
A Comparative Analysis of GitHub Contributions Before and
After An OSS Based Software Engineering Class
Jialin Cui

jcui9@ncsu.edu
North Carolina State University

Raleigh, USA

Runqiu Zhang
rz2cv@virginia.edu
University of Virginia
Charlottesville, USA

Ruochi Li
rli14@ncsu.edu

North Carolina State University
Raleigh, USA

Fangtong Zhou
fzhou@ncsu.edu

North Carolina State University
Raleigh, USA

Yang Song
songy@uncw.edu

University of North Carolina
Wilmington

Wilmington, USA

Edward Gehringer
efg@ncsu.edu

North Carolina State University
Raleigh, USA

ABSTRACT
This study presents a comparative analysis of contributions to
GitHub by students before and after participating in a Software
Engineering class based on Open Source Software (OSS). The pri-
mary objective is to understand the influence of formal software
engineering education on students’ engagement in OSS projects, as
reflected in their GitHub activities. The research addresses two key
questions. Firstly, it examines how GitHub contributions change
before and after the class. The corresponding hypothesis posits
that students’ average GitHub contributions will exhibit a distinct
pattern post-class compared to pre-class. Additionally, the study
explores the potential association between students’ academic per-
formance in the class and their level of GitHub contributions after
the class. The strength and direction of the potential association are
quantified using the Spearman correlation coefficient, considering
the potential non-linear nature of the data. This analysis uses data
from over 1000 students across more than 10 years, encompassing
their GitHub contribution data over multiple timeframes and their
grades in the class. The study employs a combination of statistical
methods, including paired tests and correlation analysis, to explore
these dynamics. While causality cannot be established due to the
absence of a control group, the findings offer valuable insights into
the correlation between academic engagement and practical contri-
butions in the realm of OSS development. This research contributes
to the understanding of how theoretical software engineering ed-
ucation might relate to practical application and engagement in
real-world projects.

CCS CONCEPTS
• Social and professional topics → Software engineering edu-
cation; Student assessment; • Software and its engineering
→ Open source model.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE 2024, July 8–10, 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0600-4/24/07
https://doi.org/10.1145/3649217.3653535

KEYWORDS
Software Engineering Education, Qualitative Study, Statistical Study,
GitHub

ACM Reference Format:
Jialin Cui, Runqiu Zhang, Ruochi Li, Fangtong Zhou, Yang Song, and Edward
Gehringer. 2024. A Comparative Analysis of GitHub Contributions Before
and After An OSS Based Software Engineering Class. In Proceedings of the
2024 Innovation and Technology in Computer Science Education V. 1 (ITiCSE
2024), July 8–10, 2024, Milan, Italy. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3649217.3653535

1 INTRODUCTION
In the evolving landscape of software development, Open Source
Software (OSS) has emerged as a pivotal force driving innovation
and collaboration. With the burgeoning growth of OSS projects,
there emerges an unparalleled opportunity for learning and con-
tributing, especially for students in Software Engineering disci-
plines. This study delves into the nuanced intersection of formal
software engineering education and active participation in OSS
projects, as reflected through contributions on GitHub.

GitHub, a platform at the forefront of version control and collabo-
rative software development, serves as a fertile ground for exploring
individual contributions to various projects. These contributions,
which include a range of activities such as commits, pull requests,
and repository management, offer tangible metrics to gauge a de-
veloper’s engagement in OSS. Our research aims to dissect these
metrics to understand the nuanced impact of academic instruction
on students’ engagement with OSS.

Central to our investigation are two pivotal research questions:
RQ1. What are the patterns and magnitude of change in students’
GitHub contributions before and after participating in a Software
Engineering class focused on Open Source Software (OSS)?
This inquiry seeks to unravel the patterns and trends in student
engagement with OSS projects, examining how formal education
might influence these dynamics.
RQ2. To what extent does academic performance in the Software
Engineering class correlate with the level of students’ GitHub
contributions in the subsequent period?
Here, we aim to explore the potential link between classroom suc-
cess and active, meaningful participation in OSS development post-
class.

https://doi.org/10.1145/3649217.3653535
https://doi.org/10.1145/3649217.3653535


ITiCSE 2024, July 8–10, 2024, Milan, Italy Jialin Cui et al.

The significance of this study lies in its potential to bridge the
often-discussed gap between theoretical learning and practical ap-
plication within the realm of software development. By analyzing
the GitHub activities of over 700 students across multiple time-
frames, coupled with their academic performance in a Software
Engineering class, our research offers a unique lens through which
to view how formal education may influence students’ involvement
in real-world software projects. While the absence of a control
group limits our ability to make definitive statements about causal-
ity, our findings promise to shed light on the intricate relationship
between academic engagement in software engineering and practi-
cal contributions to OSS.

