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ABSTRACT

The goal of this paper is to present a method for construction of simultaneous

Scheffé confidence bands for nonparametric prediction functions. The family of non-

parametric functions studied here are of the polynomial-trigonometric series type,

with estimation of the model parameters undertaken in the standard least-squares

framework. After the method is set forth the performance of the procedure is stud-

ied via Monte-Carlo simulations.
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1 INTRODUCTION

Typically when confronted with the idea of regression one immediately thinks of

fitting some specific model to given data. Traditionally, this is done by taking the

data to be (ti, yi) for 1 ≤ i ≤ n and assume data follow a model of the form

yi = f(ti) + εi. Here ε is a vector of iid error terms with common variance σ2 and

f(·) is unknown.

One must now decide whether to proceed via parametric or non-parametric anal-

ysis methods. Parametric regression depends on assuming a particular form of f(·),
say linear or quadratic. On the other hand, non-parametric regression simply as-

sumes that the predictor function is an element of some infinite dimensional function

space. While parametric is the most popular choice it is, in general, only valid if the

data actually follows the designated model. Thus, if data collection is done in order

to ascertain the nature of the relationship, it would seem inherently restrictive to

choose parametric regression since the data in question may not follow the model

chosen. Thus, often it is reasonable to look further at a non-parametric model. As a

result of this the model is still yi = f(ti)+ εi but now f(·) ∈ F, some as yet unknown

infinite dimensional function space.



2 DETERMINING f(·)

The nature of f(·) must be determined before proceeding to make inferences about

the presence of a relationship in the data. One approach is to try to write f(·) as

a linear combination of known elements in the same function space. One may then

look for a basis for F, say {xk}k≥1, and write f =
∑∞

k=1 βkxk. Note that {xk} is

necessarily infinite since F is an infinite dimensional function space. Unfortunately,

this sequence may not be available for every class of functions so a particular function

space must now be chosen. For concreteness take the space to be L2[a, b], the set of

all square integrable functions on the interval [a, b]. To describe the nature of the

basis elements in this space a few definitions are needed.

Definition 1 The norm of a function g(t) ∈ L2[a, b] is defined as

||g(t)|| =
{∫ b

a

[g(t)]2dt

}1/2

.

Definition 2 The inner product of two functions x1, x2 ∈ L2[a, b] is defined to be

< x1, x2 >=

∫ b

a

x1(t)x2(t)dt.

Definition 3 Two functions x1, x2 ∈ L2[a, b] are said to be orthogonal if

< x1, x2 >= 0.

Definition 4 A sequence of functions {xk}k≥1 is said to be orthonormal if the xk

are pairwise orthogonal and ||xk|| = 1 for all k.

Definition 5 A sequence of functions {xk}k≥1 is said to be a complete orthonormal

sequence (CONS) if < f, xk >= 0 for all k implies f ≡ 0.

Then if a CONS can be found it is necessarily a basis for L2[a, b] (Eubank 1999).



As before, the function is f(t) =
∑∞

k=1 βkxk(t), but now in order to proceed

further one must decide on a particular sequence of functions. There are two basic

ways to build the sequence, either by choosing a polynomial or trigonometric basis.

The former may be completed with the use of the Legendre Polynomials obtained

via Gram-Schmidt orthonormalization. Unfortunately the matrix associated with

the polynomial basis is usually ill-conditioned which produces numerical difficulties.

One may choose then to try using a trigonometric basis which can be formed in one

of three ways. The first is to use both sine and cosine functions. For example, take

x1 = 1, x2k(t) =
√

2 cos (2kπt), and x2k+1 =
√

2 sin (2kπt) for j ≥ 1 on the interval

[0,1]. Alternatively, the functions may be defined in terms of either sine or cosine

individually. The most common trigonometric sequence is formed using solely the

cosine function since its performance at the boundaries of the interval [a, b] is superior

to the other two. However, it still does a rather poor job there as the boundary

bias may be substantial. The solution is to combine the two methods in some

fashion. The method used here was chosen such that a fixed number of polynomial

functions are employed to improve the boundary behavior and allow the remainder

of the functions to be cosines in order to achieve an acceptable compromise between

numerical complications and boundary bias (Eubank 1999). In particular, choose

x1 = 1, x2 = t − t2

40
, x3 = t2

2
and xk =

√
2/(b− a) cos [(k − 3)(t− a)π/(b− a)].

