
A GENETIC ALGORITHM FOR THE VEHICLE ROUTING
PROBLEM WITH TIME WINDOWS

Lin Cheng

A Thesis Submitted to the
University of North Carolina Wilmington in Partial Fulfillment

Of the Requirements for the Degree of
Master of Science

Department of Mathematics and Statistics

University of North Carolina Wilmington

2005

Approved by

Advisory Committee

Chair

Accepted by

Dean, Graduate School

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . iv

LIST OF FIGURES . v

1 INTRODUCTION . 1

1.1 Introduction to VRP . 1

1.2 Time Window . 3

1.3 Genetic Algorithm . 4

2 PROBLEM FORMULATION . 6

3 SPLITTING ALGORITHM . 9

3.1 Main idea of Hybrid Genetic Algorithm 9

3.2 Implementation for the Splitting Procedure 13

4 CROSSOVER . 17

5 LOCAL SEARCH AS MUTATION OPERATOR 18

6 A GENETIC ALGORITHM FOR VRPTW 20

7 COMPUTATIONAL RESULTS . 22

8 CONCLUSION . 25

i

ABSTRACT

The objective of the vehicle routing problem (VRP) is to deliver a set of customers

with known demands on minimum-cost vehicle routes originating and terminating at

the same depot. A vehicle routing problem with time windows (VRPTW) requires

the delivery be made within a specific time frame given by the customers. Prins

(2004) recently proposed a simple and effective genetic algorithm (GA) for VRP. In

terms of average solution cost, it outperforms most published tabu search results.

We implement this hybrid GA to handle VRPTW. Both the implementation and

computational results will be discussed.

ii

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to Dr. Yaw O. Chang for guidance on

my thesis work. I also want to thank Dr. John Karlof and Dr. Matthew TenHuisen

for serving on my thesis advisory committee and offering constructive ideas. Also, I

want to thank all the faculty members in the Mathematics and Statistics Department

who gave me valuable advice and help. I also want to thank my wife Angelina Zhou

for her patience and help. This thesis is dedicated to my parents.

iii

LIST OF TABLES

1 Example of crossover . 17

2 Computational results for date set 1 23

3 Computational results for date set 2 24

iv

LIST OF FIGURES

1 An input for a vehicle routing problem 1

2 An output for the instance in Figure 1 2

3 An example of chromosome evaluation 10

4 An example of the split procedure . 15

5 A feasible solution of the split procedure 16

v

1 INTRODUCTION

1.1 Introduction to VRP

The Vehicle Routing Problem consists of a set of customers with known demands.

For most cases, there is only one depot. Each vehicle can carry either a limited or

unlimited goods and travel a limited distance. Each vehicle starts from a depot and

delivers the goods required, then returns to the depot. Each customer is assigned

to exactly one vehicle route. The total demand of any route must not exceed the

vehicle capacity. The objective of the vehicle routing problem is to deliver to a set of

customers with known demands with minimum-cost vehicle routes originating and

terminating at a depot. Figure 1 shows a picture of the typical input for a vehicle

routing problem. Figure 2 shows a possible output.

Customers

Depot

Figure 1: An input for a vehicle routing problem

Customers

Depot

Figure 2: An output for the instance in Figure 1

The vehicle routing problem is a well-known integer programming problem which

falls into the category of NP-Hard problems[11], meaning that the computational

effort required to solve this problem increases exponentially with the problem size.

For such problems it is often desirable to obtain approximated solutions, so they can

be found quickly enough and are sufficiently accurate for the purpose. Usually this

task is accomplished by using various heuristic methods, which rely on some insight

into the nature of the problem.

The VRP arises naturally as a central problem in the fields of transportation,

distribution, and logistics [5]. In some market sectors, transportation means a high

percentage of the value is added to goods. Therefore, the utilization of computerized

2

methods for transportation often results in significant savings ranging from 5% to

20% in the total costs, as reported in [10]. In some real world vehicle routing

problems there are often side constraints due to other restrictions. Some of the well

known models are:

• Every customer has to be supplied within a certain time window (vehicle rout-

ing problem with time windows - VRPTW).