Additionally, this study contributes to the broader discourse on
the role of OSS in educational settings. By providing a detailed exam-
ination of how students transition from theoretical understanding
to practical application, the research underscores the value of OSS
projects as a pedagogical tool in software engineering education.
Furthermore, our analysis seeks to inform educators and curriculum
designers about the potential long-term benefits of incorporating
OSS projects into software engineering courses, thereby shaping
future educational strategies in this field.

2 RELATEDWORK
The integration of GitHub and Open Source Software (OSS) in
software engineering education has been a focal point in recent
academic discourse. The research of Courtney and Vanessa [15]
is pivotal in this regard, demonstrating that the use of GitHub in
educational settings not only enhances students’ collaborative and
project management skills but also prepares them for professional
challenges. Their findings suggest that students who actively en-
gage with GitHub in their coursework feel more connected to their
field and achieve greater academic success.
Building upon this, Feliciano et al. [12] explored the specific

benefits of GitHub’s collaborative features. They found that these
features facilitate peer feedback and foster the development of
soft skills, contributing to a deeper understanding of course con-
tent. This study also suggests a positive correlation between active
GitHub engagement and academic success, particularly through
enhanced critical analysis and peer reviews.
Fang et al. [11] provided a more nuanced view, acknowledging

the stress and challenges associated with OSS contributions. De-
spite these challenges, the majority of students reported a positive
overall experience, citing valuable insights into real-world software
practices and the application of classroom-learned skills in practical
settings. This balance between qualitative and quantitative data
underscores the complexity of GitHub’s impact on student learning.
Pinto et al. [19] and Spinellis [22] contributed significantly to

this area by emphasizing the importance of selecting the right
OSS projects and tasks to align academic objectives with practical
software development practices. They argue that this alignment not
only enhances the flow of the course but also significantly improves
students’ learning experiences.
The insights of Pinto et al. [20] are especially valuable, reveal-

ing through interviews with software engineering professors the
tangible benefits of integrating OSS projects into courses. These
benefits include enhanced technical skills, development of collabo-
ration skills, and improvement in students’ resumes. This finding
is echoed by Trishala et al. [2], who observed that engagement

with GitHub and Stack Overflow platforms enhances both soft and
technical skills, crucial for collaborative environments.
However, despite the recognized benefits, certain studies like

those by Brannock and Napie [3] and He et al. [14] have only
provided anecdotal or limited evidence of the impacts of OSS in
education. These studies, focusing on pre-class and post-class sur-
veys, offer insights into students’ interest levels and perceptions
but lack a comprehensive, quantitative analysis.
In contrast, Andrews and Lutfiyya [1], Carrington and Kim [5],

and Buchta et al. [4] employedmore structured approaches to gauge
students’ experiences with OSS projects. Their studies, involving
surveys and questionnaires, indicated a high level of student satis-
faction and perceived real-world software experience, highlighting
the practical benefits of OSS in education.
The work of Schneider et al. [21] and Marmorstein [17] further

supports the positive impact of OSS contributions in software engi-
neering courses. Their studies revealed improvements in students’
IT skills, project enjoyment, and perceptions of employment readi-
ness.

While these studies collectively underline the benefits of OSS in
software engineering education, they predominantly rely on quali-
tative data, anecdotal evidence, and short-term assessments. Our
research seeks to fill this gap by providing a quantitative and longi-
tudinal analysis of students’ GitHub contributions, offering a more
detailed and long-term perspective on the impact of OSS project
integration in software engineering courses. This approach not only
contributes to a deeper understanding of the immediate benefits but
also explores the sustained influence of such educational strategies
over time.

3 BACKGROUND

3.1 Class Structure
Our study was conducted within the framework of a software
engineering course, uniquely structured to blend object-oriented
design and development with a hands-on approach using Ruby on
Rails. This course, consistently taught by the same instructor over
15 years, immerses students in the Ruby programming language and
the Ruby on Rails framework. Its curriculum is meticulously divided
into two segments: The initial half introduces fundamental concepts
including writing use cases, refactoring, Test-Driven Design (TDD),
Behavior-Driven Design (BDD), Agile methodologies, and Scrum.
The latter half is dedicated to advanced topics like SOLID principles
[18] and the 23 GoF design patterns [13].

