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ABSTRACT

We consider the estimation of thek + 1-dimensional nonparametric componentβ(t) of

the varying-coefficient modelY (t) = XT (t)β(t) + ε(t) based on longitudinal observa-

tion (Yij, Xi(tij), tij), i = 1, ..., n, j = 1, ..., ni, wheretij is thejth observed design time

point t of theith subjects attij. The subjects are independently selected, but the repeated

measurements within subject are possibly correlated.A Monte Carlo Simulation was es-

tablished, kernel smoothing method was used to estimateβ(t) that minimizes a local least

square criterion. The distribution forε(t) was analyzed. The degree of freedom was

investigated.
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1 INTRODUCTION

In a longitudinal study, outcomes and covariates are observed from different subjects each

repeatedly measured at a set of distinct time points. This type of data is common in

medical and epidemiological studies. Lettij, j = 1, ..., ni be the times over which the

measurements of theith subject took place. LetYij be the observed response andXi(tij)

be the observed real-valued outcome and covariates for theith subject at timetij. The

measurements,(Yij, Xi(tij), tij), i = 1, ...n, j = 1, ..., ni, are independent between differ-

ent subjects, but can be correlated at different time points within a subject. We consider

here the linear time-varying coefficient model of form.

Yij = XT
i (tij)β(tij) + εi(tij) (1)

WhereXi(t) = (1, Xi1(t), ..., Xik(t))
T andεi(t) are independent,tij ∈ R, and theεi(t)

are mean 0 stochastic processes.β(t) = (β0(t), ..., βk(t))
T , andβl(t) ∈ R for all l =

0, ..., k. (Wu, Chiang, Hoover, 1998)

In this paper, one application to longitudinal data is presented. The data considered

here involve covariates of infants’ genders and HIV infection status (HIV positive or neg-

ative) measured one year after birth and the third trimester maternal vitamin A levels

during pregnancy and repeatedly measured weights of 328 infants from an African AIDS

cohort study at the Johns Hopkins University ( Hoover, Rice, Wu and Yang, 1996). All

infants were born from HIV infected mothers in central Africa and survived beyond one

year of age. The research continued two years and infants’ weights were recorded during

every scheduled monthly visit. Due to various reasons, a number of the scheduled vis-

its were missed by some infants which resulted in unequal numbers of repeated weight

measurements per infant. The main objective is to evaluate the time-varying effects of

two binary covariates (child’s gender and HIV status), and one continuous covariate (the

third trimester maternal vitamin A level) on the children’s weights. Previous studies have



shown that vitamin A can improve immune function and resistance to disease [cf.Semba

(1994)]. Biologically, a significant association between maternal vitamin A levels and

infant growth may suggest the benefit of vitamin A supplementation in the mother’s and

infant’s diet.

In this application, we use the actual measurements and fit the data to (1) withXi10 =

· · · = Xini0 = 1,

Xi11 = · · · = Xini1 =

 1 if the ith infant is HIV positive,

0 if the ith infant is HIV negative,

Xi12 = · · · = Xini2 = theith infant’s maternal vitamin A level,

Xi13 = · · · = Xini3 =

 1 if the ith infant is male,

0 if the ith infant is female,

Yij = weight in kilograms of theith infant at timetij after birth,

This data set was analyzed by Hoover et al.(1996) using kernel and spline methods.

The smoothing results of kernel methods is presented in here. Figure 1 shows the esti-

mated values ofβl(t), l = 0, ..., 3, together with their±2 point-wise bootstrap standard

error bands. From the figure it is seen that the magnitudes of the coefficients of all three

factors initially increase with time and then level off. The initial increase with time proba-

bly reflects the cumulative effects of additional diseases early in life due to HIV infection

and/or low vitamin A levels. The leveling off of the difference may be due to the estab-

lishment of the infants immunity function at one year of age and frailty effects from the

sickest and lowest weight babies dyeing. Besides using bootstrap standard errors to assess

variability, there are some other important inferential issues. Various types of confidence

regions might be desired: for example, intervals for components or linear combinations of

components ofβ(t) for fixed t and simultaneous confidence bands for all t in an interval.