• The vendor uses many depots to supply the customers (multiple depot vehicle

routing problem - MDVRP).

• Customers may return some goods to the depot (vehicle routing problem with

pick-up and delivering - VRPPD).

• The customers may be served by different vehicles (split delivery vehicle rout-

ing problem - SDVRP).

• The demands, service time and/or travel time are random (stochastic vehicle

routing problem -SVRP).

• Satellite facilities are used to replenish vehicles during a route - (VRPSF).

• A VRP in which customers can demand or return some commodities (vehicle

routing problem with backhauls -VRPB).

1.2 Time Window

The vehicle routing problem with time windows (VRPTW) is the same problem

as the vehicle routing problem (VRP) with the additional time constrants. A time

window [ei, li] is associated with each customer i, where the vehicle can not arrive

earlier than time ei and can not arrive later than time li. The VRP without time

window can corresponds to the situation ei = 0 and li = ∞ for all 1 ≤ i ≤ n. In

3

this paper, we will consider the case when ei > 0 and li = ∞ for all i, that is, we

only consider the case with restrictions on the earliest arrival time.

1.3 Genetic Algorithm

The principles of a genetic algorithm(GA) are well known. A population of solutions

(chromosomes in the Genetic Algorithm) is maintained along with a reproductive

process allowing parent solutions to be selected from the population. Offspring

solutions are produced which exhibit some of the characteristics of each parent. The

fitness of each solution can be related to the objective function value, in this case

the total time travelled for all vehicles. Analogous to biological processes, offspring

with relatively good fitness levels are more likely to survive and reproduce, with the

expectation that fitness levels throughout the population will improve as it evolves.

More details are given by Reeves [7].

A general formwork of GA can be described as follow: An initial population

of chromosomes will be generated randomly and arrayed according to their corre-

sponding objective function values. To ensure a better dispersal of solutions and

to diminish the risk of premature convergence, we do not allow clone (identical)

solutions in the population.

After the initial population is built up, two chromosomes are randomly selected

from the population. A new chromosome C will be produced by either the standard

crossover or the mutation procedure. (Both procedures will be discussed later.) If

the new chromosome C is better than (in the optimization sense) any chromosome

in the current population, C will be included and the worst one in the current

population will be removed. This procedure is repeated until a stopping criteria is

satisfied.

In this paper, we will review and implement a hybrid genetic algorithm proposed

by Chreistian Prins [8] to solve the vehicle routing problem with earliest arrival

4

time. Problem formulation and implementation of the GA will be discussed and

computational results will be reported.

5

2 PROBLEM FORMULATION

The vehicle routing problem consists of a set of customers with known demands.

Vehicles leave from a depot, deliver the goods to customers, and return to the depot.

In general, there is only one depot. Each vehicle can carry Limited goods and travel

a limited distance. Each customer is assigned to exactly one vehicle route and the

total demand of any route must not exceed the vehicle capacity.

To date, heuristic algorithms are required for dealing with real-life instances.

Most of the proposed algorithms assume that the number of vehicles is unlimited,

and the objective is to obtain a solution that either minimizes the number of vehicles

and/or total travel cost. However, transport operations in the real world face the

limit of time windows.

Before we formally give the mathematical formulation of the vehicle routing

problem with time windows, we need to introduce some basic terminologies from

graph theory.

Definition 1

An undirected graph G is an ordered pair G=(V, E) where

V={0, 1, 2, ..., n},

V is the set of vertices or nodes; and

E={(i, j) i, j ∈ V },

E is the set of unordered pairs of distinct vertices, called edges.

Definition 2

Let G=(V, E) be a graph, a path P is a sequence of vertices i1, i2, ..., ik, such that

ij ∈ V and (ij, ij+1) is an edge in G, for all 1 ≤ j ≤ k − 1.

Definition 3

Let G=(V, E) be a graph. G is called a connected graph if there is a path between

every pair of vertices .

