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Abstract: Morphological differences in the peripheral (sensory) and central (brain) nervous system
may confer sensory and/or behavioral variation in elasmobranchs, both across taxa and throughout
ontogeny. Over the last century, sea surface temperatures have increased over 0.5 ◦C and are predicted
to rise 1–4 ◦C by the year 2100, potentially affecting species’ physiological performance negatively.
As the nervous system of fishes grows continually throughout their lives, it may be highly plastic in
response to environmental changes. This study examined the effects of increased rearing temperature
on nervous system development in Port Jackson sharks (Heterodontus portusjacksoni). Egg cases (n = 21)
were collected from Gulf St. Vincent (Adelaide, SA) and placed into either ambient (17.6 ◦C) or 3 ◦C
above ambient seawater conditions through hatching and reared for up to five months post-hatch.
Relative volumes of the eyes and nose (olfactory rosette) were quantified using magnetic resonance
imaging, and relative brain size and size of major brain regions were compared between the two
treatment groups. The size of the olfactory bulbs and tegmentum varied significantly between the
treatment groups, which suggest differences in primary, secondary, or tertiary sensory processing
and/or motor functions at elevated temperatures. While studies on acute responses to environmental
conditions cannot inform true adaptation across broad timescales, understanding the effects of
increased temperature on the brain phenotype can aid in predicting how elasmobranchs may fare in
response to changing ocean conditions.

Keywords: comparative neuroanatomy; climate change; thermal physiology; elasmobranchs

Key Contribution: When reared under increased temperatures, Port Jackson sharks have significantly
smaller olfactory bulbs and larger tegmentum. This phenotypic plasticity in the brain may indicate a
change in sensory processing in this species when exposed to environmental changes.

1. Introduction

Environmental stressors caused by climate change can impact the survivability of
marine organisms; yet, the effects of anthropogenic changes on the physiology of many
species are largely unknown. Over the last century, sea surface temperatures have increased
over 0.5 ◦C, and are predicted to rise 1–4 ◦C by the year 2100 [1–3]. Temperature increases
of 1 ◦C or more will likely have broad, irreversible effects on species composition and
ultimately on ocean ecosystem services [4–7]. Previous studies have examined the com-
bined effects of various environmental stressors on marine organisms (see [1] for a review);
but, as temperature dictates the performance of any given biological function, parsing out
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the specific effects of temperature on anatomy, physiology, behavior, and survivability of
marine species is critical.

An organism’s thermal physiology is largely driven by its geographic distribution
and the conditions in which it has evolved to thrive under. Changes in physiological per-
formance across temperature ranges and in response to climate change impact numerous
biological processes, including body size and growth rate, metabolism, behavior, reproduc-
tive success, feeding, and species distribution [4–6,8–13]. In addition, thermal responses are
highly plastic and variable, both within and among species. For example, species adapted
to a narrow, stable environment, like the tropics, may be pushed beyond their physiolog-
ical limits with small changes in temperature, compared to species residing under more
variable conditions [14]. As individuals experience temperatures either warmer or cooler
than a trait’s optimal, their performance will decline. Similarly, large shifts in temperature
towards either thermal range edge will ultimately inhibit that trait [15]. Processes that are
non-essential to survivability, including somatic growth and reproduction, are often the
first traits to be impacted, as basic maintenance costs begin to require greater proportions
of available energy [16].

While it is metabolically costly to develop and maintain neural tissue [17], a larger
brain has been hypothesized to confer some evolutionary benefits [18,19], though these ben-
efits remain speculative [20]. In addition, high energetic costs of brain tissue maintenance
is thought to have, in part, constrained brain size throughout evolution [17]. Therefore,
evolutionary trends in encephalization (or a larger brain than expected for any given body
size) may be positively associated with aerobic capacity due to the high energetic costs
of brain tissue [21–24]. Within these evolutionary constraints, there is a large degree of
interspecific variation in brain size and brain organization, or the relative size of major brain
regions (e.g., the olfactory bulbs, telencephalon, diencephalon, mesencephalon, cerebellum,
and medulla oblongata) across cartilaginous fishes [25–31]. A large degree of this variation
has been correlated with a species ecology or life history patterns (e.g., [31–34]), a trait also
seen in a range of other vertebrate groups (e.g., [35–38]), which may be associated with
sensory specialization and/or behavior.

Although variation in brain size and organization between species is high, far less
is known about the degree of intraspecific phenotypic plasticity in this group. Under-
standing this plasticity can be crucial for determining how environmental factors correlate
with ontogenetic brain allometries [39]. For example, environmental enrichment has been
shown to positively correlate with neural growth across taxonomic groups, including
rodents [40–42], birds [43], reptiles [44], and fishes [45]. Similar to seasonal shifts in ther-
mal thresholds of fishes [1], brain size and architecture may also change seasonally or shift
with changing environmental conditions in fishes, birds, and mammals [46–50]. Changes
in brain size may also be correlated with environmental factors, such as water turbidity,
depth, and habitat complexity [51–54]. However, very little is known regarding intraspecific
variability in the brain of cartilaginous fishes, (e.g., [55,56]), and even less about variation
of the brain in individuals reared under different environmental conditions.

