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ABSTRACT

We consider the estimation of the+ 1-dimensional nonparametric compongiit) of

the varying-coefficient model (t) = X7*(¢)3(¢) + (t) based on longitudinal observa-
tion (Y;;, Xi(tij). tij).i = 1,...,n,j = 1,...,n;, wheret,; is the jth observed design time
point¢ of the:th subjects at;;. The subjects are independently selected, but the repeated
measurements within subject are possibly correlated.A Monte Carlo Simulation was es-
tablished, kernel smoothing method was used to estif@lehat minimizes a local least
square criterion. The distribution far(¢) was analyzed. The degree of freedom was

investigated.
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1 INTRODUCTION

In a longitudinal study, outcomes and covariates are observed from different subjects each
repeatedly measured at a set of distinct time points. This type of data is common in
medical and epidemiological studies. Legt j =1,...,n; be the times over which the
measurements of thé" subject took place. Lét;; be the observed response axidt;;)

be the observed real-valued outcome and covariates fo,tiseibject at timet;;. The
measurementsy;;, X;(t;;),ti;),i =1,..n,j = 1, ..., n;, are independent between differ-

ent subjects, but can be correlated at different time points within a subject. We consider

here the linear time-varying coefficient model of form.

Yi; = X[ (i) B(ti;) + ei(ti;) 1)

WhereX;(t) = (1, X;1 (), ..., Xix(¢))" ande,(¢) are independent;; € R, and thes,(t)
are mean 0 stochastic processg$t) = (5y(t), ..., Bx(t))T, and sy (t) € R for all I =
0,..., k. (Wu, Chiang, Hoover, 1998)

In this paper, one application to longitudinal data is presented. The data considered
here involve covariates of infants’ genders and HIV infection status (HIV positive or neg-
ative) measured one year after birth and the third trimester maternal vitamin A levels
during pregnancy and repeatedly measured weights of 328 infants from an African AIDS
cohort study at the Johns Hopkins University ( Hoover, Rice, Wu and Yang, 1996). All
infants were born from HIV infected mothers in central Africa and survived beyond one
year of age. The research continued two years and infants’ weights were recorded during
every scheduled monthly visit. Due to various reasons, a number of the scheduled vis-
its were missed by some infants which resulted in unequal numbers of repeated weight
measurements per infant. The main objective is to evaluate the time-varying effects of
two binary covariates (child’s gender and HIV status), and one continuous covariate (the

third trimester maternal vitamin A level) on the children’s weights. Previous studies have



shown that vitamin A can improve immune function and resistance to disease [cf.Semba
(1994)]. Biologically, a significant association between maternal vitamin A levels and
infant growth may suggest the benefit of vitamin A supplementation in the mother’s and
infant’s diet.

In this application, we use the actual measurements and fit the data to (LY wjte

= XITLZO = 1)
1 if theith infant is HIV positive
X1 = =Xina =
0 if theith infant is HIV negative
Xi12 = -+ = Xjn,2 = theith infant’s maternal vitamin A level
1 ifthesth infant is male
Xag =+ = Xipz =

0 if theith infant is female

Y:; = weight in kilograms of theth infant at timet,; after birth

This data set was analyzed by Hoover et al.(1996) using kernel and spline methods.
The smoothing results of kernel methods is presented in here. Figure 1 shows the esti-
mated values ofj(t),l = 0, ..., 3, together with their-2 point-wise bootstrap standard
error bands. From the figure it is seen that the magnitudes of the coefficients of all three
factors initially increase with time and then level off. The initial increase with time proba-
bly reflects the cumulative effects of additional diseases early in life due to HIV infection
and/or low vitamin A levels. The leveling off of the difference may be due to the estab-
lishment of the infants immunity function at one year of age and frailty effects from the
sickest and lowest weight babies dyeing. Besides using bootstrap standard errors to assess
variability, there are some other important inferential issues. Various types of confidence
regions might be desired: for example, intervals for components or linear combinations of

components ofi(¢) for fixed t and simultaneous confidence bands for all t in an interval.