Now let G be an undirected graph corresponding to a vehicle routing problem where

vertex 0 corresponds to the depot and vertex i corresponds to customer i, for 1 ≤
i ≤ n. For convenience, let us define the following:

• cij : the cost associated with edge (i, j), the cost could be the travel distance,

the travel time, or the travel cost from customer i to customer j. For simplicity,

we assume cij = cji. If there is no edge between vertex i and j, cij = ∞.

• bi : the vehicle arrival time at customer i.

• di : the service time for customer i.

• ei : the earliest arrival time for customer i.

• L: maximal operation time for each vehicle.

• Ri: A route is a sequence (i1, i2, ...ik) where ij ∈ V , such that a particular

vehicle will serve customers (i1, i2, ...ik) according to the order of the sequence.

• Wij : the waiting time for vehicle i at customer j.

Consider a route Ri = (i1, i2, ..., ik), a vehicle arrives customer ij at time

bij−1
+ dj−1 + cij−1,ij .

that is the arrival time at customer ij−1, plus the service time at customer ij−1 and

the travel time from customer ij−1 to customer ij. To ensure the earliest arrival time

constraint, we define

7

bij = max[eij , bij−1
+ dij−1

+ cij−1,ij].

when the maximum is obtained at eij , it implies the vehicle arrives earlier than the

desired arrival time and it has to wait until the customer ij is available. Let us

define the waiting time for vehicle i at customer j as

Wij = max[0, eij − bij−1
− dij−1

− cij−1,j
].

An additional constraint

bik + dik + cik,0 ≤ L,

is applied to ensure a vehicle will not operate over the operation time allowed, ie.

Ri is a feasible route. Then the total travel time for route Ri is given by

C(Ri) = c0,i1 +
∑k

j=2(cij−1,ij) +
∑k

j=1 Wij +
∑k

j=1 dij + cik,0.

A solution S is a collection of routes R1, R2, ..., Rl, such that each customer will be

covered by exactly one route Ri. The total travel time for S is

C(S) =
∑l

i=1 C(Ri).

Our goal is to minimize C(S) over all the possible feasible solutions S.

8

3 SPLITTING ALGORITHM

Before we review the original algorithm, we need to introduce the concept of chro-

mosome:

Definition 4

A chromosome S is a permutation of n positive integers, such that each integer is

corresponding to a customer.

A chromosome may be broken into several different routes. For example, a chro-

mosome with 5 customers, S = (1, 2, 3, 4, 5) may be broken into R1 = (1, 2) and

R2 = (3, 4, 5), or R1 = (1, 2, 3) and R2 = (4, 5); etc.

Christian Prins [8] proposed a genetic algorithm dealing with the vehicle routing

problem without time windows and focused on the total traval cost. We will review

the main idea of the hybrid GA in Section 3.1 and discuss our implementation in

Section 3.2.

3.1 Main idea of Hybrid Genetic Algorithm

Because each chromosome can be split into many different routes, Christian Prins

proposed a splitting procedure which can find an optimal splitting so that the total

cost is minimized for any given chromosome. The main idea can be described as

follows. Without loss of generality, let S = (1, 2, 3, ..., n) be a given chromosome.

Consider an auxiliary graph H = (V̄ , Ē) where V̄ = {0, 1, 2, ..., n}. An arc (i, j) ∈ Ē

if

Ēij = c0,i+1 +

j−1∑

k=i+1

(dk + Ck,k+1) + dj + cj,0 ≤ L. (∗)

Then Ēij is the total travel cost for the route (i + 1, i + 2, ..., j). An optimal split

for S corresponds to shortest path P from vertex 0 to vertex n in H.

The fist graph of Fig. 3 shows a sequence S=(a, b, c, d, e). The number associates

with each edge is the travel cost. Let us assume the service cost (delivery cost) is

0, then the auxiliary graph H is the second gragh in Fig. 3. The edge in H with

weight 55 corresponds to the travel cost of the trip (o, a, b, 0). The weight associated

with the edges are similarly defined. The shortest path from 0 to e is (o, b, c, e) with

minimal cost 205. The last graph gives the resulting splitting with three trips.

a

b

c

d

e

30

15

20

25

30

40

35

10

25

0

40 55 115 150

20540 50 60 80 70

55 95

85

90
120

a

b

c

d

e

Trip 1

55

Trip 2

60

Trip 3

90

a b c d e

Figure 3: An example of chromosome evaluation

The auxiliary graph helps us understand the idea how to split a given chromosome

10

S into optimal trips. But in practice, we do not have to construct such graph H.