Many species of fish, along with a number of reptiles and amphibians, experience
indeterminate growth, whereby their body grows continuously throughout their life [57].
Correspondingly, fish brains also grow throughout ontogeny [58–62], often with a period
of rapid growth early in life, tapering off after sexual maturity [55,56,63–65]. This con-
trasts with mammals, where adult neurogenesis is restricted to two main proliferative
brain regions in the forebrain [66–69]. Therefore, lifelong neurogenesis in species with
indeterminate growth creates a system with the potential for a high degree of plasticity,
but at the potential cost of continued energetic demands [56]. Given that the metabolic
rate of ectotherms is largely determined by environmental temperature [70], temperatures
elevated above an organism’s thermal window may impact normal patterns of brain growth
in fish.

Elasmobranch fishes (sharks, skates, and rays) serve many ecological functions and
ecosystem services; therefore, assessing their adaptive physiological capabilities in a chang-



Fishes 2023, 8, 611 3 of 20

ing climate not only helps in understanding environmental effects on these species but
also possible effects further down the food web [71]. Elasmobranch populations have been
drastically declining over the last few decades, with an estimated 31% of sharks listed as
threatened (Critically Endangered, Endangered, or Vulnerable) on the IUCN Red List of
Threatened SpeciesTM [72]. In addition, their adaptive capabilities are believed to be limited,
owning to the late age at maturity, relatively long lifespan, and low fecundity of many
species [73]. This life history strategy may also impair the ability for these species to cope
with increased environmental stressors due to climate change [74], with warming critically
impacting development time, aerobic metabolism, and thermal tolerance [75]. Studies on
the effects of climate change on elasmobranchs indicate variable and species-specific effects
across different environmental scales. Combined effects of increased temperature and
decreased pH exhibit significant effects on development time in embryos and physiology
and behavior in juvenile sharks [76]. In particular, these combined environmental stressors
significantly impact metabolism, survival, and body condition during the early life stages
of the brownbanded bamboo shark (Chiloscyllium punctatum) and little skate (Leucoraja
erinacea) [77,78]. The sandbar shark (Carcharhinus plumbeus) also exhibits a significant re-
duction in metabolic performance under high temperatures (32 ◦C) [79]. Although this
temperature is outside of its current thermal distribution, the likelihood of encountering
higher temperatures will continue to increase with climate change [79].

The Port Jackson shark (Heterodontus portusjacksoni) is a temperate, benthic shark
species found along the continental shelf in Southern Australia [80]. It is a slow-growing,
long-lived species with a low fecundity [81]. This species is also prone to high rates of
pre-hatch mortality, reaching over 89% [82]. As the waters of southeast Australia are
experiencing sea surface warming faster than the global average [83], this species may
be particularly at risk under future ocean conditions. Previous studies on H. portusjack-
soni have shown that the combined effects of ocean acidification and warming reduces
metabolic efficiency [84]. Sharks maintained under increased water temperatures also
exhibit atypical swimming patterns, reduced feeding responses, and increased frequency
of body injuries [85]. While this species exhibits highly repeatable, individual differences in
behavioral trials [86,87], sharks take less time to discriminate quantity when reared under
high temperatures [88,89]. The change in laterality and cognition induced by exposure
to high temperature was hypothesized to aid in mitigating the deleterious effects of envi-
ronmental stressors [88,89]. Additional studies on this species have shown the effects of
environmental temperature on mortality rates [89], growth rates [90], maximum oxygen
consumption and critical thermal limits [85], and muscle capillary density [91]. However,
no study has yet investigated whether changes to environmental temperature correlate
with morphological changes in the nervous system in the Port Jackson shark.

The brain plays a critical role in controlling physiological and behavioral processes.
Thus, understanding the influence and degree of environmental effects on the neural
phenotype when exposed to environmental perturbations is crucial for predicting future
impacts of anthropogenic stressors. Therefore, this study quantified the effects of increased
temperature on the peripheral nervous system (i.e., eyes and olfactory rosette), brain size,
and brain organization in juvenile H. portusjacksoni. It was hypothesized that sharks reared
under increased temperatures would exhibit a reduction in relative brain size, size of major
brain regions, and size of peripheral nervous system structures due to the increased oxygen
demand and metabolic costs when exposed to higher temperatures.