The course assessment includes a variety of graded components:
two midterms, a final exam, four programming projects, two de-
sign documents, and three peer-assessed assignments. The project
sequence is carefully designed to deepen the students’ coding exper-
tise and collaborative skills progressively. The first project, centered
around coding interview-style questions, serves as an introductory
exercise in Ruby. The subsequent project challenges students to
form small teams and create a basic full-stack web application using
Ruby on Rails, laying the groundwork for collaborative develop-
ment. The highlight of the course is the third and fourth projects,
spanning over half the semester, where students engage directly
with real-world Open Source Software projects on GitHub. This im-
mersive experience is not just about coding; it’s about contributing
to a live OSS project that has a significant footprint in the real world,



A Comparative Analysis of GitHub Contributions Before and After An OSS Based Software Engineering Class ITiCSE 2024, July 8–10, 2024, Milan, Italy

with over a thousand forks and more than five hundred contribu-
tors. These small projects, built around an NSF-funded OSS project
led by the instructor, offer students an unparalleled opportunity to
apply their skills in a dynamic, real-world context. Teams are tasked
with a range of responsibilities, from refactoring and writing tests
to fixing bugs and adding new features to the existing codebase.
Teams are required to submit a pull request to the original reposi-
tory as the project submission. Additionally, this course integrates
a peer review component, wherein alongside their project work,
students critically evaluate the design documents and code of two
other teams. This not only fosters a culture of collaborative learn-
ing and feedback but also sharpens their analytical skills, crucial
for software development. Through this innovative approach, the
course bridges the gap between theoretical knowledge and practical
application, highlighting the profound impact of integrating OSS
projects into software engineering education. It provides students
with a robust platform to experience real-world software devel-
opment, preparing them for the challenges and dynamics of the
industry.

3.2 Data Collection
Our data collection spanned from Fall 2011 to Spring 2023, en-
compassing 24 semesters of project submissions. A unique aspect
of these projects was their requirement to be submitted as pull
requests on the respective Open Source Software (OSS) projects.
This approach enabled us to accurately identify the GitHub users
involved in each project. We meticulously matched the partici-
pants’ GitHub accounts with the students listed on the class roster,
cross-referencing GitHub profiles for verification. However, it is
important to note that the GitHub accounts of some students were
not retrievable. This was due to various reasons, such as the absence
of individual commits (owing to practices like pair programming
where only one partner committed the code, or instances of non-
participation). Over the past 12 years, we successfully retrieved the
GitHub accounts of 1,444 students.
To systematically gather and analyze the GitHub contribution

data, we developed specialized scripts using the GitHub API. These
scripts were designed to collect publicly available user GitHub con-
tribution statistics, recorded from the inception of the account until
December 2023. The comprehensive metrics we gathered are out-
lined in Table 1. We classified the repositories into two distinct
categories for a nuanced analysis: Type A repositories, which are ei-
ther originally created or forked by the user, and Type B repositories,
where the user contributes as a collaborator on a project initiated
by another user. Moreover, to refine our analysis, we focused on the
10 most popular languages on GitHub. These languages are Python,
JavaScript, Java, TypeScript, Go, C++, Ruby, PHP, C#, and C. We
calculated the size of code each user contributed in these languages.
This approach was adopted to mitigate the potential skewing of
data by languages like HTML, which, although voluminous in size,
might not accurately reflect a user’s coding contribution due to
its nature as a markup rather than a general-purpose program-
ming language. Our data collection approach has been proven by
previous studies [6–10] to be valid.

Our dataset was further processed and segmented based on five
distinct timeframes: six months, one year, two years, three years,
and total length, both before and after the class. This segmentation

allowed for a more granular and temporal analysis of the GitHub
contributions in relation to the software engineering class. We will
explain later.
For each contribution type listed in Table 1, we tracked the cre-

ation time using the GitHub API. Concurrently, we consulted the
school’s academic calendars from 2011 to 2023 to pinpoint the start
and end dates of each semester. For every student in our study, we
aggregated the contributions, as defined in Table 1, both before and
after the semester dates. This process was replicated across five
different time spans: six months, one year, two years, three years,
and total number of days both before the class start and after the
class end.

Table 1: GitHub Metrics Collected from GitHub
Metric Explanation
Private The number of private contributions made by this user.
Commits The number of commit contributions made by this user.
Issues The number of issue contributions made by this user.
PRs The number of pull requests created by this user.
PR Reviews The number of pull request reviews created by this user.
Repos The total number of type A, and type B repositories.

Comments The number of comments made by this user in commits,
issues, gists, and pull request discussions.

A lang cnts Number of different languages used in Type A repositories.
B lang cnts Number of different languages used in Type B repositories

A code size The size of code written in bytes in GitHub popular languages
in user’s type A repositories.

B code size The size of code written in bytes in GitHub popular languages
in user’s type B repositories.

A Ruby size The total Ruby code size in type A repositories.
B Ruby size The total Ruby code size in type B repositories.