2 ESTIMATION BY KERNEL SMOOTHING METHOD

Theory and applications of estimates based on kernel, spline and locally weighted poly-

nomial methods have been extensively studied in the literature for nonparametric curve

estimation with independent cross-sectional data. With properly selected smoothing pa-

rameters, these estimation methods have good asymptotic properties such as optimal rates

of convergence, and usually give reliable results in real applications. Thus it is natural to

extend these methods to the estimation for observations from longitudinal studies, in this

paper, kernel smoothing methods are used.

According model (1), ifE(X(t)XT (t)) is invertible, theβ(t) is unique and given by

β(t) = E(X(t)XT (t))−1E(X(t)Y (t))

Here, we use kernel estimation method. The advantage is its flexibility of form and mathe-

matical tracability. Kernel estimators are linear estimators in the sense that we can express

the value of the estimator at any pointt as a weighted sum of the responses. The weights

in this sum all derive from a kernel function. Define for a general kernelK:

Kh(t) =
1

h
K(

t

h
)

The parameterh is called the bandwidth or smoothing parameter. The bandwidth deter-

mines how far away observations are allowed to be fromt and still contribute to the esti-

mation ofβ(t). The bandwidth also governs the peakedness of the weight function and,

hence, the degree of dependence of the estimator on information neart. Small values ofh

will result in rougher (wigglier) estimators that rely heavily on the data neart. In contrast,

largerh’s allow more averaging to occur and thereby give smoother estimators. Figure 2

shows how the kernel estimator fits to the data for different bandwidth selections(Eubank,

1999).

3



We would like our kernel function to satisfy the moment conditions

∫ ∞

−∞
K(u) du = 1

The above condition is roughly equivalent to having the weights sum to one.

∫ ∞

−∞
uK(u) du = 0

This is a type of symmetry condition that is automatically satisfied if K is symmetric about

zero.

M2 =

∫ ∞

−∞
u2K(u) du 6= 0

and condition

V =

∫ ∞

−∞
K(u)2 < ∞.

Here we use Gaussian kernel function as:

Kh(t) =
1

h
√

2π
exp(−1

2
(
t

h
)2)

The kernel estimates are developed based on finding the uniqueβ(t) = (β0(t), ..., βk(t))
T ,

which minimizes the locally weighted least squares criterion

LM(t) =
n∑

i=1

ni∑
j=1

[Yij −
k∑

l=0

Xijlβl(t)]
2K(

t− tij
h

)

WhereM =
∑n

i=1 ni is the total number of observations,h is a positive bandwidth which

might depend onM , andK(.) is Borel measurable kernel function mapping R onto R.

LetYi andXi be the outcome vector and design matrix ofith subject:Yi = (Yi1, ..., Yini
)T

4



and

Xi =


Xil0 Xil1 · · · Xilk

...
...

. ..
...

Xini0 Xini1 · · · Xinik


Let Ki(t) be the diagonal matrix:

Ki(t) = diag(K[(t− ti1)h
−1], ..., K[(t− tini

)h−1])

It is convenient to rewriteLM(t) into the following matrix form

LM(t) =
n∑

i=1

(Yi −Xiβ(t))T Ki(t)(Yi −Xiβ(t))

Then the estimate ofβ is

β̂(t) = (
n∑

i=1

XT
i Ki(t)Xi)

−1(
n∑

i=1

XT
i Ki(t)Yi)

The estimation of̂β(t) depends on the choices of the bandwidth and the kernel function.

