢

= 0,

same as in (9). Consequently, the optimal value of 𝑝
𝑢

is

𝑝∗
𝑢
=

1
𝑎𝑢 𝑝. 𝑗

+ 1
𝑏𝑢 𝑝𝑖.∑︁ ∑︁

(𝑖, 𝑗 ) ∈𝑁

(
1

𝑎
𝑢
𝑝. 𝑗

+ 1
𝑏
𝑢
𝑝𝑖.

) .
Subsequently, for an iterative study, we consider the following iterative algorithm
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𝑝 (𝑛+1)
𝑢

=

1
𝑎𝑢 𝑝

(𝑛)
. 𝑗

+ 1
𝑏𝑢 𝑝

(𝑛)
𝑖.∑︁ ∑︁

(𝑖, 𝑗 ) ∈𝑁

©« 1
𝑎
𝑢
𝑝
(𝑛)
. 𝑗

+ 1
𝑏
𝑢
𝑝
(𝑛)
𝑖.

ª®¬
.

for 𝑛 = 0, 1, . . . with the initial choice of 𝑝 (0)
𝑖 𝑗

= 1
𝐼 𝐽

for all (𝑖, 𝑗) ∈ 𝑁 . We use

the following stopping rule
����𝐷 (𝑛+1)

3

𝐷
(𝑛)
3

− 1
���� ≤ 10−6. Here also our iterative algorithm is

convergent based on all the empirical studies that we have made in this regard. A
formal mathematical proof is still remains an open problem.

6.4 𝝌2 divergence criterion under conditional and marginal
information

In this case, our test statistic reduces to

𝐷4 =
∑︁ ∑︁

(𝑖, 𝑗 ) ∈𝑁

[ (
𝑝𝑖 𝑗

𝑎
𝑢
𝑝. 𝑗

)2 ]
𝑎
𝑢
𝑝. 𝑗 +

∑︁ ∑︁
(𝑖, 𝑗 ) ∈𝑁

[ (
𝑝𝑖 𝑗

𝑏
𝑢
𝑝𝑖.

)2 ]
𝑏
𝑢
𝑝𝑖. (11)

Next, we consider the following Lagrangian function

𝐹4 = 𝐷4

(
𝑝

)
+

𝑟+1∑︁
𝑡=1

𝜏𝑡

(
𝐼∑︁

𝑢=1
𝑀𝑡𝑢𝑝𝑢 − \𝑡

)
,

where 𝜏𝑡 , 𝑡 = 1, 2, . . . , (𝑟 + 1) are (𝑟 + 1) Lagrangian multipliers. Now, to minimize
𝐹4, we consider simultaneous solution of

𝜕𝐹4
𝜕𝑝

𝑢

= 0,

same as in (9). Consequently, the optimal value of 𝑝
𝑢

will be

𝑝∗
𝑢
=

(
1

𝑎
𝑢
𝑝. 𝑗

+ 1
𝑏
𝑢
𝑝𝑖.

)−1 [∑︁ ∑︁
(𝑖, 𝑗 ) ∈𝑁

1
𝑎
𝑢
𝑝. 𝑗

+ 1
𝑏
𝑢
𝑝𝑖.

]−1

Consequently, an iterative algorithm for finding minimally compatible (alias 𝜖-
compatible) 𝑃 would be to have

𝑝 (𝑛+1)
𝑢

=

(
1

𝑎
𝑢
𝑝
(𝑛)
. 𝑗

+ 1
𝑏
𝑢
𝑝
(𝑛)
𝑖.

)−1 [∑︁ ∑︁
(𝑖, 𝑗 ) ∈𝑁

1
𝑎
𝑢
𝑝
(𝑛)
. 𝑗

+ 1
𝑏
𝑢
𝑝
(𝑛)
𝑖.

]−1
,
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for 𝑛 = 0, 1, . . . with the initial choice of 𝑝 (0)
𝑖 𝑗

= 1
𝐼 𝐽

for all (𝑖, 𝑗) ∈ 𝑁 . We use

the following stopping rule
����𝐷 (𝑛+1)

4

𝐷
(𝑛)
4

− 1
���� ≤ 10−6. Here also our iterative algorithm is

convergent based on all the empirical studies that we have made in this regard. A
formal mathematical proof is still remains an open problem.