To illustrate our data collection process, let’s consider a real
example with ‘Student A’. This student created their GitHub ac-
count on 2016-06-11 and enrolled in our class from 2017-08-16 to
2017-12-14 (Fall 2017 semester). We tracked all of Student A’s con-
tributions from the account creation date up to the class start date,
a period of 430 days. Within this timeframe, we specifically ex-
tracted contributions made during the 180 days preceding the class
(from 2017-02-17 to 2017-08-16) to compile the ‘six-month pre-class’
dataset. Similarly, we isolated contributions made in the one-year
period before the class start date (from 2016-08-16 to 2017-08-16)
for the ‘one-year pre-class’ dataset. Given that Student A’s GitHub
account was active for only 430 days before the class, it was not
feasible to calculate contributions for two years and three years
prior to the class for this student. Additionally, we calculated the
average frequency of each type of contribution made by students
both before and after the class. For example, we divided the total
number of commits before the class by 430 (the number of days
before the class) to determine the average daily commit rate.
Similarly, for post-class, we logged all of Student A’s contribu-

tions from the end of the class (2017-12-14) until 2023-12-31, totaling
2,208 days. We then applied the same filtering process for post-class
contributions, creating records for the six-month, one-year, two-
year, and three-year post-class datasets, as well as for the average
post-class contribution rates.
For each student, we only recorded data in specific time frame

datasets when the time span was valid for both before and after the



ITiCSE 2024, July 8–10, 2024, Milan, Italy Jialin Cui et al.

class. In Student A’s case, their data is included in the six-month
and one-year datasets for both before and after the class, but not
in the two-year and three-year datasets, as these spans were not
applicable before the class.
Our final datasets varied in size: 765 students in the six-month

dataset, 573 in the one-year, 344 in the two years, 165 in the three
years, and 921 in the average contribution dataset. Though we
collected 1,444 GitHub accounts over 12 years, only 921 were used
for the average dataset. This is because 523 students created their
GitHub accounts only after joining the class. Our data shows a
significant increase in students having GitHub accounts before class
in recent years – over 90%. This number is around 50% before 2016.
This growth is likely due to GitHub’s growing popularity. However,
since these 523 students had no pre-class records, including them
would skew the comparison of contribution changes before and
after the class. It’s also noteworthy that our institution provides
enterprise GitHub accounts for internal collaboration, which are
revoked after graduation and cannot be used for contributions to
publicly hosted repos on GitHub.com. Thus, the observed post-class
increase in contributions is attributed to personal GitHub accounts,
not influenced by other classes within the program.

4 METHODOLOGY
This section delineates the methodology employed to conduct our
analysis, tailored to address the specific research questions posed
in the study.

4.1 Paired Samples t-Test
To address RQ1, we utilized the paired samples t-test, a statistical
tool ideal for comparing the means of two related measurements.
This test is particularly suitable when the measurements are taken
from the same subject at different times, such as a pre-test and post-
test score with an intervention occurring in between. The primary
aim of this test is to ascertain if the mean difference between these
paired observations significantly deviates from zero [16].

In our context, we applied this test to evaluate the differences in
specific types of GitHub contributions by the same student, before
and after enrolling in our class. This involved conducting paired
t-tests on each contribution metric, as outlined in Table 1. Our null
hypothesis posits that there is no increase in a student’s contribu-
tions post-class, suggesting that the contribution level before the
class is either greater than or equal to that after the class. The alter-
native hypothesis, conversely, proposes that the contribution level
after the class is higher. We established an alpha level (𝛼 = 0.05) of
0.05 for our significance threshold. A p-value less than 0.05 would
lead us to reject the null hypothesis in favor of the alternative,
indicating a significant increase in contributions post-class.

4.2 Spearman’s Rank Correlation
For RQ2, we employed Spearman’s Rank Correlation, an effective
non-parametric measure to assess the strength and direction of
association between two ranked variables. Spearman’s rank corre-
lation coefficient 𝜌 is particularly suited for analyzing monotonic
relationships, which may not necessarily be linear, using ranked
data. A Spearman 𝜌 value of +1 indicates a perfect positive correla-
tion, -1 signifies a perfect negative correlation, and a value near 0
implies no significant correlation.

In our analysis, we ranked each student based on their post-class
GitHub metrics as well as their academic performance across vari-
ous criteria (exams, projects, review writing, and documentation
writing). A Spearman rank correlation was then computed to deter-
mine the relationship between these two sets of ranks. Consistent
with the paired t-test, we set our significance level at 𝛼 = 0.05. A
p-value below this threshold would indicate a significant correla-
tion between students’ GitHub contributions and their academic
performance.