2. Materials and Methods
2.1. Embryonic Growth and Development

Heterodontus portusjacksoni shark eggs were collected (n = 21) by hand from Christies
Beach’s Horseshoe Reef in Adelaide, South Australia (35.141◦ S; 138.465◦ E), on the same
day in November 2016, following the ethical guidelines of the Macquarie University Animal
Ethics Committee (ARA # 2016-027; [85]). Egg color and pliability were examined to collect
eggs younger than six weeks post-oviposition [92], ensuring that 85% of development
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occurred under treatment conditions [85]. Transportation and rearing conditions have been
described in detail by Gervais et al. [85]. In brief, eggs were transported and maintained at
Macquarie University, New South Wales, at their collection temperature (17.6 ◦C) for one
week; then, temperatures were increased (0.5 ◦C day−1) until experimental temperatures
were reached. Egg cases were then maintained at either ambient (17.6 ◦C; n = 11) or elevated
(20.6 ◦C; n = 10) seawater conditions until hatching. The ambient temperature represented
the current average sea temperature of Adelaide, SA [93], whereas the elevated temperature
represented the end-of-century (EOC) conditions under the RCP 8.5 climate model [2]. After
hatching, neonates were placed into a nursery tank under the same temperature their egg
cases were maintained in and fed a mixture of prawns, fish, and squid (ad libitum) every
other day. Following experimental analyses by Gervais et al. [85] for up to 5 months post-
hatch, animals were then euthanized in 0.4 g/L of seawater from MS222 (m-aminobenzoic
acid ethyl ester, methanesulfonate salt) if they had not died naturally. Age at death, total
length (TL (cm)), and body mass (g) were immediately measured after death to the nearest
0.1 g or 0.1 cm (Table 1). The heads were excised and immersion-fixed in 10% formalin in
0.1 M phosphate buffer and then shipped to the University of North Carolina Wilmington
for additional analysis, including collecting white skeletal muscle for Thomas et al. [91]
and nervous system tissue for the present study.

Table 1. Brain mass, brain structure mass, and morphometric data collected from the 21 specimens
of H. portusjacksoni examined in this study. OT mass was estimated using the ellipsoid method,
following Wagner [94]. TEG mass was estimated by subtracting the OT mass from the mesencephalon
mass. Abbreviations: CER, cerebellum; DI, diencephalon; MED, medulla oblongata; OB, olfactory
bulb; OT, optic tectum; TE, telencephalon; and TEG, tegmentum.

ID Treatment Age,
Days Sex Body

Mass, g
TL,
cm

Brain
Mass, g

OB
Mass, g

TE
Mass, g

DI
Mass, g

OT
Mass, g

TEG
Mass, g

CER
Mass, g

MED
Mass, g

01A Ambient 125 M 50.0 23.0 0.688 0.053 0.376 0.061 0.034 0.032 0.078 0.125
02A Ambient 136 M 81.5 27.0 0.913 0.080 0.441 0.080 0.041 0.036 0.097 0.158
03A Ambient 126 M 90.0 26.5 0.843 0.080 0.418 0.076 0.043 0.034 0.083 0.130
04A Ambient 116 M 101.5 26.5 0.909 0.102 0.458 0.078 0.041 0.037 0.094 0.144
05A Ambient 125 M 77.0 25.2 0.821 0.071 0.408 0.063 0.035 0.037 0.091 0.138
06A Ambient 112 M 54.5 22.3 0.666 0.056 0.335 0.059 0.041 0.025 0.068 0.117
07A Ambient 139 F 68.0 24.0 0.857 0.074 0.436 0.069 0.047 0.020 0.085 0.132
08A Ambient 134 F 63.0 24.5 0.738 0.050 0.398 0.067 0.025 0.041 0.075 0.135
09A Ambient 116 M 102.5 26.5 0.816 0.091 0.422 0.064 0.037 0.042 0.088 0.132
10A Ambient 138 M 77.0 26.0 0.827 0.067 0.414 0.066 0.042 0.036 0.091 0.137
11A Ambient 92 F 75.0 24.1 0.787 0.063 0.393 0.065 0.041 0.032 0.085 0.125
01E Elevated 177 F 87.5 25.7 0.928 0.082 0.461 0.082 0.036 0.054 0.109 0.163
02E Elevated 171 M 53.0 22.9 0.771 0.052 0.386 0.078 0.032 0.045 0.084 0.129
03E Elevated 150 M 45.0 22.5 0.749 0.056 0.358 0.062 0.037 0.037 0.082 0.136
04E Elevated 177 F 62.0 24.5 0.914 0.061 0.464 0.083 0.036 0.048 0.099 0.145
05E Elevated 177 M 65.5 23.1 0.825 0.067 0.415 0.074 0.037 0.047 0.091 0.150
06E Elevated 139 F 33.0 20.0 0.658 0.028 0.357 0.057 0.032 0.031 0.072 0.120
07E Elevated 145 F 63.8 25.5 0.839 0.062 0.422 0.074 0.046 0.038 0.101 0.160
08E Elevated 199 M 58.0 25.0 0.996 0.074 0.506 0.083 0.042 0.053 0.115 0.175
09E Elevated 136 F 41.0 23.5 0.866 0.071 0.419 0.066 0.039 0.039 0.092 0.142
10E Elevated 206 F 48.0 21.0 0.895 0.047 0.434 0.078 0.047 0.044 0.095 0.138