2 ESTIMATION BY KERNEL SMOOTHING METHOD

Theory and applications of estimates based on kernel, spline and locally weighted poly-
nomial methods have been extensively studied in the literature for nonparametric curve
estimation with independent cross-sectional data. With properly selected smoothing pa-
rameters, these estimation methods have good asymptotic properties such as optimal rates
of convergence, and usually give reliable results in real applications. Thus it is natural to
extend these methods to the estimation for observations from longitudinal studies, in this
paper, kernel smoothing methods are used.

According model (1), ifE (X (¢t) X7 (t)) is invertible, the3(t) is unique and given by

B(t) = E(X(H) X" () E(X()Y (1))

Here, we use kernel estimation method. The advantage is its flexibility of form and mathe-
matical tracability. Kernel estimators are linear estimators in the sense that we can express
the value of the estimator at any potrds a weighted sum of the responses. The weights

in this sum all derive from a kernel function. Define for a general kefhel

The parameteh is called the bandwidth or smoothing parameter. The bandwidth deter-
mines how far away observations are allowed to be ft@nd still contribute to the esti-
mation of 3(¢). The bandwidth also governs the peakedness of the weight function and,
hence, the degree of dependence of the estimator on information rSraall values oh

will result in rougher (wigglier) estimators that rely heavily on the data helarcontrast,
largerh’s allow more averaging to occur and thereby give smoother estimators. Figure 2
shows how the kernel estimator fits to the data for different bandwidth selections(Eubank,

1999).



We would like our kernel function to satisfy the moment conditions

/_ZK(u)du:

The above condition is roughly equivalent to having the weights sum to one.

/Oo WK (u) du = 0

—00

This is a type of symmetry condition that is automatically satisfied if K is symmetric about

Zero.

M, = /Oo w? K (u) du # 0

o0

:/ZK(u)2<oo

Here we use Gaussian kernel function as:

and condition

Kalt) = —ep(—5(5))

hA/2m

The kernel estimates are developed based on finding the usiigue: (5(t), ..., B (t))7,

which minimizes the locally weighted least squares criterion

BT ZXM K(C5)

=1 j=1

WhereM = 3" | n; is the total number of observatiorisis a positive bandwidth which
might depend o/, andK(.) is Borel measurable kernel function mapping R onto R.

LetY; andX; be the outcome vector and design matrixtbfsubjectY; = (Y;y, ..., Yin.)?



and
Xio Xin -+ X

XiniO Xinil inzk

Let K;(t) be the diagonal matrix:
Ki(t) = diag(K[(t — ti)h ™Y, ..., K[(t — tin,)h 1))

It is convenient to rewritd.,,(¢) into the following matrix form

n

Lu(t) =Y _(Yi = XiB(£) " Ki()(Y; = Xif3(t))

i=1

Then the estimate ¢f is
Bty = QXK1 X)) (O X Ki(h)Y)
=1 =1

The estimation ofj(¢) depends on the choices of the bandwidth and the kernel function.

Besides the kernel estimate, there are other nonparametric estimates, such as smooth-
ing spline and locally weighted polynomial. Splines are piece-wise polynomial which
are joined smoothly at knots. Statistical properties and practical implementation of spline
methods can be found in Eubank(1988) among others. Locally weighted polynomials are
generalization of the kernel type estimates, for which theory and applications with inde-
pendent cross-sectional data have been studied by Stone (1977), Cleveland (1979), Buja,
Hastie and Tibshriani (1989, Hastie and Tibshriani (1990), Fan (1993) among others. This
generalization have many advantages over the kernel methods, particularly in estimation
at boundary points.

In this paper, we focus on the estimates of the variaricef the error termg;; in

model (1), then obtain an indication of the variability of the probability distributions of



Y. For a standard bivariate linear regression madet 3, + 5, X; + ¢;, the residual is

;= Y; — Y;, the sum of square 5./, (Y; — Y)?, the sample variance is

82 _ Z:’L:l(Y; _ Y)2
n—2

which is the residual sum of squares divided by degrees of freedom.
Corresponding to the model (1) in this paper, the residuals;are Y;; — YU here,
Y;; = X;;B(t;). Hence the appropriate sum of squar§ig  >" (Vi — ¥;)% The

resulting estimator is an extension of the usual sample variance:

b T VP
Z?:l (n; —1)

We know that the variance® can be estimated by the sample variagtdn here, we
want to see how good the observed sample variahdit the variances?. Also we can

explore the distribution of?.

