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ABSTRACT 
  
 The focus of this study was to identify and describe bryophyte-environment 

relationships in wetland swamp forests of the Northeast Cape Fear River, southeastern 

North Carolina.  A total of 44 genera consisting of 39 moss species and 21 liverwort 

species were identified.  There was one new liverwort recorded not previously described 

from North Carolina, Cololejeunea setiloba. The diversity of bryophytes in the swamps 

of the Northeast Cape Fear River was higher than expected observations. 

Bryophyte densities and species richness were compared to flood depth relative to 

the swamp surface, salinity, and elevation of the swamp surface for three sites each with 

six substations within a transect from riverbank to upland edge.  There was a general 

trend of an increase in bryophyte density and species richness as flood depth and salinity 

decreased from river to upland.   

Principal component analysis used 13 environmental variables, ranging from 

transect distance upriver, substation distance from river’s edge to base of upland, 

hydrology, elevation, duration of flooding, and salinity.  These environmental variables 

accounted for much of the variation in the abundance of bryophyte species.  A principal 

component biplot showed clustering between species of bryophytes with correlation 

between certain species and their tolerance for specific stress-related environmental 

variables.   

The majority of the bryophytes sampled were not common in the study system 

and have narrow habitat specificity.  Although bryophytes may form a major part of 

several vegetation types and ecosystems, in this study, relatively few bryophyte species 
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were ecologically abundant or dominant.  Isopterygium tenerum is one occurring 

commonly and over a wide range of habitats.   

Fontinalis sullivantii, a facultative aquatic bryophyte, in the Northeast Cape Fear 

River can clearly tolerate low salinity water.  It occurs along exposed roots and bases of 

trees, such as bald cypress.  It is submerged at rising and high tide and partially exposed 

at low tide therefore exposing it to varying salinity as well as desiccation.  High salinity, 

in the range between 5 and 15 ppt, significantly reduced photosynthetic efficiency of the 

moss species, Fontinalis sullivantii, on the short time scale, followed by some recovery.  

Desiccation after approximately 3 hours also reduced photosynthetic efficiency.  

However, observed physical changes in the disappearance of Fontinalis sullivantii due to 

a major drought suggests a strong relationship between increasing salinity and 

disappearance of this species. 

Long term implications of the current study are that bryophyte data will be used to 

assess future impacts due to current dredging projects in the Cape Fear River estuary. 
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INTRODUCTION 

There have been tremendous changes in wetland vegetation systems bordering the 

Cape Fear estuary since the first permanent European settlement in the 1720’s, due to 

clearing and diking of swamps, deepening and widening of the main channel, and relative 

sea level rise (Hackney and Yelverton 1990).  Hackney and Yelverton (1990) attributed a 

significant portion of a 67% increase in tidal amplitude at the upper reach of the estuary 

to the enlarged dimensions of the river channel.  With the resulting rise in high-water and 

increased salinity in the estuary, swamps in the upper reaches are gradually disintegrating 

and being replaced by oligohaline tidal marshes (Rozas 1995).   

Each tide that propagates up the Cape Fear River forces water from the main river 

channel into surrounding tidal wetlands.  The degree and rate of water flow from the 

channel into adjacent wetlands depend on the height of the tide, elevation of the wetlands, 

natural friction in the surface of the wetlands, and availability of streams or rivulets 

within wetlands to move water (CZR Incorporated 2001).  Biological impacts caused by 

an increase in sea level on wetlands could be significant in areas not currently 

experiencing saline water.  Elevated salinity and frequent flooding during the growing 

season may stress many species currently inhabiting the system, including bryophytes.  

The effects of environmental variables including salinity and flooding may explain 

observed variation in species densities within the community (Gough and Grace 1999). 

Despite a number of ecological studies of forested wetlands (see Conner and Day 

1982, for a review), an understanding of vegetation dynamics, especially in response to 

flooding in wetland forests, is still only rudimentary (Conner and Brody 1989).  The 

prediction of how communities will respond to changing environmental conditions is
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imperative (Gough and Grace 1999), often requiring inference of species-environment 

relationships from community composition data and associated habitat measurements 

(Ter Braak 1986).  Although descriptive accounts of local or regional bryophyte 

communities are common in the literature, relatively few studies have correlated 

bryophyte vegetation and environmental factors.  Nevertheless, bryophytes have more 

recently been used as ecological indicators, especially with respect to pollution (Burton 

1990).  

Evaluation of bryophyte diversity and community structure present several 

technical challenges including their small size, the often fragmentary nature of their 

colonies, the tendency of many species to grow on highly irregular surfaces, and their 

frequent presence as relatively low biomass components in communities dominated by 

other types of vegetation (Bates 1982).  However, the absence of true roots and vascular 

systems in bryophytes creates a more direct and immediate relationship between the 

surface environment and the plant (Smith 1978) making them ideal indicators of habitat 

conditions.  Changes in water, soil, and/or air quality due to pollution or other factors 

may quickly impact bryophyte growth, reproduction, establishment, and persistence.  

According to Richardson (1981), light, temperature, and nutrient supply are 

factors which, in addition to water and salt, may cause stress and reduce the 

photosynthetic performance of mosses.  To date there is no information on the extent to 

which increases in salinity can affect the physiology of bryophytes found in freshwater 

swamps.  Although limited, physiological data on fresh to brackish water marsh vascular 

species suggest an adverse response to increased salinity (McKee and Mendelssohn 1989, 

Pezeshki et al. 1987a, Pezeshki et al. 1987b), but roots, rhizomes, and leaves buffer 
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vascular plants from short-term exposures.  Individual moss species have a physiology 

that responds more immediately to a combination of conditions that are best defined by 

the microclimate (Richardson 1981).   

The genus Fontinalis Hedw. has been used frequently in physiological studies as 

a representative aquatic plant; including many pollution studies.  It is widely distributed 

through the world’s temperate regions (Glime 1984).  Its large size and relative 

abundance further support its choice for detailed biological study.  Fontinalis sullivantii, 

a species found in the Northeast Cape Fear River, is subjected to daily tides exposing it to 

dissolved sea salts as well as flooding and desiccation.  Any change in either of these 

variables outside of what is experienced during a regular tidal cycle may cause immediate 

alterations in metabolism and physiology.   

With photosynthetic plants, both the photochemical processes and the dark 

biochemistry of photosynthesis are sensitive to water stress (Schwab & Heber 1984, Lee 

& Stewart 1971).  One method of measuring such changes is to monitor variation of 

photosynthetic efficiency of aquatic bryophytes in stressed habitats.  The use of 

chlorophyll fluorescence techniques to investigate photosynthesis in vegetation, 

especially pulse-amplitude-modulated (PAM) fluorescence, has increased recently as a 

result of advances in technology and instrument availability (Murphy 2000).  PAM 

fluorescence was found to be useful because it is non-invasive, quantitative (Kooten and 

Snel 1990), can be used in the field, and provides information about the photosynthetic 

efficiency of PSII (Ralph et al. 1998).  PAM fluorescence has been used to measure light 

stress (Ralph and Burchett 1995; Dawson and Dennison 1996), salinity stress 

(Kamermans et al. 1999), and photosynthetic rates (Beer et al. 1998).  
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The focus of the current study was to determine species of bryophytes that occur 

along the Northeast Cape Fear River, N.C. and investigate distribution patterns as they 

relate to abiotic factors such as flooding and salinity.  An additional objective of the study 

was to examine stress-response of bryophytes to variations in salinity with emphasis 

placed on the short-term response of an aquatic species, Fontinalis sullivantii. 

 

MATERIALS AND METHODS  
Study area 

Study sites were located along the Northeast Cape Fear River (Figure 1) in North 

Carolina.  The Northeast Cape Fear River is a blackwater river in North Carolina's Lower 

Coastal Plain at approximately 34° 16´ N and 77° 57´ W.  