6.5 Divergence measure 𝑫5 under conditional and marginal
information

Here, our test statistic reduces to

𝐷5 =
∑︁ ∑︁

(𝑖, 𝑗 ) ∈𝑁

[ (
𝑝𝑖 𝑗

𝑎
𝑢
𝑝. 𝑗 + 𝑏𝑢𝑝𝑖.

− 1
)2 ]_

,

Next, we consider the following Lagrangian function

𝐹5 = 𝐷5

(
𝑝

)
+

𝑟+1∑︁
𝑡=1

𝜏𝑡

(
𝐼∑︁

𝑢=1
𝑀𝑡𝑢𝑝𝑢 − \𝑡

)
,

where 𝜏𝑡 , 𝑡 = 1, 2, . . . , (𝑟 + 1) are (𝑟 + 1) Lagrangian multipliers. Now, to minimize
𝐹5, we consider simultaneous solution of

𝜕𝐹5
𝜕𝑝

𝑢

= 0,

same as in (9). Consequently, the optimal value of 𝑝
𝑢

will be

𝑝∗
𝑢
=

(
𝑎
𝑢
𝑝. 𝑗 + 𝑏𝑢𝑝𝑖.

)1−_−1∑∑
(𝑖, 𝑗 ) ∈𝑁

(
𝑎
𝑢
𝑝. 𝑗 + 𝑏𝑢𝑝𝑖.

)1−_−1

Based on the above optimal value, an iterative algorithm could be

𝑝 (𝑛+1)
𝑢

=

(
𝑎
𝑢
𝑝
(𝑛)
. 𝑗

+ 𝑏
𝑢
𝑝
(𝑛)
𝑖.

)1−_−1

∑∑
(𝑖, 𝑗 ) ∈𝑁

(
𝑎
𝑢
𝑝
(𝑛)
. 𝑗

+ 𝑏
𝑢
𝑝
(𝑛)
𝑖.

)1−_−1 ,

for 𝑛 = 0, 1, . . . with the initial choice 𝑝 (0)
𝑖 𝑗

= 1
𝐼 𝐽

for all (𝑖, 𝑗) ∈ 𝑁 . We use the

following stopping rule
����𝐷 (𝑛+1)

5

𝐷
(𝑛)
5

− 1
���� ≤ 10−6. Here also our iterative algorithm is

convergent based on all the empirical studies that we have made in this regard. A
formal mathematical proof is still remains an open problem.
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6.6 Divergence measure 𝑫6 under conditional and marginal
information

Here, our test statistic reduces to

𝐷6 =
∑︁ ∑︁

(𝑖, 𝑗 ) ∈𝑁

(√
𝑝𝑖 𝑗 −

√
𝑎
𝑢
𝑝. 𝑗

)2 +
∑︁ ∑︁

(𝑖, 𝑗 ) ∈𝑁

(√
𝑝𝑖 𝑗 −

√︃
𝑏
𝑢
𝑝. 𝑗

)2
. (12)

Next, we consider the following Lagrangian function

𝐹6 = 𝐷6

(
𝑝

)
+

𝑟+1∑︁
𝑡=1

𝜏𝑡

(
𝐼∑︁

𝑢=1
𝑀𝑡𝑢𝑝𝑢 − \𝑡

)
,

where 𝜏𝑡 , 𝑡 = 1, 2, . . . , (𝑟 + 1) are (𝑟 + 1) Lagrangian multipliers. Now, to minimize
𝐹6, we consider simultaneous solution of