3 MONTE CARLO SIMULATION

For simplicity, we consider model(1) with a time-independent covaifate (1, X;, X,, X3)7,
where X; and X, are two Bernoulli random variables, the probability for happening of

1 or O is equally to 0.5.X3 is a N (0, 0.25) random variable. The coefficient curves are

given by
Bo(t) = 15 + QOsin(é—g)
Bi(t) =4 (%)Q

Ba(t) =2 — 3003(%)2
-1y

Bs(t) = =5+ =355



These coefficient curves are similar to the estimated curves in longitudinal study. A simple
random sample oV subjectsX;,i = 1,..., N was generated farX;, X,, X3) based on
the joint density.

0.5
f(Xl,XQ,Xg) = —1/26Ip(—2X§> X 1{071}(X1) X 1{071}(X2) X ]_{_00700}(X3)

(27)

To create design time points, we generated 30 equally spaced "scheduled” time points
and ¢ random diaplacement points;; from the U(0,1) distribution such thats;; =

Sa+ (1 —1),1 =1,...,30, in addition, each "scheduled” time poifit, had a probabil-

ity of m%(m = 0, 20,40, 60) of being randomly missing. The remaining observed time
points were denoted by;. This led to unequal numbers of repeated measuremgatsd
different observed time points; per subject. The random errorgt;;) were generated

according to the meahGaussian process with covariance matrix:
4exp(f|t¢ i —lin i |) if  i;=i2
COV[&T“ (tiljl )7 Eiy (tisz )] ) v if 1742

The outcomesy;; were obtained by substituting the observed, X;,e;(t;;)) and the
foregoing coefficient curves into model (1). The kernel function used in this simulation
is:

1 —i2

e2n2
hv/2x

We have different subjects number &s= 50, 100, 150, 200, missing data value: =

K(t) =

0,20, 40, 60, kernel bandwidth as = 0, 1.0, 1.5, 2.0,, giving 64 simulations.

We wish to determine the distribution of the estimated variance. It should have mean
equal to the true variane€ (which is4 for these cases), It is hypothesized that, the sample

variance of data generated is:



where,s? is the variance estimated from the set of simulatiogsis a random variable
that follows the chi-square distribution withdegrees of freedom, have a mearkaind
variance oRk.

For each case, PROC UNIVARIATE in SAS is used to construct the mean and variance
of the variance estimate,. ands?, respectively. We know for a random variablavith
variances?, the random variablex (a is a constant) has a variance @%2. Thus the

2(0.2)2

. 2 2 A2
variance of2-x;, we haver, ~ =+,

thenk value can be approximated by

~

Q

s2

Then we can transform the simulated to the qumQ from variance data and create a
probability plot to estimate agreement with the Chi-Square distribution, taking’ths

a Gamma(a, §) with @ = § and = 2. A probability plot is much like a Q-Q plot
(only the horizontal scale differs). Both compare ordered values of a variable with quan-
tiles of a specified theoretical distribution. If the data distribution matches the theoretical

distribution, the points on the plot form a linear pattern.

4 CONCLUSION

We expects? has a multiple of a chi-square distribution withdegrees of freedom. In

the probability plots, the simulated results match the theoretical Gamma distribution very
well. The quantile plot of results fit the line with light tail at the end. When the number
of subjects increases with the same bandwidth and missing value, the fit is better. For
example, Figure 10 shows the improvement of the fit for the case with bandwidth=1.0 and
missing=60%. Chart A for 50 subject is the worst fit, then the fit improves as we progress
to chart D with 200 subjects, which has the best fit. So, there is an improvement in the
chi-square approximation for larger numbers of subjects.

According tok = 2a, herea is the estimated shape parameter for Gamma distribution



from probability plot, we can build a table for thevalues, this is shown in Table 1.

For increasing numbers of subjects or decrease in missing time points, the degrees of
freedom increase due to the larger number of observations. For example, for the case
with bandwith=0.5 and missing=60%, tthevalue changes from 548.3 to 1967.4 for an
increase of subjects from 50 to 200. Corresponding to changing of bandwidth, there are
no obvious trends appearing, but for the case with 200 subjects, the degrees of freedom
increase as the bandwidth increases.