5 RESULTS
5.1 Contributions Before and After Class
Our study employed paired t-tests to investigate the variations in
several GitHub contribution metrics before and after students com-
pleted the class. The results, detailed in table 2, provide a compara-
tive analysis of the mean contributions over various time frames: 6
months, 1 year, 2 years, 3 years, and a cumulative average period.
The table employs color coding to highlight statistically signifi-

cant changes in contribution metrics. Cells marked in red indicate
a statistically significant increase in contributions post-class com-
pared to the pre-class period, while blue cells denote a statistically
significant decrease. For example, in the ‘Commits’ category, a no-
table increase in the average number of commits post-class was
observed. During the 6-month post-class period, the mean number
of commits increased from 17.83 (pre-class) to 26.29 (post-class), a
trend underscored by the red cell color, indicating statistical signifi-
cance. This pattern of increase continues in the 1-year and 2-year
post-class periods, with mean numbers rising to 54.84 and 71.65,
respectively. However, in the 3-year post-class period, the increase
to 68.58 from 58.14 pre-class does not reach statistical significance,
as reflected by the absence of color coding in these cells. A similar
interpretation can be generated for other rows in the table.
The analysis extends across various metrics, including issues,

pull requests, PR reviews, repositories created, comments made,
number of languages used in both type A and type B repositories,
and Ruby code size in these repositories. In all these categories,
except for the size of type B repositories, there is a statistically
significant growth in post-class contributions compared to their
pre-class counterparts within the same time span.
However, it’s worth noting that the total average column does

not exhibit substantial differences. This is attributed to the longer
post-class time span, which tends to average out many of the contri-
butions, resulting in values closer to zero. This observation suggests
that using annual averages might be a more effective measure than
daily averages for capturing the true impact of the class on GitHub
contributions.

5.2 Contributions and Academic Performance
In our study, we investigated the correlations between students’
GitHub contributions after completing their software engineering
class and their academic performance, focusing on project and exam
averages as well as review scores. We excluded documentation av-
erages from this analysis, as our findings showed no significant
correlation between documentation averages and GitHub contribu-
tions. The resulting Spearman correlation coefficients, presented in
table 3, are color-coded to highlight statistically significant correla-
tions.



A Comparative Analysis of GitHub Contributions Before and After An OSS Based Software Engineering Class ITiCSE 2024, July 8–10, 2024, Milan, Italy

Table 2: Paired t-test Results and Mean Contribution of Before and After Class Contribution

6 Month 1 Year 2 Year 3 Year Total Avg
Pre Post Pre Post Pre Post Pre Post Pre Post

Private 8.07 12.03 15.03 24.89 19.56 56.41 29.67 77.67 0.02 0.06
Commits 17.83 26.29 26.54 54.84 42.61 71.65 58.14 68.58 0.06 0.07
Issues 1.31 0.96 1.81 3.19 2.42 4.88 3.68 5.45 0 0
PRs 1.63 1.43 1.68 4.41 2.4 9.76 2.17 12.06 0.01 0.01
PR Reviews 0.59 0.33 0.33 1.08 0.16 2.96 0.14 6.18 0 0.01
Repos 1.46 2.46 2.48 4.80 4.43 6.95 6.42 7.57 0.01 0.01
Comments 1.75 1.43 2.88 4.97 4.49 11.53 6.6 9.91 0.01 0.01
A lang cnts 2.28 4.14 3.50 7.33 5.69 10.41 7.54 10.69 0.01 0.01
B lang cnts 1.12 0.87 1.23 2.11 1.31 2.82 1.77 2.94 0 0
A size 1.38E+06 5.06E+06 2.59E+06 8.26E+06 7.67E+06 1.57E+07 1.32E+07 1.45E+07 9.21E+03 1.29E+04
B size 4.00E+05 2.39E+05 4.92E+05 6.15E+05 4.21E+06 1.02E+06 8.62E+06 7.21E+05 3.25E+03 7.95E+02
A Ruby size 1.83E+04 1.30E+05 2.28E+04 1.98E+05 1.05E+05 3.38E+05 9.95E+04 3.03E+05 5.01E+01 2.66E+02
B Ruby size 2.21E+03 4.49E+04 1.37E+04 1.22E+05 1.32E+04 2.20E+05 1.22E+04 2.06E+05 1.19E+01 1.02E+02
The color coding of the cells indicates the statistical significance of the difference between pre-class and post-class contributions for each metric. Blue
cells indicate metrics where the mean contribution before the class is statistically significantly lower than after the class. Red cells represent metrics
where the mean contribution after the class is statistically significantly greater than before the class.