𝜕𝐹6
𝜕𝑝

𝑢

= 0,

same as in (9). Consequently, the optimal value of 𝑝
𝑢

will be

𝑝∗
𝑢
=

(
𝑎
𝑢
𝑝. 𝑗

)2 +
(
𝑏
𝑢
𝑝. 𝑗

)2∑∑
(𝑖, 𝑗 ) ∈𝑁

{(
𝑎
𝑢
𝑝. 𝑗

)2 +
(
𝑏
𝑢
𝑝. 𝑗

)2
}

Based on the above optimal value, an iterative algorithm could be

𝑝 (𝑛+1)
𝑢

=

(
𝑎
𝑢
𝑝
(𝑛)
. 𝑗

)2
+

(
𝑏
𝑢
𝑝
(𝑛)
. 𝑗

)2

∑∑
(𝑖, 𝑗 ) ∈𝑁

{(
𝑎
𝑢
𝑝
(𝑛)
. 𝑗

)2
+

(
𝑏
𝑢
𝑝
(𝑛)
. 𝑗

)2
}

for 𝑛 = 0, 1, . . . with the initial choice 𝑝 (0)
𝑖 𝑗

= 1
𝐼 𝐽

for all (𝑖, 𝑗) ∈ 𝑁 . We use the

following stopping rule
����𝐷 (𝑛+1)

6

𝐷
(𝑛)
6

− 1
���� ≤ 10−6. Here also our iterative algorithm is

convergent based on all the empirical studies that we have made in this regard. A
formal mathematical proof is still remains an open problem.

7 Illustrative Examples

In these illustrative examples, we consider conditional probability matrices that
are incompatible in nature. These examples, although not taken from a real life sce-
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nario, are representative of the fact that given an additional set of precise information,
whether the two conditional distributions are compatible or not, and in case they are
not, can we find something close to what we call as Y-compatibility. Prominent real
life scenarios in which this might be useful are Bayesian networks, model building
in classical statistical settings, and elicitation and construction of multiparameter
prior distributions in Bayesian scenarios. The dimensions of the matrices 𝐴 and 𝐵
are taken to be either 3 or 4 in Examples 1 to 5. The matrix 𝑀 for each example
was easily constructed using Mathematica software. The results of the iterative
algorithm for the examples are shown in Tables 1 to 3.

• Example 1. In this example, we illustrate the above defined method in a simple
case. Consider the set (𝑋,𝑌 ) of two variables taking values 1, 2, 3, 4. Let us
consider the associated conditional probability matrices, where 𝐼 = 4 and 𝐽 = 4
and

𝐴 =

©«
0.27 0.4 0 0.10
0.18 0.20 0.50 0.40
0.55 0.20 0.30 0.25

0 0.20 0.20 0.25

ª®®®¬ ,
and

𝐵 =

©«
0.15 0.28 0.35 0.22
0.45 0 0.25 0.30
0.50 0.17 0.20 0.13

0 0.55 0.20 0.30

ª®®®¬ .
Here, 𝐴 and 𝐵 are incompatible since they do not share even a common incidence
matrix.
Suppose that we have the following information (from our informed expert) :

– 𝐸
(
𝑋2) = 7.49;

– 𝑃(𝑌 = 3) = 0.38;
– 𝑃

(
𝑋2 = 9

��𝑌 = 2
)
= 0.37;

– 𝑃
(
𝑌2 = 1

�� 𝑋 = 2
)
= 0.53.

Here, we have 𝑝 = (𝑝11, 𝑝12, . . . , 𝑝44). In this case all the above information
can be summarized by our 𝑀 matrix given as follows.

𝑀 =

©«
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 4 4 4 4 9 9 9 9 16 16 16 16
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0.37 0 0 0 0.37 0 0 0 −0.63 0 0 0 0.37 0 0
0 0 0 0 −0.47 0.53 0.53 0.53 0 0 0 0 0 0 0 0

ª®®®®®¬
.

Subsequently, \ = (1, 7.49, 0.38, 0, 0). The iterative algorithm results are given
in Table 1. In all the examples we considered, the constraints were approximated
to a relative absolute error of 10−6. The algorithm was found to converge for a
wide range of values of _.
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• Example 2. In this example, we consider the set {𝑋,𝑌 } of two variables taking
values 1, 2, 3. Let us consider two conditional probability matrices, where 𝐼 = 3
and 𝐽 = 3 and

𝐴 =
©«

0.35 0.43 0
0 0.57 0.42

0.65 0 0.58

ª®¬ ,
and

𝐵 =
©«

1
4

3
4 0

0 1
2

1
2

3
4 0 1

4

ª®¬ .
Here also, one can easily examine that the matrices 𝐴 and 𝐵 are incompatible.
Suppose that we have the following information:

– 𝐸 (𝑋 |𝑌 = 2) = 1.5372;
– 𝑃

(
𝑋2 = 1

��𝑌 = 1
)
= 0.4235;

– 𝐸
(
𝑋2

��𝑌2 = 4
)
= 3.2953;

– 𝑃(𝑋 < 3|𝑌 > 2) = 0.4367.