Table 2 show the average values for the variance estimates. The value of mean in-
creases for the larger numbers of subjects. For example, for the case with bandwith=1
and missing=60%, the mean increases from 3.9 to 4.3 as the number of subjects increases
from 50 to 200. This is most likely due to the fact that a greater number of subjects would
allow for a smaller smoothing parameter, while oversmoothing results in a higher estimate

of residual error variance.
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6 TABLES AND FIGURES

Table 1: Table of value

Subjects
Bandwith | Missing 50 100 150 200
60 548.3 | 1042.9 | 1632.3 | 1967.4
0.5 40 758.6 | 1491.9 | 2309.4 | 3003.5
20 929.0 | 1865.7 | 2755.8 | 3712.9
0 1206.1 | 2005.6 | 3367.2 | 4544.4
60 530.6 | 1015.4 | 1586.7 | 2090.0
1 40 726.4 | 1627.8 | 2411.2 | 2948.9
20 955.5 | 1942.8 | 2858.0 | 3749.8
0 1125.7 | 2308.4 | 3488.0 | 4206.2
60 572.0 | 1121.2 | 1538.5| 2037.8
15 40 784.4 | 1477.4| 2277.4| 3104.1
20 1024.2 | 1855.8 | 2754.7 | 3785.7
0 1201.7 | 2376.0 | 3254.7 | 4508.7
60 494.2 | 1011.9 | 1576.6 | 2207.0
2 40 753.6 | 1544.6 | 2315.6 | 3288.8
20 1029.1 | 1850.8 | 2609.0 | 3838.2
0 1096.6 | 2122.0 | 3402.6 | 4727.4

Table 2: Mean of Sample Variance

Subjects
Bandwith | Missing 50 | 100 | 150 | 200
60 36| 40| 40| 41
0.5 40 37| 40| 40| 40
20 37| 40| 40| 41
0 38| 40| 40| 41
60 39| 41| 42| 43
1 40 39| 41| 41| 42
20 39| 41| 41| 41
0 39| 40| 40| 41
60 41| 43| 43| 43
15 40 41| 42| 42| 43
20 41| 42| 42| 4.2
0 41| 41| 42| 42
60 43| 45| 45| 45
2 40 43| 44| 44| 44
20 42| 43| 43| 44
0 42| 43| 43| 43
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Figure 9: Probability plot for bandwidth=1.0 missing 40%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 10: Probability plot for bandwidth=1.0 missing 60%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 11: Probability plot for bandwidth=1.5 missing 0%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 12: Probability plot for bandwidth=1.5 missing 20%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 13: Probability plot for bandwidth=1.5 missing 40%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 14: Probability plot for bandwidth=1.5 missing 60%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 15: Probability plot for bandwidth=2.0 missing 0%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 16: Probability plot for bandwidth=2.0 missing 20%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 17: Probability plot for bandwidth=2.0 missing 40%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 18: Probability plot for bandwidth=2.0 missing 60%. Horizontal axis represent the
theoretical chi-square distribution quantile. Vertical axis represent the observed values.
A) 50 subjects B) 100 subjects C) 150 subjects D) 200 subjects
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Figure 19: Plot of Degrees of Freedom against bandwidth. A) 50 subjects B) 100 subjects
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Figure 20: Plot of Degrees of Freedom against bandwidth. A) 150 subjects B) 200 subjects
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7 APPENDIX

7.1 FORTRAN CODE FOR MONTE CARLO SIMULATION

Program Simulation Use IMSL

Implicit None Integer :: o !Counter and parameter definitions
Integer::i,j,k,n,mi,status,status3,piv,ierror,mii Integer,

Parameter ::covariates=4 INumber of covariate
functions in the model Integer, Parameter :: measurements=30
INumber of time points where measurements are taken Integer,
Parameter :: subjects=100 INumber of subjects in the
study Integer, Parameter :: LDx=4 Integer, Parameter::runtime=1000

Double Precision :: h=1.0,cn=0.0 !'Bandwith

Double Precision::BETAO,BETA1,BETA2, BETA3 !Coefficient functions

Double Precision :: gi=0

Double Precision,Dimension(runtime)::var=0 !Variables used to

generate errors

Double Precision, Allocatable, Dimension(:) :errors li.i.d.