Prince proposed the following procedure:

11

V0 := 0

for i := 1 to n do Vi := +∞ endfor

for i := 1 to n do

cost := 0; j := i

repeat

if i = j then

cost := c0,Sj
, +dSj

+ cSj,0

else

cost := cost− cSj−1,0 + cSj−1,Sj
+ dSj

+ cSj,0

endif

if (cost ≤ L) then

if Vi−1 + cost < Vj then

Vj := Vi−1 + cost

Pj := i− 1

endif

j := j + 1

endif

until (j > n) or (cost > L)

endfor

Let S = (1, 2, ..., n) be a given chromosome. Two labels Vj and Pj for each vertex

j in S are computed. Vj is the cost of the shortest path from node 0 to node j in

H, and Pj is the predecessor of j on this path. The minimal cost is given at the end

by Vn. For any given i, note that the incrementation of j stops when L is exceeded.

We will modify this part to handle the time window. Once the split procedure is

completed, the optimal routes can be determined by the shortest path.

12

3.2 Implementation for the Splitting Procedure

Recall Eij in (*) represents the total travel time for route (i + 1, i + 2, ..., j). To

incorporate the earliest arrival time ei, the total travel time Eij for the same route

can be calculated by

Eij = c0,i+1 +
∑j−1

k=i+1(Wi + dk + ck,k+1) + Wj + dj + cj,0.

If Eij ≤ L, then the arc (i, j) exists in the auxiliary graph H, and the shortest path

from 0 to n in H corresponding to an optimal split for S.

To accommodate this modification, the splitting procedure can be modified as

follows:

13

V0 := 0

for i := 1 to n do Vi := +∞ endfor

for i := 1 to n do

cost := 0; j := i

repeat

if i = j then

cost := Max[c0,Sj
, eSj

] + dSj
+ cSj,0

else

cost := Max[cost− cSj−1,0 + cSj−1,Sj
, eSj

] + dSj
+ cSj,0

endif

if (cost ≤ L) then

if Vi−1 + cost < Vj then

Vj := Vi−1 + cost

Pj := i− 1

endif

j := j + 1

endif

until (j > n) or (cost > L)

endfor

Here c0,Sj
is the regular arriving time at customer Sj, and eSj

is the earliest arrival

time at customer Sj. If eSj
< c0,Sj

, we will pick eSj
. Otherwise, we will pick the

regular arrival time c0,Sj
.

Let us consider an example with 10 customers. The vehicle service time limit

L is 540 minutes and the service time di is 10 minutes for all customers. Figure

4 shows a sequence S = (A,B,C,D,E, F,G, H, I, J) with the earliest arrival time

14

in parentheses. For example, if the vehicle leaves the depot at 8 : 00AM, the 150

minutes corresponding to customer A means the earliest arrival time for customer

A is 10:30AM. The number associated with each edge is the travel time.

A (150)

B (80)

C (240)

D (300)

E (180)
F (60)

G (160)

H (420)

I (60)

J (90)

20

100

30

80

30
20

40

40

100

240

230

210

190
200 180 185

150

160

250

Figure 4: An example of the split procedure

Figure. 5 shows the optimal routes for this particular sequence. It contains 4

trips with the total travel time of 1840 minutes. The travel time for Trip 1 is 510

minutes, the travel time for Trip 2 is 410 minutes, the travel time for Trip 3 is 470

minutes, and the travel time for Trip 4 is 430 minutes.

15

A (490)

B (510)

C (880)

D (920)

E (1330)
F (1380)

G (1390)

H (1410)

I (1430)

J (1840)

100

Trip 1

Trip 2

Trip 3

Trip 4

Figure 5: A feasible solution of the split procedure

16

4 CROSSOVER

As mentioned earlier, the reproductive process in GA can be done either by crossover

or by mutation procedures. A crossover (or recombination) operation is performed

upon the selected chromosomes. We will use the order crossover which will be

explained in the following example.