Here, we have 𝑝 = (𝑝11, 𝑝12, . . . , 𝑝33). Subsequently, in this case, our 𝑀 matrix
is

𝑀 =

©«
1 1 1 1 1 1 1 1 1
0 −0.5372 0 0 0.4728 0 0 1.4728 0

0.5865 0 0 −0.4235 0 0 −0.4235 0 0
0 −1.2953 0 0 1.6147 0 0 7.6147 0
0 0 0.5733 0 0 0.5733 0 0 −0.4367

ª®®®®®¬
.

We have \ = (1, 0, 0, 0, 0). The iterative algorithm results are given in Table 2.

• Example 3. Let us consider two conditional probability matrices, where 𝐼 = 3
and 𝐽 = 3 and

𝐴 =
©«

2
7

3
7 0

0 4
7

6
7

5
7 0 1

7

ª®¬ ,
and

𝐵 =
©«

2
5

3
5 0

0 1
3

2
3

3
5 0 2

5

ª®¬ .
Suppose that we have the following information:

– 𝑃
(
𝑋2 = 1

��𝑌 = 3
)
= 0;

– 𝑃
(
𝑋2 = 9

��𝑌 ≥ 1
)
= 0.3956;

– 𝐸
(
𝑋

��𝑌2 = 4
)
= 1.3726;

– 𝑃(𝑌 > 2|𝑋 < 3) = 0.6849.
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Here, we have 𝑝 = (𝑝11, 𝑝12, . . . , 𝑝33). Also in this case our 𝑀 matrix is

𝑀 =

©«
1 1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0 0

0.3956 0 0 −0.3956 0 0 0.6044 1 1
0 −0.3726 0 0 0.6374 0 0 0 2.6374

−0.6849 −0.6849 −0.6849 −0.6849 −0.6849 −0.6849 1 1 0

ª®®®®®¬
.

Here, \ = (1, 0, 0, 0, 0). The iterative algorithm results are given in Table 3.
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Table 1. Minimal (𝜖) incompatibility results for Example 1.

Criterion Optimal value Matrix 𝑃 No. of iterations

𝐷1 0.002353209
©«

0.0610 0.0557 0.0484 0.0219
0.0837 0.0103 0.0485 0.0489
0.2069 0.0377 0.1111 0.0461
0.0000 0.0815 0.1345 0.0078

ª®®®¬ 8

𝐷2 0.003245132
©«

0.0583 0.0571 0.0492 0.0227
0.0837 0.0132 0.0465 0.0489
0.2062 0.0352 0.1132 0.0460
0.0000 0.0821 0.1351 0.0084

ª®®®¬ 11

𝐷3 0.002129779
©«

0.0681 0.0741 0.1590 0
0.0841 0 0.0419 0.0949

0 0.0624 0.1004 0.1448
0.0389 0.0763 0.0547 0

ª®®®¬ 10

𝐷4 0.005605187
©«

0.0686 0.0711 0.1538 0
0.0864 0 0.0419 0.0919

0 0.0635 0.1026 0.1438
0.0415 0.0781 0.0561 0

ª®®®¬ 12

𝐷5 0.002219034
©«

0.0682 0.0704 0.1523 0
0.0868 0 0.0420 0.0901

0 0.0640 0.1049 0.1418
0.0426 0.0798 0.0571 0

ª®®®¬ 10

𝐷6 0.001537571
©«

0.0686 0.0705 0.1528 0
0.0867 0 0.0420 0.0915

0 0.0637 0.1037 0.1432
0.0421 0.0787 0.0565 0

ª®®®¬ 9

Table 2. Minimal incompatibility results for Example 2.
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Criterion Optimal value Matrix 𝑃 No. of iterations