standard normal errors

Double Precision, Allocatable, Dimension(:):: err !Errors for
chosen structure Double Precision :: variance=4 !Variance of error
process Double Precision, Allocatable, Dimension(:,:) :: covblock

ICovariance of error structure Double Precision, Allocatable,



Dimension(:,:) :: p,pblock !Factor of covariance
IVariables used to generate covariates Double Precision,
Dimension(covariates,subjects) :: x=1 IMatrix with columns

corresponding to

Icovariate values for each subject Integer value(subjects)

IHolders for randomly generated covariates

Double Precision value2(subjects)

Double Precision, Dimension(measurements,covariates,subjects) ::

design=0

IVariables used to generate measurement times
Double Precision, Dimension(measurements+1,subjects) :: t=0 !Cols
are measurment times per subject
Double Precision misses(measurements) !Missing data indicators
Integer, Dimension(subjects) :: m=measurements !Number of
observations per subject

ISimulated observations

Double Precision,Dimension(measurements,subjects) :: y=0  ICols

are observations on a subject.
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Double Precision,Dimension(measurements,subjects) :: Eij=0

Double Precision :: Errorsq=0

Double Precision,Dimension(measurements,subjects) :: ye=0 !y
expected Double Precision, Dimension(90) :: g=0 !Grid matrix
Double Precision, Dimension(measurements,measurements) :: Kernel=0

IKernel matrix Double Precision :: Pi=3.14159

Double Precision, Dimension(measurements,covariates) :: Xi=0 X

Matrix for ith subject

Double Precision, Dimension(measurements) :: Yi !Y Vector for ith
subject Double Precision, Dimension(covariates,measurements) ::

Xtk I XTranspose by Kernel

Double Precision,Dimension(covariates,covariates) :: Xkx !

XTranspose by Kernel by Xi

Double Precision,Dimension(covariates,covariates) :: Xkxtotal

Double Precision, Dimension(covariates,covariates) :: Xinv

Double Precision, Dimension(covariates) :: Xky ! Xtranspose by
Kernel by Yi Double Precision, Dimension(covariates) :: Xkytotal
Double Precision, Dimension(covariates,measurements,subjects) ::

Bt=0 ! B matrix for t
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Double Precision, Dimension(covariates) :: BB

IOther variables Integer :: total !Total number of observations

Integer :: position

ITime point generation Do i=1, subjects
t(1,)=DRNUNF() IGenerate Initial time points!
Do j=1, measurements
t(j,)=t(1,)+(-1) !Generate remaining "scheduled" time points
End Do
End Do

Do i=1, subjects
m(i)=30
Call DRNUN(measurements, misses) !Generate random "missing
indicators”
Do j=measurements, 2, -1
If (misses(j) .It. 0.4) Then
m(i)=m(i)-1 IlUpdate number of observations
Do k=j, measurements
t(k,)=t(k+1,i) IRemove missing observations
End Do
End If
End Do

End Do !End of time point generation

ICompute total number of observations
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total=0 Do i=1, subjects
total=total+m(i)

End Do

Do i=1,subjects

Open(unit=30,file="variance.dat’,status="replace’,iostat=ierror)

write(30,*)  t(:,i) write(30,*) * * End do

Do o=1,runtime gi=0 var=0 x=1 design=0 y=0 Eij=0 Errorsq=0 ye=0
g=0 Kernel=0 Xi=0 Bt=0

Call RNSET (0) !Sets seed to system clock Do k=2, covariates-1
Call RNBIN(subjects, 1, .5, value)
IGenerate random binary covariates
x(k,1:subjects)=value

End Do Call DRNNOA(subjects, value2)
X(covariates,1:subjects)=.5*value2 !Generate normal covariates

ICall DWRRRN(’ ’, covariates, subjects, X, covariates, 0)

IBuild errors Allocate (errors(total), STAT=status)

IAllocate space for i.i.d. errors
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Call DRNNOA(total, errors) IGenerate i.i.d std. normal errors

Allocate (p(total,total), STAT=status3) !Allocate space for

factored covariance str.