2.2. Magnetic Resonance Imaging (MRI)
2.2.1. Anatomical Imaging

Following a 16-month minimum period of post-fixation, a subset of specimens (n = 3
per treatment) was processed for magnetic resonance imaging (MRI). Prior to imaging, the
specimens were placed in a solution of PBS + 0.01% sodium azide for a minimum of one
week to remove fixatives and then transferred to a fresh solution of PBS + 0.01% sodium
azide + 5 mM of the contrast agent Prohance (Bracco Diagnostics Inc., Monroe Township,
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NJ, USA) for a minimum of one week. The addition of a contrast agent reduces the
longitudinal relaxation time (T1) and increases the signal-to-noise ratio efficiency [95,96].
The heads were then suspended in a chamber filled with an inert MRI-invisible solution
(Fomblin; KJ Lesker). All specimens were scanned on a Bruker 9.4 Tesla small animal
scanner (Billerica, MA, USA) with a 20 cm bore and either a 72 mm or 86 mm rat coil,
located at the University of North Carolina Chapel Hill’s Biomedical Research Imaging
Center (BRIC). High-resolution (70–100 µm), T1-weighted anatomical scans, using a 3D
FLASH sequence, were acquired from contrast-enhanced tissue. Previous research has
demonstrated that these scan parameters produce sufficient contrast between grey/white
matter in elasmobranch central and peripheral nervous system tissue [95,97]. The pulse
sequence parameters used for this study are shown in Table S1.

2.2.2. Segmentation of MR Images

Peripheral sensory structures (e.g., olfactory rosettes and eyes) from both treatment
groups were digitally segmented from the 3D data using ITK-SNAP software (Version
3.8.0), an open-source application that allows for both manual delineation and user-guided
automatic segmentation using an active contour (level set) algorithm [98]. The paired
olfactory rosettes and eyes from each sample were manually delineated and segmented to
calculate the volume of each structure in situ. The volumes of both olfactory rosettes and
eyes (left and right) from the MRI analysis were summed before the analyses and recorded
to the nearest 0.01 mm3 (Table 2).

Table 2. Eye and olfactory rosette volume (mm3) from MRI analysis collected from a subset of
6 specimens of H. portusjacksoni imaged in this study.

ID Treatment Eye Volume, mm3 Olfactory Rosette Volume, mm3

02A Ambient 716.3 435.4
07A Ambient 769.6 407.7
10A Ambient 684.2 405.3
03E Elevated 591.0 300.9
07E Elevated 688.7 273.4
09E Elevated 569.2 254.2

2.3. Tissue Processing

After imaging, brains were removed from the chondrocranium, and the spinal cord
was removed at the region of the first complete cervical spinal nerve. The brains were
then photographed and weighed to the nearest 0.001 g (Table 1). The brains were then
dissected into six major brain regions (the olfactory bulbs, telencephalon, diencephalon,
mesencephalon, cerebellum, and medulla) using planar divisions based on external anatom-
ical markers, following the criteria of Yopak et al. [99] and Northcutt [25], and weighed
to the nearest 0.001 g (Table 1). Briefly, the olfactory bulbs were separated from the rest
of the forebrain within 0.1 mm of the beginning of the olfactory peduncles. The caudal
boundary of the telencephalon was delineated at the rostral edge of the optic chiasm, and
the remainder of the brain was sagitally bisected to differentiate the four remaining regions.
The caudal boundary of the diencephalon was set at a diagonal plane extending from the
rostral edge of the optic tectum to the caudal edge of the infundibulum. The midbrain
was separated from the hindbrain using a planar vertical division at the caudal edge of
both tectal hemispheres. The cerebellum was defined as all of the tissue lying above and
including the upper leaf of the cerebellar auricles. The medulla was separated and included
tissue from the lower leaf of the auricles and the dorsal and medial octavolateralis nuclei.
The caudal boundary of the medulla was marked by the first complete cervical spinal nerve.

The optic tectum volume (a subregion of the mesencephalon) was estimated using
the idealized ellipsoid method [100]. The ellipsoid method is a technique to estimate brain
region volume, calculated by measuring the length, width, and height of a specified brain
region, assuming it is shaped like an idealized ellipsoid or half-ellipsoid [100]. The length
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(l), width (w), and height (h) of the left lobe of the optic tectum was measured using digital
calipers. The volume (V) of a single hemisphere of the optic tectum was then estimated
using the following formula:

V =
1
6

π (l·w·h) (1)

Assuming symmetry of the two tectal lobes, this value was then doubled to calculate
the total volume of the optic tectum. The optic tectum volume was then converted into mass
using the estimated specific gravity of brain tissue (1.036 mg/mm3) [94]. Once calculated,
the mass of the optic tectum was subtracted from the mass of the mesencephalon to estimate
the mass of the tegmentum (Table 1).