 Belt transects (Figures 2, 3 and 4), 50 meters in width, were previously 

established at each of the three monitoring stations and extended from the river across a 

gradient of different wetland communities and aquatic regimes to the base of adjacent 

uplands (CZR Incorporated 2001).  The three stations were located approximately 6.4, 

12.8, and 25.6 km upstream from Wilmington, N.C. (Table 1) and all were tidal, although 

flooded to different depths and frequency.  Approximate lengths of belt transects were; 

Rat Island = 300m, Fishing Creek = 348m, and Prince George Creek = 133m.  (See Table 

1 for other physical characteristics of stations). 

Station characteristics 

Each station contained an array of different wetland habitats and represented a 

gradient of diverse wetland types flooded by varying levels of water at a salinity range 

from 0-13 ppt. 
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Figure 1.  Map of study area indicating location of wetland transect stations; P12 (Rat 
Island), P13 (Fishing Creek) and P14 (Prince George) along the Northeast Cape Fear 
River in southeastern North Carolina 
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Table 1. Physical characteristics of each belt transect, including; transect distance upriver from Wilmington in km, latitude (LAT), 
longitude (LON), elevation of marsh surface in meters relative to NAVD88, approximate belt transect length in meters and substation 
distance in meters from the river. Shallow water wells and conductivity monitoring devices collected flooding and salinity data at each 
substation. 
 

Station Name Station Number  Distance upriver from 
Wilmington (km) LAT LON Elevation (m)

 Transect 
Length 

(m) 

Substation 
Distance 

(m) 
P12-1 34.1814 -77.574 0.27 15 
P12-2 34.1814 -77.5742 0.49 69 
P12-3 34.1814 -77.5744 0.60 125 
P12-4 34.1813 -77.5747 0.57 182 
P12-5 34.1813 -77.5749 0.62 245 

Rat Island 

P12-6 

6.4 

34.1813 -77.5751 0.73 

300 

291 
P13-1 34.2016 -77.594 0.43 15 
P13-2 34.2016 -77.5943 0.32 84 
P13-3 34.2014 -77.5946 0.23 174 
P13-4 34.2014 -77.5949 0.30 234 
P13-5 34.2013 -77.595 0.36 276 

Fishing Creek 

P13-6 

12.8 

34.2013 -77.5952 0.49 

348 

324 
P14-1 34.221 -77.5619 0.21 10 
P14-2 34.2211 -77.5619 0.26 27 
P14-3 34.221 -77.5618 0.32 39 
P14-4 34.2211 -77.5618 0.37 56 
P14-5 34.2211 -77.5617 0.38 90 

Prince George 

P14-6 

25.6 

34.2212 -77.5616 0.45 

133 

113 
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Rat Island was a degrading tidal swamp/pocosin (Figure 2), altered by past 

intrusions of saline water (CZR Incorporated 2001).  Salinity generally decreased from 

river to upland as elevation increased (Table 2).  Habitats adjacent to the river consisted 

of a variety of grasses, sedges and forbs co-dominated by three-square (Schoenoplectnu 

americanus), sedge (Carex hyalinolepis), and giant-cord grass (Spartina cynosuroides).  

Clumps of un-oxidized organic matter held within woody plant root mats supported relic 

stems of swamp rose (Rosa palustra) and southern bayberry (Morella cerifera) mixed 

with groundseltree (Baccharis halimifolia).  Interior portions of the transect were less 

impacted by saline water and dominated by mixtures of red maple (Acer rubrum), pond 

cypress (Taxodium ascendens), swamp bay (Persea palustris), sweet bay (Magnolia 

virginiana), pond pine (Pinus serotina) and occasional loblolly pine (Pinus taeda).   

 The Fishing Creek station (Figure 3) was connected along its Northern boundary 

to a narrow canal.  This canal was directly responsible for allowing movement of tidal 

brackish water into the swamp interior, 276 m into the transect (Table 2).  The site was 

largely a swamp forest dominated by pond cypress and pumpkin ash (Fraxinus 

profunda).  Swamp tupelo (Nyssa aquatica) and red maple were also scattered or locally 

dominant.  Tree bases and root mats elevated above saturated substrate provided habitat 

for many species of vascular plants as well as bryophytes. 

 The Prince George Creek transect (Figure 4) was a fresh water site within a 

swamp forest until 2001 that followed the same hydrology and salinity patterns as the Rat 

Island station, with water level and salinity decreasing from river to upland (Table 2).  

Pumpkin ash, red maple and pond cypress were co-dominants at this station.  
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Table 2. Characterization of each station and substation includes habitat character, elevation of swamp/marsh surface (m), and percent 
frequency of flooding out of a two-week period. Range and mean of water level, duration of flooding on the marsh surface in hours, 
and salinity (ppt) are also shown. Data obtained from CZR Incorporated (2001). 

 

Habitat % Frequency Water Level Duration Salinity Station Substation Character Elevation of Flooding Range Mean Range Mean Range Mean
Rat  1 Marsh 0.27 91 0.2-0.9 0.5 6.0-7.3 6.5 <1-11 1.1 

Island 2 Degraded swamp 0.49 72 0.4-0.9 0.6 4.4-5.5 5.0 <1-13 1.1 
 3 Degraded swamp 0.60 35 0.5-0.9 0.6 3.8-5.9 4.9 <1-12 <1 
 4 Mixed hardwood swamp 0.57 26 0.5-0.8 0.6 3.7-6.5 4.8 <1-11 <1 
 5 Mixed hardwood swamp 0.62 14 0.5-0.8 0.7 5.2-6.9 6.2 <1-10 <1 
 6 Pocosin 0.73 9 0.5-0.9 0.7 0-8.9 5.9 <1-2 <1 

Fishing  1 Mixed hardwood swamp 0.43 58 0.2-0.8 0.5 3.5-8.5 6.1 <1-9 <1 
Creek 2 Mixed hardwood swamp 0.32 78 0.2-0.8 0.4 4.2-7.0 5.6 <1-9 <1 

 3 Mixed hardwood swamp 0.23 94 0.2-0.8 0.4 5.6-6.5 6.1 <1-9 <1 
 4 Mixed hardwood swamp 0.30 92 0.1-0.8 0.4 6.7-9.7 7.6 <1-8 <1 
 5 Mixed hardwood swamp 0.36 92 0.2-0.8 0.4 5.1-6.7 5.8 <1-7 <1 
 6 Mixed hardwood swamp 0.49 34 0.2-0.8 0.5 2.6-5.4 3.9 <1-2 <1 

Prince  1 Mixed hardwood swamp 0.21 94 0.2-0.7 0.3 6.5-8.8 7.6 <1-2 <1 
George 2 Mixed hardwood swamp 0.26 93 0.2-0.7 0.4 5.1-8.3 6.9 <1-2 <1 

 3 Mixed hardwood swamp 0.32 92 0.3-0.7 0.4 5.5-9.4 7.0 <1-2 <1 
 4 Mixed hardwood swamp 0.37 86 0.3-0.7 0.4 5.6-7.4 6.5 <1-2 <1 
 5 Mixed hardwood swamp 0.38 77 0.4-0.7 0.4 4.5-6.3 5.5 <1-2 <1 
 6 Mixed hardwood swamp 0.45 48 0.3-0.7 0.5 4.3-8.3 6.3 <1-1 <1 
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More detailed descriptions of vegetation and station characteristics are available in CZR 

Incorporated (2001). 

Bryophyte richness  

  A total of over 500 bryophyte specimens were collected along a 32 km length of 

the Northeast Cape Fear River and its adjacent swamps and marshes in 2001, extending 

from Castle Hayne to Wilmington, North Carolina (Figure 1).  Collections were 

identified at the Duke University herbarium in spring 2001 using microscopic leaf and 

cell morphology characteristics.  All bryophytes were identified to species, where 

possible.  Scientific names for mosses followed Crum and Anderson (1981), and those 

for liverworts followed Hicks (1992).  Collections are deposited in the herbarium at Duke 

University, Durham, North Carolina. 