Table 3: Correlation Between GitHub Contributions after Class and Performance in Class

Project Avg Exam Avg Review Avg
6 Month 1 Year 2 Year Avg 6 Month 1 Year 2 Year Avg 6 Month 1 Year 2 Year Avg

Private 0.04 0.08 0.07 0.07 0.17 0.16 0.16 0.17 0.05 0.03 -0.05 0.01
Commits 0.10 0.09 0.16 0.06 0.10 0.08 0.11 0.07 0.04 0.06 0.02 0.01
Issues 0.07 0.01 0.07 0.06 0.07 0.11 0.13 0.10 0.03 0.07 0.05 0.00
PRs 0.10 0.03 0.09 0.07 0.08 0.08 0.13 0.09 0.06 0.08 0.03 -0.01
PR Reviews 0.05 0.01 0.03 0.06 0.11 0.12 0.12 0.15 0.07 0.03 -0.03 -0.04
Repos 0.01 0.01 0.04 -0.01 0.02 -0.02 0.00 0.00 0.03 0.08 0.04 0.00
Comments 0.10 0.06 0.14 0.11 0.08 0.15 0.18 0.13 -0.03 0.01 -0.01 -0.05
A langs cnts -0.01 -0.02 -0.01 -0.04 0.03 0.00 0.03 0.03 0.02 0.03 0.05 -0.02
B langs cnts 0.08 0.06 0.05 0.02 0.05 0.05 0.08 0.08 0.00 0.09 0.08 0.05
A size -0.03 -0.05 -0.03 -0.04 0.01 -0.03 0.02 -0.01 0.02 0.02 0.01 -0.04
B size 0.07 0.07 0.07 0.02 0.05 0.04 0.08 0.07 0.11 0.11 0.08 0.06
A Ruby size 0.03 0.01 0.01 0.00 -0.03 0.01 0.00 -0.03 0.03 0.02 0.02 0.02
B Ruby size 0.02 0.01 0.00 -0.02 0.03 0.01 0.03 0.01 0.07 0.03 0.03 0.04
This table presents the Spearman correlation coefficients between various GitHub contribution metrics after completing the class and different
academic performance measures, including project averages, exam averages, and review averages. Green Cells Indicate statistically significant
correlations. A green cell shows that there is a significant relationship between the post-class GitHub contribution metric and the corresponding
academic performance measure.

The table is organized to display correlations over several post-
class time frames: 6 months, 1 year, 2 years, and an aggregated
overall average. 3 years was excluded also because no significant
correlation was observed. Each row represents a different GitHub
contribution metric, such as ‘Private’, ‘Commits’, and ‘Issues’. For
instance, the ‘Private’ category shows a statistically significant
positive correlation with exam averages in the 6-month post-class
period, indicated by a correlation coefficient of 0.17 and a green-
colored cell. This suggests that higher private contributions on
GitHub correlate with better exam performance soon after the
class.

In the ‘Commits’ row, significant positive correlations are evident
in the 6-month, 1-year, and 2-year periods with project averages,
and in the 6-month, 1-year, and 2-year periods with exam averages.

This trend implies that students who commit more frequently on
GitHub tend to score higher in both projects and exams during
these specific periods.
It’s important to note that not all correlations reached statisti-

cal significance. Cells without color coding represent coefficients
that are not statistically significant, indicating either a weak or no
discernible relationship between those GitHub contributions and
the academic metrics. This aspect of our analysis sheds light on the
potential influence of active involvement in software development
on GitHub on students’ academic achievements in software engi-
neering courses. The statistically significant correlations observed
in several key metrics emphasize the relevance of practical software
development skills to academic success.



ITiCSE 2024, July 8–10, 2024, Milan, Italy Jialin Cui et al.

6 DISCUSSION
6.1 RQ1: Changes in GitHub Contributions
Our analysis revealed significant changes in students’ GitHub con-
tributions post-class, with paired t-tests indicating a statistically
significant increase in various metrics including commits, private
contributions, comments, the number of repositories created, and
the size of Ruby code contributions. Notably, these increases were
most pronounced within shorter time frames post-class (6 months
to 2 years). While the absence of a control group precludes de-
finitive conclusions about causality, these findings suggest that
participation in the Software Engineering class, with its focus on
OSS projects, may have had a considerable influence on students’
practical engagement in software development.
One plausible interpretation of the increased GitHub activity

is that the class effectively connected theoretical knowledge with
practical application. The course’s emphasis on OSS likely moti-
vated students to actively contribute to real-world projects, thereby
enhancing their software development understanding and skills.
This is evidenced by the significant rises in private contributions
and commits, suggesting that students were not only more engaged
in coding activities but also more involved in private project work,
possibly reflecting a growth in their confidence and abilities in
software development.