Figure. 5 shows how crossover constructs a child C. First, two chromosomes are

randomly selected from the initial population and the least-cost one becomes the

first parent P1. Two cutting sites i and j are randomly selected in P1, here i=4 and

j=6. Then, the substring P1(i)...P1(j) is copied into C(i)...C(j). Finally, P2 is swept

circularly from j + 1 onward to complete C with the missing nodes. C is also filled

circularly from j +1. The other child maybe obtained by exchanging the roles of P1

and P2.

Rank 1 2 3 4 5 6 7 8 9 10

i=4 j=6

↓ ↓

P1 9 8 7 5 10 3 6 2 1 4

P2 9 8 7 6 5 4 3 2 10 1

C 7 6 4 5 10 3 2 1 9 8

Table 1: Example of crossover

Figure 5 demonstrates the process. Let i = 4 and j = 6, so C(4) = P1(4),

C(5) = P1(5), and C(6) = P1(6). Now C(7) should equal to P2(7). Because C(6) =

3, we shift to P2(8), so C(7) = P2(8) = 2. Now C(8) should equal to P2(9). Again

C(5) = 10 = P2(9), we will skip P2(9) and let C(8) = P2(10) = 1. Repeat this

process until C is constructed.

5 LOCAL SEARCH AS MUTATION OPERATOR

The classical genetic algorithm framework must be hybridized with some kind of

mutation procedure. For the VRPTW, we quickly obtained much better results by

replacing simple mutation operators (like moving or swapping some nodes) by a local

search procedure.

A child C produced by crossover could be improved by local search with a fixed

mutation rate pm which stands for the rate or the probability of mutation and is

a fundamental parameter in genetics and evolution. Here pm is the measure of the

impact of mutations on the child C. The mutation procedure can be described as

follows. A chromosome C is converted into a VRPTW solution. Then for all possible

pairs of distinct vertexes (u, v), such that i is ahead of v, the following simple moves

are tested. Let x and y be the successors of u and v in their respective trips. The

following rules are used to create new chromosomes.

• M1. Remove u from C and insert it after v, ie, the new sequence is (...v, u, ...).

• M2. If x is a client, remove (u, x) from C then insert (u, x) after v, ie, the new

sequence is (...v, u, x, ...).

• M3. If x is a client, remove (u, x) from C then insert (x, u) after v, for example,

the new sequence is (...v, x, u, ...).

• M4. Swap u and v, for example, the new sequence is (...v, ..., u, ...).

• M5. If x is a client, swap (u, x) and v, ie, the new sequence is (...v, ...u, x, ...).

• M6. If x and y are clients, swap (u, x) and (v, y), ie, the new sequence is

(...v, y, ...u, x, ...).

• M7. If u and v are in the same trip, replace (u, x) and (v, y) by (u, v) and

(x, y), ie, the new sequence is (...u, v, ...x, y, ...).

• M8. If u and v are not in the same trip, replace (u, x) and (v, y) by (u, v) and

(x, y), ie, the new sequence is (...u, v, ...x, y, ...).

• M9. If u and v are not in the same trip, replace (u, x) and (v, y) by (u, y) and

(x, v), ie, the new sequence is (...u, y, ...x, v, ...).

When a new chromosome is produced, we will find the optimal routes using

the splitting procedure. Let C̄ be the new chromosome produced by the mutation

procedure. If C̄ is better than the worst in the current population at the end of

mutation process, C̄ will be added into the current population, and the worst one

will be moved. If C̄ is better than the current best solution, we consider the current

mutation process as a productive mutation.

19

6 A GENETIC ALGORITHM FOR VRPTW

The population is implemented as an array Π of σ (σ is the population size) chromo-

somes, always sorted in increasing order of cost to ease the basic genetic algorithm

iteration. Thus, the best solution is Π1.