position=0 Do i=1, subjects

Allocate (covblock(m(i),m(i)),pblock(m(i),m(i)))

covblock=0.0

pblock=0.0

Do j=1, m(i)
Do k=1, m(i)
covblock(j,k)=variance*DEXP(-1*DABS(t(j,i)-t(k,i)))
End Do

End Do

Call DCHFAC (m(i), covblock, m(i), 100*DMACH(4), piv,

pblock, m(i))

p(position+1:position+m(i),position+1:position+m(i))=

pblock(1:m(i),1:m(i))

position=position+m(i)

Deallocate (covblock,pblock)

End Do

Allocate (err(total)) lAllocate space for actual errors

ICompute errors from factorization and i.i.d errors
Call DMURRYV (total, total, p, total, total, errors, 2, total, err)

IEnd of error build
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Build simulated observations
position=0 Do i=1, subjects
Do j=1, m(i)
y(j,i)=BETAO(t(j,i)) +BETAL(t(j,i))*x(2,i))+BETA2(t(j,i))*x(3,i)
+BETAS3(t(j,i))*x(4,i)+err(position+j)
End Do
position=position+m(i)

End Do

IBuild design matricies for each subject Do i=1, subjects

Do j=1, m(i)
design(j,:,1)=x(:,i)
End Do
End Do

ICall DWRRRN ('y’, measurements, subjects, y, measurements, 0)

Do j=1,subjects

mii=m(j)
Do i= 1,mii
gi=t(i,j)

call A(design,subjects,measurements,covariates,Xkxtotal,
gi,Pi,h,Kernel,m,t)

call B(design,y,subjects,measurements,covariates,Xkytotal,
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gi,Pi,h,Kernel,m,t)
CALL DLINRG (covariates, Xkxtotal, covariates, Xinv, covariates)
CALL DMRRRR (covariates, covariates, Xinv, covariates, covariates,
1, Xkytotal, covariates, covariates, 1, BB, covariates)
Do n=1,covariates ! Calculation for Bt by Xkx(inverse) by Xky
Bt(n,i,j)=BB(n)
End do
End do
End do

Errorsq=0

Do i=1,subjects
Do j=1,m(i)
ye(j,i)=Bt(1,j,i)+Bt(2,j,i)*x(2,i)+Bt(3,],i)*x(3,i)+Bt(4,},i)
*X(4,1)
Eij(.0)=(y(.)-ye(.i))*2
Errorsq=Errorsq+Eij(j,i)
end do

End do

var(o)=Errorsg/(total-subjects)

Open (unit=30,file="variance.dat’,status="replace’,iostat=ierror)
write(30,*) var(o) Errorsq=0 Deallocate (errors, STAT=status)
Deallocate (p, STAT=status3) Deallocate (err)

IDeallocate(covblock,pblock)
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End do End Program

ICoefficient functions Double Precision Function BETAO(S)
Implicit None
Double Precision, Intent(IN) :: s
Double Precision, Parameter :: pi=3.14159265359
BETAO = 15 + 20*DSIN(s*pi/60)

End Function

Double Precision Function BETAL(S)
Implicit None
Double Precision, Intent(IN) :: s
BETAL = 4 - ((s - 20)/10)**2

End Function

Double Precision Function BETAZ2(S)
Implicit None
Double Precision, Intent(IN) :: s
Double Precision, Parameter :: pi=3.14159265359
BETA2 = 2 - 3*DCOS((s-25)*pi/15)

End Function
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Double Precision Function BETA3(S)
Implicit None
Double Precision, Intent(IN) :: s
BETA3 = -5 + (30 - s)**3/5000

End Function !End of coefficient functions

ISubroutine for creat Kernel matrix

subroutine Kernelmatrix(Kernel,gi,Pi,t,h,j,

mi,measurements,subjects) integer :: measurements,subjects

Double Precision, Dimension(measurements,measurements) :: Kernel
Double Precision, Dimension(measurements+1,subjects) :: t
Double Precision :: gi,Pi,h integer :: jk,mi
Do k=1,mi
Kernel(k,k)=(1.0/(h*(sqrt(2.0*Pi))))*(exp(-((gi-t(k,j))**2)/
(2.0*(h**2)))) IValue Kernel matrix For each subject

end do return End subroutine

ISubsoutine for Xi transpose by K by Xi

subroutine A(design,subjects,measurements,

covariates,Xkxtotal,gi,Pi,h,Kernel,m,t)
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Integer :: j,k,subjects,measurements,covariates,mi