From this it can be seen that f(t) is a linear combination of known functions all

which lie in L2[a, b] as was originally proposed.

Now that this has been established, estimates of βk for k ≥ 1 must be found. But

it is known that βk → 0 as k → ∞ so the infinite series, f(t) =
∑∞

k=1 βkxk(t), may

be truncated after a certain number of terms without significant loss of accuracy

(Eubank 1999). Then choosing the first λ terms leads to an approximation of the

true function. Taking into account this approximation, the model is now linear

and of the form yi = f(ti) + εi where f(t) ≈ ∑λ
k=1 βkxk(t), with λ referred to as

3



the smoothing parameter. As λ increases the model will better approximate the

actual data. However, extremely large values of λ lead to a model that is nearly

interpolating the data and as a result is less preferable since over-fitting the data

increases the variability of the function to an undesirable level. Smaller values of this

parameter lead to smoother functions but may not provide as accurate an estimate

of the response due to the fact that the function will not be accurately capturing the

nature of the data. Therefore, this simplification is not without a price, an estimate

of λ that is in some sense an optimal value must now be found in order to continue.

4



3 SELECTING THE SMOOTHING PARAMETER

Though there are multiple methods for selecting the smoothing parameter, a popular

choice is a variation of the cross validation technique. To facilitate the explanation of

cross validation let us adopt the following notation: let t and y be vectors containing

the independent and dependent data respectively, and let b be a vector containing

the estimates of the actual coefficients, β, for the model. Also, since only the first λ

terms of the series are used there will be λ known functions with which to build the

estimator. Therefore b is of length λ and there is an n×λ matrix, Xλ, that contains

the λ components of the predictor function evaluated at each of the n points. Then

Xλ is defined explicitly by {Xλ}i,j = xj(ti), where 1 ≤ i ≤ n and 1 ≤ j ≤ λ. Thus

the estimate of f(·) can now be written in matrix form as f̂ = Xλbλ. To determine

a value of λ that is optimal one must first have a method of computing bλ. This

is simple enough since, for a given λ, the model is linear and thus a least-squares

estimate of bλ is given by bλ = (XT
λXλ)

−1XT
λy.

Once the least-squares estimate of bλ is available the process of determining an

optimal value of λ can begin. First, create n subsets of size n − 1 where the ith

subset is generated by removing the point (ti, yi). Then let xλi be the vector of

values obtained by evaluating each of the λ components of the prediction function

at ti and bλ(i) be the set of estimated coefficients when the ith point is removed.

Next, calculate the n values of bλ(i) corresponding to the n subsets. Once this is

done let µλ(i) represent the estimated response, xT
λibλ(i). Then the cross validation

function is defined as

CV (λ) = n−1

n∑
i=1

(yi − µλ(i))
2.

The idea is to generate an estimate of the prediction error with the known values

that were held out of the previous computations. The method chosen here was

a variation of cross validation known as generalized cross validation or GCV. The



value of λ chosen from this process is the minimizer of the GCV criterion; that is

the value of λ for which GCV(λ) is the smallest.

There are certain problems that arise when generalized cross validation is utilized.

