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ABSTRACT 
 
 
 

 A method for the oxidation and nitrogen isotopic analysis of photopigments (chlorophyll 

and phaeophytin) has been developed.  Homogenous single source materials (spinach and diatom 

culture) as well as mixed matrix (estuarine water) natural samples were tested with this 

approach. This method first uses extraction and purification of photopigments by column 

chromatography, followed by UV irradiation to convert photopigment N to nitrate and nitrite in 

the presence of hydrogen peroxide. δ15N of bulk samples and chlorophyll extracts were 

determined with an Isotope Ratio Mass Spectrometer (IRMS) with an Elemental Analysis (EA) 

Interface. Quantification of post-oxidation products (nitrate and nitrite) and determination of 

oxidation efficiency were performed using ion chromatography.  For isotopic analysis, the 

resulting nitrate/nitrite was converted to N2O at the USGS Reston Stable Isotope Laboratory 

(RSIL) using a strain of bacteria Pseudomonas aureofaciens, which lacks N2O-reductase 

activity.  The N2O is analyzed on an IRMS to provide the δ15N ratio of the product.  

Comparisons were made between bulk source material (spinach and diatom), the respective 

extracted photopigments, and the post-oxidation products.  Isotopic offsets of homogenous 

samples were isotopically depleted by a range of 3 to 6 ‰ from bulk to extract and again from 

extract to post-oxidiation.  This stepwise lightening of the isotopic signature was consistent with 

isotopic fractionation during each of these steps, although no clear Rayleigh fractionation 

relationship was discernable.  Natural mixed matrix samples exhibited irreproducible isotopic 

results following both extractions and oxidation.  We suggest that these results were due at least, 

in part, to very high amounts of co-extracted compounds potentially extracting other nitrogen 

sources and/or severely depressing oxidation efficiencies of photopigment nitrogen.  Although 
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isotopic offsets for each step of the mixed matrix samples varied considerably, they all yielded 

end products which were substantially isotopically depleted (up to -12‰) relative to bulk 

isotopic values of the starting material. 
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INTRODUCTION 

 

Humans currently contribute more reactive nitrogen (N) to the biosphere than all other 

natural N-fixation processes combined (Galloway et al., 2003; Howarth et al., 1996). As 

continents trend closer towards N saturation, increasing N loads are exported to the ocean 

margins. Nitrogen availability typically constrains primary production in coastal marine systems, 

and globally, near-shore habitats currently receive N inputs at historically unprecedented rates 

(Howarth et al., 2002; Nixon, 1997). Accelerated primary production represents the first link 

between increased nitrogen inputs and biological response, and rates of autotrophy in and of 

themselves define the trophic status of a water mass (Nixon, 1995). Determining N source 

utilization by primary producers (e.g. phytoplankton and benthic microalgae) is thus central to 

understanding marine ecosystem response to N inputs.  

The multiple sources and rapid cycling of nitrogen in these environments create 

difficulties in attributing recent algal production to specific N sources, or inferring historical 

patterns in N loading by examining the sediment record. A common approach is to use nitrogen 

stable isotope analysis (δ15N) of potential sources and of primary producers at natural abundance 

or 15N-enriched levels. This approach has provided insights into N source contribution to primary 

production in some systems (McClelland et al., 1997), yet its general utility depends on clear 

isotopic separation of N-source end-members, and how well microalgae can be isolated from 

bulk organic matter for isotopic analysis. Isotopic end-member overlap, can be overcome to 

some extent by in situ, low-level 15N enrichment of a particular N source. Tobias et al., (2001) 

and (2003a,b) demonstrated that this approach is feasible for a variety of N sources and 

applicable on kilometer spatial scales in hundreds of thousands of cubic meters of water, but 



 2

conclusions are still subject to the fundamental limitation that arises from difficulty in cleanly 

separating microalgae (phytoplankton) from suspended or deposited organic matter, and to a 

greater extent from isolating benthic microalgae from sediments.  

Microalgal sample contamination with bulk organic matter of a different δ15N is typically 

one of the largest sources of error in establishing isotopic fidelity between nitrogen sources and 

sinks (i.e. algae). This error is introduced both into the application of δ15N techniques used to 

study ‘modern’ autotrophic processes and into investigation of historical shifts in N source 

support of primary production. In the study of modern systems, microalgal separation is 

particularly problematic in coastal habitats dominated by sediment autotrophy through benthic 

microalgae. Because the organic fractions of microalgal cells rapidly break down after mortality 

during cell sinking and / or soon after deposition, paleo-reconstruction of past autotrophic N-

utilization cannot be accomplished through physical separation of intact cells. Instead, much of 

this inference has been derived from interpretation of 15N analysis of bulk sediment organic 

matter (Altabet et al., 1999; Pride et al., 1999; Higginson et al., 2003). While this approach can 

yield a reasonable proxy for phytoplankton N contributions in the open ocean, the bulk sediment 

15N is still subject to alteration from various isotope fractionating processes during diagenesis 

(Lehman et al., 2002; Montoya, 1994; Sachs et al., 1999), and contributions from non 

photosynthetic organic N inputs along continental margins (Eadie et al., 1994). Reconstructions 

of past N source contributions to paleo-production based on δ15N in sediments are subject to 

substantial re-interpretation when δ15N bulk sediment profiles are reanalyzed with more diatom 

specific biomarkers (Pantoja et al., 2002; Robinson et al., 2004; Sigman et al., 1999). A truly 

algal-specific and diagenesis recalcitrant measurement of δ15N in the sediment record would 
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remove some of the ambiguity associated with interpretation of past patterns of nitrogen 

utilization based on δ15N preserved in bulk sediments. 

The goal of this project is to develop an improved technique for measuring the δ15N of 

primary producer-derived N in modern and buried sediments by using a photopigment biomarker 

proxy. The proposed approach builds upon existing pigment isolation approaches by integrating 

a new 15N analytical technique that uses 1/100
th 

the amount of N mass previously required.  

The advantage of using photopigment biomarkers (e.g. δ15N of chlorophyll and 

phaeophytin) is twofold: 1) The approach permits clear separation of photosynthetically-derived 

N from a large matrix of sediment and water column organic matter in modern systems; 2) The 

N-containing tetrapyrrole ring is preserved in sediments long after cell mortality and offers a 

more precise (autotroph-specific) indicator of paleo-N source than bulk sediments.  

Existing methodologies for isolating microalgae for δ15N analysis rely on density or size 

differences between algal cells and non-photosynthetic organic matter. In turbid, highly net 

heterotrophic estuaries, upwards of 90% of suspended organic nitrogen may be non-algal (Tobias 

et al., 2003a) thus limiting the use of density-fractionated seston as a robust substitute for 

microalgal δ15N. Phytodetrital or benthic microalgal separation from sediments poses a similarly 

difficult problem (Currin et al., 1995). Even after multiple density separations, benthic 

microalgal recovery from sediment may remain poor. Techniques that rely on cell motility 

(Tobias et al., 2003a) account for only specific species (motile species) which may reside in a 

geographically limited distribution. Insufficient separation of benthic microalgae is particularly 

problematic in 15N tracer studies where sample contamination may yield substantial 

underestimates of N turnover rates (Tobias et al., 2003a).  
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Combining stable isotope analysis with carbon-containing biomarkers (e.g. lipid 

biomarkers) has been used extensively to trace algal carbon sources in sediments on recent to 

extended timescales (Boschker et al., 1998; Canuel 2001). However, integrating δ15N with N-

containing biomarkers remains rare. Few examples exist for N biomarkers in general and two 

that have been integrated with isotope analysis and used in ecosystem scale inquiry (D-alanine, 

and diaminopimelic acid) are bacterial biomarkers (Tobias et al., 2003b; McClelland and 

Montoya, 2002). They cannot specifically address microalgal N utilization or contribution to the 

sediment record. Photosynthetic pigments are perhaps the only biomarkers available for sourcing 

nitrogen from microalgae or tracking microalgal derived N through early diagenesis. A few 

attempts to use δ15N of pigments as algal biomarkers have previously occurred (Sachs et al., 

1999; Pantoja et al., 2002). In each of these instances it was demonstrated that the pigments 

could be extracted and analyzed with good isotopic accuracy and with a reproducible isotopic 

offset between photopigment and the whole microalgal cell. However, in each of these cases the 

amount of sample (i.e. N mass) necessary for isotopic analysis was so large that it has precluded 

widespread use of the approach. The technique outlined in this project employs recent advances 

in isotopic NO3-N analysis that can quantify δ15N on approximately 1/100th 
 
the nitrogen mass 

previously required.   This method can be broken down into 5 steps: 1) pigment extraction and 

purification; 2) oxidation of pigment N; 3) δ15N isotopic analysis of bulk extracts, 4) δ15N 

analysis of oxidized pigments 5) preliminary application to terrestrial and marine derived 

samples. 
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METHODS 

 

The method development undertaken in this project involves 5 key steps.  These concepts are:  

(1) pigment extraction and purification; (2) pigment oxidation and post-oxidation analysis; (3) 

isotopic analysis of bulk extracts, (4) isotopic analysis of post-oxidized N; (5) application of 

method to terrestrial and marine samples 

 

     General Procedures 

Polyethylene disposable gloves (VWR International, #32915-188) were worn when handling all 

reagents, buffers, and samples.  All digital pipet tips, plastic and glass scintvials and quartz test 

tubes were placed in a 10% hydrochloric acid bath and soaked overnight.  After soaking, all 

containers and tips were rinsed thoroughly with Milli-Q water and dried in a designated clean 

space.  All volumetric glassware and caps were rinsed several times with Milli-Q water prior to 

making solutions.  All quartz screw cap tubes were heated in a Fisher Scientific IsoTemp Muffle 

Furnace for 6 hours at 445˚C prior to use. 