The observed significant increase in the size of Ruby code contri-
butions after the class is particularly noteworthy. It indicates that
teaching a new programming language can motivate students to
contribute more in that language. This suggests that the specific
skills and languages taught in class have a lasting impact on stu-
dents’ contributions, a finding that underscores the importance of
curriculum design in software engineering education.

However, our analysis also indicates that the impact of the class
on OSS contributions may be more short-lived than permanent.
While there was a marked increase in contributions shortly after
the class, this effect tended to diminish over time. This is evidenced
by the lack of significant differences in many contributions over
a 3-year span and the relatively unchanged average contributions
before and after the class. It appears that while students are ini-
tially motivated to contribute to OSS projects following the class,
this enthusiasm and engagement may wane over longer periods.
This observation suggests that while software engineering edu-
cation can catalyze immediate increases in practical engagement,
sustaining this momentum might require ongoing encouragement
or engagement strategies beyond the classroom. In contrast to the
general trend of diminishing engagement over time, the sustained
increase in contributions in the specific language taught (Ruby)
suggests a long-term adoption of skills acquired in class. This en-
during impact on language proficiency highlights the lasting value
of teaching specific programming languages and technologies in
software engineering courses.

6.2 RQ2: Correlation with Performance
Our study utilized Spearman’s rank correlation analysis to delve
into the relationship between students’ academic performance and
their post-class contributions on GitHub. Notably, we found signif-
icant correlations between certain GitHub metrics and students’
performance, especially in project and exam scores. For instance,
an increased frequency of commits and private contributions was

positively correlated with higher performance in both exams and
projects.

These findings highlight a reciprocal relationship between prac-
tical engagement in OSS projects and academic success in software
engineering. This suggests that students who excel academically
are more likely to be effective and active contributors on GitHub.
This could be attributed to a deeper comprehension of course mate-
rial or a higher level of motivation. Conversely, active engagement
in GitHub projects appears to bolster the understanding and ap-
plication of classroom concepts, potentially enhancing students’
academic performance.
It is important to note that while these correlations exist, they

are not particularly strong, indicating a nuanced relationship be-
tween academic performance and OSS contributions. Our analysis
revealed that exam performance most significantly translates to
post-class OSS contributions. On the other hand, areas like docu-
mentation writing showed no significant correlation, and review
writing displayed only a weak, albeit significant, relationship with
post-class contributions to pull request reviews. This variation
suggests that the direct translation of academic performance to
practical contributions post-class is not straightforward. There are
likely other factors at play that influence a student’s ability to ap-
ply theoretical knowledge in practical scenarios. This observation
raises intriguing questions for educators in software engineering:
while imparting theoretical knowledge is crucial, understanding
the elements that facilitate the transition of this knowledge into
practical, real-world contributions is equally vital.

7 THREATS TO VALIDITY
Several factors pose potential threats to the validity of our study.
Firstly, our results are derived from data collected at a single in-
stitution and from a specific software engineering course. This
raises concerns about the generalizability of the findings to other
educational settings or disciplines. Secondly, the lack of a control
group in our study design limits our ability to conclusively estab-
lish causality between participation in the software engineering
class and the observed changes in GitHub contributions. Lastly,
our study relies on GitHub metrics to gauge practical engagement
in software development. While these metrics provide valuable
insights, they may not fully encompass the complex nuances of
students’ software development activities.

8 CONCLUSIONS AND FUTUREWORK
Our study explored the impact of a Software Engineering class on
students’ GitHub contributions and the correlation between these
contributions and academic performance. The findings reveal a sig-
nificant increase in GitHub activities post-class, suggesting that the
course may promote practical software development skills. Addi-
tionally, we observed correlations between academic performance
and specific GitHub metrics, although these were not uniformly
strong across all measures. These results underscore the value of in-
tegrating practical OSS projects in software engineering education,
highlighting the potential benefits for both theoretical understand-
ing and practical application. Future research should aim to address
the limitations of this study, potentially exploring diverse educa-
tional settings and longer-term impacts, to further understand the
dynamics between academic instruction and practical software
development skills.



A Comparative Analysis of GitHub Contributions Before and After An OSS Based Software Engineering Class ITiCSE 2024, July 8–10, 2024, Milan, Italy

REFERENCES
[1] James H Andrews and Hanan L Lutfiyya. 2000. Experiences with a software

maintenance project course. IEEE Transactions on Education 43, 4 (2000), 383–388.
[2] Trishala Bhasin, Adam Murray, and Margaret-Anne Storey. 2021. Student Experi-

ences with GitHub and Stack Overflow: An Exploratory Study. In 2021 IEEE/ACM
13th International Workshop on Cooperative and Human Aspects of Software Engi-
neering (CHASE). 81–90. https://doi.org/10.1109/CHASE52884.2021.00017

[3] Evelyn Brannock and Nannette Napier. 2012. Real-world testing: using foss for
software development courses. In Proceedings of the 13th annual conference on
Information technology education. 87–88.