First, there is the problem of which minimum to choose. A global minimum is

guaranteed but there is also the possibility of several local minima. Choosing the first

local minimum is not advisable since it generally leads to choices of λ than are smaller

than desired for multiple reasons. Smaller values of λ tend to generate a function

that estimates the data poorly in addition to providing confidence bands with lower

coverage probabilities. However, the global minimum is not always the optimal

choice if the set, Λ, that λ is chosen from is allowed to remain unbounded. This

case tends to provide values that are too large and thus lead to near interpolation

of the data. The solution then is to experimentally determine an appropriate set Λ

from which to choose λ as well as investigating the advantages from using the global

minimum in each scenario.
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4 VARIANCE ESTIMATION

Regardless of the selection criteria used for λ, once an optimal value has been chosen

the next step is to then find an estimate of variance for the data at hand. Several

methods for variance estimation are available. Since the model is linear it seems

reasonable to employ the variance estimator from linear regression

σ2
λ =

∑n
j=1

(
yj −

∑λ
k=1 ckxk(tj)

)2

(n− λ)
=

RSS(λ)

(n− λ)

where RSS(λ) is simply the residual sum of squares associated with the estimate of

bλ. However, it is important to note that the optimal value of λ for determining the

model is not necessarily the optimal value for estimation of σ2. Alternative methods

that do not require a value of the smoothing parameter be chosen are also viable

options. One such model that looks at the squared difference between successive

terms was proposed by Rice (1984) and has the form

σ̂2 = (n− 1)−1

n∑
j=2

(yj − yj−1)
2.

Another model with similar structure was introduced in Hall, Kay and Titterington

(1990) and is given by

σ̂2 = (n− 2)−1

n−1∑
j=2

(.809yj−1 − .5yj − .309yj+1)
2.

Of the three estimators, the first performed the best in the scenarios in which it was

tested. It appears that both the second and third methods require a relatively dense

grid in order to perform well. However, the estimator ultimately chosen was a more

conservative estimate of the form RSS(λ)
(n−λ−1)

. This had the benefit of underestimating



the variance with less frequency than any of the other methods, but still estimating

the variance accurately.
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5 CONSTRUCTING THE BANDS

To proceed with constructing the confidence bands recall that f̂(t) = bTx(t) and

assume Y ∼ Nn(µ, σ2I). Then this implies that

b = (XT
λXλ)

−1XT
λY ∼ Nλ(b, σ

2(XT
λXλ)

−1)

since for Z ∼ Nn(µ,Σ) it is known that BZ ∼ Nk(Bµ,BΣBT ) for B a k × n

matrix see, for example, Moser (1996). The bias is due to the estimation of β, an

infinite set of parameters, with b, a finite set. Also, let P be a λ × λ matrix such

that σ2(XT
λXλ)

−1 = PTP. Then consider a band of the form f̂(t) ± cσ̂p(t) where

p(t) = ||Px(t)||. Several choices of c are possible, here we take c = [kFk,ν; α]1/2, a

Scheffé critical value where k = λ and ν = n− λ− 1 (Naiman 1986).



6 SIMULATION STUDIES

Confidence bands of the aforementioned form were applied to various functions for

which both n = 50 and n = 100 design points were used. In two of the scenarios,

cases one and three, n = 200 points were also used. The design points were obtained

by using a uniform design scheme where ti = (b−a)(8i−4
8n

. In order to determine the

Scheffé critical value a significance level of 95% was chosen and thus α = .05. To

get an estimate of the coverage probability resulting from such confidence bands

a particular function was chosen and the proposed method was applied for two

thousand simulated cases. The coverage probability is determined by dividing the

number of times the estimated function value falls within the confidence bands by

the number of simulations. For each scenario a plot of the confidence bands, actual

function, and predicted function was investigated in order to visualize the coverage

obtained. Also calculated for each scenario is the mean and standard deviation

for both the smoothing parameter, λ, and the estimate of the function’s standard

deviation, σ̂. The functions themselves were chosen in order to simulate data whose

true nature may be difficult to determine without the actual function being known.

For each scenario the interval was [0, 20] so that the functions could exhibit some

non-linear behavior and begin to level off in order to determine the effectiveness of

the confidence bands.