2.4. Statistics

The Welch’s two sample t-test was used to test for differences in age, log10-transformed
total length, and log10-transformed body weight between the ambient and elevated treat-
ment groups. A Shapiro–Wilk test was used to test the normality of biometric measure-
ments. Body size varied between treatment groups (see results), and the volume of nervous
system (both peripheral and central) structures is known to vary with body size. Therefore,
nervous system (peripheral and central) structure volume and brain mass were corrected
for body mass using residuals calculated from linear models. To determine whether log10
transformations were necessary prior to the analyses, the best linear model for predicting
scaling relationships was determined using the corrected Akaike information criterion
(AICc). This method corrects for biases from small sample sizes [101], and was designed
to minimize Kullback–Leibeler information between the model generating the data and a
fitted candidate model [102]. The model with the lowest AICc score was therefore selected
as the best fit model [103]. Two candidate models of peripheral nervous system (PNS) struc-
ture volume and total brain volume were tested, including raw structure size ~ raw body
mass (model 1) and log10 structure size ~ log10 body mass (model 2). Modeling of the PNS
region and total brain mass against body mass indicated that log10 transformations were a
significantly better fit (model 2; Tables S2 and S3). Therefore, log10 PNS structure volume
and total brain mass were then regressed against log10 body weight, and the standardized
residuals were calculated to obtain a measure of relative size.

For the major brain regions, residuals were calculated from linear models of brain
region mass against total brain mass. Two candidate models for each brain region were
tested, including brain region mass~total brain mass (model 1) and log10 brain region
mass~log10total brain mass (model 2). AICc scores indicated that raw brain region mass
against brain mass was a significantly better fit (model 1; Table S4). Brain region mass was
then regressed against brain mass, and the standardized residuals were calculated to obtain
a measure of relative brain region size. Standardized residuals for eye volume, rosette
volume, brain mass, and brain region mass between the ambient and elevated temperature
groups were then compared using the Welch’s two sample t-test. Finally, a post-hoc Holm–
Bonferroni pair-wise correction was used to account for multiple comparisons [104]. An
alpha value of p < 0.05 was considered significant.

These data were also analyzed using a multivariate approach to visualize the cluster-
ing of samples and characterize patterns of brain organization between treatment groups.
Principal component analysis (PCA) was used to reduce the number of variables to graph-
ically illustrate the greatest source of variation between individual brain regions. The
relative volume of each brain region was first calculated as a fraction of the total brain mass;
then, structure proportions were normalized with the arcsine square root transformation
before applying the PCA on the correlation matrix. This technique has been widely used in
assessing multidimensional datasets in comparative neuroanatomy (i.e., [64,100,105–107]).
Finally, PC1 and PC2 scores were compared using the Welch’s two sample t-test. All data
were analyzed using RStudio version 4.0.3 [108] with packages ggplot2 version 3.3.2 [109],
FSA version 0.9.3 [110], and MuMIn version 1.43.17 [111].
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3. Results
3.1. Body Size

A comparison of biometric data indicated sharks reared under elevated temperatures
were significantly older at the time of euthanasia (t(14.06) = −5.01, p < 0.001) but were signif-
icantly smaller in both body weight (t(17.67) = 2.91, p = 0.02) and total length (t(17.71) = 2.21,
p = 0.04) compared to sharks at ambient temperatures (Figure 1).
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3.2. The Nervous System

The peripheral and central nervous system morphology of H. portusjacksoni is shown
in Figure 2. There was no significant difference in eye (t(2.20) = 0.18, p = 0.88) or olfactory
rosette (t(2.26) = 1.13, p = 0.72) residuals between the ambient and elevated treatment
groups (Figure 3). There was also no significant difference in the relative brain mass
between the ambient and elevated treatment groups (t(16.54) = −2.62, p = 0.11; Figure 4).
However, the olfactory bulbs were significantly smaller in sharks reared under elevated
temperatures (t(18.81) = 3.71, p = 0.01), while the tegmentum was significantly larger
(t(16.64) = −3.10, p = 0.05). There was no significant difference in the relative size of
the telencephalon (t(18.11) = 0.49, p = 0.95), diencephalon (t(16.84) = −1.49, p = 0.64),
optic tectum (t(18.82) = 0.95, p = 1.00), cerebellum (t(18.83) = −2.54, p = 0.11), or medulla
oblongata (t(16.59) = −1.86, p = 0.32) between the treatment groups (Figure 4).
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Figure 4. Changes in the relative size (residuals) of the brain and seven major brain regions of
H. portusjacksoni between the ambient and elevated treatment groups, showing the (a) total brain,
(b) olfactory bulbs, (c) telencephalon, (d) diencephalon, (e) optic tectum, (f) tegmentum, (g) cerebel-
lum, and (h) medulla oblongata. Asterisks indicate a significance difference.
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3.3. Principal Component Analysis