Clones (identical solutions) are forbidden in Π to ensure a better dispersal of

solutions. This also allows a higher mutation rate pm by local search LS, giving a

more aggressive genetic algorithm. To avoid comparing chromosomes in details and

to speed-up clone detection, we impose a stricter condition: the costs of any two

solutions generated by crossover or mutation must be spaced at least by a constant

4 > 0.

A population satisfying the following condition will be said to be well-spaced.

The simplest form with 4 = 1 (solutions with distinct integer costs) was already

used in an efficient Genetic Algorithm. That is,

∀P1, P2 ∈ Π : P1 6= P2 ⇒ |F (P1)− F (P2)| ≥ 4

where P1 and P2 are the parents we select from the initial population, and F (P1)

and F (P2) are the costs of P1 and P2

The stopping criterion for GA is either after reaching a maximum number of gen-

eral iterations, αmax (number of crossovers that do not yield a clone) or a maximal

number of iterations without improving the best solution, βmax. Let σ be the pop-

ulation size, pm be the mutation rate, and space ∆ = 5. The GA can be described

as follows:

Step 1: (Initial population)

Randomly generate σ chromosomes.

Step 2: (Sort Initial population)

Sort the initial population according to the total travel time of each chromosome.

Step 3: (setup counter)

Set α, β=0

Step 4: (Crossover)

Let α = α + 1. Select two parents (P1) and (P2) by binary tournament. Apply

Crossover to (P1, P2) and select one child C at random.

Step 5: (Mutation)

Compare r (randomly generated) and pm. If r > pm then go to Step 6. Otherwise,

mutation is applied to the child and C ′ is generated. The split procedure is then

used to get the solution of C ′.

Step 6: (Productive iteration)

Since Π1 is the best solution of the population, if (F (C ′)− F (Πk)) ≥ ∆, 1 ≤ k ≤ σ,

then let β = 0 and shift C ′ to re-sort population. Otherwise, β = β + 1.

Step 7: (Check stopping criterion)

If α = αmax or β = βmax, stop. Otherwise, go to Step 4.

21

7 COMPUTATIONAL RESULTS

The Genetic Algorithm was implemented in the Visual Basic script, on a Pentium-4

PC clocked at 2.7 GHz under the operating system Windows XP. We ran two differ-

ent randomly generated data sets with n=10. For each data set we ran 3 different

population sizes with 3 different mutation rates. For all the cases, we set αmax=1000

and βmax=100. The best solution was calculated by complete enumeration for both

date sets.

In the following tables, the first column is the population size, the second col-

umn is the mutation rate, and the third column is the best solution in the initial

population with the number of trips in the parentheses. Columns 4 and 5 give the

final values of α and β, respectively. Column 6 gives the final solution produced

by the GA with number of trips in the parentheses. Column 7 gives the runtime in

seconds. Column 8 is the best solution with the number of trips in the bracket. The

last column is the relative error.

Population Mutation Original α β Final Runtime Best Relative
size n Rate r Solution Solution t(seconds) Solution Error

30 0.1 1380(3) 928 100 520(1) 90 490(1) 6.12%

0.2 1550(2) 990 100 510(1) 91 490(1) 4.08%

0.3 1280(3) 551 100 490(1) 98 490(1) 0%

50 0.1 1050(2) 1000 87 490(2) 90 490(1) 0%

0.2 990(2) 1000 98 510(1) 90 490(1) 4.08%

0.3 1360(1) 996 100 500(1) 98 490(1) 2.04%

100 0.1 1270(3) 1000 98 520(2) 90 490(1) 6.12%

0.2 1823(4) 864 100 500(1) 93 490(1) 4.08%

0.3 1900(4) 980 100 490(1) 106 490(1) 0%

Table 2: Computational results for date set 1

Table 2, sorted in increasing order of population size, shows very encouraging

results. When the population size equals 30 and 100, the mutation rate equals to

0.3, and our solutions reach the best solution with β reaching the maximal number

of iterations without improving the best solution, which means that the mutation

procedure was applied to the child C at least 100 times.