6.1 Case 1

The first case corresponds to choosing f(t) = 15t
t2+1

with the true standard devia-

tion of ε set at σ = 1. For this scenario Table 1 provides the means and standard

deviations of both λ and σ̂. Also shown in Table 1 are the coverage probabilities

for the entire interval [0, 20] and for a truncated interval of [3, 20] given by p and

p′ respectively. A factor contributing to the difference between the coverage on the



two intervals can be seen in Figure 1. The peak occurring at the left hand side

of the interval causes difficulties in obtaining an accurate confidence band. When

the boundary bias due to the cosine functions appearing in the estimator is also

taken in account, the variation in the two probabilities is not surprising. Figure

2 shows a similar picture with the number of design points doubled. There is an

obvious improvement between the trials as can be seen due to the tightening of the

confidence bands. The result is higher coverage probabilities, particularly for the

entire interval, that are likely due to the fact that the bias is approaching zero as

the sample size is increased. However, since the confidence bands are somewhat

conservative even with 100 design points there is not a clear conclusion. Even as can

be seen in Figure 2 a line with a slope between zero and negative one could easily be

fit without straying outside the confidence bands, thus not accounting for the peak.

By increasing to n = 200 the confidence bands fit the data closer and thus make a

linear relationship of slope zero seem less likely, as can be seen in Figure 3.

n p p′ xλ sλ xσ̂ sσ̂

50 .8775 .9525 10.78 3.86 1.14 0.12
100 .9755 .9950 13.60 2.64 1.08 0.08
200 .9805 .9825 15.11 2.28 1.04 0.05

Table 1: Results from Case 1.
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Figure 1: Interval estimates, estimated function, and actual function for Case 1 with
n = 50 design points.
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Figure 2: Interval estimates, estimated function, and actual function for Case 1 with
n = 100 design points.
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Figure 3: Interval estimates, estimated function, and actual function for Case 1 with
n = 200 design points.
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6.2 Case 2

The second scenario is a horizontal shift of the first function given by f(t) = 15(t−10)
(t−10)2+1

with the actual standard deviation remaining one. Since this shift centers the root

in the interval [0, 20] the effect of the boundary bias is reduced. Thus Table 2 shows

the coverage probability for the entire interval, p, as well as the mean and standard

deviation for both the distributions of λ and σ̂. Figure 4 shows the upper and lower

confidence bands as well as the actual function and estimated function for n = 50.

Figure 5 shows a similar picture for n = 100. Here there seemed to be no reason

to determine bands when n = 200 as the bands for both 50 and 100 captured the

nature of the date extremely well.

n p xλ sλ xσ̂ sσ̂

50 .9985 17.82 1.92 1.26 0.12
100 .9985 19.08 1.23 1.12 0.08

Table 2: Results from Case 2.
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Figure 4: Interval estimates, estimated function, and actual function for Case 2 with
n = 50.
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Figure 5: Interval estimates, estimated function, and actual function for Case 2 for
n = 100.
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6.3 Case 3

The third case study was for a rational function as well. In this case the function

was f(t) = t4−42t3+630t2−4023t+9315
t4−36t3+486t2−2916t+6642

with an actual standard deviation of σ = 1/2.

Table 3 shows the coverage probability for the entire interval, p, as well as again

displaying the mean and standard deviation for both the distributions of λ and σ̂.

Figure 6 also depicts the upper and lower confidence bands as well as the actual

function and estimated function while Figure 7 shows the outcome for n = 100

design points. Again the confidence bands are wide enough to easily allow a linear

function of slope zero to fit for n = 50 and only tighten slightly when n = 100. Thus

it is again beneficial to look at the results for n = 200. As can be seen in Figure

8 the confidence bands have become narrow enough to support the presence of a

relationship in the data.

n p xλ sλ xσ̂ sσ̂

50 .8740 10.32 2.99 0.57 0.06
100 .9605 11.54 2.18 0.53 0.04
200 .9825 12.29 2.05 0.52 0.03

Table 3: Results from Case 3.
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Figure 6: Interval estimates, estimated function, and actual function for Case 3,
n = 50
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Figure 7: Interval estimates, estimated function, and actual function for Case 3 with
n = 100.
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Figure 8: Interval estimates, estimated function, and actual function for Case 3 for
n = 200.

21



6.4 Case 4

The last scenario corresponds to choosing

f(t) =
50√

2π · (2.5)2
e−

(t−10)2

2·2.52 .