 

      Reagents and Standards 

Sodium nitrate and sodium nitrite were obtained from Sigma (St. Louis, MO).  Water was 

purified using a Millipore Q-water system (Millipore Corp., Bedford, MA) and used to prepare 

all solutions.  Reagent grade acetone and hexane from Sigma (St. Louis, MO) were used to 

extract photopigment from spinach, diatoms, and sediment samples.  Concentrated hydrochloric 

acid (Reagent Grade) was used to prepare the 10% acid bath.  Unless otherwise noted, all 

chemicals used in this project were reagent grade from VWR International, West Chester, PA.   
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Photopigment Extraction/Purification 

Photopigments from a terrestrial source (spinach) and from marine sources (cultured diatoms and 

creek water suspended particulate organic matter (SPOM)) were used in the study. 

     Spinach Extraction 

Organically grown spinach (450 g) was blended in a Waring Commercial Blender HGB-

SS (Model N# 36BL23) using 250 mL of a 1:1 mixture of methanol:dicholoromethane for 3 

minutes.  The supernatant was filtered through cheesecloth and transferred to a 500 mL 

separatory funnel.  The filtered spinach was washed with 50 mL of acetone, followed by 

subsequent 10 mL aliquots of acetone, hexane, and ether.  This supernatant was filtered through 

cheesecloth and transferred to the same separatory funnel. 

After adding 25 mL of saturated aqueous NaCl to the separatory funnel, two layers 

formed.  The aqueous layer was drained from the separatory funnel and the organic layer was 

transferred into a 250 mL round bottom flask.  The aqueous layer was returned to the separatory 

funnel and extracted with 50 mL of hexane to ensure complete extraction of photopigments.  The 

aqueous layer was removed and the organic layer was combined with the initial extract in a 

round bottom flask.  The extract was concentrated to dryness under reduced pressure with the 

Buchi Rotavapor R-3000 and a Cole-Parmer Aspirator Pump (Model # 7049-00).    

     Diatom Extraction 
 
 Artificial sea water (ASW) was prepared using a standard recipe (Appendix A).  

Approximately 8 L of ASW were added to a 3.5 gallon Pyrex glass carboy (VWR) and 

autoclaved for 30 minutes on the liquid cycle of an autoclave to sterilize the media.  After the 

ASW cooled overnight to room temperature, 10 mL of a Thalassiosira Weisfloggi (T. 
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Weisfloggi) diatom culture was added to the stock solution.  The carboy was placed in a Percival 

Incubator at 16˚C with constant fluorescent lighting. 

To measure diatom growth, 5 mL aliquots were obtained daily, transferred to a Pyrex 

cuvette and measured on the AK – 10 fluorometer to measure the growth rate of the diatom 

culture.  Once the culture growth rate leveled off, 5 additional mL of the nitrogen stock and 

silicate stock solutions were added to the culture.  This was added to increase growth since 

silicate and nitrogen are the limiting elements in diatom growth. Once diatom growth ceased, 

diatoms were filtered onto a muffle furnaced GF/D glass fiber filter using a GeoPump. 

The filter was placed in an amber glass jar with 200 mL of 90% acetone saturated with 

MgCO3 overnight to extract the photopigments from the diatoms.  The purification procedure 

used in the spinach extraction was applied to the diatom extraction with proportionately less 

solvent. 

 

     Photopigment Separation 

Post-extraction, TLC analysis (Merck) was performed on each extract to determine the 

presence of phaeophytin and chlorophyll.  TLC plates were analyzed under long range UV light 

and stained with 10% H2SO4/ethanol to determine the presence of lipids.  Column 

chromatography using SiO2 (250-400 mesh, 2 x 15 cm column, Selecto Scientific) and a 2:1 

acetone:hexane mixture was performed to purify photopigments.  After column chromatography, 

column fractions containing pure photopigments were combined and concentrated under reduced 

pressure for HPLC analysis. 
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     HPLC Analysis 
 

Chromatographic analyses were performed to assess photopigment purity from the 

column chromatography extracts using a HP (Agilent) HPLC Model 1100 series, equipped with 

a G1311A Quartenary Pump, a Rheodyne 7725i autoinjector, and a G1315A Photo Diode Array 

(PDA).  The chromatographic system was controlled by a computer using the ChemStation 

Revision A.10.02 software.  Chromatography was carried out on a reversed phase Luna 100 mm 

x 4.60 mm 3 μ C18(2) Phenomenex column with a pore size of 100 Angstroms protected by a 

guard column.   

The mobile phase consisted of 2 components:  solvent A, methanol:acetone (7:3); and 

solvent B, Milli-Q water.  The pigments were eluted beginning with a 70% isocractic elution of 

A for 1 minute, followed by a linear gradient increase to 95%A from 1-5 minutes.  This was 

followed by a linear gradient increase to 100% A over 5-20 minutes, isocratic elution with 100% 

A for 5 minutes, a linear gradient decrease to 70%A from 25-29 minutes and finally a 1 min 

isocratic elution with 70% A prior to the next injection.  The solvent flow rate was 1.0 mL/min.  

The injection loop volume was 200 uL.  The eluate was scanned with the PDA at selected 

wavelengths of 432, 450, 470, 652 and 656 nm to determine the presence of photopigments. 

 

Spectroscopic Calculations 

Once the sample was found to be pure via HPLC, 25 uL of a photopigment standard was 

dissolved in 1.25 mL of ether or acetone and quantitatively transferred to a quartz 1.0 cm cuvette 

(Fisher Scientific 14-385-926A) for spectrophotometric analysis on a Cary 1E UV/Vis 

Spectrophotometer in single beam mode (Varian, Inc.) with WinUV Version 2.00(25) software.  

The spectrum of the sample was obtained from 350 to 750 nm.  Using Beer’s Law, molarity of 
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the photopigment extract was obtained using the molar absorptivity of photopigment a at 663 

nm.  Using the molecular weight of photopigment, the concentration of the extract, in grams/L, 

allows for determination of the isotopic ratio of the extract using IRMS-EA.  However, it was 

found that this approach overestimated the amount of photopigment nitrogen).  N content 

determined with the IRMS-EA was used subsequently for calculation of N concentration of the 

purified extract. 

 

Pigment Oxidation 

Two methods, persulfate oxidation and UV oxidation with H2O2, were used to determine which 

method would be better to oxidize photopigments from spinach extracts.  Because UV/H2O2 

oxidation was more successful than persulfate oxidation, so UV/H2O2 oxidation was used on the 

diatom matrices.   

Conversion of photopigments by UV oxidation was performed in a stainless steel UV 

oxidation chamber that was fabricated locally.  The chamber was equipped with a 1200 W 

Mercury Arc lamp (Ace Glassware 7825-40).  Samples were oxidized in GE 214 Semiconductor 

grade fused quartz screw thread test tubes (12 mL) manufactured by Technical Glass Products, 

Inc (Model Number SC18).  Caps were Teflon lined.  Aluminum foil was used on both the inside 

and the outside of the caps to prevent sample contamination. 

Photopigment samples, containing 1.2 x 10-7 moles of nitrogen dissolved in 1:2 

hexane:acetone, were pipetted into quartz test tubes that had been heated in a muffle furnace at 

445˚C for 6 hours.  The solvent was blown to dryness under UHP Argon.  Post-evaporation, 5 

mL of Milli-Q and 20 uL 30% hydrogen peroxide (H2O2, Fisher#H323-500) were added to each 

container.  Tops of test tubes were then covered with muffle-furnace combusted aluminum foil to 
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prevent contamination from materials inside of the cap.  Then, the tubes were screwed tight with 

Teflon lined standard caps.  The caps were covered with aluminum foil to prevent UV 

degradation of the cap.  Samples were oxidized in the UV chamber for 4 hours and kept sealed 

for 12 hours post-UV irradiation to allow maximal conversion from the NO2(g) intermediate to 

NO2
- and NO3

- ions. 

 

     Post-Oxidation NOx measurement and Determination of Oxidation Efficiency 

All analyses of the oxidized products were performed on a Dionex DX-600 Gradient Ion 

Chromatography system, equipped with an autoinjector, a thermostatted column compartment 

and a GP50 Gradient pump with a vacuum degasser.  Peaknet 6 software for the Dionex IC 

system was used for all chromatographic analyses.  Instrumental parameters were as follows:  

Eluent = 8.0:1.0 Carbonate:Bicarbonate, Data Collection Rate = 2.0, Temperature Compensation 

= 1.7, DS3 Temperature = 35ºC, Suppressor Type = ASRS 4mm, Suppressor Current = 43 μamp, 

Flow Rate = 1.0 mL/min, Run Time = 10.00 min. 