Bryophyte density sampling 

A variation of the point - quarter or point - centered quarter method was utilized 

to determine the density (Bonham 1989), frequency, and cover of bryophyte species 

within belt transects (Figure 5).  Six substations had previously been established 

haphazardly along each transect from river to upland (CZR Incorporated 2001).  A PVC 

marker, driven to resistance, was surveyed (± 0.3cm) relative to NAVD88 datum.  Point-

centered quarter sampling was applied beginning at a distance of 5 m from the surveyed 

point to avoid areas that have been disturbed by humans.  Four center points were 

established in an N, S, E, and W direction.  At each center point, four 90° quadrants were 

established.  In each quadrant, the distance from the center point to the center of the 

nearest patch of bryophytes was measured and elevation determined with a line level.  A  
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Figure 5. Schematic design of the point-quarter method utilized to assess the 
density, frequency and estimated percent coverage of sampled bryophyte species 
at each station and substation. 
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patch was defined as one or more species of bryophyte that contains living material.  For 

more than one species to be included, they had to occur as a single patch in close 

proximity on a single substrate.  A 1-dm2 quadrat was placed on the center of the patch of 

bryophytes as a frame of reference for estimating percent cover contributed by each 

species in the quadrat.  Substrate type was recorded and samples of bryophytic material 

were collected for later identification.  A total of 288 quadrants were sampled.  

Bryophyte density for point quarter sampling was determined by the formula D=1/A and 

A=(∑di/PQ)2  , where D is the density in distance units squared, di is the distance from the 

center point to the nearest patch of bryophyte in the ith quadrant, P is the number of 

center points and Q is the number of quadrants taken for each center point.  Frequency 

for a given species was determined by the formula fi=ji/k, where fi is the frequency of 

species i, ji is the number of sampling points at which species i was counted, and k is the 

total number of points sampled in a station.  

Flooding and salinity data 

Each belt transect had six substations, established in 1999, distributed 

haphazardly from the river's edge to the adjacent uplands.  Substations were placed in a 

variety of different sub habitats.  At each substation, a permanent well was installed 

spring 2000.  Each permanent shallow well housing was made of slotted PVC above and 

below the soil surface.  This allowed free movement of surface and porewater in and out 

of the well.  Shallow water level wells recorded water levels above and below the marsh 

surface with Remote Data Systems (Model No. WL-40 or WL-20) monitoring devices.  

A Unidata Electrode Conductivity Micrologger (Model No. 6536B) recorded 

conductivity on the marsh surface.  
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At each substation, water level (± 9.0 cm) and salinity (± 0.7 ppt) were measured 

non-continuously, beginning in April 2000 to December 2001.  Sampling was confined to 

a two-week period during winter/spring and summer/fall, as well as summer of 2000. 

Flooding frequency, duration and depth were calculated and averaged using 

elevation relative to NAVD88.  Conductivity data was converted to salinity and averaged 

using a transformation algorithm (Pond and Pickard, 1986).  

 Statistical analysis  

 Principal component analysis was performed using PRINCOMP procedure in 

SAS (SAS Institute 1989) to examine the relationships between quantitative 

environmental variables at 18 stations along the Northeast Cape Fear River and adjacent 

swamp forest.  Average, minimum and maximum water level and salinity were used in 

the analysis, as well as, elevation, duration of floodwater, and percent of possible flood 

events in a two-week period.  The first two principal components, containing the largest 

variance of the linear combinations of environmental variables and the presence/absence 

of bryophyte species were then plotted on a two-dimensional biplot to depict their joint 

relationship.  Only bryophyte species that occurred more than 10 times in the distribution 

study were used in the analysis.  The approximation used in the biplot is like that in 

principal components analysis; the biplot dimensions account for the greatest possible 

variance of the original data matrix.  The biplot displays the environmental variables 

combined plotted as points.  The configuration of points is essentially the same as scores 

on the first two principal components.  Species data were plotted as vectors from the 

origin.  Angles between vectors represent the correlation among variables.  Angles 
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between variable vectors reflect the correlation of the variables, so that variables with 

small angles are highly correlated, and variables at large angles are nearly uncorrelated. 

Photosynthetic response to salinity-experimental design 

One aquatic bryophyte species, Fontinalis sullivantii, closely associated with the 

river's edge was chosen for this study.  According to CZR Incorporated (1998) there 

seems to be a strong relationship between increasing salinity and disappearance of this 

species. Fontinalis was exposed to salinity treatments of 0 ppt as control, 1, 2, 5, 10, and 

15 ppt Instant Ocean saltwater diluted with 0 ppt river water.  The salt solution was made 

fresh the day of each experiment and verified using an YSI, Model  

30/10.  Treatments were randomly assigned.  Fontinalis response was evaluated at 0, 30, 

90, 120, 180 minutes, 6 and 12 hours after exposure.  Sub-samples of random populations 

of whole plants of Fontinalis sullivantii (Figure 6a.) were collected the day of each 

experiment in the freshwater portion of the Northeast Cape Fear River.  A patch of 

Fontinalis sullivantii was placed entirely submerged in individual plastic containers 

(Figure 6b.).  Leaf fluorescence measurements were made using a PAM fluorometer 

(Mini-PAM, Walz, Germany) (Figure 6c.).  Photosynthetic efficiency (Fm, dark adapted) 

and effective quantum yield (Fo, light adapted) were measured on eleven replicates for 

each salinity treatment and time series.  The effective quantum yield of photochemical 

energy conversion (Y, Yield) was calculated from the equation Y=∆F/Fm. 

The photosynthetic efficiency response of Fontinalis sullivantii to a short-term 

desiccation treatment was also measured on eleven replicates over a 12-hour period. 

Fully hydrated shoots of Fontinalis sullivantii were allowed to dry in the laboratory in  
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c) 
 
 
 
 
 
 
 
 
 
Figure 6.  Photographs depicting a) close-up of the leaves and stems of Fontinalis 
sullivantii, b) replicate treatment containers with dark leaf clip, c) Mini-PAM fluorometer  
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individual plastic containers.  Leaf fluorescence measurements were made using a PAM 

fluorometer (Murphy 2000).   Photosynthetic efficiency (Fm, dark-adapted) and effective 

quantum yield (Fo, light adapted) were measured.  The effective quantum yield of 

photochemical energy conversion (Y, Yield) was calculated from the equation Y=∆F/Fm. 

 
RESULTS 

Bryophyte richness 

         A total of 44 genera consisting of 39 moss species (Table 3) and 21 liverwort 

species (Table 4) were identified.  There was one liverwort recorded not previously 

known from North Carolina, Cololejeunea setiloba.  This species is usually found in 

swamps and floodplains of the mid-Gulf coastal plain (Breil 1970). 

Bryophyte distribution 

 Bryophyte densities were averaged and compared to flood depth relative to the 

swamp surface (m), salinity (ppt), and elevation of the swamp surface (m) relative to 

NAVD88 datum for each station and substation (Figure 7a, b, and c).  Prince George 

station (Figure 7a) followed a typical flood pattern for a tidal mixed hardwood swamp 

forest.  Bryophyte density, ranging from <0.05 bryophytes/m2 at the river’s edge 

(substation 1) to almost 10 bryophytes/m2 at the upland edge (substation 6), had a linear 

relationship with elevation of the swamp surface.  However, flooding depth had an 

inverse relationship with bryophyte density as well as elevation, with water levels 

reaching <0.03 m at the river’s edge and decreasing gradually to the upland.  Prince 

George was a freshwater site with average salinity not exceeding 1ppt except for fall 

2001 when the region experienced a severe drought.  This resulted in a maximum salinity 

of 2ppt that reached substation 5 on a high tide (Table 2).  Fishing Creek station  
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Table 3. List of moss species and author citation collected on the Northeast Cape Fear 
River and adjacent swamps and marshes. Names follow Crum and Anderson (1981). 
 