For this choice of f(t) the actual error standard deviation was again chosen to be

σ = 1/2. The normal function was scaled by a factor of 50 in order to make σ = 1/2

a reasonable choice. The values of 10 for the mean and 2.5 for the standard deviation

were chosen to center the function in the interval and to ensure that four standard

deviations fall within the interval [0, 20]. The following table then gives the coverage

probability for the entire interval, p, as well as the mean and standard deviation

for both the distributions of λ and σ̂. Figure 9 shows both confidence bands as

well as the actual and estimated functions. Figure 10 shows the results obtained by

doubling the number of design points while Figure ?? shows the confidence bands

for n = 200 design points.

n p xλ sλ xσ̂ sσ̂

50 .9450 9.28 2.40 0.56 0.06
100 .9295 9.59 1.98 0.53 0.04
200 .9790 9.90 1.83 0.51 0.03

Table 4: Results from Case 4.
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Figure 9: Interval estimates, estimated function, and actual function for Case 4
when n = 50.
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Figure 10: Interval estimates, estimated function, and actual function for Case 4 for
n = 100.
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Figure 11: Interval estimates, estimated function, and actual function for Case 4 for
n = 200.
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7 Conclusion

As a result of the simulation studies it can be seen that the sample size, n, affects

the construction of confidence bands as well as the results garnered from them.

Increasing the sample size induces a reduction in the bias and thus an increase in

coverage probabilities. The importance of this idea is that the confidence bands,

in practice, would be used to make inferences about the data at hand. A major

component of that is verifying the shape of the data; that is to say, determine

whether the peak seen in the data is a spurious anomaly that can be attributed to

random error or that the data is actually related by some specific, inherent pattern.

The results show there is a greater ability to do just this for larger values of n.

There are multiple areas for future research in the application of such confidence

banding techniques. In particular would be the possibility of confidence bands used

with spline estimation or with longitudinal data. Another topic of interest is relaxing

the normality condition on the error terms and investigate the performance of these

procedures asymptotically.

In addition it should be noted the the procedure presented is relatively simple

to implement. It only requires obtaining a variance estimate, factorization and

multiplication of matrices, and utilization of an F-distribution. Since the entirety

of this process is carried out in a least squares setting, any software package such

as SAS can be easily used to implement the method without a great expense of

resources.



APPENDIX

A. Sample Program

The following code can be used to generate the results for the scenario described by

the first case in the simulation studies with 200 design points.

program basic

use imsl

implicit none

double precision :: pi, a, b, c

integer :: n, lambda, i, j, k, L, index, count, count2,

simnumber, total, total2, num, num2

common / comblock / pi, a, b, n

double precision, allocatable, dimension(:) :: e, t, y, mu, fhat,

lowest, upest

double precision, allocatable, dimension(:) :: lowavg, upavg,

fhatavg, gavg

double precision :: sigma=1,trace, g, f, RSS, small, SigEst, q0,

q1, ratio, ratio2

double precision, allocatable, dimension(:,:) :: GCV, Id, temp,

blambda, Xlambda

double precision, allocatable, dimension(:,:) :: Slambda, M, var,

Pmat, p

pi = 4*datan(dble(1.0))

n = 200; lambda=0; RSS=0; small=0; SigEst=0; L=0; index=0; L=0

i=0; j=0; k=1

a = 0; b = 20; simnumber=1000; ratio=0; ratio2=0; num=0;

num2=0

call rnset(0)

allocate(lowavg(n), upavg(n), fhatavg(n), gavg(n))

do k=1,simnumber

allocate(Id(n,n))

allocate(e(n),t(n),y(n),mu(n),fhat(n),p(n,1),upest(n),lowest(n))



!create a random set of iid normal errors and a grid over the

!interval 0 to 1.