An IonPac AS14A-7um analytical column (4 x 250 mm) with an IonPac AG14A-7um 

Guard Column (4 x 50 mm) was used for all samples.  Samples (200 μL) were manually injected 

onto the column.  Nitrate and nitrite standards (1 μM, 5 μM, 10 μM, 20 μM, and 50 μM) were 

prepared daily from more concentrated standards to determine calibration curves. 

Oxidation efficiency was determined by combining the concentration of nitrate and nitrite 

in each sample to calculate total moles of oxidized organic N.  This value was divided by initial 

moles of organic N provided by EA analysis of purified extract. 
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     IRMS-EA Analysis 

Total sample nitrogen mass, % nitrogen, δ15N, and the carbon:nitrogen mass ratio of 

extracted/purified photopigments from terrestrial and marine sources were measured using 

continuous flow EA-Isotope Ratio Mass Spectrometry.  This system consisted of a Thermo Delta 

V Plus Isotope Ratio Mass Spectrometer with a Costech ECS 4010 Elemental Combustion 

System Elemental Analysis Interface.  

To perform the analysis, an aliquot of the photopigment standard that would provide 

approximately 2 μmoles of nitrogen was carefully blotted onto muffle-furnaced GF/D grade 

glass fiber filters.  Once the blotting was complete, the filter was transferred to an acid-washed 

scintvial and placed inside of a vacuum oven to evaporate the solvent from the filter.  After the 

filter was completely dry, it was carefully packaged in a 5 x 9 mm pressed tin capsule (Costech). 

During each run, glutamic acid standards were prepared from two isotopically labeled 

reference materials (USGS-40 and USGS-41).  Standards were weighed on a MX5 (Mettler 

Toledo) microbalance and quantitatively transferred into a tin capsule for elemental analysis.  

The mass of each standard bracketed the N content of the photopigment samples. 

At the end of each sample run, a mass chromatogram is produced which provides the 15N/14N 

and the 13C/12C isotopic ratios and the elemental composition of each sample.  With this data, a 

calibration curve is made from which the nitrogen and the carbon content of each photopigment 

sample can be extrapolated.   

 

     Isotopic Analysis of Post Oxidized N  

After IC analysis, the samples were quantitatively transferred to 25 mL acid-washed 

scintvials.  All scintvials were tightly sealed and shipped to the USGS Reston Stable Isotope 
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Laboratory (RSIL) in Reston, Virginia.  At the RSIL, δ15N of the post oxidized N (NO2
- + NO3

-) 

was measured using the ‘denitrifier method,’ which converts nitrate and nitrite to N2O.  This is 

accomplished by using a strain of denitrifying bacteria, Pseudomonas aureofaciens, which lacks 

N2O-reductase activity.  The bacteria quantitatively convert nitrate and nitrite to N2O.  The N2O 

is cryofused in dry ice and isopropanol trap and released as a pulse to the Delta XP IRMS thru a 

modified Gas Bench Interface.  The δ15N is calculated from the distribution of mass/charge ratios 

(m/z) of 44, 45, and 46 after accounting for the 18O/16O composition in the N2O. 

The experimental protocol and system design is detailed in Sigman, D.M. et al., 2001. 

 
     Method Application to Mixed Media Natural Samples 
 

To test the applicability of the method on natural samples, the method was applied to a 

sample containing two types of marine samples; T. Weisfloggi diatoms and natural creek water 

samples from Hewletts Creek, NC.  Mixtures of natural (Particulate Organic Matter-laden) water 

and cultured diatoms of known isotopic composition were tested.   

First, creek water (25L) was collected from Hewletts Creek at location 34˚11’ N, 77˚51’ 

W on May 21st , 2007.  The creek water was stored in 15 liter Nalgene carboys for 1 week in a 

dark room.  This storage procedure terminated all actively growing phytoplankton.  Second, 

artificial sea water (8L) was prepared, using the protocol listed in Appendix A, and 1 liter of T. 

Weisfloggi diatoms was added to grow a diatom solution.  The concentration of the diatom 

culture was determined to be 21.4 ug chl a/liter.  Once the diatoms were grown for a week, the 

solutions used in Table 1 were prepared. 
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Carboy Liters of Diatom Solution Liters of Creek Water 
A 0 8 
B 1 7 
C 2 6 
D 4 4 
E 8 0 

 

Table 1:  Mixture ratios of Hewletts Creek water and diatom culture used for experiment 

 

After mixing, each carboy was filtered using a peristaltic pump (Geopump) through a GF/D glass 

fiber filter.  Once filtration was complete, each filter was placed into a freezer overnight with 250 

mL of acetone to completely remove all photopigments from the GF/D filters. As with the other 

pigment samples, total N mass, and isotopic value were determined on the bulk extracts from 

each mixture using IRMS-EA.  An aliquot of each mixture was subjected the UV oxidation 

process (as described above).  Percent recovery and isotopic value on the resulting post-oxidation 

NOx was measured using the denitrifier method. 
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RESULTS 

 

To demonstrate the efficacy of this method, the following factors were analyzed:  photopigment 

separation and purification; oxidation optimization and analysis, comparison of δ15N of bulk 

photopigment from spinach and diatom cultures; δ15N of post-oxidized nitrogen, and applications 

of the method. 

 

Pigment Separation and Purification 

TLC analysis of the spinach and the diatom extracts prior to column chromatography showed 2 

visibly distinct spots; the first spot was olive green with a retention factor, Rf, value of 0.65 while 

the second spot was emerald green with an Rf value of 0.38.   10% H2SO4/ethanol staining of 

TLC plates under long range UV light also showed the presence of lipids.   

After column chromatography, chlorophyll a and phaeophytin a were combined and 

samples were analyzed by HPLC to determine extract composition.  During HPLC analysis, two 

peaks were observed with detection at 660 nm (Figure 7).  Using the photo diode array detector, 

it was determined that the first peak, at 19.51 minutes, was chlorophyll a.  The second peak, at 

25.24 minutes, was determined to be phaeophytin a.  

  

Oxidation 

     Persulfate vs. UV/H2O2 Oxidation 

Two oxidation methods, persulfate oxidation and UV/H2O2 irradiation, were used to 

convert the nitrogens in photopigments to NOx.  Persulfate oxidation successfully converted 

glycine standards to NOx with high efficiency, but did not consistently convert the nitrogens in 
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photopigments to NOx.   Poor oxidation efficiencies, <20%, were typically seen due to solubility 

problems between the photopigment extract and water.  Post-oxidation, green globular 

particulates were seen floating in the solution.  Numerous attempts to increase the solubility of 

the photopigments via increasing the reaction time, increasing the amount of persulfate, and 

heating the photopigment solution prior to oxidation, proved unsuccessful. 

The second oxidation method, UV/H2O2, consistently oxidized various nitrogen standards 

including photopigments, glutamic acid, and phaeophytin with high efficiency.  Solubility 

problems were not encountered with UV/H2O2 photolysis.  While our measure of efficiency 

([NO3
-] + [NO2

-]) was high with UV/H2O2, some samples showed that the final end products 

consisted of both nitrate and nitrite.  The relative proportion was related to the quantity and 

vendor of H2O2 used, irradiation time of the samples and post-oxidation equilibration of the 

sample. 

The amounts of nitrate and nitrate in the product were determined using ion chromatography.  

Sample calibration curves for the 6 nitrate and nitrite standards (1 to 50 uM) using a 200 μL 

injection loop are shown in the Appendix B. 

 

     Optimizing the UV/H2O2 Method 

Optimum UV irradiance time was determined by irradiating a solution containing 5 μM 

photopigments in 200 μL of 30% H2O2, and 5 mL of Milli-Q in an oxidation chamber at times 

varying from 2 to 24 hours.  Oxidation efficiency was calculated by adding the concentrations of 

[NO2
-] and [NO3

-] and dividing the value by the total concentration of nitrogen, as determined by 

EA.   
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Figure 1:  Comparing oxidation efficiency (μmoles of NOx divided by μmoles of pre-oxidized 

nitrogen) of photopigment samples (5 uM photopigment, 200 uL 30% H2O2) as a function of UV 

irradiation time.  

 

The optimum irradiance time was 4 hours (Figure 1).  This time was deemed optimal because an 

irradiance time of 2 hours produced a poor percent conversion of photopigment N to nitrate.  The 

% conversion to NOx was 100% for all times of 4 or more hours. 

Two sets of experiments (n = 6) were performed  to determine the optimum amount of peroxide 

for the reaction while minimizing the amount of background.  For the first set of experiments, the 

reaction matrix was a predetermined amount of peroxide, 5 mL of Milli-Q, and a reaction time of 

4 hours. The sample matrix for the second set experiments was a pre determined amount of 

peroxide, 5 μM photopigment, 5 mL of Milli-Q, and a reaction time of 4 hours.  Various 
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amounts of 30% H2O2 (0 to 200 μL) were used in the reaction.  All samples were analyzed via 

ion chromatography and the results are shown in Figure 2. 