Moss species and author citation 
 

Amblystegium Schimp.sp. 
Amblystegium serpens (Hedw.) Schimp 
Amblystegium varium (Hedw.) Lindb. 

Anomodon attenuatus (Hedw.) Huebener 
Atrichum crispum (James) Sull. 

Brachythecium acuminatum (Hedw.) Austin 
Bryoandersonia illecebra (Hedw.) H. Rob. 

Bryum Hedw. sp. 
Clasmatodon parvulus (Hampe) Sull. 

Climacium americanum Brid. 
Climacium kindbergii (Ren. & Card.) Grout 

Entodon seductrix (Hedw.) C.M. 
Eurhynchium hians (Hedw.) Sande-Lac. 
Eurhynchium pulchellum (Hedw.) Jenn. 

Fontinalis sullivantii Lindb. 
Fissidens fontanus (B.-Pyl.) Steud. 

Haplocladium microphyllum (Hedw.) 
Hypnum lindbergii Mitt. 

Hypnum lindbergii var americanum (Ren. & Card.) Whiteh. 
Isopterygium tenerum (Sw.) Mitt. 

Leucobyrum albidum (Brid.) Lindb. 
Leucodon bracypus Brid. 

Leucodon julaceus  (Hedw.) Sull. 
Leptodictyum humile (P. Beauv.) Ochyra. 
Leptodictyum riparium (Hedw.) Warnst. 
Lindbergia brachyptera (Mitt.) Kindb. 

Plagiomnium cuspidatum (Hedw.) T.J. Kop. 
Racomitrium Brid. sp. 

Schlotheimia rugifolia (Hook.) Schwagr 
Sematophyllum adnatum (Mx.) E.G. Britt. 

Sphagnum affine Renauld & Cardot 
Sphagnum palustre L. 

Sphagnum recurvum P. Beauv. 
Steerecleus serrulatus (Hedw.) H. Rob. 

Syrrhopodon texanus Sull. 
Taxiphyllum deplanatum (Bruch & Schimp. ex Sull.) Fl. 
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(Cont.) Table 3. List of moss species and author citation collected on the Northeast Cape 
Fear River and adjacent swamps and marshes. Names follow Crum and Anderson (1981). 
 

Moss species and author citation 
Taxiphyllum taxirameum (Mitt.) Fl. 

Thuidium allenii Aust. 
Thuidium delicatulum (Hedw.) Schimp. 
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Table 4. List of liverwort species and author citation collected on the Northeast Cape 
Fear River and its adjacent swamps and marshes. Names follow Hicks (1992). 

 

Liverwort species and author citation 
Bazzania trilobata (L.) S. Gray 

Calypogeia muelleriana (Schiffn.) K. Muell. 
Cephalozia lunulifolia (Dum.) Dum 

Chiloscyphus minor (Nees) Eng. & Schust. 
Chiloscyphus polyanthos (L.) Corda 

Chiloscyphus profundus (Nees) 
Cololejeunea minutissima (Smith) Schiffn. 

Cololejeunea setiloba A. Evans 
Frullania kunzei Lehm. & Lindenb. 

Jamesoniella autumnalis (DeCand.) Steph. 
Lejeunea flava (Sw.) Nees 

Lejeunea laetevirens Nees & Mont. 
Leucolejeunea clypeata (Schwein.) Evans 
Leucolejeunea conchifolia (Evans) Evans 

Metzgeria Raddi sp. 
Odontoschisma prostratum (Sw.) Trev. 

Pallavicinia lyellii (Hook.) Gray 
Porella pinnata L. 

Radula complanata L. Dum. 
Riccardia multifida (L.) S. Gray 

Telaranea nematodes (Gott.) Howe 
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Figure 7. Bryophyte density in relation to flood depth, salinity and elevation of the 
swamp surface at each station and substation, a.) Prince George, b.) Fishing Creek and c.) 
Rat Island. Substation from river (1) to upland (6) is shown on the x-axis. Note different 
scales on y-axis with respect to all variables. Elevation and salinity are read on the same 
scale. Flooding depth is the difference between elevation and water level. 
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(Figure 7b) had fewer bryophytes near substations 3-5 on either side of a creek that ran 

through the center of the transect and connected directly to the river.  Bryophyte density 

decreased gradually from substation 1 with approximately 2 bryophytes/m2 to substation 

4 with 0.3 bryophytes/m2 and then a subsequent increase to 4 bryophytes/m2 at substation 

6.  Flooding depth had an inverse relationship with bryophyte density as well as 

elevation, with water levels reaching <0.5m at substation 1 and increasing gradually to 

substation 3 with a subsequent decrease to the upland.  Salinity followed the same pattern 

as flood depth with the maximum range occurring at substation 2 and 3 (Table 2), due to 

the effect of floodwaters via the creek.  Bryophyte density at Rat Island station (Figure 

7c) followed a pattern similar to Prince George station.  As flood depth and salinity 

decreased from river to upland, bryophyte density increased from 0 bryophytes/m2 at 

substation 1 to almost 7 bryophytes/m2 at substation 6.  Bryophyte density had a linear 

relationship with elevation of the swamp surface.  Rat Island's elevation increased from 

almost 0.3m at the riverbank to approximately 0.8m at substation 6, 291 m away from the 

river edge. 

 Species richness, the number of species that occurred at each substation, was also 

calculated for each station and substation and compared to flood depth relative to the 

swamp surface (m) and salinity (ppt) (Figure 8a, b, and c).  Prince George station (Figure 

8a) showed a pattern of increasing species richness as flood depth and salinity decreased 

from river to upland. Fishing Creek (Figure 8b) showed a distinct pattern with species 

richness increasing progressively from river to upland, however, due to the effect of the 

creek, bryophyte species richness decreased at substation 3.  Average salinity also 

decreased because of dilution from upland flow through the creek.  
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Figure 8. Bryophyte species richness in relation to flood depth and salinity at each station 
and substation, a.) Prince George, b.) Fishing Creek and c.) Rat Island. Substation from 
river (1) to upland (6) is shown on the x-axis. Note different scales on y-axis with respect 
to all variables. 
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 Rat Island (Figure 8c) bryophyte species richness varied from river to upland with no 

obvious pattern.  

Relationship of bryophyte species to environmental/physical variables 

 A principal component analysis identified two eigenvectors that accounted for 

82% of variance with the first principal component (prin1) a linear combination of 

minimum and average water level, elevation of the marsh/swamp surface, and the  

occurrence of tidal flood events.  The second principal component (prin2) was a linear 

combination of maximum and average salinity (Figure 9).  Each transect contained 

substations clearly distributed over these two combinations of water level and salinity 

variables.  

 Figure 10, a biplot, depicts the relationship between 12 common bryophyte 

species and the 18 stations where each species was present with regard to the first 2 

principal component scores.  Only bryophyte species that occurred more than 10 times in 

the distribution study are included.  Each of the 18 substations was also plotted.  The 

configuration of each station was the same as scores on the first two principal 

components.  The abundance or counts of bryophyte species at each station (Table 5) 

were plotted as vectors from the origin, and the angles between the vectors represent the 

correlation among species.  Each vector points in the direction that is most like the 

environmental variable represented by the two axes.  This is the direction which has the 

highest squared multiple correlation with the principal components.  The length of the 

vector corresponds to the total abundance of each species found within study sites.   