call drnnoa(n,e)

do i=1, n

t(i) = (b-a)*(8*dble(i)-4.0)/(8*dble(n))

end do

!scale the error vector and define function y

e=e*sigma

do i=1, n

y(i) = g(t(i)) + e(i)

end do

allocate(GCV(20,1))

do L=1, 20

allocate (Xlambda(n,L))

call buildXlam(L, t, Xlambda)

allocate (blambda(L,1))

allocate (Slambda(n,n))

allocate (M(L,n))

call matrix(L, y, Xlambda, Slambda, blambda, mu, M)

call identity(Id,n)

allocate(temp(n,n))

temp = Id-Slambda

RSS = sum((y-mu)**2)

call tr(temp,n,trace)

GCV(L,1) = RSS/((trace/n)**2)/n

deallocate (Xlambda, blambda, Slambda, M, temp)

end do

28



!Now choose smallest value from GCV loop to determine lambda

small = GCV(1,1)

index = 1

do L=1, 19

if ( GCV(L+1,1) < small ) then

small = GCV(L+1,1)

index = L

end if

end do

!Reallocate and define matrices with optimal lambda

lambda = index

allocate (Xlambda(n,lambda))

allocate (blambda(lambda,1))

allocate (Slambda(n,n))

allocate (M(lambda,n))

allocate (var(lambda,lambda))

allocate (Pmat(lambda,lambda))

call buildXlam(lambda, t, Xlambda)

call matrix(lambda, y, Xlambda, Slambda, blambda, mu, M)

!Estimate sigma

call standard(y,t,lambda,SigEst)

!Bulid variance matrix, var

call varmat(lambda, M, SigEst, var, Pmat)
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!build fhat

call band(t, lambda, blambda, fhat, p, Pmat, SigEst, lowest,

upest, c)

!Check accuracy of point-wise band estimates

call check(count, count2, upest, lowest, t, total, total2)

call printer(lambda, blambda, GCV, mu, y, SigEst, t)

do i=1,n

lowavg(i) = lowavg(i) + lowest(i)

upavg(i) = upavg(i) + upest(i)

fhatavg(i) = fhatavg(i) + fhat(i)

gavg(i) = gavg(i) + g(t(i))

end do

num = num + count

num2 = num2 + count2

deallocate(M, var, Pmat, e, t, y, mu, fhat, lowest, upest, GCV,

Id, blambda, Xlambda, p, Slambda)

end do

ratio = dble(dble(num)/dble(simnumber))

ratio2 =dble(dble(num2)/dble(simnumber))

lowavg = lowavg/simnumber

upavg = upavg/simnumber

fhatavg =fhatavg/simnumber

gavg = gavg/simnumber

30



call printer2(ratio, ratio2, simnumber, lowavg, upavg, gavg,

fhatavg, lambda, SigEst)

end program basic

!!!!!!!!!!!!!!!!!!!!!Functions and Subroutines!!!!!!!!!!!!!!!!!!!

double precision function g(t)

implicit none

double precision, intent (IN) :: t

double precision :: pi, a, b

integer :: n

common / comblock / pi, a, b, n

g = 15.0*t/(t**2+1.0)

end function

double precision function q0(t)

implicit none

double precision, intent (IN) :: t

q0 = t-(t**2)/2

end function

double precision function q1(t)

implicit none

double precision, intent(IN) :: t

q1 = (t**2)/2

end function
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double precision function f(t,j)

implicit none

double precision, intent (IN) :: t

integer, intent (IN) :: j

double precision :: pi, a, b, q0, q1

integer :: n

common / comblock / pi, a, b, n

if (j==1) then

f=1

else if (j==2) then

f = q0(t)

else if (j==3) then

f = q1(t)

else

f=dsqrt(dble(2.0/(b-a)))*dcos(dble(j-3)*t*pi/(b-a))

end if

end function

subroutine buildXlam(lambda, t, Xlambda)

implicit none

double precision :: pi, a, b, f

integer :: n

common / comblock / pi, a, b, n

integer, intent(IN) :: lambda

double precision,dimension(n,lambda),intent(OUT) :: Xlambda

double precision, intent(IN), dimension(n) :: t

integer :: i,j

do i=1, n

do j=1, lambda

Xlambda(i,j) = f(t(i), j)