Principal component analysis (PCA) performed on the correlation matrix of the relative
size of the seven brain regions assessed in this study yielded seven principal components
(Table 3). The first axis explained over 53% of the variance, and was primarily related to
olfactory bulb size. The second axis was related to tegmentum size, and to a lesser extent
optic tectum size, and explained over 78% of the cumulative observed variation. Inclusion
of the third component explained 89% of the total cumulative variation, and reflected the
loadings for the telencephalon and optic tectum. In the plots of PC1 and PC2 (Figure 5),
most individuals from the ambient group clustered on the right, while individuals from the
elevated treatment group clustered on the left. There was a significant difference in the PC1
scores between the ambient and elevated treatment groups (t(18.98) = 3.47, p < 0.005), but
not between the scores for PC2 (t(19) = −1.34, p = 0.20). The clustering was reflective of the
ambient treatment group having significantly smaller olfactory bulbs, while the elevated
group had a significantly larger tegmentum.
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Table 3. Loadings and cumulative proportion of variation explained by each of the seven principal
components.

Brain Region
Principal Component Loadings

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Eigenvalue 1.024 × 10−3 4.874 × 10−4 2.042 × 10−4 1.077 × 10−4 6.900 × 10−5 3.032 × 10−5 3.528 × 10−7

Olfactory bulbs 0.900 0.297 0.043 −0.010 0.036 0.059 0.308
Telencephalon −0.140 −0.312 0.660 −0.164 −0.180 0.093 0.615
Diencephalon −0.121 0.015 0.036 0.689 0.585 −0.237 0.332
Optic tectum 0.114 −0.541 −0.513 0.356 −0.343 0.357 0.243
Tegmentum −0.323 0.712 −0.040 0.242 −0.341 0.396 0.236
Cerebellum −0.071 0.108 −0.303 −0.089 −0.403 −0.779 0.339

Medulla −0.182 0.053 −0.452 −0.552 0.477 0.203 0.432
Cumulative proportion of

variation 0.532 0.786 0.892 0.948 0.984 0.999 1.000

4. Discussion

Our study assessed the effects of increased rearing temperatures, as a proxy for ocean
warming, on peripheral (eyes and olfactory rosettes) and central (total brain and its organiza-
tion, including the olfactory bulbs, telencephalon, diencephalon, optic tectum, tegmentum,
cerebellum, and medulla oblongata) nervous system development in Heterodontus portusjack-
soni. It was hypothesized that sharks reared under increased temperatures would exhibit
a decrease in relative brain size, the size of major brain regions, and the size of peripheral
nervous system structures. While the sharks that were reared under increased temperatures
exhibited a smaller body size, only the olfactory bulbs were significantly smaller in this
group. In addition, another region of the brain (tegmentum) was significantly larger in
the elevated treatment group. Though this study was not a functional analysis, Jerison’s
“Principle of Proper Mass” [112] predicts that an increased size of any specified brain re-
gion will, to some degree, reflect a specialized function of that brain region. As a change
in the size of either the brain or any major brain regions has implications for functional
specialization in all vertebrate groups [43,47,54,113–116], changes to the nervous system at
increased rearing temperatures may confer variation in neural function, such as laterality
and cognition, sensory impairment, or behavioral anomalies, in these fish [88].

The adult stages of many ectotherms have physiological and behavioral strategies to
buffer potential changes in temperature. However, developing embryos are particularly
at risk to changes in temperature due to the combined effects of a constrained thermal
window, an inability to move away from regions of high temperature [1], and little potential
to modify their body temperature [117]. In the present study, embryonic development
time was significantly reduced in H. portusjacksoni when exposed to a temperature increase
of 3 ◦C (Gervais, unpublished). While the sharks were significantly older in the elevated
treatment group, it is due to the fact that embryonic development was shorter and, thus,
they hatched earlier than ambient sharks. Despite hatching earlier, they were significantly
smaller in body mass and total length, which may be related to differences in oxygen con-
sumption and the increased energetic demand of living under elevated temperatures [85].
Individuals from the current study also exhibited increased capillary density in the elevated
treatment group, indicating that they may be able to metabolically restructure their muscle
tissue to maintain oxygen supply at higher temperatures [91]. This morphological change in
muscle vascularization may indicate a degree of thermal plasticity through acclimatization
in this species based on evolutionary adaptations to temperature fluctuations [85,91]. In
addition, sharks in the current study were exposed to a constant temperature increase
(3 ◦C), although temperature variability or duration of exposure may also affect the fitness
of species facing climate change [118].