Besides the kernel estimate, there are other nonparametric estimates, such as smooth-

ing spline and locally weighted polynomial. Splines are piece-wise polynomial which

are joined smoothly at knots. Statistical properties and practical implementation of spline

methods can be found in Eubank(1988) among others. Locally weighted polynomials are

generalization of the kernel type estimates, for which theory and applications with inde-

pendent cross-sectional data have been studied by Stone (1977), Cleveland (1979), Buja,

Hastie and Tibshriani (1989, Hastie and Tibshriani (1990), Fan (1993) among others. This

generalization have many advantages over the kernel methods, particularly in estimation

at boundary points.

In this paper, we focus on the estimates of the varianceσ2 of the error termsεij in

model (1), then obtain an indication of the variability of the probability distributions of

5



Y . For a standard bivariate linear regression modelYi = βo + β1Xi + εi, the residual is

εi = Yi − Ŷi, the sum of square is
∑n

i=1(Yi − Ŷ )2, the sample variance is

s2 =

∑n
i=1(Yi − Ŷ )2

n− 2

which is the residual sum of squares divided by degrees of freedom.

Corresponding to the model (1) in this paper, the residuals areεij = Yij − Ŷij, here,

Ŷij = Xijβ̂(tij). Hence the appropriate sum of square is
∑n

i=1

∑ni

j=1(Yij − Ŷij)
2. The

resulting estimator is an extension of the usual sample variance:

s2 =

∑n
i=1

∑ni

j=1(Yij − Ŷij)
2∑n

i=1(ni − 1)

We know that the varianceσ2 can be estimated by the sample variances2. In here, we

want to see how good the observed sample variances2 fit the varianceσ2. Also we can

explore the distribution ofs2.

3 MONTE CARLO SIMULATION

For simplicity, we consider model(1) with a time-independent covariateX = (1, X1, X2, X3)
T ,

whereX1 andX2 are two Bernoulli random variables, the probability for happening of

1 or 0 is equally to 0.5.X3 is aN(0, 0.25) random variable. The coefficient curves are

given by

β0(t) = 15 + 20 sin(
tπ

60
)

β1(t) = 4− (
t− 20

10
)2

β2(t) = 2− 3cos(
(t− 25)π

15
)2

β3(t) = −5 +
(30− t)3

5000



These coefficient curves are similar to the estimated curves in longitudinal study. A simple

random sample ofN subjectsXi, i = 1, ..., N was generated for(X1, X2, X3) based on

the joint density.

f(X1, X2, X3) =
0.5

(2π)1/2
exp(−2X2

3 )× 1{0,1}(X1)× 1{0,1}(X2)× 1{−∞,∞}(X3)

To create design time points, we generated 30 equally spaced ”scheduled” time points

and i random diaplacement pointsSi1 from the U(0, 1) distribution such thatSi1 =

Si1 + (l − 1), l = 1, ..., 30, in addition, each ”scheduled” time pointSil had a probabil-

ity of m%(m = 0, 20, 40, 60) of being randomly missing. The remaining observed time

points were denoted bytij. This led to unequal numbers of repeated measurementsni and

different observed time pointstij per subject. The random errorsεi(tij) were generated

according to the mean0 Gaussian process with covariance matrix:

COV [εi1(ti1j1), εi2(ti2j2)] = {4exp(−|ti1j1
−ti2j2

|) if ii=i2
0 if i1 6=i2

The outcomesYij were obtained by substituting the observed(tij, Xi, εi(tij)) and the

foregoing coefficient curves into model (1). The kernel function used in this simulation

is:

K(t) =
1

h
√

2π
e
−t2

2h2

We have different subjects number asN = 50, 100, 150, 200, missing data valuem =

0, 20, 40, 60, kernel bandwidth ash = 0, 1.0, 1.5, 2.0,, giving 64 simulations.

We wish to determine the distribution of the estimated variance. It should have mean

equal to the true varianceσ2 (which is4 for these cases), It is hypothesized that, the sample

variance of data generated is:

s2 ∼ σ2

k
χ2

k

7



where,s2 is the variance estimated from the set of simulations.χ2
k is a random variable

that follows the chi-square distribution withk degrees of freedom, have a mean ofk and

variance of2k.