 

Figure 2:  Comparing [NOx] of oxidized samples (4 hrs. UV Irradiation with Milli-Q (Blank) or 

5 μM photopigment and Milli-Q) at different volumes of 30% H2O2 

 

The reaction was unsuccessful without peroxide, but once any H2O2 was added to the 

matrix, the oxidation efficiency increased.  Furthermore, above 20 μL of  H2O2, the addition of 

more H2O2 simply translated to a higher blank, without increased oxidation efficiency.  It was 

seen that for each μL of H2O2 added to the matrix, the background increased by 0.063 μM NOx.  

To minimize blanks without impacting oxidation efficiency, 20 μL was chosen as the optimum 

amount of peroxide. 

Experiments (n=4) were performed to determine whether different sources of peroxide would 

produce different blanks.  Two bottles of 30% H2O2 were purchased from VWR International 

and Fisher Scientific.  5 mL of Milli-Q and predetermined amounts of 30% H2O2  peroxide were 
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added to quartz test tubes.  The samples were irradiated for 4 hours in the UV digestion chamber 

and then analyzed by ion chromatography. 

 

 

Figure 3:  Comparing concentration of NOx in oxidized samples (Milli-Q and 30% H2O2 with 

using 2 different manufacturers of peroxide over a range of 0 to 200 uL (n=3) 

 

This experiment clearly demonstrates that H2O2 from different manufactures provided drastically 

different blanks.  The H2O2 from Fisher produced a blank of 65 nM NOx per uL while the 

peroxide from VWR provided a blank of 0.3 nM NOx per uL of peroxide.  Therefore, peroxide 

from Fisher produced a blank that was 210 times higher than the blank from the VWR reagent.  

It was not known if the reagent age, stabilizer or another quality of the peroxide was responsible 

for the difference.  Since both types of peroxide provided the same % oxidation efficiency, 

peroxide from VWR was the preferred peroxide for this reaction and subsequently used for all 

oxidations. 
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     Post-Oxidiation Equilibrium 

Experiments were performed to determine the amount of time necessary to allow for maximum 

conversion of initial oxidiation products, which contains the NO radical, to form NO3
- and NO2

-.  

Samples, post-oxidation, were kept in the UV digestion chamber for pre-determined amounts of 

time and removed for analysis via ion chromatography.  The results are listed in Figure 4.    

 

 

Figure 4:  Comparing the % efficiency of oxidation at different times post-oxidation 

 

This experiment showed that samples required a minimum of 12 hours, post-oxidation, to allow 

maximal conversion of initial products to nitrate + nitrite.    
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Four samples were analyzed, post-UV oxidation, at designated time intervals (1 day, 7 

days, 14 days and 28 days) to determine the stability of the products in the reaction matrix.  200 

uL of sample were removed and injected for each IC analysis.  The same bottles were 

subsampled for each analysis.  The results are presented in Table 2. 

 

Pre-Ox nmoles 
of N 

Day 1 
nmoles Post-

Ox NOx 
Day 7 nmoles 
Post-Ox NOx 

Day 14 nmoles 
Post-Ox NOx 

Day 28 nmoles 
Post-Ox NOx 

0.100 0.100 0.105 0.100 0.102 
0.100 0.095 0.096 0.094 0.096 
0.100 0.088 0.086 0.094 0.085 

0.100 0.092 0.085 0.083 0.085 

Average 0.094 0.093 0.093 0.092 
Standard 

Dev. 0.005 0.009 0.007 0.009 
 

Table 2: Comparing the umoles of NOx for post-oxidized photopigment standards (n=4) (5 μM 

photopigment, 20 uL 30% H2O2, and 5 mL of Milli-Q with 4 hrs. of UV Irradiation) at 4 time 

intervals 

 
This experiment shows that all samples could be stored for up to a month post-oxidation 

without producing a significant change in [NOx] of the sample. 

 

     Nitrate vs. Nitrite 

Photopigment samples from the spinach extract (n=8) were oxidized and analyzed to see 

whether there was a correlation between the amount of peroxide used versus the amount of 

nitrate/nitrate produced.  All standards were reacted with either 10 or 20 uL of H2O2, 5 mL of 
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Milli-Q water and the requisite amount of standard to produce 20 uM nitrate post-oxidation.  The 

results of the experiment are shown in Table 3. 

 

Amt. of H2O2 
Added 

μmoles 
N as 

[NO2
-] 

μmoles 
N as 

[NO3
-] 

% [NO2
-] % [NO3

-] μmoles N 
[NO2

-] + [NO3
-] 

% 
Efficiency

10 0.032 0.071 31% 69% 0.104 104% 
10 0.024 0.073 25% 75% 0.096 96% 
10 0.030 0.064 32% 68% 0.094 94% 
10 0.026 0.062 30% 70% 0.089 89% 

Average 0.028 0.068 29% 71% 0.096 96% 
RSD 0.004 0.005 3% 3% 0.006 6% 
20 0.007 0.094 7% 93% 0.101 101% 
20 0.009 0.082 9% 91% 0.091 91% 
20 0.011 0.082 12% 88% 0.094 93% 
20 0.014 0.068 16% 84% 0.081 81% 

Average 0.010 0.082 11% 89% 0.092 92% 

RSD 0.003 0.011 4% 4% 0.008 8% 

 

Table 3: μmoles of post-oxidized photopigment samples (5 μM photopigment, either 10 or 20 μL 

of 30% H2O2, and 5 mL of Milli-Q with 4 hrs of UV Irradiation) as either nitrite or nitrate
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While the oxidation efficiencies for each reaction were similar between each matrix, the 

samples which contained 10 uL of H2O2 produced an average of 29 ± 3 % NO2
- vs. the 11 ± 4 % 

NO2
- for the samples which contained 20 uL of H2O2.  Nitrate was the dominant end product in 

the presence of higher amounts of H2O2.  However, our measure of oxidation efficiency shows 

that the concentration of nitrate plus nitrite seems unaffected at H2O2 levels greater than 10 uL. 

To examine the amount of NOx produced in different matrices, glutamic acid standards 

(USGS40) and photopigment extracted from diatoms were oxidized to analyze the percent of 

NO2
- vs. NO3

- produced.  The results of the experiment are shown in Table 4. 

 

Substrate 

μmoles 
N as 

[NO2-] 

μnoles 
N as 

[NO3-] 
% 

[NO2
-] 

% 
[NO3

-] 
μmoles N  

[NO2
-] + [NO3

-] 
% 

Efficiency 
Glutamic Acid 0.035 0.061 37% 63% 0.096 96% 
Glutamic Acid 0.037 0.061 38% 62% 0.098 98% 
Glutamic Acid 0.029 0.051 37% 63% 0.080 80% 

Average 0.034 0.057 37% 63% 0.091 91% 
RSD 0.004 0.006 0.80% 0.80% 0.010 10% 

Diatom 0.065 0.029 69% 31% 0.094 94% 
Diatom 0.051 0.024 68% 32% 0.076 76% 
Diatom 0.076 0.026 74% 26% 0.102 102% 
Average 0.064 0.027 71% 29% 0.091 91% 

RSD 0.012 0.003 3% 3% 0.014 14% 
 

Table 4:  μmoles of post-oxidized glutamic acid or diatom photopigment extracts (5 μM 

photopigment or 20 μM glutamic acid, 20 μL 30% H2O2, and 5 mL of Milli-Q with 4 hrs of UV 

Irradiation) as either nitrite or nitrate 
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A glutamic acid standard and the diatom extract were reacted with 20 uL of H2O2 in 5 

mL of Milli-Q and the requisite amount of standard/extract to produce 20 uM nitrite/nitrate post-

oxidation.  While both samples were oxidized at an efficiency of >90%, the oxidation of 

glutamic acid standards (n = 3) produced 37 ± 0.8 % NO2
- while the oxidation of the 

photopigment extracted from diatom standards (n = 3) produced 70 ± 3 % NO2
-. 