Variation in the anatomy and detection thresholds of individual sensory modalities
has been well studied across elasmobranchs [119], and are thought to confer variation in
sensory capacity to varying degrees [120–125]. These differences correlate with ecological
niches, suggesting that these systems are under differential selection pressures associated
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with primary habitats [126]. Given these specializations, sensory systems may be limited in
their capacity to tolerate changes in environmental parameters in response to anthropogenic
disturbance [127]. However, within the peripheral nervous system of H. portusjacksoni, there
were no differences in the eye volume nor olfactory rosette volume between the two rearing
temperatures (Figure 3), suggesting that a 3 ◦C increase in temperature in this species
does not affect gross development of the visual and olfactory system. Given the continued
retinogenesis (e.g., [128,129]) and proliferation of olfactory receptor neurons in the olfactory
epithelium (e.g., [130]) documented through adulthood in cartilaginous fishes, differences
may exist in the peripheral receptors that were not captured by volumetric assessment.

Animals reared under higher temperatures exhibit a significantly larger tegmentum,
but no differences in the size of the medulla, cerebellum, optic tectum, diencephalon, or
telencephalon. A proposed scaling law for vertebrate brains indicates “late equals large”,
where brain regions that develop later (e.g., the olfactory bulbs and telencephalon) exhibit
steeper allometric relationships compared to brain regions which cease neuronal prolifer-
ation earlier [131]. As the brain develops under a hindbrain-to-forebrain gradient [132],
a larger hindbrain at higher temperatures may be attributed to the increase in oxygen
uptake in embryos. The increase in the size of the tegmentum may also be related to
the increase in oxygen uptake rates under higher temperatures [85]. For example, when
exposed to increased temperatures, common minnows (Phoxinus phoxinus) reared under
warmer temperatures have larger brains, specifically larger medullas, a greater metabolic
rate, and an overall higher aerobic scope when compared to cool-acclimated fish [133].
The same H. portusjacksoni sharks collected from Adelaide double their resting oxygen
uptake rates in response to higher rearing temperatures [85]. Taken together, increases in
temperature over a narrow range may confer an increase in the rate of nervous system
development up to a point. However, surpassing thermal limitations may eventually lead
to a reduction in metabolic rate or compromised nervous system development [117,134].
The tegmentum is implicated in a variety of motor functions, including eye movement, and
receives secondary fibers from most major sensory, electrosensory, mechanosensory, and
auditory fibers [135,136]. Enlargement of this structure may therefore have implications for
sensory and motor processing in these sharks reared at higher temperatures.

In contrast to the tegmentum, Port Jackson sharks reared at elevated temperatures exhibit
significantly smaller olfactory bulbs, one of the last brain regions to develop embryologically
in elasmobranch fishes [137]. The metabolic efficiency of physiological functions, such as
feeding, digestion, and growth, is dependent on a species optimum temperature [138]. When
reared at high temperatures, embryonic yolk stores are not efficiently used in avians [139,
140] or fish [141]. If oxygen uptake rates are higher under increased temperatures, the
internal yolk stores available to embryos may be used up more quickly or inefficiently. As
H. portusjacksoni is oviparous [142] and therefore relies on a limited yolk supply during
development, a faster or inefficient use of available resources may negatively impact affect
forebrain development, which occurs during late embryogenesis, leading to smaller olfactory
bulbs. The olfactory bulbs also maintain a degree of allometric independence from the rest of
the brain in elasmobranchs, whereby they do not scale as tightly with brain size, compared
to other brain regions [143,144]. This decoupling may permit a higher degree of phenotypic
plasticity in the olfactory bulbs compared to the rest of the brain, and may explain why it is
one of the few brain regions that is significantly smaller at higher temperatures. As olfaction
is critical for an animal’s ability to avoid predators, find prey, identify and communicate with
conspecifics, locate potential mates, and navigate [119,145,146], any disruption in olfactory
signaling to the brain has the potential to significantly affect prey tracking in H. portusjacksoni.
In addition, Port Jackson sharks are largely nocturnal and predominantly feed on benthic
organisms [147,148], and likely rely heavily on olfactory cues for hunting. This species also has
relatively enlarged olfactory bulbs compared to many other benthic coastal species [144], and
both juveniles and embryos have been shown to alter their oxygen uptake rates in response
to predator-associated odorant cues [149,150]. Therefore, this species may be particularly
susceptible to changes in the functionality (and size) of the olfactory bulbs.
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Changes in brain size and neural phenotype may be affected by several variables,
including, but not limited to, the number and size of neuronal and non-neuronal (glial)
cells, the size of these cells, the number and density of connections between cells, and
the timing of developmental events forming the nervous system [151–153]. Therefore,
the effects of temperature on the nervous system may not be limited to changes in brain
size or organization, but likely also affect rate of brain development and/or neuro- and
gliogenesis. In lizards, an increased rearing temperature led to an increase in neuron
density in the telencephalon, although relative telencephalon size and total neuron number
were reduced in the high-temperature treatment group [154]. Due to the potential for
lifelong neurogenesis throughout the brain in these species, future research on the effects
of environmental perturbations should also focus on the rates of neurogenesis in the brain
and peripheral nervous system from development through ontogeny in sharks.