The 2nd quadrant of Figure 10 primarily consists of Rat Island substations 2 

through 5, in which 3 liverwort species and 1 moss species were found most abundant;  
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Figure 9. Substation score distribution along the first two principal components axes. Y-
axis is Prin1, which accounted for 60% of the variation and the x-axis is Prin2, which 
accounted for 22% of the variation.  Each station was plotted with regard to the 
environmental variable loading or eigenvector coefficient. Prince George, Fishing Creek, 
and Rat Island stations are represented by squares, triangles, and circles, respectively. 
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Figure 10.  Principal component biplot of species abundance (vectors) of 12 bryophyte 
species and station locations (points).  Each substation was associated with 16 quadrants 
at which bryophyte species were recorded. Dimension 1, the x-axis, represents the score 
of Prin 1 in Figure 9, and Dimension 2, the y-axis, represents the score of Prin 2 in Figure 
9. Key to species: Ano. att. = Anomodon attenuatus; Eur. hians = Eurhynchium hians; 
Hyp. lind. = Hypnum lindbergii; Isop. ten. = Isopterygium tenerum; Lept. rip. = 
Leptodictyum riparium; Plag. cusp. = Plagiomnium cuspidatum; Thui. all. = Thuidium 
allenii; Ceph. lun. = Cephalozia lunulifolia; Chil. poly. = Chiloscyphus polyanthos; 
Odont. prost. = Odontoschisma prostratum; Pall. ly. = Pallavicinia lyellii; Por. pin. = 
Porella pinnata. Key to stations: Prince George Station, subsites 1 through 6 = PG-1, PG-
2, …PG-6; Fishing Creek Station, subsites 1 through 6 = FC-1, FC-2, … FC-6; Rat Island 
Station, subsites 1 through 6 = RI-1, RI-2, … RI-6. 
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Table 5. Presence/absence data for bryophyte species occurring more than 10 times along      
river to upland transects. Each station (Rat Island, Fishing Creek, and Prince George) has 6 substations 
that run from river (1) to upland (6). These observational data were utilized in the principal component 
biplot. Each dash represents the absence of that species at that substation. 
                   

  Rat Island    Fishing Creek   Prince George   
 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 

Species                   
Anomodon attenuatus - - - - - - 1 5 5 1 1 - 8 3 - - - - 
Eurhynchium hians - - - - - - - 1 - 1 1 - 1 - 5 12 5 - 
Hypnum lindbergii - 1 - - - - - - - 3 2 4 - 1 - 2 5 - 

Isoptyergium tenerum 1 13 13 6 4 14 1 - - - 5 8 - 8 3 1 - 3 
Leptodictyium riparium - - - - - - - - - 1 3 - 1 1 1 1 - 2 

Plagiomnium cuspidatum - - - - - - - 1 - - - 4 2 6 10 10 7 - 
Syrrhopodon texanus - 2 1 1 1 3 - - - - - 2 - - - - - - 

Thuidium allenii - - 2 3 1 - - - - 1 1 3 - 1 1 1 2 7 
Thuidium delicatulum - - 2 6 3 - - - 1 1 1 9 - - - 1 2 3 
Cephalozia lunulifolia - 4 10 6 - - - - - - - 1 - - - - - - 

Chiloscyphys polyanthos - 11 9 8 6 - - 1 1 - - 2 - - - - - - 
Odontoschisma prostratum - 9 12 5 1 1 - - - - - 1 - - - - - - 

Pallavicinia lyellii - - - - 1 4 - - - - - 3 - - - - 1 3 
Porella pinnata - 1 1 - 6 1 14 7 8 10 1 1 7 1 1 3 - - 

28
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Cephalozia lunulifolia, Odontoschisma prostratum, Chiloscyphus polyanthos and  

Isopterygium tenerum.  The vector angle between Chiloscyphus polyanthos and 

Odontoschisma prostratum is very small due to a close association between the two 

liverwort species.  The first substation of Rat Island is located at the centroid due to the 

absence of bryophyte species.  The 3rd quadrant (Figure 10) includes 2 dominant species, 

Anomodon attenuatus and Porella pinnata, which occur at stations, PG-1 and FC-1  

through FC-4, while the 4th quadrant depicts Leptodictyum riparium occurring most 

abundantly at FC-5, whereas Hypnum lindbergii, Eurhynchium hians, and Plagiomnium 

cuspidatum occur most often throughout Prince George station ranging from substation 2 

to substation 5.  The last two most abundant species, Thuidium allenii and Pallavicinia 

lyellii were found in close association within Fishing Creek station at substations 5 and 6.   

Photosynthetic response to salinity 

 Dark-adapted plants in ambient 0-ppt river water as the control exhibited the 

highest photosynthetic efficiency over all 6 salinity treatments with an average quantum 

yield of 0.75 (Figure 11).  A one – way ANOVA (p-value < 0.05) showed a significant 

reduction in photosynthetic efficiency for all other treatments; however, the 2 ppt 

treatment was not significantly different from the control in the first hour of the 12-hour 

time series.  In the first hour of the 15-ppt treatment, there was a two-stage initial shock 

effect with a significant reduction in photosynthetic efficiency at 30 minutes and a 

subsequent sharp rise after an hour to level off with the other treatments.  

The photosynthetic efficiency response of Fontinalis sullivantii to desiccation, 

(Figure 12), resulted in an initial increase in quantum yield from 0.65 in the first 3 hours 

and then gradually decreased to a quantum yield of 0.6. 
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Figure 11. Photosynthetic efficiency response of dark-adapted leaves of Fontinalis 
sullivantii to varying salinity treatments (mean and standard error of eleven replicates per 
treatment and time series). N=11 for each mean. 
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Figure 12. Photosynthetic efficiency response (Fv/Fm) of Fontinalis sullivantii to 
desiccation over a 720 minute time series (mean and standard error of eleven replicates). 
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DISCUSSION 

Bryophyte richness 

 There is no known floristic list of bryophyte species for the swamp forests of the 

Southeastern United States.  Tables 3 and 4 list moss and liverwort taxa representative of 

the swamp forests along the Northeast Cape Fear River in North Carolina.  A larger than 

expected number of bryophyte species was identified.  The present study identified only 

species collected within 3 feet of the soil surface.  Additional species likely inhabit tree 

bark above this elevation within the swamp forests.  

Cololejeunea setiloba with more subtropical affinities was found in North 

Carolina north of its usual distribution in swamps and floodplain forests of the mid-Gulf 

coastal plain (Briel 1970 and Schuster 1980).   

Bryophyte distribution 

 Prince George station represents a typical tidal mixed hardwood swamp forest in 

southeastern North Carolina with flooding depth and salinity decreasing from river to 

upland.  This creates an elevated response in the density and species richness of 

bryophytes from the riverbank to the upland (Figure 7 and 8).  Fishing Creek station was 

unusual due to a berm at the river’s edge which caused the riverbank to flood less than 

the interior and a canal that runs through the interior swamp.  Bryophyte density and 

species richness were reduced in the interior substations.  A dramatic rise in salinity at 

substation 4 occurred even though water levels were higher at substation 3, due to a 

dilution effect of the canal.  Note that salinity and flooding are measured at substations 

for only two weeks each season so higher salinity may have occurred when instruments 

were not present.  Saline water detected in soils at some substations during porewater 
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sampling provides evidence that such events have occurred (Hackney et. al 2002).  

Several species of bryophytes (Anomodon attenuatus, Eurhynchians hians, Hypnum 

lindbergii, Leptodictyum riparium, Plagiomnium cuspidatum and Porella pinnata) were 

found both at Fishing Creek and Prince George because both stations have similar 

environmental gradients, i.e. substrate.  

 Bryophyte density and species richness at Rat Island station follows a pattern 

similar to Prince George with no bryophytes present along the river’s edge, but increased 

gradually to 7 bryophytes/m2 near the upland edge.  Rat Island station is a degraded 

swamp, which was once pocosin habitat, but is now usually tidally flooded.  Regular 

flooding by saline water has eliminated most of the trees once present near the river, 

eliminating potential substrate for bryophytes.   The absence of substrate and the regular 

occurrence of salt intrusion is likely responsible for the absence of bryophyte species near 

the river at Rat Island.   

There was one species, Isopterygium tenerum, that was present at all three stations 

with the highest frequency, cover and density occurring at all Rat Island substations.  It 

appears that this species is highly adapted to the environmental gradients found along 

each transect due to it’s variability in morphology.  Most specimens can be identified 

without difficulty, but there is a very small widespread form with little distinction 

between stems and branch leaves that is difficult to identify (L. Anderson, Duke 

University Herbarium, Durham, NC – personal communication).  The variation may be 

due to physiological response to salt intrusion.   