 

     Isotopic Analysis 

After pigment extraction and purification, samples from the photopigment extract (n = 5) 

as well as glutamic acid reference materials (USGS40 and USGS41) (n=11) were prepared for 

elemental analysis on the Isotope Ratio Mass Spectrometer (IRMS) with Elemental Analysis 

(EA) Interface.  The δ15N and δ13C of the CO2 and N2 are determined by the IRMS and 

referenced to USGS40 and USGS 41 glutamic acid reference materials.  The δ15N of USGS 40 is 

-4.52 while the δ15N of USGS 41 is 47.264.  Isotopic values are reported as ‰ relative to air for 

δ15N and Pee Dee Belamite (PDB) for δ13C (Table 5).
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Reference # 
Total 

Weight

Total 
Weight 

(μg) μg N δ15N 

C:N 
Mass 
Ratio 

Spinach Chl a 1 ---------- --------------- 11.60 5.81 17.46 
Spinach Chl a 2 ---------- --------------- 11.66 5.20 17.40 
Spinach Chl a 3 ---------- --------------- 14.21 5.24 15.08 
Spinach Chl a 4 ---------- --------------- 11.99 5.33 17.95 
Spinach Chl a 5 ---------- --------------- 9.18 4.55 18.11 

USGS 40 0.27 270.00 25.65 -4.30 4.29 
USGS 40 0.28 282.00 26.79 -4.35 4.29 
USGS 40 0.43 433.00 41.14 -4.40 4.29 
USGS 40 0.52 516.00 49.02 -4.36 4.29 
USGS 40 0.59 592.00 56.24 -4.31 4.29 
USGS 40 0.77 770.00 73.15 -4.34 4.29 
USGS 40 0.82 820.00 77.90 -4.31 4.29 
USGS 41 0.49 487.00 46.27 47.23 4.29 
USGS 41 0.59 592.00 56.24 47.42 4.29 
USGS 41 0.48 479.00 45.51 47.19 4.29 
USGS 41 0.74 742.00 70.49 47.23 4.29 

 

Table 5:  μg of Nitrogen and the carbon:nitrogen Ratio for Samples from 1st Photopigment 

Extract and Glutamic Acid Reference Materials (September 2006) 

 

Nitrogen content (% nitrogen), carbon content (% carbon), and the carbon:nitrogen ratios of the 

extracts were calculated from calibration curves between the total weight (in μg) of nitrogen or 

carbon in each glutamic acid standard versus the N and C area from the IRMS chromatogram 

(Appendix C).  The C:N ratio of chlorophyll a is 11.78, therefore, our extract contained carbon 

that was not from photopigment. 
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     δ15N Analysis of Spinach Photopigment Source Material  

Two samples of a photopigment standard, extracted from spinach, were oxidized to determine 

the change between the δ15N of the extracted photopigment and NOx from oxidation and whether 

the change in the δ15N of the substrate and the product is reproducible.  Experiments with the 

first photopigment sample (n=3) and the second photopigment sample (n=4) were performed.   

Results of the IRMS-EA on the first photopigment standard are presented in Table 6
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Sample 
Chl a 

(μmoles/mL) 
Post Ox 

(μmoles/mL)
% 

Efficiency
Chl a 
δ15N 

Post Ox 
δ15N 

δ15N 
Offset 

1st Chl a 0.381 ± 0.058 0.304 80% 5.2 ± 0.4 -0.7 -5.9 

1st Chl a 0.381 ± 0.058 0.33 87% 5.2 ± 0.4 0.9 -4.3 

1st Chl a 0.381 ± 0.058 0.331 87% 5.2 ± 0.4 2.1 -3.1 

Average 0.381 0.322 84% 5.2 0.7 -4.5 

Std. Dev. 0.058 0.015 4% 0.4 1.4 1.4 
 

Table 6: μmoles/mL of Nitrogen and δ15N Value for 1st Photopigment Standard and Post-Oxidized Samples Derived from 1st Spinach 

Extract
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For the first photopigment sample (n=3), the δ15N of photopigment before oxidation was 5.2 ± 

0.4 ‰.  Once these samples were oxidized, they were shipped to the USGS for [NOx] and δ15N 

analysis. Post-oxidation, the δ15N of the oxidized samples (n=3) were 0.7 ± 1.4 ‰.  When these 

values were compared to the starting material, the method produced an isotopic depletion of the 

δ15N by 4.5 ± 1.4 ‰ relative to the bulk extract.  Therefore, the samples became isotopically 

lighter after oxidation and denitrification 

Results from IRMS-EA analysis of the second photopigment sample are in Table 7.
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Sample 
Chl a 

(μmoles/mL)
Post Ox 

(μmoles/mL)
% 

Efficiency 
Chl a 
δ15N 

Post 
Ox 
δ15N 

δ15N 
Offset 

2nd Chl a 0.61 ± 0.05 0.61 100% 6.7 ± 0.5 3.0 -3.7 

2nd Chl a 0.61 ± 0.05 0.51 84% 6.7 ± 0.5 2.6 -4.1 

2nd Chl a 0.61 ± 0.05 0.44 72% 6.7 ± 0.5 3.7 -3.0 

2nd Chl a 0.61 ± 0.05 0.50 82% 6.7 ± 0.5 2.7 -4.0 
Average N.D. 0.56 92% N.D. 3.0 -3.7 

Std. Dev. 0.05 0.06 10% 0.5 0.5 0.5 
 

Table 7:  μmoles/mL of Nitrogen and δ15N Value for 2nd Photopigment Standard and Post-Oxidized Samples Derived from 2nd 

Spinach Extract
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For the second sample of photopigment (n=4), the δ15N of the bulk photopigment extract 

(pre-oxidation) was 6.7 ± 0.5 ‰.  Post-oxidation, the denitrifier analysis showed that the δ15N of 

the oxidized product was 3.0 ± 0.5 ‰.  When these values were compared to the starting 

material, the method produced a depletion of the δ15N by 3.7 ± 0.5 ‰ relative to the bulk extract.   

In order to properly compare the data sets from two different batches of spinach, we decided to 

compare the average amount of change from the δ15N of the starting material to that of the final 

oxidized product.  Considering all spinach photopigment samples (n=7) , the average change in 

the δ15N between the spinach photopigment extract and the post-oxidized sample was a 2.96 ± 

0.48 ‰ decrease from the bulk extract to post-oxidized N. 

 

     δ15N Analysis of Diatom Photopigments 

Since the photopigments from the diatoms was extracted from muffle-furnaced GF/D filters, 

there were 3 times at which the δ15N values were obtained.  The first data obtained was from the 

filter which contained the nitrogen composition of the bulk diatoms.  This value would provide 

the δ15N value for all nitrogen (e.g., photopigments, amino acids, and proteins) that was 

deposited on the GF/D filter.  The results from the IRMS-EA analysis of the bulk starting 

material trapped on the filter are presented below in Table 8. 
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Sample 
Bulk 

(μmoles/L) 
Chl a 

(μmoles/mL) 
Post Ox 

(μmoles/mL)
% 

Efficiency Bulk δ15N Chl a δ15N 
Post Ox 
δ15N 

δ15N 
Offset 

1st Diatom 0.50 ± 0.05 0.44 ± 0.02 0.37 83% -0.5 -1.4 ± 0.3  -7.1 -5.7 
1st Diatom 0.50 ± 0.05 0.44 ± 0.02 0.44 100% -0.7 -1.4 ± 0.3 -6.5 -5.1 
1st Diatom 0.50 ± 0.05 0.44 ± 0.02 0.43 98% -0.3 -1.4 ± 0.3 -7.2 -5.8 
1st Diatom 0.50 ± 0.05 0.44 ± 0.02  N.D. N.D. -0.2 -1.4 ± 0.3 N.D. N.D. 
Average 0.50 0.44 0.41 94% -0.4 -1.4 -6.9 -5.5 
Std. Dev. 0.05 0.02 0.04 9% 0.2 0.3 0.4 0.4 

 
Table 8:  μmoles/mL of Nitrogen and δ 15N values for Bulk Filters, Extracted Photopigments, and Post-Oxidized Samples from the 1st 

Culture of Diatoms by IRMS-EA Analysis 
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IRMS-EA analysis of four samples showed that the δ15N was -0.4 ± 0.23 ‰.  After extracting 

photopigments from the diatom filters, 2.5 mL of diatom extract were blotted onto GF/D glass 

fiber filters and analyzed by IRMS-EA.  Extracted photopigments from the filter, had a δ15N 

value of -1.4 ± 0.3 ‰.  The resulting NOx samples (n=3) were analyzed using the denitrifier 

method and the δ15N value was determined to be -6.9 ± 0.4 ‰.  Therefore, the average change in 

the δ15N value of the photopigments and the post-oxidized product was -5.5 ± 0.4 ‰ (Table 8).  

As with the photopigment standards, the overall extraction process showed an isotopic depletion 

of the sample following oxidation.   

A second diatom extraction was prepared and treated in the same manner.  Results from 

the analyses are presented in Table 9. 
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Sample Bulk 
(μmoles/L) 

Chl a 
(μmoles/mL)

Post Ox 
(μmoles/mL) 

% 
Efficiency Bulk δ15N Chl a δ15N 

Post 
Ox 
δ15N 

δ15N 
Offset 

2nd Diatom 0.42 ± 0.04 1.0 ± 0.2 0.886 88% -0.7 ± 0.1 -2.7 ± 0.3 -6.2 -3.5 
2nd Diatom 0.42 ± 0.04 1.0 ± 0.2 0.789 78% -0.7 ± 0.1 -2.7 ± 0.3 -6.1 -3.4 
2nd Diatom 0.42 ± 0.04 1.0 ± 0.2 0.806 80% -0.7 ± 0.1 -2.7 ± 0.3 -6.5 -3.8 
2nd Diatom 0.42 ± 0.04 N.D. N.D. N.D. -0.7 ± 0.1 N.D. N.D. N.D. 
2nd Diatom 0.42 ± 0.04 N.D. N.D. N.D. -0.7 ± 0.1 N.D. N.D. N.D. 