For each case, PROC UNIVARIATE in SAS is used to construct the mean and variance

of the variance estimate,xs2 andσ̂2
s2 respectively. We know for a random variablex with

varianceσ2
x, the random variableax (a is a constant) has a variance ofa2σ2

x. Thus the

variance ofσ
2

k
χ2

k, we havêσ2
s2 ≈ 2(σ2)2

k
, thenk value can be approximated by

k ≈ 2(σ2)2

σ̂2
s2

=
32

σ̂2
s2

Then we can transform the simulated to the formk
σ2 s

2 from variance data and create a

probability plot to estimate agreement with the Chi-Square distribution, taking theχ2 as

a Gamma(α, β) with α = k
2

andβ = 2. A probability plot is much like a Q-Q plot

(only the horizontal scale differs). Both compare ordered values of a variable with quan-

tiles of a specified theoretical distribution. If the data distribution matches the theoretical

distribution, the points on the plot form a linear pattern.

4 CONCLUSION

We expects2 has a multiple of a chi-square distribution withk degrees of freedom. In

the probability plots, the simulated results match the theoretical Gamma distribution very

well. The quantile plot of results fit the line with light tail at the end. When the number

of subjects increases with the same bandwidth and missing value, the fit is better. For

example, Figure 10 shows the improvement of the fit for the case with bandwidth=1.0 and

missing=60%. Chart A for 50 subject is the worst fit, then the fit improves as we progress

to chart D with 200 subjects, which has the best fit. So, there is an improvement in the

chi-square approximation for larger numbers of subjects.

According tok = 2α, hereα is the estimated shape parameter for Gamma distribution



from probability plot, we can build a table for thek values, this is shown in Table 1.

For increasing numbers of subjects or decrease in missing time points, the degrees of

freedom increase due to the larger number of observations. For example, for the case

with bandwith=0.5 and missing=60%, thek value changes from 548.3 to 1967.4 for an

increase of subjects from 50 to 200. Corresponding to changing of bandwidth, there are

no obvious trends appearing, but for the case with 200 subjects, the degrees of freedom

increase as the bandwidth increases.

Table 2 show the average values for the variance estimates. The value of mean in-

creases for the larger numbers of subjects. For example, for the case with bandwith=1

and missing=60%, the mean increases from 3.9 to 4.3 as the number of subjects increases

from 50 to 200. This is most likely due to the fact that a greater number of subjects would

allow for a smaller smoothing parameter, while oversmoothing results in a higher estimate

of residual error variance.