In general, when the mutation rate increases, the relative errors are decreasing,

and the number of trips is decreasing. Only two relative errors are greater than 5%.

One exception that we notice is that when the population size equals 50 and the

mutation rate equals 0.1, our solution also reaches the best solution that has two

trips instead of one.

23

Population Mutation Original α β Final Runtime Best Relative
size n Rate r Solution Solution t(seconds) Solution Error

30 0.1 1787(4) 506 100 1022(2) 85 962(2) 6.3%

0.2 2629(5) 1000 75 997(2) 88 962(2) 3.6%

0.3 1860(4) 579 100 987(2) 96 962(2) 2.6%

50 0.1 1640(4) 583 100 987(2) 90 962(2) 2.6%

0.2 1744(4) 573 100 987(2) 89 962(2) 2.6%

0.3 1702(4) 516 100 962(2) 97 962(2) 0%

100 0.1 1787(4) 506 100 1022(2) 89 962(2) 6.3%

0.2 1441(3) 1000 83 970(2) 93 962(2) 0.83%

0.3 1518(3) 1000 71 962(2) 97 962(2) 0%

Table 3: Computational results for date set 2

Table 3 is based on the second data set, sorted in increasing order of population

size. It shows results similar to those in table 1. When population size equals 50

and 100, mutation rate equals to 0.3. Our solutions also reach the best solution with

β reaching the maximal number of iterations without improving the best solution.

Also, as population size and mutation rate increase, the solutions are getting better,

the relative errors are decreasing, and the number of trips is decreasing. Only two

relative errors are greater than 5%.

24

8 CONCLUSION

We implement a hybrid GA Vehicle Routing Problem to solve The Vehicle Routing

Problem with Time Windows. The final results are encouraging when the customer

size is small. We will have more comparable experiments with large number of

customers in the future.

For simplicity, we only consider the earliest arrival time and assume the capacity

of the vehicle is unlimited. We will re-examine the module to handle the capacited

cases in the future. We would also like to implement the current algorithm to handle

a real time window.

REFERENCES

[1] J.F. Bard, L. Huang, M. Dror, and P. Jaillet, ”A Branch and Cut Algorithm

for the VRP with Satellite Facilities”, IIE Transactions 30, pp 821-834

[2] W. Burrows.1988. ”The Vehicle Routing Problem with Loadsplitting: A Heuris-

tic Approach”. In 24th Annual Conference of the Operational. Research Society

of New Zealand, pages 33-38,

[3] Moses Charikar, Samir Khuller, Balaji Raghavachari, 2001. Algorithms for ca-

pacitated vehicle routing. Industrial and Applied Mathematics

[4] Hoong Chuin Lau, Melvyn Sim, Kwong Meng Teo, 2003. Vehicle routing prob-

lem with time windows and a limited number of vehicles. European Journal of

Operational Research 559C569

[5] G. B. Dantzig and R.H. Ramser, 1959. ”The Truck Dispatching Problem”.

Management Science 6, 8091.

[6] M. Dror, G. Laporte, P. Trudeau, 1994. Vehicle routing with split deliveries,

Discrete Appl.Math. 50, 239-254

[7] Reeves CR, editor. Modern heuristic techniques for combinatorial problems.

Oxford: Blackwell Scientific Press, 1993.

[8] Chreistian Prins, 2003. A simple and effective evolutionary algorithm for the

vehicle routing problem. Computer and Operations Research

[9] M. M. Solomon, 1995. ”Algorithms for the Vehicle Routing Problem with Time

Windows”. Transportation Science, 29(2), pp. 156-166.

[10] P. Toth, D. Vigo, 2001. The Vehicle Routing Problem. Monographs on Discrete

Mathematics and Applications. SIAM, Philadelphia

[11] A problem is NP-hard (Non-deterministic Polynomial-time Hard) if solving it

in polynomial time would make it possible to solve all problems in class NP in

polynomial time . That is, a problem is NP-hard if an algorithm for solving it

can be translated into one for solving any other NP problem (nondeterministic

polynomial time) problem. NP-hard therefore means ”at least as hard as any

NP problem”.

27