end do

end do

end subroutine buildXlam
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subroutine matrix(lambda, y, Xlambda, Slambda, blambda, mu, M)

implicit none

double precision :: pi, a, b

integer :: n

common / comblock / pi, a, b, n

integer, intent(IN):: lambda

double precision, allocatable, dimension(:,:) :: XtransX,

transINV

double precision, allocatable, dimension(:,:) :: temp

double precision, intent(IN), dimension(n,lambda) :: Xlambda

double precision, intent(OUT), dimension(lambda,1) ::

blambda

double precision, intent(IN), dimension(n,1) :: y

double precision, intent(OUT), dimension(n,n) :: Slambda

double precision, intent(OUT), dimension(n,1) :: m

double precision, intent(OUT), dimension(lambda,n) :: M

!Build Xlambda transpose times Xlambda called XtransX and invert

!since it is needed to build Slambda and blambda

allocate (XtransX(lambda,lambda))

XtransX = matmul(transpose(Xlambda),Xlambda)

allocate (transINV(lambda,lambda))

call dlinrg(lambda, XtransX, lambda, transINV, lambda)

!Build Slambda

allocate (temp(lambda,n))

temp = matmul(transINV, transpose(Xlambda))

Slambda = matmul(Xlambda, temp)

deallocate(temp)

!Build matrix, M, with which to compute var, the variance matrix

!for the distribution of the b lambdas.

M = matmul(transINV, transpose(Xlambda))

!Build blambda

blambda = matmul(M, y)
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!Build mu

mu = matmul(Slambda, y)

deallocate(transINV, XtransX)

end subroutine matrix

subroutine varmat(lambda, M, SigEst, var, Pmat)

implicit none

double precision :: pi, a, b

integer :: n, i, j

common / comblock / pi, a, b, n

integer, intent(IN):: lambda

double precision, intent(IN), dimension(lambda,n) :: M

double precision, intent(IN) :: SigEst

double precision, intent(OUT), dimension(lambda,lambda) ::

var

double precision, intent(OUT), dimension(lambda,lambda) ::

Pmat

double precision, dimension(lambda,lambda) :: temp

logical :: pivot=.FALSE.

integer, dimension(n) :: piv

var = SigEst*matmul(M, transpose(M))\\

call dlchrg(lambda, var, lambda, pivot, piv, temp, lambda)

do i=1,lambda

do j=1,lambda

if (i>j) then

Pmat(i,j) = 0

else

Pmat(i,j) = temp(i,j)

end if

end do

end do

end subroutine varmat
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subroutine tr(matrix,dim,trace)

implicit none

integer ::i

integer, intent(IN) :: dim

double precision, intent(IN),dimension (dim,dim) :: matrix

double precision, intent(OUT) :: trace

trace = 0

!Define the trace of a a matrix

do i=1,dim

trace = trace + matrix(i,i)

end do

end subroutine tr

subroutine identity(Id,dim)

implicit none

integer :: i, j

integer, intent(IN) :: dim

double precision, intent(OUT), dimension (dim,dim) :: Id

!Build dim by dim identity matrix

do i=1,dim

do j=1,dim

if (i==j) then

Id(i,j) = 1

else

Id(i,j) = 0

end if

end do

end do

end subroutine identity

subroutine standard(y,t,lambda,SigEst)

implicit none

double precision :: pi, a, b, g, temp
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integer :: n, i, j

common / comblock / pi, a, b, n

integer, intent(IN):: lambda

double precision, intent(IN), dimension(n) :: y, t

double precision, intent(OUT) :: SigEst

temp = 0

do i=1,n

temp = temp+(y(i)-g(t(i)))**2

end do

SigEst = dsqrt(temp/(n-lambda-1))

end subroutine standard

subroutine band(t,lambda,blambda,fhat, p, Pmat, SigEst, lowest,

upest, c)

implicit none

double precision :: pi, a, b, dfin, SigEst, f, temp

integer :: n, i, j

common / comblock / pi, a, b, n

integer, intent(IN) :: lambda

double precision, dimension(lambda,1) :: x

double precision, intent(IN), dimension(n) :: t

double precision, intent(IN), dimension(lambda,1) :: blambda

double precision, intent(OUT), dimension(n) :: fhat, upest,

lowest

double precision, intent(OUT), dimension(n,1) :: p

double precision, intent(IN), dimension(lambda,lambda) ::