Average 0.42 1.0 0.827 82% -0.7 -2.7 -6.2 -3.5 
Std. Dev. 0.04 0.2 0.052 5% 0.1 0.3 0.2 0.2 

 

Table 9:  μmoles/mL of Nitrogen and δ15N values for Bulk Filters, Extracted Photopigments, and Post-Oxidized Samples from the 2nd 

Culture of Diatoms by IRMS-EA Analysis 
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IRMS-EA analysis from the samples (n=5) showed that the δ15N of the bulk samples was 

-0.7 ± 0.1 ‰.  After extracting the photopigments from the diatom filters, 2.5 mL of diatom 

extract were blotted onto GF/D glass fiber filters and analyzed on the IRMS-EA.  The δ15N value 

of the extracted photopigments was determined to be -2.7 ± 0.3 ‰. The δ15N value of the post-

oxidized product was -6.2 ± 0.2 ‰. Therefore, the isotopic offset in the δ15N value of the bulk 

diatom N and the post-oxidized product was -3.5 ± 0.2 ‰ (Table 9).  As with the spinach 

photopigment standards, the overall extraction process showed an isotopic depletion of the 

sample following oxidation.   

 

     Applying the Approach to Natural Samples 

To test the efficacy of the method with natural samples, 5 dilutions of cultured diatoms and 

estuarine waters containing high amounts of detritial organic nitrogen were prepared. Estuary 

water was collected from Hewlett’s Tidal Creek, NC.  The sample matrices are as follows: 1) 

Creek Water (CW, 8L) from the Hewlett’s Creek Watershed, 2) Thessalonia Weisfloggi Diatom 

Culture (DC, 2L), 3) A 4:4 mixture (8L) of CW:DC, 4) A 6:2 (8L) mixture of CW:DC, and 5) A 

7:1 (8L) mixture of CW:DC. 

Each mixture was filtered through GF/D glass fiber filters using a Geopump.  The results 

from the IRMS-EA analysis are presented in Table 10. 



 34

 

Reference 
# μmoles N 

Observed 
δ15N Predicted δ15N 

HC 0.272 4.79 4.79* 

7:1 0.291 4.15 3.64 

6:2 0.311 2.78 2.49 

4:4 0.339 -0.92 0.19 

Diatom 0.372 -4.25 -4.25* 
 

Table 10:  IRMS-EA analysis of GF/D filter bulk nitrogen extracts from mixed media solutions.  

(* Indicates that predicted values = observed values) 

 

Figure 5: Mixture curve for mixed media solutions with actual and predicted δ15N values 

(The red line shows the expected δ15N values for each of the matrices.) 
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IRMS-EA analysis showed that the diatom solution was isotopically lighter than the 

creek water solution by approximately 9 ‰.  Therefore, the higher the ratio of diatoms in a 

mixture, the isotopically lighter the predicted δ15N.  δ15N values for the extracted photopigments 

and the post-oxidized product are listed in Table 11.
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Sample 
Bulk 

(μmoles/L) 
Chl a 

(μmoles/mL)
Post Ox 

(μmoles/mL) 
% 

Efficiency
Observed Bulk 

δ15N Chl a δ15N Post Ox δ15N 
HC 0.034 0.046 0.011 24% 5 ± 1 N/A -7.2 ± 0.6 
7:1 0.053 0.074 0.012 17% 4 ± 1 2 ± 2 -10 ± 5 
6:2 0.058 0.073 0.017 24% 2.8 ± 0.4 1 ± 3 -15 ± 2 
4:4 0.051 0.078 0.024 30% -0.9 ± 3 -3 ± 1 -14 ± 5 

Diatom 0.051 0.016 0.014 89% -4.4 ± 0.4 -2.64 ± 0.09 -14.6 ± 0.1 
 

Table 11:  μmoles/mL N and δ15N analyses of the bulk samples, extracted photopigments, and the post-oxidized samples 

 

 

 



 37

After extracting the photopigments from the diatom filters, 2.5 mL of diatom extract were 

blotted onto GF/D glass fiber filters and analyzed by IRMS-EA.  Once these samples were 

oxidized, the samples were shipped to the USGS for [NOx] and δ15N analysis.  Upon oxidizing 

the photopigment, the resulting NOx samples (n=3 for all other than the HC) were analyzed using 

the denitrifier method.  The results from the denitrifier analysis are shown on Figure 6.
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Figure 6:  δ15N values, via the denitrifier method, of post-oxidized photopigments from mixed natural samples.  (The red line displays 

the expected values for the post-oxidized products of the creek water solution and the mixed natural samples.) 
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While the samples from the diatom matrix were consistent and highly reproducible, the 

extracts that were derived from natural samples were highly variable and the δ15N values were 

not bracketed by the homogeneous samples.  The highly variable results are due to the poor 

oxidation efficiency of the samples. 
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DISCUSSION 
 

  

     Pigment Extraction/Separation 

Our analysis demonstrated that liquid-liquid separation coupled with flash column 

chromatography was relatively effective at achieving pigment separation.  In this study, the 

purity of the pigments was verified via HPLC, therefore, pigment collection via HPLC was 

deemed unnecessary.  This was determined by the presence of only 2 peaks, chlorophyll a and 

phaeophytin a, in the chromatogram as seen in Figure 7.   

 

Figure 7:  HPLC of Diatom Extract at 663 nm 

The PDA spectra of the peak at 19.51 minutes (Figure 8a) and the peak at 25.24 minutes (Figure 

8b) are those of chlorophyll a and phaeophytin a respectively.  The difference between their 

spectra is the presence of 3 small bumps in the 500 nm range which are distinctive for 

phaeophytin a. 
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Figure 8: PDA Spectra of peaks at a) 19.51 and b) 25.24 minutes 

This extraction technique differs from that of Sachs (Sachs et al., 2000); who utilized an 

approach which coupled phase separation via sonication with both normal-phase and reversed-

phase HPLC.  This method first required the ultrasonic extraction of SPOM with solvents, 

followed by two liquid-liquid separations.  Then a normal-phase analytical SiO2 column and a 

reversed-phase HPLC separation preparative C18 column were used to complete the separation.  

This process was used to determine extract composition, extract purity, and from which the 

samples were collected for δ15N analysis.  However, this process is very time consuming because 

the HPLC/EA approach required a large amount of sample (2 umoles of N), which required 

multiple concurrent runs on the HPLC since the photopigment samples were collected from the 

HPLC.   Our combined column chromatography/HPLC approach allowed for optimizing sample 

throughput and collection of pigment mass while maintaining relative confidence in pigment 

purity.   

However, a problem with our extraction was noticed during IRMS-EA analysis of our 

extracts.  Regardless of pigment source, it was observed that the carbon:nitrogen (C:N) mass 

a b 
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ratio was larger than the known C:N ratio for photopigment of 11.78.  Our analyses provided a 

C:N ratio of 15-20 for terrestrial (spinach) samples and the ratio was much larger with marine 

(diatom and creek water) samples.  These observations are in agreement with Bidigare (Bidigare 

et al., 1991) whose research stated that algal culture extracts are lipid-rich.  Therefore, the 

increased C:N ratio leads one to believe that carbon sources, most likely lipids, were co-extracted 

with our photopigments.   

Lipids, such as triglycerides, diglycerides, and free fatty acids, are carbon dense, nitrogen 

poor, non-polar and are undetectable using a photo diode array detector since they absorb UV 

light at similar wavelengths to that of the mobile phase.  Stained TLC plates from our extracts 

showed faint spots with Rf values and staining characteristics which are consistent with 

diglycerides. Since these co-extracted compounds are N-poor, they should not impact the δ15N 

value for our photopigment extracts.  However, the co-extraction of carbon containing 

compounds can diminish oxidation efficiency.  Further optimization of the photopigment 

extraction may be necessary to apply this method in lipid-rich systems.  Since column 

chromatography collection is much quicker than HPLC collection, the use of another column 

chromatography solvent could improve the separation of lipids from the photopigments. 

 

     Oxidation/Analysis 

Two oxidation methods, persulfate oxidation and UV/H2O2, were compared to determine 

which method would be more effective at converting photopigment to NOx.  Both persulfate and 

UV/H2O2 were utilized by Bronk (Bronk et al., 2000) in her study which determined the optimal 

oxidation method to use for total dissolved nitrogen analysis.  In her study, urea, ammonium, 
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glycine, and other nitrogen standards were oxidized.  However, the compounds used in Bronk’s 

study were polar and water soluble.   

 In our studies, the persulfate method produced poor percent conversions and green globular 

particulates were observed post-oxidation.  It is suspected that photopigment was unable to react 

with aqueous persulfate due to poor solubility of the non polar photopigment in the very polar 

water.  Therefore, the photopigment extract was never able to break into the hydration shell 

formed by the intermolecular forces between the aqueous persulfate and the water molecules.   

While Bronk’s study showed inconsistent oxidations with the UV/H2O2 approach, the 

UV/H2O2 approach produced high oxidation efficiencies, as calculated by combining the mass of 

nitrate and nitrite and dividing that value by the mass of organic nitrogen pre-oxidation.  This 

oxidation method involves the production of OH• radicals which are strong oxidants and oxidize 

organic matter with a high efficiency.   

One difference between our product analysis and that of Bronk was that her N analysis 

utilized spongy cadmium (to reduce NO3
- to NO2

-) and colorometric analysis to determine the 

production of total NOx while we used ion chromatography to determine [NO2
-] and [NO3

-].  