Double Precision, Dimension(measurements,covariates,subjects) ::
design Double Precision, Dimension(measurements,measurements) ::
Kernel Double Precision, Dimension(measurements+1,subjects) :: t

Integer, Dimension(subjects) :: m

Double Precision, Dimension(measurements,covariates) :: Xi

Double Precision, Dimension(covariates,measurements) :: Xtk

Double Precision, Dimension(covariates,covariates) :: Xkx

Double Precision, Dimension(covariates,covariates) :: Xkxtotal

Double Precision :: gi,Pi,h Xkxtotal=0

Do j=1,subjects
mi=m(j)
call Kernelmatrix(Kernel,gi,Pi,t,h,j,mi,measurements,subjects)
Xi(:,:)=design(:,:,))
CALL DMXTYF (measurements, covariates, Xi, measurements,
measurements, measurements, Kernel, measurements, covariates,
measurements, Xtk, covariates)
I Multiply Xi transpose by Kernel matrix
CALL DMRRRR (covariates, measurements, Xtk, covariates,

measurements, covariates,
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Xi, measurements, covariates,covariates, Xkx, covariates)
I Multiply Xi by kernel by Xi
Do k=1, covariates
Xkxtotal(k,:)=Xkxtotal(k,:)+Xkx(k,:) 'Sum of Xkx for all subjects
End do
End do return end subroutine

ISubsoutine for Xi transpose by K by Yi

subroutine (design,y,subjects,measurements,

covariates, Xkytotal,gi,Pi,h,Kernel,m,t)

Integer :: j,k,subjects,measurements,covariates,mi

Double Precision, Dimension(measurements,covariates,subjects) ::

design

Double Precision, Dimension(measurements,subjects) :: y

Double Precision, Dimension(measurements,measurements) :: Kernel

Double Precision, Dimension(measurements+1,subjects) :: t

Integer,Dimension(subjects) :: m

Double Precision, Dimension(measurements,covariates) :: Xi
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Double

Double

Double

Double

Double

Precision,Dimension(measurements) :: Yi

Precision,Dimension(covariates,measurements) :: Xtk

Precision, Dimension(covariates) :: Xky

Precision,Dimension(covariates) :: Xkytotal

Precision :: gi,Pi,h Xkytotal=0

Do j=1,subjects

mi=m(j)

call Kernelmatrix(Kernel,gi,Pi,t,h,j,mi,measurements,subjects)

Xi(:,

-)=design(:,:,))

Yi()=y(.))

CALL DMXTYF (measurements, covariates, Xi, measurements,

measurements,measurements, Kernel, measurements, covariates,

measurements, Xtk, covariates)

I Multiply Xi transpose by Kernel matrix

CALL DMURRV (covariates, measurements, Xtk, covariates,

measurements, Yi, 1,covariates, Xky) !Multiply Xi by kernel by Yi

Do k=1, covariates

Xkytotal(k)=Xkytotal(k)+Xky(k) I Sum of Xky for all subjects

End do

End do return end subroutine
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7.2 SAS CODE

libname dat 'C:\simulation data library’;

title "H15\_n150\_m60’;

proc univariate data=dat.H15\ _n150\ _m60;
var variance;
output out=result var=estvar ;

run;

data new;
set result;
k=32/estvar,
alpha=k/2;
dummy=1,

run,

data newz;
set dat.H15\ n150\ m60;
dummy=1,

run,

data new3 (keep=chi);
merge new newz,
by dummy;
chi=k*variance/4;

run;
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proc capability;
probplot chi/gamma(alpha=est sigma=2 theta=0);

run;

proc univariate data=news;
var chi;
output out=result2 std=eststd ;

run;

data new4;
set result?;
E\ H15\ n150\ _m60=(1.96*eststd)/sqrt(1000);

run;

proc print data=new4,
var E\_H15\ n150\_m60;
var eststd,;

run;
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