Water level is an important environmental factor for bryophytes (Glime & Vitt, 

1987 and Muotka & Virtanen, 1995).  The number of truly aquatic species, such as 
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Fissidens fontanus and Fontinalis sullivanti, is much smaller than the number of species 

growing in habitats that are submerged only for shorter periods (Glime & Vitt 1987).  

Thus, the highest diversity of bryophytes was often found near average water level 

(Muotka & Virtanen 1995); a vertical ecotone.  Some of the lowest absolute elevations in 

swamps and marshes along the Northeast Cape Fear River are farthest from the ocean, 

especially at Rat Island, Fishing Creek and Prince George stations.  The long-term 

implication of this feature is that during low or no flow conditions there is the potential 

for a net flow of saline water upstream that can become incorporated in the porewater of 

the swamp.  This was documented by the presence of saline water upstream of Point 

Peter at only one station (Eagle Island) in the Cape Fear River, while saline water was 

noted at Rat Island and Fishing Creek in the Northeast Cape Fear River (Hackney et. al. 

2002).  Upstream flow is limited in the Cape Fear River by higher flow rates in the river 

and a much larger drainage basin. 

Relationship of bryophyte species to environmental/physical variables 

 Principal component analysis identified a distinct pattern of bryophyte community 

variation within each of the three transects (Figure 10).  The importance of species 

loading in interpreting the site ordinations has already been stressed by Laurec et al. 

(1979).  Environmental variables are often highly correlated (Ter Braak 1987) and so it 

can be impossible to separate their independent effects.  Whenever the number of 

influential environmental variables is greater than two or three, there were 15 in the 

present study, principal component procedures often do not clearly relate species to 

environments of a specific type.  However, bryophytes in a tidal swamp clustered well to 

specific combinations of environmental variables that represent differing degrees of 
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tolerance to both flooding and saline water.  Isopterygium tenerum and Porella pinnata 

have the longest vector length, which accounts for their highest abundance at all three 

sites.  However, Isopterygium tenerum was more associated with Rat Island due to its 

high tolerance to varying salinity, which ranged from less than one ppt to over 6 ppt.  A 

description of the species by Crum and Anderson (1981) provides evidence for its wide 

niche.  Isopterygium tenerum is usually found on logs and stumps, bark at the base of 

trees, and soil (especially sand), typically in dry places in the Southeast.  Sometimes it is 

found in swamps especially gum – cypress swamps.  It is also found in the uplands of 

North Carolina.  Porella pinnata was found at stations along the Fishing Creek and 

Prince George transects subjected to varying water levels as well as flooding by saline 

water.  Average salinity for Fishing Creek ranged from 1- 6 ppt.  Briel (1970) describes 

Porella pinnata as a liverwort usually submerged on logs or roots in flowing streams or, 

indiscriminately attached to trees, rarely exceeding the high-water mark of rivers; on 

floodplains, or swamps; rarely with other bryophytes.  Observations of this species during 

the present study concur.   

 A high correlation between three liverwort species, Cephalozia lunulifolia, 

Odontoschisma prostratum and Chilosyphus polyanthos was near Rat Island substations 

2 through 4.  These species are described as occurring on moist sand, peaty soil, rotten 

logs or bases of trees above the water level in swamps and are often found in compact 

mats with other bryophytes (Briel 1970).  The higher frequency of these liverworts 

occurring at Rat Island may be due to their higher tolerance to tidal flooding by saline 

water.  Anomodon attenuatus was most highly correlated with the interior of Fishing 

Creek and adjacent to the river at Prince George.  It was always found on the bark of 
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trees approximately 0.3 m above the average water level.  It was submerged on occasion 

during flooding tides with an average maximum salinity of at least 3.44 ppt. 

 Two species, Thuidium allenii and Pallavicinia lyellii, which are frequently found 

in swamps, were highly correlated and occur primarily in sites that were seldom flooded 

and rarely subjected to saline water.  These species occur intertwined in the same mats 

implying similar environmental requirements.  Plagiomnium cuspidatum, Hypnum 

lindbergii and Eurhynchium hians were present at the same subsites with similar water 

levels and salinities.  These species have an average patch elevation approximately 0.3 m 

above the average water level of 0.3 m and do not exhibit any specific tolerance to 

flooding or saline water. 

 According to Soderstrom (1998) many bryophyte species are adapted to grow in 

habitat patches that are regularly disturbed.  Disturbance, being defined here as salt 

intrusion and flooding tides, allows the establishment of early succession stages.  Species 

adapted to early stages, known as shuttle species (Soderstrom 1998), often survive 

unfavorable situations by producing diaspores that will develop new gametophores when 

the situation becomes suitable again.  This may be one reason why species described 

above can tolerate the varying conditions found in the swamps of the Northeast Cape 

Fear River. 

Photosynthetic response to salinity 

High salinity, in the range between 5 and 15 ppt, significantly reduced 

photosynthetic efficiency of the moss species, Fontinalis sullivantii, on the short time 

scale, followed by some recovery (Figure 11).  However, observed physical changes in 

the decreased abundance of Fontinalis sullivantii in the fall of 2001 coincided with a 
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major drought that eliminated most of the population at Prince George station suggesting 

a strong relationship between increasing salinity and disappearance of this species. 

The acclimation of Fontinalis sullivantii to the 15 ppt treatment suggests that 

there are other physiological avenues by which this bryophyte can rid the salt ions from 

its cells, such as secondary metabolite production (M. Durako, University of North 

Carolina at Wilmington – Center of Marine Science, personal communication).  Bates & 

Brown (1974, 1975) have shown that the coastal rock species Grimmia maritima, 

Tortella flavovirens and Ulota phyllantha have adapted to the effects of seawater on their 

metabolism better than the inland species they used for comparison.  Plants growing 

along the saline – fresh water boundary must be somewhat tolerant to surges of salinity or 

have means to avoid it. Adam (1976) concluded that bryophytes in British salt marshes 

possess a very robust metabolic system that is able to withstand a range of external 

environmental conditions.   

According to Vitt and Gime (1984), salt water aquatic mosses are rare.  No 

species occurs submersed, while only a few tolerate intertidal situations, and these exist 

only at and above the high tide level.  Fontinalis sullivantii in the Northeast Cape Fear 

River can clearly tolerate low salinity water.  It occurs along exposed roots and bases of 

trees, such as bald cypress.  It is submerged at rising and high tide and partially exposed 

at low tide therefore exposing it to varying salinity as well as exposure to air.  

Fontinalis sullivantii is a facultative aquatic bryophyte and has the ability to 

tolerate considerable fluctuations in water level.  It is often totally submersed at high tide 

or flooding condition, but during low tide, is able to tolerate short periods of desiccation.  

This is evident in Figure 12, which shows photosynthetic efficiency at a steady pace for 
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the first 2 and ½ hours that gradually declines over the last 9 and ½ hours.  There is a 

large body of literature describing the response of bryophytes to desiccation, of which 

many species show great tolerance (Penuelas 1984).  Fontinalis sp. and Fissidens sp. 

clearly have ecophysiological adaptations to survive out of water when water levels are 

low during drought or extreme low tides. 

CONCLUSION 

 The diversity of bryophytes in the swamps of the Northeast Cape Fear River was 

high.  The majority of bryophytes were not common in this system and have narrow 

habitat specificity.  Although bryophytes may form a major part of several vegetation 

types and ecosystems, relatively few bryophyte species in this study were ecologically 

abundant or dominant.  Isopterygium tenerum is one species present in great abundance 

and that occurs in a wide range of habitats.  Fontinalis sullivantii can clearly tolerate low 

saline water for short periods of time. 