9
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6 TABLES AND FIGURES

Table 1: Table ofk value

Subjects
Bandwith Missing 50 100 150 200

60 548.3 1042.9 1632.3 1967.4
0.5 40 758.6 1491.9 2309.4 3003.5

20 929.0 1865.7 2755.8 3712.9
0 1206.1 2005.6 3367.2 4544.4

60 530.6 1015.4 1586.7 2090.0
1 40 726.4 1627.8 2411.2 2948.9

20 955.5 1942.8 2858.0 3749.8
0 1125.7 2308.4 3488.0 4206.2

60 572.0 1121.2 1538.5 2037.8
1.5 40 784.4 1477.4 2277.4 3104.1

20 1024.2 1855.8 2754.7 3785.7
0 1201.7 2376.0 3254.7 4508.7

60 494.2 1011.9 1576.6 2207.0
2 40 753.6 1544.6 2315.6 3288.8

20 1029.1 1850.8 2609.0 3838.2
0 1096.6 2122.0 3402.6 4727.4

Table 2: Mean of Sample Variance

Subjects
Bandwith Missing 50 100 150 200

60 3.6 4.0 4.0 4.1
0.5 40 3.7 4.0 4.0 4.0

20 3.7 4.0 4.0 4.1
0 3.8 4.0 4.0 4.1

60 3.9 4.1 4.2 4.3
1 40 3.9 4.1 4.1 4.2

20 3.9 4.1 4.1 4.1
0 3.9 4.0 4.0 4.1

60 4.1 4.3 4.3 4.3
1.5 40 4.1 4.2 4.2 4.3

20 4.1 4.2 4.2 4.2
0 4.1 4.1 4.2 4.2

60 4.3 4.5 4.5 4.5
2 40 4.3 4.4 4.4 4.4

20 4.2 4.3 4.3 4.4
0 4.2 4.3 4.3 4.3



Figure 1: Estimates, predictions and residuals using kernel method with the standard
Gaussian kernel and h=1.2 as the bandwidth. The dashed curves represent the±2 boot-
strap standard error bands. Time effect:/beta0(t) vs. time. HIV effect:β̂1(t) vs. time.
Vitamin A effect: the estimated effect of vitamin Âβ2(t) vs. time. Gender effect:̂β3(t)
vs. time. (Hoovers, 1998)
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Figure 2: Kernel Fits to Assay Data. (Eubank, 1999)
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Figure 3: Probability plot for bandwidth=0.5 missing 0%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 4: Probability plot for bandwidth=0.5 missing 20%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 5: Probability plot for bandwidth=0.5 missing 40%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 6: Probability plot for bandwidth=0.5 missing 60%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 7: Probability plot for bandwidth=1.0 missing 0%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 8: Probability plot for bandwidth=1.0 missing 20%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 9: Probability plot for bandwidth=1.0 missing 40%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 10: Probability plot for bandwidth=1.0 missing 60%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 11: Probability plot for bandwidth=1.5 missing 0%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 12: Probability plot for bandwidth=1.5 missing 20%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 13: Probability plot for bandwidth=1.5 missing 40%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 14: Probability plot for bandwidth=1.5 missing 60%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 15: Probability plot for bandwidth=2.0 missing 0%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 16: Probability plot for bandwidth=2.0 missing 20%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 17: Probability plot for bandwidth=2.0 missing 40%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 18: Probability plot for bandwidth=2.0 missing 60%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 19: Plot of Degrees of Freedom against bandwidth. A) 50 subjects B) 100 subjects
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Figure 20: Plot of Degrees of Freedom against bandwidth. A) 150 subjects B) 200 subjects
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7 APPENDIX

7.1 FORTRAN CODE FOR MONTE CARLO SIMULATION

Program Simulation Use IMSL

Implicit None Integer :: o !Counter and parameter definitions

Integer::i,j,k,n,mi,status,status3,piv,ierror,mii Integer,

Parameter ::covariates=4 !Number of covariate

functions in the model Integer, Parameter :: measurements=30

!Number of time points where measurements are taken Integer,

Parameter :: subjects=100 !Number of subjects in the

study Integer, Parameter :: LDx=4 Integer, Parameter::runtime=1000

Double Precision :: h=1.0,cn=0.0 !Bandwith

Double Precision::BETA0,BETA1,BETA2, BETA3 !Coefficient functions

Double Precision :: gi=0

Double Precision,Dimension(runtime)::var=0 !Variables used to

generate errors

Double Precision, Allocatable, Dimension(:) ::errors !i.i.d.

standard normal errors

Double Precision, Allocatable, Dimension(:):: err !Errors for

chosen structure Double Precision :: variance=4 !Variance of error

process Double Precision, Allocatable, Dimension(:,:) :: covblock

!Covariance of error structure Double Precision, Allocatable,



Dimension(:,:) :: p,pblock !Factor of covariance

!Variables used to generate covariates Double Precision,

Dimension(covariates,subjects) :: x=1 !Matrix with columns

corresponding to

!covariate values for each subject Integer value(subjects)

!Holders for randomly generated covariates

Double Precision value2(subjects)

Double Precision, Dimension(measurements,covariates,subjects) ::

design=0

!Variables used to generate measurement times

Double Precision, Dimension(measurements+1,subjects) :: t=0 !Cols

are measurment times per subject

Double Precision misses(measurements) !Missing data indicators

Integer, Dimension(subjects) :: m=measurements !Number of

observations per subject

!Simulated observations

Double Precision,Dimension(measurements,subjects) :: y=0 !Cols

are observations on a subject.
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Double Precision,Dimension(measurements,subjects) :: Eij=0