Gross dissection, as a method of brain weight calculation, has been used in many
previous studies on fishes (e.g., [25,29,64,155]). Sampling errors from this method in chon-
drichthyan fishes from additional studies have been reported to be less than 1.3% [25,32,99].
In addition, the ellipsoid method has been widely used in comparative brain studies
(e.g., [156–160]), as it is a rapid technique that does not require destructive sampling. While
this method is commonly used for its simplicity and speed of data collection [64,100], it
can also provide an over- or under-estimation of brain region volume. For example, it
supposes that a region perfectly approximates an idealized half-ellipsoid, and often in-
cludes ventricles and/or additional brain regions in its volume calculation [31,56,161,162].
This method has therefore been shown to overestimate brain volume, in part, due to the
convoluted shapes of the brain [160,161]. Given that the relative optic tectum size in this
study was estimated using the ellipsoid method (and the tegmentum size was calculated by
subtracting the optic tectum from the rest of the midbrain), these data should be interpreted
with caution. Finally, magnetic resonance imaging (MRI) is a technique that has been used
for brain volume assessment and anatomical descriptions in fishes [96,97,163,164]. This
method has been compared to the ellipsoid method to determine variability in volume
assessment in the Australian barramundi, Lates calcarifer. Brain regions calculated from
MRI were significantly smaller in the telencephalon and optic tectum compared to the
ellipsoid method, but there was no difference between MRI and the ellipsoid method in
the olfactory bulbs [96]. Therefore, comparing the volume of peripheral nervous system
structures (eyes and olfactory rosette) in this study to previous work is potentially limited
to similar methodologies.

Although the current study focused on the effects of increased temperature, pH
and hypoxic zones have also been predicted to change over the next 100 years, and the
consequences of their interactions on the physiology and survival of marine organisms
are a topic of increased concern [74,78,165–168]. The combined effects of environmental
stressors, including temperature, ocean acidification, and hypoxia, can interact to affect
a broad range of physiological processes [165]. While elevated temperatures may not
have deleterious effects on sensory structures, other aspects of climate change (such as
increasing CO2) may more greatly affect perceptions. For example, the black sea bream,
Acanthopagrus schlegelii, exhibited a significantly negative impact on foraging behavior, with
longer responses and latency times and reduced swimming velocity, when reared under
elevated pCO2 conditions [169]. Related to the visual system, the phototactic responses of
two-spotted goby larvae, Gobiusculus flavescens, were significantly affected under elevated
CO2 levels [170]. Future research should investigate the impacts of elevated CO2 on retinal
topography, olfactory receptor neuron density in the olfactory rosette, and neurogenesis in
the brain, and how these changes ultimately impact behavioral responses to elucidate how
these sensory structures are affected by environmental change [127].

5. Conclusions

Our study is one of the first to quantify the effects of increased temperature on brain
development in an elasmobranch species, the Port Jackson shark, H. portusjacksoni. While
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studies on acute responses to environmental conditions cannot inform true adaptation
across broad timescales, quantifying the effects of temperature on the brain phenotype can
aid in predicting the consequences of environmental perturbations. These results may also
indicate how elasmobranchs will fare in response to changing ocean conditions, particularly
when combined with behavioral and cognition studies. The waters of southeast Australia
are experiencing sea surface warming faster than the global average [83]. Although many
marine animals have the capacity to alter their distribution, a shift in geographic range
may be limited for H. portusjacksoni, as they exhibit high fidelity to breeding sites [171].
Moreover, as an oviparous species, embryos are incapable of behaviorally thermoregulating
during development. Due to the life history strategy of this species, H. portusjacksoni may
possess limited adaptive capabilities in the face of warming ocean temperatures. This
study showed that sharks reared under higher temperatures were significantly smaller in
body mass, despite being significantly older at time of euthanasia. The sharks exposed
to increased temperatures also displayed a larger tegmentum and smaller olfactory bulbs
than sharks at ambient temperatures. Understanding the effects of increased temperature
on neural phenotypes, especially within the regions responsible for processing sensory
and/or motor information, may aid in determining the consequences of ocean warming in
this species and indicate how they will respond to environmental perturbations.
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Results of the best-fit model for the total brain; Table S4: Results of the best-fit model for each
brain region.
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