Spongy cadmium approach only measures the amount of NO2
- and NO3

- post-reduction.  

However, our post-oxidation product analysis allowed for the determination of all products 

formed in the reaction, NO2
-, NO3

- and unreacted peroxide.   

It was assumed that the oxidation of photopigment would only produce nitrate, which is the 

thermodynamically stable end product.  However, our analysis showed that both nitrate and 

nitrite were produced in the reaction.  Our studies showed that the NOx  produced in the reaction 

was stable for up to a month post-oxidation within our matrix. 
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While the exact pathway for the oxidation of organic nitrogen is unknown, it is widely 

assumed that gaseous intermediates are formed in the reaction.  Our research showed that, when 

the reaction vials had holes in the caps, the oxidation efficiencies were incredibly poor.  It is 

assumed that the most likely gaseous intermediate is NO2.  Once the gaseous intermediates are 

formed, there can be forward or reverse reactions which occur that can cause substantial isotopic 

and substrate fractionation.  This fractionation can produce variable products and variable 

oxidation efficiencies. 

While nitrate and nitrite can be used indiscriminately by the denitrifier method, nitrite is a 

lesser oxidized sample of nitrogen.  It was observed that the ratio of nitrate:nitrite varied with the 

amount of peroxide used as well as the type of starting material.  Increasing the amount of 

peroxide increased the nitrate:nitrite ratio. 

With respect to optimization of the method, the experiments demonstrated that there was a 

direct correlation between the amount of peroxide and the amount of NOx in the blanks.  (Figure 

2)  Therefore, the less peroxide used to perform the reaction, the lower the background signal.  

Secondly, it was determined that the optimum time for UV irradiation was 4 hours.  (Figure 1)  

Increased exposure made no difference to the oxidation efficiency of the reaction.  Thirdly, these 

tests determined that the optimum amount of peroxide to perform the reaction was 20 μL.  

(Figure 2)  This amount was chosen because the reaction was unsuccessful without using 

peroxide and as the amount of added peroxide was increased above 20 μL, the amount of nitrate 

background increased without increasing the oxidation efficiency of the reaction.  It was 

necessary that the samples were allowed to settle for 12 hours, post-oxidation, to allow maximal 

conversion of initial products to nitrate + nitrite. 
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Finally, it was observed that the source of H2O2 affected the blank as well.  30% H2O2 from 

two suppliers, Fisher and VWR, were used to determine the amount of NOx produced.  Hydrogen 

peroxide from VWR provided a substantially lower blank, approximately 0.05 uM vs. 2.5 uM 

NOx when using 20 μL of peroxide, without impacting oxidation efficiency.  (Figure 3) While 

neither type of peroxide contained nitrogen stabilizers, such as the commonly used acetamide, 

the peroxide purchased through VWR provided a much lower background with respect to N 

blank. 

 
      
     Isotopic Analyses  

In order to analyze the δ15N isotopic offsets between the bulk source materials (spinach and 

diatoms), extracted photopigments, and post-oxidized NOx products, subsamples from each 

interval were analyzed on the IRMS-EA.  In a previous approach, (Sachs et al., 1999), the 

isotopic offset between the bulk source material and the purified photopigments was analyzed, 

whereas the isotopic offsets seen at each part of the extraction/oxidation were analyzed in our 

study.  Therefore, our method can be used to determine the isotoptic offset seen from the 

extraction of the photopigments from the bulk source material as well as the isotopic offset seen 

during the oxidation. Furthermore, this method utilized the denitrifier method which converted 

NOx products into N2O in an attempt to see if the post-oxidized products would have a similar 

δ15N value to the extracted photopigments. 

The first source material analyzed in this method was organic spinach.  This source 

material was used in previous photopigment extraction studies, (Gokman, et.al 2002, Schwartz, 

et.al 1981).  The concentration of photopigment (ug of chl a/g of spinach) is higher in spinach 

than other green leafy vegetables, so it served as a preferred source of photopigments.    For this 
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project, the δ15N of the bulk spinach source was not analyzed.  However, the δ15N of the 

extracted photopigment from two spinach samples was determined to be 5.2 ± 0.5 ‰ for the 1st 

spinach extract and 6.7 ± 0.5 ‰ for the 2nd spinach extract. 

The other homogeneous source material analyzed in this study was marine (T. 

Weisfloggi) diatom cultures.  Unlike the spinach samples, bulk isotopic values were established 

for this compound.  In a previous study, (Sachs et al., 1999), isotopic depletion of 5.06 ± 1.13 ‰ 

between the extracted photopigments and the bulk sample of 8 types of cultured marine 

phytoplankton was reported.  In another study (Kennicutt, et al., 1992) 7 different types of plants 

and algae were examined.  Observed ∆δ15N between the extracted photopigments and the bulk 

material in the range of -0.85 to 6.35 ‰. 

 For this project, two separate diatom cultures were grown.  The bulk δ15N for the 1st 

diatom culture was determined to be -0.4 ± 0.2 ‰.  The bulk δ15N for the 2nd diatom culture was 

determined to be -1.9 ± 1.0 ‰.  In both the 1st and the 2nd diatom cultures an isotopic depletion 

between the bulk N and the extracted photopigments was observed.  The 1st diatom culture 

showed an isotopic depletion of 1.0 ‰ between the extracted photopigments and the bulk N 

while the 2nd diatom culture showed an isotopic depletion of 2.0 ‰. 

It is known that most of the nitrogen in marine phytoplankton is contained in proteins 

with smaller amounts of photopigments, amino acids, and amino sugars.  Some diatoms have 

been found to contain significant quantities of chitin, a polymer of the amino sugar N-acetyl-D-

glucosamine, such that amino sugar nitrogen may amount to 15–20% of total cellular nitrogen in 

some instances (Smucker and Dawson, 1986).  In our extraction, differences in polarity between 

the non-polar photopigments and the polar amino acids and amino sugars are used to separate the 
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photopigments and the other sources of N.  Therefore, the photopigment extract should not 

contain alternate sources of organic N.   

 

Photopigment Oxidiation with the Denitrifier Method 

The denitrifier analysis of the post-oxidized products was performed at the USGS’s Stable 

Isotope Lab in Reston, Virginia.  This technique quantitatively converts both nitrate and nitrite to 

N2O.  δ15N of the samples is calculated from the distribution of mass/charge ratios (m/z) of 44, 

45, and 46 after accounting for 18O/16O composition in the N2O. 

Once the extracted photopigments from spinach were oxidized via UV/H2O2, δ15N of the 

samples were determined via the denitrifier method.  The 1st batch of photopigment was oxidized 

at 93 ± 9% efficiency and produced an isotopic depletion of 5.5 ± 0.4 ‰ while the 2nd batch of 

photopigment from spinach was oxidized at 92 ± 10% with an isotopic depletion of 4.2 ± 0.5 ‰.  

Upon comparing the isotopic depletion with the oxidation efficiency, the P-test value was 0.25, 

which indicates that there is not a significant correlation between isotopic depletion and 

oxidation efficiency. This results from this oxidation shows that the UV/H2O2 oxidation 

produces an isotopic depletion of the sample, which is in agreement for reactions that do not 

have 100% oxidation efficiency. 

The photopigments extracted from diatoms provided similar results.  The oxidiation of 

photopigments from the 1st culture of diatoms produced an oxidation efficiency of 94 ± 9% and 

produced an isotopic depletion of 5.5 ± 0.4 ‰ while the 2nd culture of diatoms were oxidized at 

82 ± 5% efficiency and produced an isotopic depletion of -3.5 ± 0.2‰.  Upon comparing the 

isotopic depletion with the oxidation efficiency, the P-test value was 0.91, which indicates that 
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there is a significant correlation between isotopic depletion and oxidation efficiency for this 

matrix.  

Within isotopic reaction studies, a common relationship that is observed is Rayleigh 

fractionation.  Rayleigh fractionation is an exponential relation that describes the partitioning of 

isotopes between two reservoirs as if one reservoir decreases in size. Typical Rayleigh 

fractionation shows that the product is isotopically lighter than the reactant, until all of the 

reactant is converted to product.  At that point, the δ15N of the product is equal to the δ15N.  

Within the scope of this project, the reactant is organic N in the form of photopigment and the 

product would be post-oxidized NOx.   For any reaction that obeys Rayleigh fractionation, the 

lower the oxidation efficiency, the more isotopically depleted the post-oxidized δ15N.  The 

relationship between oxidation efficiency and the δ15N should be expected if Rayleigh 

fractionation occurs during the reaction.  Furthermore, Rayleigh fractionation can be used to 

describe an isotope fractionation process if:  (1) material is continuously removed from a mixed 

system containing molecules of two or more isotopic species, (2) the fractionation accompanying 

the removal process at any instance is described by the fractionation factor, α, and (3) α does not 

change during the process. 