Double Precision :: Errorsq=0

Double Precision,Dimension(measurements,subjects) :: ye=0 ! y

expected Double Precision, Dimension(90) :: g=0 !Grid matrix

Double Precision, Dimension(measurements,measurements) :: Kernel=0

!Kernel matrix Double Precision :: Pi=3.14159

Double Precision, Dimension(measurements,covariates) :: Xi=0 !X

Matrix for ith subject

Double Precision, Dimension(measurements) :: Yi !Y Vector for ith

subject Double Precision, Dimension(covariates,measurements) ::

Xtk ! XTranspose by Kernel

Double Precision,Dimension(covariates,covariates) :: Xkx !

XTranspose by Kernel by Xi

Double Precision,Dimension(covariates,covariates) :: Xkxtotal

Double Precision, Dimension(covariates,covariates) :: Xinv

Double Precision, Dimension(covariates) :: Xky ! Xtranspose by

Kernel by Yi Double Precision, Dimension(covariates) :: Xkytotal

Double Precision, Dimension(covariates,measurements,subjects) ::

Bt=0 ! B matrix for t
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Double Precision, Dimension(covariates) :: BB

!Other variables Integer :: total !Total number of observations

Integer :: position

!Time point generation Do i=1, subjects

t(1,i)=DRNUNF() !Generate initial time points!

Do j=1, measurements

t(j,i)=t(1,i)+(j-1) !Generate remaining "scheduled" time points

End Do

End Do

Do i=1, subjects

m(i)=30

Call DRNUN(measurements, misses) !Generate random "missing

indicators"

Do j=measurements, 2, -1

If (misses(j) .lt. 0.4) Then

m(i)=m(i)-1 !Update number of observations

Do k=j, measurements

t(k,i)=t(k+1,i) !Remove missing observations

End Do

End If

End Do

End Do !End of time point generation

!Compute total number of observations
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total=0 Do i=1, subjects

total=total+m(i)

End Do

Do i=1,subjects

Open(unit=30,file=’variance.dat’,status=’replace’,iostat=ierror)

write(30,*) t(:,i) write(30,*) ’ ’ End do

Do o=1,runtime gi=0 var=0 x=1 design=0 y=0 Eij=0 Errorsq=0 ye=0

g=0 Kernel=0 Xi=0 Bt=0

!!!!!Begin generation of data!!!!!!!!!!!!!!

Call RNSET (0) !Sets seed to system clock Do k=2, covariates-1

Call RNBIN(subjects, 1, .5, value)

!Generate random binary covariates

x(k,1:subjects)=value

End Do Call DRNNOA(subjects, value2)

x(covariates,1:subjects)=.5*value2 !Generate normal covariates

!Call DWRRRN(’ ’, covariates, subjects, x, covariates, 0)

!Build errors Allocate (errors(total), STAT=status)

!Allocate space for i.i.d. errors
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Call DRNNOA(total, errors) !Generate i.i.d std. normal errors

Allocate (p(total,total), STAT=status3) !Allocate space for

factored covariance str.

position=0 Do i=1, subjects

Allocate (covblock(m(i),m(i)),pblock(m(i),m(i)))

covblock=0.0

pblock=0.0

Do j=1, m(i)

Do k=1, m(i)

covblock(j,k)=variance*DEXP(-1*DABS(t(j,i)-t(k,i)))

End Do

End Do

Call DCHFAC (m(i), covblock, m(i), 100*DMACH(4), piv,

pblock, m(i))

p(position+1:position+m(i),position+1:position+m(i))=

pblock(1:m(i),1:m(i))

position=position+m(i)

Deallocate (covblock,pblock)