 Long term implications of the current study are that bryophyte data will be used to 

assess future impacts due to current dredging projects in the Cape Fear River estuary.
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Appendix 1. Species that occur more than five times among all three transects. Data include station and substation occurrence, 
frequency (# of times occurring in a transect/# of total species collected), density (in 1m2), average percent coverage ( in a 1 dm2 quadrat),  
and coinciding environmental variables, including; average water level (m), average salinity (ppt), elevation of the swamp surface  
and average patch elevation (m) of the bryophyte species measured in each quadrat.     
Abbreviations for stations are as follows: PG = Prince George Station; FC = Fishing Creek Station; RI = Rat Island Station, with 
each station containing 6 substations, substation 1 being next to the river and 6 at the upland.    
          
                    

Species Belt Substation Frequency Density Average Average Average Elevation Average 
Name Transect Number   Coverage Water 

Level 
Salinity  Patch 

Elevation 
Anomodon attenuatus PG 1 0.11 0.13 40 0.42 0.50 0.21 0.45 

   2 0.11 0.17 70 0.36 0.50 0.26 0.73 
  FC 1 0.14 0.00 1 0.24 6.00 0.43 0.71 
   2 0.14 0.07 20 0.33 4.30 0.32 0.95 
   3 0.14 0.13 60 0.42 3.90 0.23 0.59 
   4 0.14 0.01 40 0.36 4.70 0.30 0.52 
    5 0.14 0.02 15 0.30 4.20 0.36 0.58 

Average   0.13 0.08 35 0.35 3.44 0.30 0.65 
Standard deviation   0.01 0.07 25 0.06 2.12 0.08 0.17 
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Species Belt Substation Frequency Density Average Average Average Elevation Average 
Name Transect Number   Coverage Water 

Level 
Salinity  Patch 

Elevation 
Eurhynchium hians PG 1 0.20 0.01 20 0.42 0.50 0.21 0.46 

   3 0.20 0.19 40 0.30 0.50 0.32 0.60 
   4 0.20 0.42 20 0.24 0.50 0.37 0.66 
   5 0.20 0.46 20 0.24 0.40 0.38 0.60 
  FC 2 0.03 0.07 90 0.33 4.30 0.32 0.92 
   4 0.03 0.00 5 0.36 4.70 0.30 0.57 
    5 0.03 0.11 75 0.30 4.20 0.36 0.58 

Average   0.13 0.18 39 0.31 2.16 0.32 0.63 
Standard deviation   0.09 0.19 32 0.06 2.10 0.06 0.14 

                    
Species Belt Substation Frequency Density Average Average Average Elevation Average 
Name Transect Number   Coverage Water 

Level 
Salinity  Patch 

Elevation 
Hypnum lindbergii PG 2 0.08 0.06 75 0.36 0.50 0.26 0.74 

   4 0.08 0.05 15 0.24 0.50 0.37 0.62 
   5 0.08 0.67 30 0.24 0.40 0.38 0.59 
  FC 4 0.09 0.01 10 0.36 4.70 0.30 0.54 
   5 0.09 0.05 20 0.30 4.20 0.36 0.63 
   6 0.09 0.20 20 0.21 1.20 0.49 0.60 
  RI 2 0.01 0.00 10 0.33 6.30 0.49 0.70 

Average   0.07 0.15 26 0.29 2.54 0.38 0.63 
Standard deviation   0.03 0.24 23 0.06 2.46 0.09 0.07 
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Species Belt Substation Frequency Density Average Average Average Elevation Average 
Name Transect Number   Coverage Water 

Level 
Salinity  Patch 

Elevation 
Isopterygium tenerum PG 2 0.16 0.41 60 0.36 0.50 0.26 0.74 

   3 0.16 0.04 15 0.30 0.50 0.32 0.58 
   4 0.16 0.00 1 0.24 0.50 0.37 0.63 
   6 0.16 0.21 10 0.15 0.40 0.45 0.61 
  FC 1 0.14 0.00 1 0.24 6.00 0.43 0.71 
   5 0.14 0.13 20 0.30 4.20 0.36 0.59 
   6 0.14 0.53 30 0.21 1.20 0.49 0.61 
  RI 1 0.50 0.00 1 0.54 6.40 0.27 0.70 
   2 0.50 0.03 40 0.33 6.30 0.49 0.72 
   3 0.50 0.34 40 0.21 5.30 0.60 0.69 
   4 0.50 0.12 30 0.24 4.50 0.57 1.08 
   5 0.50 0.07 10 0.18 3.30 0.62 0.77 
    6 0.50 1.18 20 0.09 0.50 0.73 0.93 

Average   0.31 0.24 21 0.26 3.05 0.46 0.72 
Standard deviation   0.18 0.33 18 0.11 2.51 0.14 0.14 
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Species Belt Substation Frequency Density Average Average Average Elevation Average 
Name Transect Number   Coverage Water 

Level 
Salinity  Patch 

Elevation 
Leucobryum albidum PG 6 0.01 0.03 5 0.15 0.40 0.45 0.64 

  FC 6 0.01 0.00 1 0.21 1.20 0.49 0.67 
  RI 4 0.04 0.01 10 0.24 4.50 0.57 1.07 
   5 0.04 0.02 15 0.18 3.30 0.62 0.80 
    6 0.04 0.01 1 0.09 0.50 0.73 0.90 

Average   0.03 0.01 6 0.17 1.98 0.57 0.81 
Standard deviation   0.02 0.01 6 0.06 1.83 0.11 0.17 

                    
Species Belt Substation Frequency Density Average Average Average Elevation Average 
Name Transect Number   Coverage Water 

Level 
Salinity  Patch 

Elevation 
Leptodictyum riparium PG 1 0.06 0.01 20 0.42 0.50 0.21 0.44 

   2 0.06 0.02 20 0.36 0.50 0.26 0.75 
   3 0.06 0.01 5 0.30 0.50 0.32 0.59 
   4 0.06 0.04 25 0.24 0.50 0.37 0.60 
   6 0.06 0.04 1 0.15 0.40 0.45 0.59 
  FC 4 0.04 0.00 20 0.30 4.20 0.30 0.54 
    5 0.04 0.16 40 0.21 1.20 0.36 0.55 

Average   0.05 0.04 19 0.28 1.11 0.32 0.58 
Standard deviation   0.01 0.06 13 0.09 1.39 0.08 0.09 
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Species Belt Substation Frequency Density Average Average Average Elevation Average 
Name Transect Number   Coverage Water 

Level 
Salinity  Patch 

Elevation 
Plagiomnium cuspidatum PG 1 0.35 0.02 20 0.42 0.50 0.21 0.48 

   2 0.35 0.14 30 0.36 0.50 0.26 0.74 
   3 0.35 0.06 10 0.30 0.50 0.32 0.59 
   4 0.35 0.31 20 0.24 0.50 0.37 0.67 
   5 0.35 0.26 10 0.24 0.40 0.38 0.60 
  FC 2 0.05 0.00 1 0.33 4.30 0.32 0.92 
    6 0.05 0.05 5 0.21 1.20 0.49 0.61 

Average   0.26 0.12 14 0.30 1.13 0.34 0.66 
Standard deviation   0.15 0.12 10 0.08 1.42 0.09 0.14 

                    
Species Belt Substation Frequency Density Average Average Average Elevation Average 
Name Transect Number   Coverage Water 

Level 
Salinity  Patch 

Elevation 
Sphagnum palustre PG 6 0.03 1.26 70 0.15 0.40 0.45 0.62 

  FC 6 0.02 0.50 100 0.21 1.20 0.49 0.59 
  RI 5 0.03 0.07 20 0.18 3.30 0.62 0.68 
    6 0.03 0.08 20 0.09 0.50 0.73 0.93 

Average    0.03 0.48 53 0.16 1.35 0.57 0.71 
Standard deviation   0.00 0.56 39 0.05 1.35 0.13 0.16 
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Species Belt Substation Frequency Density Average Average Average Elevation Average 
Name Transect Number   Coverage Water 