𝐷1 0.000291763 ©«
0.0924 0.1638 0

0 0.1468 0.2605
0.1030 0 0.2335

ª®¬ 6

𝐷2 0.001796547 ©«
0.1113 0.1469 0

0 0.1734 0.1302
0.2013 0 0.2365

ª®¬ 9

𝐷3 0.001796547 ©«
0.1142 0.1478 0

0 0.1737 0.1320
0.2009 0 0.2316

ª®¬ 10

𝐷4 0.001652207 ©«
0.1107 0.1472 0

0 0.1726 0.1298
0.2013 0 0.2384

ª®¬ 11

𝐷5 0.001079299 ©«
0.1104 0.1471 0

0 0.1723 0.1293
0.2013 0 0.2396

ª®¬ 9

𝐷6 0.000609597 ©«
0.1103 0.1472 0

0 0.1721 0.1283
0.2013 0 0.2398

ª®¬ 8

Table 3. Minimal incompatibility results for Example 3.
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Criterion Optimal value Matrix 𝑃 No. of iterations

𝐷1 0.001992807 ©«
0.1052 0.1691 0

0 0.0587 0.07112
0.3062 0 0.2895

ª®¬ 7

𝐷2 0.001453787 ©«
0.0921 0.1654 0

0 0.0632 0.0817
0.2931 0 0.3045

ª®¬ 8

𝐷3 0.002309232 ©«
0.0961 0.2339 0

0 0.1799 0.0691
0.1194 0 0.3014

ª®¬ 8

𝐷4 0.008158526 ©«
0.0904 0.2317 0

0 0.1721 0.0653
0.1224 0 0.3182

ª®¬ 8

𝐷5 0.004180903 ©«
0.0860 0.2380 0

0 0.1885 0.1007
0.1109 0 0.2759

ª®¬ 8

𝐷6 0.00251268 ©«
0.0936 0.2246 0

0 0.1808 0.0755
0.1317 0 0.2935

ª®¬ 8

The small values of divergence in Tables 1 to 3 are quite encouraging. There is
no evidence that 𝐷1 decreases/increases with the dimension or the values in 𝐴 and
𝐵. The nature of the results were similar for a wide range of other 𝐴, 𝐵 and for 𝐴,
𝐵 of higher dimensions. A similar approach in the case of continuous probability
models still remains an open problem and will be taken up in a future article.

7.1 Some observations on the concept of 𝝐-compatibility

The advantage of the definition of 𝜖- compatibility utilized in this article is that the
degree of incompatibility could be determined by standard linear programming tech-
niques which has been advocated by Arnold et al. (2001). However, this simplicity
comes at a cost. If the information is found to be, say, .0058 compatible it is difficult
to interpret the meaning of the quantity .0058. It is obvious that 0-compatible means
completely compatible and 0.01 compatible is better than 0.023 compatible but no
interpretation of 0.01 or 0.02 seems available in the literature.
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8 Concluding remarks

The problem of finding most nearly compatible distribution(s) starting from two
given conditionals (that are incompatible) is not new in the literature. However, there
is a scarcity of scholarly work on this topic when in addition to complete specifi-
cation of two given conditional probability matrices, our informed expert has some
additional information in the form of say, conditional percentiles and/or conditional
moments etc., among others. Arnold et al. (2001) has provided a brief overview on
the issue of finding minimally incompatible distribution in the presence of additional
information. However, the role of various existing as well as comparatively newly
defined pseudo-divergence measures in search for a minimally incompatible under
the presence of additional information has not been adequately addressed. In this
paper, we explore the relative performance (equivalently the applicability) of some
of the well-known measures of divergence in finding a most nearly compatible dis-
tribution in the presence of additional information. The survey made in this paper
is far from complete. Compatibility in higher dimensions, such as, given three con-
ditional matrices, say 𝑋 given 𝑌 and 𝑍; 𝑌 given 𝑋 and 𝑍; and 𝑍 given 𝑋 and 𝑌 in
the presence of additional information (in terms of marginal/conditional moments,
percentiles etc.) will be the subject matter of a separate article.
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