End Do

Allocate (err(total)) !Allocate space for actual errors

!Compute errors from factorization and i.i.d errors

Call DMURRV (total, total, p, total, total, errors, 2, total, err)

!End of error build
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!Build simulated observations

position=0 Do i=1, subjects

Do j=1, m(i)

y(j,i)=BETA0(t(j,i))+BETA1(t(j,i))*x(2,i)+BETA2(t(j,i))*x(3,i)

+BETA3(t(j,i))*x(4,i)+err(position+j)

End Do

position=position+m(i)

End Do

!!!!!End of data generation!!!!!!! Write (*,*) o,’done’

!Build design matricies for each subject Do i=1, subjects

Do j=1, m(i)

design(j,:,i)=x(:,i)

End Do

End Do

!Call DWRRRN (’y’, measurements, subjects, y, measurements, 0)

Do j=1,subjects

mii=m(j)

Do i= 1,mii

gi=t(i,j)

call A(design,subjects,measurements,covariates,Xkxtotal,

gi,Pi,h,Kernel,m,t)

call B(design,y,subjects,measurements,covariates,Xkytotal,
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gi,Pi,h,Kernel,m,t)

CALL DLINRG (covariates, Xkxtotal, covariates, Xinv, covariates)

CALL DMRRRR (covariates, covariates, Xinv, covariates, covariates,

1, Xkytotal, covariates, covariates, 1, BB, covariates)

Do n=1,covariates ! Calculation for Bt by Xkx(inverse) by Xky

Bt(n,i,j)=BB(n)

End do

End do

End do

Errorsq=0

Do i=1,subjects

Do j=1,m(i)

ye(j,i)=Bt(1,j,i)+Bt(2,j,i)*x(2,i)+Bt(3,j,i)*x(3,i)+Bt(4,j,i)

*x(4,i)

Eij(j,i)=(y(j,i)-ye(j,i))**2

Errorsq=Errorsq+Eij(j,i)

end do

End do

var(o)=Errorsq/(total-subjects)

Open (unit=30,file=’variance.dat’,status=’replace’,iostat=ierror)

write(30,*) var(o) Errorsq=0 Deallocate (errors, STAT=status)

Deallocate (p, STAT=status3) Deallocate (err)

!Deallocate(covblock,pblock)
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End do End Program

!!!!!!!!!!!!!!!!!!!Subroutines and functions!!!!!!!!!!!!!!!!!!!!

!Coefficient functions Double Precision Function BETA0(s)

Implicit None

Double Precision, Intent(IN) :: s

Double Precision, Parameter :: pi=3.14159265359

BETA0 = 15 + 20*DSIN(s*pi/60)

End Function

Double Precision Function BETA1(s)

Implicit None

Double Precision, Intent(IN) :: s

BETA1 = 4 - ((s - 20)/10)**2

End Function

Double Precision Function BETA2(s)

Implicit None

Double Precision, Intent(IN) :: s

Double Precision, Parameter :: pi=3.14159265359

BETA2 = 2 - 3*DCOS((s-25)*pi/15)

End Function
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Double Precision Function BETA3(s)

Implicit None

Double Precision, Intent(IN) :: s

BETA3 = -5 + (30 - s)**3/5000

End Function !End of coefficient functions

!Subroutine for creat Kernel matrix

subroutine Kernelmatrix(Kernel,gi,Pi,t,h,j,

mi,measurements,subjects) integer :: measurements,subjects

Double Precision, Dimension(measurements,measurements) :: Kernel

Double Precision, Dimension(measurements+1,subjects) :: t

Double Precision :: gi,Pi,h integer :: j,k,mi

Do k=1,mi

Kernel(k,k)=(1.0/(h*(sqrt(2.0*Pi))))*(exp(-((gi-t(k,j))**2)/

(2.0*(h**2)))) !Value Kernel matrix For each subject

end do return End subroutine

!Subsoutine for Xi transpose by K by Xi

subroutine A(design,subjects,measurements,

covariates,Xkxtotal,gi,Pi,h,Kernel,m,t)
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Integer :: j,k,subjects,measurements,covariates,mi