Level 
Salinity  Patch 

Elevation 
Syrrhopodon texanus FC 6 0.02 0.03 5 0.21 1.20 0.49 0.65 

  RI 2 0.10 0.00 15 0.33 6.30 0.48 0.75 
   3 0.10 0.01 10 0.21 5.30 0.60 0.73 
   4 0.10 0.01 10 0.24 4.50 0.57 1.09 
   5 0.10 0.00 1 0.18 3.30 0.62 0.80 
    6 0.10 0.33 30 0.09 0.50 0.73 0.96 

Average   0.09 0.06 12 0.21 3.52 0.58 0.83 
Standard deviation   0.03 0.13 10 0.08 2.30 0.09 0.16 

                    
Species Belt Substation Frequency Density Average Average Average Elevation Average 
Name Transect Number   Coverage Water 

Level 
Salinity  Patch 

Elevation 
Thuidium allenii PG 2 0.13 0.02 20 0.36 0.50 0.26 0.75 

   3 0.13 0.04 40 0.30 0.50 0.32 0.57 
   4 0.13 0.02 10 0.24 0.50 0.37 1.00 
   5 0.13 0.33 40 0.24 0.40 0.38 0.57 
   6 0.13 0.60 10 0.15 0.40 0.45 0.58 
  FC 4 0.05 0.00 5 0.36 4.70 0.30 0.57 
   5 0.05 0.06 40 0.30 4.20 0.36 0.59 
   6 0.05 0.02 5 0.21 1.20 0.49 0.63 
  RI 3 0.10 0.03 25 0.21 5.30 0.60 0.69 
   4 0.10 0.08 40 0.24 4.50 0.57 1.07 
    5 0.10 0.00 1 0.18 3.30 0.62 0.76 

Average     0.10 0.11 21 0.25 2.32 0.43 0.71 
Standard deviation   0.03 0.19 16 0.07 2.06 0.13 0.18 
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Species Belt Substation Frequency Density Average Average Average Elevation Average 
Name Transect Number   Coverage Water 

Level 
Salinity  Patch Elevation 

Thuidium delicatulum PG 4 0.06 0.00 1 0.24 0.50 0.37 0.63 
   5 0.06 0.23 30 0.24 0.40 0.38 0.60 
   6 0.06 1.14 60 0.15 0.40 0.45 0.62 
  FC 3 0.12 0.00 1 0.42 3.90 0.23 0.56 
   4 0.12 0.00 5 0.36 4.70 0.30 0.76 
   5 0.12 0.03 20 0.30 4.20 0.36 0.62 
   6 0.12 0.70 30 0.21 1.20 0.49 0.64 
  RI 3 0.50 0.02 10 0.21 5.30 0.60 0.69 
   4 0.50 0.12 30 0.24 4.50 0.57 1.09 
    5 0.50 0.30 60 0.18 3.30 0.62 0.77 

Average    0.22 0.25 25 0.26 2.84 0.44 0.70 
Standard deviation   0.20 0.38 22 0.08 1.99 0.13 0.15 

                    
Species Belt Substation Frequency Density Average Average Average Elevation Average 
Name Transect Number   Coverage Water 

Level 
Salinity  Patch Elevation 

Cephalozia lunulifolia FC 6 0.01 0.01 5 0.21 1.20 0.49 0.62 
  RI 2 0.20 0.00 5 0.33 6.30 0.48 0.71 
   3 0.20 0.03 5 0.21 5.30 0.60 0.70 
    4 0.20 0.02 5 0.24 4.50 0.57 1.08 

Average   0.15 0.02 5 0.25 4.33 0.54 0.78 
Standard deviation   0.10 0.01 0 0.06 2.21 0.06 0.20 
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Species Belt Substation Frequency Density Average Average Average Elevation Average 
Name Transect Number   Coverage Water 

Level 
Salinity  Patch 

Elevation 
Chiloscyphus polyanthos FC 2 0.04 0.02 30 0.33 4.30 0.32 0.95 

   3 0.04 0.01 10 0.42 3.90 0.23 0.66 
   6 0.04 0.03 5 0.21 1.20 0.49 0.61 
  RI 2 0.30 0.00 5 0.33 6.30 0.26 0.73 
   3 0.30 0.05 10 0.21 5.30 0.32 0.69 
   4 0.30 0.11 20 0.24 4.50 0.37 1.08 
    5 0.30 0.08 10 0.18 3.30 0.38 0.74 

Average   0.19 0.04 13 0.27 4.11 0.34 0.78 
Standard deviation   0.14 0.04 9 0.09 1.61 0.09 0.17 

                    
Species Belt Substation Frequency Density Average Average Average Elevation Average 
Name Transect Number   Coverage Water 

Level 
Salinity  Patch 

Elevation 
Odontoschisma 

prostratum FC 6 0.01 0.00 1 0.21 1.20 0.49 0.61 
  RI 2 0.30 0.00 5 0.33 6.30 0.48 0.73 
   3 0.30 0.22 30 0.21 5.30 0.60 0.70 

   4 0.30 0.09 30 0.24 4.50 0.57 1.09 
   5 0.30 0.02 10 0.18 3.30 0.62 0.75 
    6 0.30 0.00 1 0.09 0.50 0.73 0.89 

Average   0.25 0.06 13 0.21 3.52 0.58 0.79 
Standard deviation   0.12 0.09 14 0.08 2.30 0.09 0.17 
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Species Belt Substation Frequency Density Average Average Average Elevation Average 
Name Transect Number   Coverage Water 

Level 
Salinity  Patch 

Elevation 
Pallavicinia lyellii PG 5 0.04 0.25 60 0.24 0.40 0.38 0.59 

   6 0.04 0.45 25 0.15 0.40 0.45 0.62 
  FC 6 0.03 0.19 25 0.21 1.20 0.49 0.61 
  RI 5 0.10 0.01 5 0.18 3.30 0.62 0.72 
    6 0.10 0.43 20 0.09 0.50 0.73 0.92 

Average   0.06 0.27 27 0.17 1.16 0.54 0.69 
Standard deviation   0.03 0.18 20 0.06 1.24 0.14 0.14 
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Species Belt Substation Frequency Density Average Average Average Elevation Average 
Name Transect Number   Coverage Water 

Level 
Salinity  Patch Elevation 

Porella pinnata PG 1 0.13 0.10 30 0.42 0.50 0.21 0.44 
   2 0.13 0.03 40 0.36 0.50 0.26 0.75 
   3 0.13 0.03 30 0.30 0.50 0.32 0.54 
   4 0.13 0.04 10 0.24 0.50 0.37 0.60 
  FC 1 0.40 0.45 30 0.24 6.00 0.43 0.72 
   2 0.40 0.12 20 0.33 4.30 0.32 0.93 
   3 0.40 0.08 20 0.42 3.90 0.23 0.58 
   4 0.40 0.06 30 0.36 4.70 0.30 0.51 
   5 0.40 0.08 60 0.30 4.20 0.36 0.62 
   6 0.40 0.01 5 0.21 1.20 0.49 0.61 
  RI 3 0.30 0.01 10 0.21 4.50 0.60 0.69 

Average   0.29 0.09 26 0.31 2.80 0.35 0.64 
Standard deviation   0.13 0.12 16 0.08 2.14 0.12 0.13 

                  
Species Belt Substation Frequency Density Average Average Average Elevation Average 
Name Transect Number   Coverage Water 

Level 
Salinity  Patch Elevation 

Riccardia multifida FC 5 0.04 0.01 5 0.30 4.20 0.36 0.59 
   6 0.04 0.02 1 0.21 1.20 0.49 0.60 
  RI 5 0.10 0.14 15 0.18 3.30 0.62 0.77 

Average   0.19 0.06 11.08 0.21 2.76 0.43 0.57 
Standard deviation   0.14 0.06 8.49 0.08 1.33 0.17 0.20 
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