The oxidation of photopigment consistently produced lighter products, which is in 

agreement with the theory of isotopic fractionation.  As the method was applied, the product 

became isotopically depleted since the lighter isotope is preferentially reacted relative to the 

heavier isotope.  However, it was observed that, as the oxidation efficiency of the reaction 

improved, the products were not always isotopically lighter.  This is in disagreement with the 

theory of Rayleigh fractionation.   
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An example of this disagreement is seen with the second spinach sample.  A graph of the 

five post-oxidized samples, shown in Figure 8, shows the relationship between oxidation 

efficiency and the isotopic offset between the pre-oxidized starting material and the post 

oxidized product.  The graph shows that the reactants which had a lower oxidiation efficiency 

have a lower isotopic offset while the reactions with the highest oxidiation efficiency have the 

largest isotopic offset.  If a reaction agrees with Rayleigh fractionation, reactions with higher 

oxidation efficiencies should produce products with a δ15N values which are closer to that of the 

starting material.  This is not true for our samples. 
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Figure 9:  Comparing the relationship between oxidation efficiency of the 2nd batch of spinach 

samples and the isotopic offset between the pre-oxidized substrate and the post-oxidized product 

 

As stated earlier, when photopigment is converted to NOx via UV/H2O2 oxidation, the 

reaction proceeds through a complex pathway of reversible equilibria reactions and irreversible 

unidirectional kinetic reactions.  Each type of reaction exhibits isotopic fractionation and thus 

has numerous points at which to violate the single step unidirectional reaction assumption 

underlying Rayleigh fractionation.  Rayleigh fractionation is also thrown off if the organic N 

extract, due to co-extraction, contains different δ15N components that oxidize preferentially. 

Our hypothesis is that throughout the course of the conversion of photopigment to nitrate, 

numerous gaseous intermediates are produced.  As stated earlier, the conversion of organic N 

into NOx undergoes a series of reactions which experience fractionation.  Graham’s law of 

diffusion demonstrates that lighter isotopes are preferentially favored relative to the heavier 
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isotopes.  Furthermore, when the NOx gases are reconverted to nitrate and nitrite, the lighter 

isotope, 14N, will be preferentially favored.  Typically, the products which are not successfully 

converted to nitrate/nitrate will be that of the heavier isotope, 15N.  Therefore, reactions which 

have lower oxidation efficiencies will be isotopically heavier since the heavier isotopes will not 

be lost as NOx gas. 

 

     Natural Samples 
 

The testing of mixed matrices, samples which contained both terrestrial and marine 

samples, provided valuable information about the practicality of our method.  The bulk δ15N 

values that were obtained for the 3 solutions containing both SPOM and diatom samples were in 

agreement with the predicted δ15N values for the mixtures (Figure 5).  However, this was not the 

case for post-oxidized samples.  While the δ15N offset for samples which contained only marine 

or terrestrial extracts produced a consistent δ15N offset post-oxidation, with an δ15N isotopic 

depletion of -10‰, the mixed samples produced highly variable δ15N that were not within the 

brackets of the terrestrial and marine samples (Table 11). 

IRMS-EA analysis showed that our samples contained a very high carbon:nitrogen ratio.  The 

excessive amount of carbon in the sample likely swamped the oxidation capacity of the matrix, 

which contributed to poor oxidation efficiencies.  TLC analysis demonstrated that the natural 

samples contained a large amount of non-polar lipids.  As stated earlier, these lipids do not 

contain nitrogen; however, they contain a large amount of carbon.  Since the peroxide is not 

substrate specific, both the lipids and the photopigments will be oxidized.   Therefore, if the 

amount of lipids in the sample can be decreased, the oxidation efficiency will increase 

accordingly.  
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CONCLUSIONS 
 
 
 

A new method for the isotopic analysis of photopigments has been developed.  Photopigment 

purification was accomplished using a column chromatography/HPLC approach.  While this 

method displayed problems with the co-extraction of non-polar lipids, these compounds dodid 

not contain nitrogen nor did they directly impact the isotopic analysis of nitrogen. 

The photopigments were converted to nitrate and nitrite via UV and Oxidation with 30% H2O2.  

Optimum conditions for the reaction of photopigments were 4 hours of UV irradiation in a UV 

digestion chamber with 20 uL of 30% H2O2 and a 12 hour equilibrium time post-reaction.  Under 

these conditions, consistent oxidation efficiencies (determined by adding the amount of nitrate 

and nitrite in the sample divided by the amount of nitrogen in the pre-oxidized sample) were seen 

for the photopigments at a concentration of 5 uM.  Depending on the type of 30% H2O2 used in 

the reaction, the blanks were less than 10% of the total signal.  While the conversion of the 

photopigments via UV oxidation produced both nitrate and nitrate, both products were suitable 

for isotopic analysis.   

An Isotope Ratio Mass Spectrometer with an Elemental Analysis Interface (IRMS-EA) was used 

to determine the δ15N value for the pre-oxidized samples.  Post-oxidized samples were sent to the 

US Geological Survey (IRMS) to perform isotopic analysis of post-oxidized samples.  Analyses 

of bulk samples, extracted photopigments, and post-oxidation NOx products were performed to 

determine whether there was a consistent ∆δ15N between the pre-oxidized substrate and the post-

oxidized product.   

Our experiments showed that homogeneous samples (photopigment extracted from spinach and 

diatoms) produced consistent and reproducible δ15N isotopic offsets whereas natural samples 
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produced highly variable isotopic offsets.  This was seen due to the large carbon:nitrogen ratio of 

the sample, which diminished the oxidation efficiency of the sample.  Further studies will be 

performed to optimize the extraction of photopigments from natural samples to reduce the co-

extraction of lipids and other carbon dense compounds. 
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APPENDICES 
 

Appendix A.  Artificial sea water (ASW) was prepared using the following recipe  
 

Compound g/L  
NaCl 24.5 
KBr 0.1 
KCl 0.7 

H3BO3 0.03 
Na2SO4 4.09 
NaHCO3 0.2 

CaCl2 · 6H2O 1.545 
MgCl2 · 6H2O 11.1 

 
Compounds used in ASW preparation 

 
 
 
 
 

 

Aqueous Solutions used to prepare Artificial Sea Water 

 

Compound mL/L 
Vitamins 0.5 

Trace Metals 1 

5 g/L Na2H3PO4 1 

30 g/L NaSiO4 1 
30 uM N stock 0.4 

 
Solutions used to prepare ASW post-autoclave 

 
 
 

 

 

Solution mL/L 
.3g/50 mL NaF 0.5 

1.7 g/50mL SrCl2 0.5 
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Appendix C: Calibration Curves for Ion Chromatography 

 
 

 
 
 

 

 

 

 

 

 

Figure 10: Nitrate Calibration Curve for Ion Chromatography 

 
 

 

 

 

 

 

 

 

 

Figure 11: Nitrite Calibration Curve for Ion Chromatography 
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Appendix D:  IRMS-EA Calibration Curve  

 

 

 

 

 

 

 

 

 

Figure 12:  Nitrogen Calibration curve for IRMS-EA Analysis of USGS 40 and USGS 41 
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Appendix E:  Basic Principles to Stable Isotopes 

When performing isotopic studies, there are important concepts that should be understood prior 

to an analysis.  The two common isotopes of nitrogen are nitrogen-14 (14N) and nitrogen-15 

(15N).  At natural abundance, the ratio of 14N to 15N is 99.634:0.336. Since the nitrogen-15 

isotope is much rarer, it provides a smaller background and all studies involve the ratio of 15N to 

14N in a sample.  Stable isotope ratios are expressed the δ (del) notation.  To calculate the del 15N 

value of a substance, the following equation is used: 

 

δ 15N = (Rs-Rr / Rr) x 1000;   Rs = 15N/14N of the sample 

Rr = 15N/14N of the reference 

The δ15N values are reported as parts per thousand, although they are commonly referred to as 

per mille.  Values are listed with ‰ as the unit.  A positive δ value means that the isotopic ratio 

of the sample is higher than that of the standard; a negative δ value indicates that the isotopic 

ratio of the sample is lower than that of the standard.  The designated standard for nitrogen 

isotopic analysis is air, which has a value of 0. 

Another important principle involving isotopic reactions is the principle of fractionation.  The 

theory behind isotopic fractionation is that isotopes of an element have slightly different 

chemical and physical properties because of their mass differences.  Usually, chemical reactions 

preferentially use the lighter isotope (14N) over the heavy isotope (15N).  Therefore, any 

compound produced in a chemical reaction is isotopically lighter than the starting material.  The 

equation to determine the fractionation factor (α) is as follows: 

α = Rreactant/Rproduct 

R = ratio of 15N/14N isotopes 
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The fractionation factor (α) is dependent many variables, although temperature is the most 

important variable.  As the temperature of a reaction increases, the fractionation factor will 

decrease.  Therefore, at higher temperatures, there should not be any preference for the 14N 

versus the 15N isotope. 

Two types of chemical reactions which exhibit fractionation are equilibrium reactions and 

unidirectional reactions.  Equilibrium fractionation reactions exhibit equilibrium fractionation 

and unidirectional reactions exhibit kinetic fractionation.  The products of a kinetic fractionation 

are always lighter than the reactants since lighter isotopes react faster than heavier isotopes and 

the substrate can only be converted to product.  However, this is not the case for equilibrium 

fractionation reactions.  Equilibrium fractionation reactions can produce products that are heavier 

or lighter than the starting material.    
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