Double Precision, Dimension(measurements,covariates,subjects) ::

design Double Precision, Dimension(measurements,measurements) ::

Kernel Double Precision, Dimension(measurements+1,subjects) :: t

Integer, Dimension(subjects) :: m

Double Precision, Dimension(measurements,covariates) :: Xi

Double Precision, Dimension(covariates,measurements) :: Xtk

Double Precision, Dimension(covariates,covariates) :: Xkx

Double Precision, Dimension(covariates,covariates) :: Xkxtotal

Double Precision :: gi,Pi,h Xkxtotal=0

Do j=1,subjects

mi=m(j)

call Kernelmatrix(Kernel,gi,Pi,t,h,j,mi,measurements,subjects)

Xi(:,:)=design(:,:,j)

CALL DMXTYF (measurements, covariates, Xi, measurements,

measurements, measurements, Kernel, measurements, covariates,

measurements, Xtk, covariates)

! Multiply Xi transpose by Kernel matrix

CALL DMRRRR (covariates, measurements, Xtk, covariates,

measurements, covariates,
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Xi, measurements, covariates,covariates, Xkx, covariates)

! Multiply Xi by kernel by Xi

Do k=1, covariates

Xkxtotal(k,:)=Xkxtotal(k,:)+Xkx(k,:) !Sum of Xkx for all subjects

End do

End do return end subroutine

!Subsoutine for Xi transpose by K by Yi

subroutine (design,y,subjects,measurements,

covariates,Xkytotal,gi,Pi,h,Kernel,m,t)

Integer :: j,k,subjects,measurements,covariates,mi

Double Precision, Dimension(measurements,covariates,subjects) ::

design

Double Precision, Dimension(measurements,subjects) :: y

Double Precision, Dimension(measurements,measurements) :: Kernel

Double Precision, Dimension(measurements+1,subjects) :: t

Integer,Dimension(subjects) :: m

Double Precision, Dimension(measurements,covariates) :: Xi
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Double Precision,Dimension(measurements) :: Yi

Double Precision,Dimension(covariates,measurements) :: Xtk

Double Precision, Dimension(covariates) :: Xky

Double Precision,Dimension(covariates) :: Xkytotal

Double Precision :: gi,Pi,h Xkytotal=0

Do j=1,subjects

mi=m(j)

call Kernelmatrix(Kernel,gi,Pi,t,h,j,mi,measurements,subjects)

Xi(:,:)=design(:,:,j)

Yi(:)=y(:,j)

CALL DMXTYF (measurements, covariates, Xi, measurements,

measurements,measurements, Kernel, measurements, covariates,

measurements, Xtk, covariates)

! Multiply Xi transpose by Kernel matrix

CALL DMURRV (covariates, measurements, Xtk, covariates,

measurements, Yi, 1,covariates, Xky) !Multiply Xi by kernel by Yi

Do k=1, covariates

Xkytotal(k)=Xkytotal(k)+Xky(k) ! Sum of Xky for all subjects

End do

End do return end subroutine
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7.2 SAS CODE

libname dat ’C:\simulation data library’;

title ’H15\_n150\_m60’;

proc univariate data=dat.H15\_n150\_m60;

var variance;

output out=result var=estvar ;

run;

data new;

set result;

k=32/estvar;

alpha=k/2;

dummy=1;

run;

data new2;

set dat.H15\_n150\_m60;

dummy=1;

run;

data new3 (keep=chi);

merge new new2;

by dummy;

chi=k*variance/4;

run;
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proc capability;

probplot chi/gamma(alpha=est sigma=2 theta=0);

run;

proc univariate data=new3;

var chi;

output out=result2 std=eststd ;

run;

data new4;

set result2;

E\_H15\_n150\_m60=(1.96*eststd)/sqrt(1000);

run;

proc print data=new4;

var E\_H15\_n150\_m60;

var eststd;

run;
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