Pmat

double precision, dimension(1,1) :: temp2

double precision, intent(OUT) :: c

temp = 0

do j=1,n

do i=1,lambda

temp = temp + blambda(i,1)*f(t(j),i)

end do

fhat(j) = temp

temp = 0

end do
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do i=1,n

do j=1,lambda

x(j,1) = f(t(i),j)

end do

temp2 =

dsqrt(matmul(transpose(x),matmul(transpose(Pmat),matmul(Pmat,x))))

p(i,1) = temp2(1,1)

temp2 = 0

end do

c =

dsqrt(dble(lambda)*dfin(dble(.95),dble(lambda),dble(n-lambda)))

do i=1,n

upest(i) = fhat(i) + c*SigEst*p(i,1)

lowest(i) = fhat(i) - c*SigEst*p(i,1)

end do

end subroutine band

subroutine check(count, count2, upest, lowest, t, total, total2)

implicit none

double precision :: pi, a, b, g

integer :: i, j, n, total, total2

common / comblock / pi, a, b, n

integer, intent(OUT) :: count, count2

double precision, intent(IN), dimension(n) :: upest, lowest,

t

count=1; count2=1

i = 1; j = 7

do while (count==1 .AND. i<=50)

if ( lowest(i) > g(t(i)) .OR. upest(i) < g(t(i)) )

then

count = 0

end if

i = i + 1
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total = total + count

end do

do while (count2==1 .AND. j<=50)

if ( lowest(j) > g(t(j)) .OR. upest(j) < g(t(j)) )

then

count2 = 0

end if

j = j + 1

total2 = total2 + count2

end do

end subroutine check

subroutine printer(lambda, blambda, GCV, mu, y, SigEst, t)

implicit none

double precision :: pi, a, b, SigEst

integer :: n, i, j

common / comblock / pi, a, b, n

integer, intent(IN) :: lambda

double precision, intent(IN), dimension(n) :: mu, y, t

double precision, intent(IN), dimension(lambda,1) :: blambda

double precision, intent(IN), dimension(20,1) :: GCV

open(0,file=’superfile.dat’, position=’append’)

write(0,*) lambda, SigEst

close(0)

open(1, file=’blambda.dat’, status=’replace’)

do j=1,lambda

write(1,*) blambda(j,1)

end do

close(1)

open(2,file=’GCV.dat’, status = ’replace’)

do j=1, 20

write(2,*) j, GCV(j,1)

end do

close(2)

open(3,file=’data.dat’,status=’replace’)

write(3,*) " t(i) mu(i)

y(i)"
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do j=1, n

write(3,*) t(j), mu(j), y(j)

end do

close(3)

end subroutine printer

subroutine printer2 (ratio, ratio2, simnumber, lowavg, upavg,

gavg, fhatavg, lambda, SigEst)

implicit none

double precision :: pi, a, b

integer :: n, i

common / comblock / pi, a, b, n

double precision, intent(IN) :: ratio, ratio2, SigEst

double precision, intent(IN), dimension(n) :: lowavg, upavg,

gavg, fhatavg

integer, intent(IN) :: simnumber, lambda

open(4,file=’average.dat’,status=’replace’)

write(4,*) " lowavg fhatavg

upavg"

do i=1,n

write(4,*) lowavg(i), fhatavg(i), upavg(i)

end do

close(4)

open(5,file=’final.dat’, position=’append’)

write(5,100) ratio,ratio2,lambda,SigEst

100 format("r=",f6.4" r2=",f6.4," lambda=",i2,"

sigma=",f12.8)

close(5)

end subroutine printer2
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