[4] Joseph Buchta, Maksym Petrenko, Denys Poshyvanyk, and Vaclav Rajlich. 2006.
Teaching Evolution of Open-Source Projects in Software Engineering Courses.
In 2006 22nd IEEE International Conference on Software Maintenance. 136–144.
https://doi.org/10.1109/ICSM.2006.66

[5] David Carrington and S-K Kim. 2003. Teaching software design with open source
software. In 33rd Annual Frontiers in Education, 2003. FIE 2003., Vol. 3. IEEE,
S1C–9.

[6] Jialin Cui, Ruochi Li, Kaida Lou, Chengyuan Liu, Yunkai Xiao, Qinjin Jia, Edward
Gehringer, and Runqiu Zhang. 2022. Can Pre-class GitHub Contributions Predict
Success by Student Teams?. In 2022 IEEE/ACM 44th International Conference on
Software Engineering: Software Engineering Education and Training (ICSE-SEET).
IEEE, 40–49.

[7] Jialin Cui, Runqiu Zhang, Ruochi Li, Yang Song, Fangtong Zhou, and Edward
Gehringer. 2023. Correlating Students’ Class Performance Based on GitHub
Metrics: A Statistical Study. In Proceedings of the 2023 Conference on Innovation
and Technology in Computer Science Education V. 1 (Turku, Finland) (ITiCSE 2023).
Association for Computing Machinery, New York, NY, USA, 526–532.

[8] Jialin Cui, Runqiu Zhang, Ruochi Li, Fangtong Zhou, Yang Song, and Edward
Gehringer. 2024. How Pre-class Programming Experience Influences Students’
Contribution to Their Team Project: A Statistical Study. In Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 1 (, Portland, OR,
USA,) (SIGCSE 2024). Association for Computing Machinery, New York, NY, USA,
255–261. https://doi.org/10.1145/3626252.3630870

[9] Jialin Cui, Fangtong Zhou, Chengyuan Liu, Qinjin Jia, Song Yang, and Edward
Gehringer. 2024. Utilizing the Constrained K-Means Algorithm and Pre-Class
GitHub Contribution Statistics for Forming Student Teams. In Proceedings of the
2024 Innovation and Technology in Computer Science Education V. 1.

[10] Jialin Cui, Fangtong Zhou, Runqiu Zhang, Ruochi Li, Chengyuan Liu, and Ed
Gehringer. 2023. Predicting Students’ Software Engineering Class Performance
with Machine Learning and Pre-Class GitHub Metrics. In 2023 IEEE Frontiers in
Education Conference (FIE). 1–9. https://doi.org/10.1109/FIE58773.2023.10343357

[11] Zihan Fang, Madeline Endres, Thomas Zimmermann, Denae Ford, Westley
Weimer, Kevin Leach, and Yu Huang. 2023. A Four-Year Study of Student
Contributions to OSS vs. OSS4SG with a Lightweight Intervention. In Pro-
ceedings of the 31st ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (<conf-loc>, <city>San
Francisco</city>, <state>CA</state>, <country>USA</country>, </conf-loc>)
(ESEC/FSE 2023). Association for Computing Machinery, New York, NY, USA,
3–15. https://doi.org/10.1145/3611643.3616250

[12] Joseph Feliciano, Margaret-Anne Storey, and Alexey Zagalsky. 2016. Student
Experiences Using GitHub in Software Engineering Courses: A Case Study. In
2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C). 422–431.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Longman
Publishing Co., Inc., USA.

[14] Hao He, Minghui Zhou, Qingye Wang, and Jingyue Li. 2023. Open Source
Software Onboarding as a University Course: An Experience Report. In 2023
IEEE/ACM 45th International Conference on Software Engineering: Software Engi-
neering Education and Training (ICSE-SEET). 324–336. https://doi.org/10.1109/
ICSE-SEET58685.2023.00037

[15] Courtney Hsing and Vanessa Gennarelli. 2019. Using GitHub in the Classroom
Predicts Student Learning Outcomes and Classroom Experiences: Findings from
a Survey of Students and Teachers. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19).
Association for Computing Machinery, New York, NY, USA, 672–678. https:
//doi.org/10.1145/3287324.3287460

[16] Henry Hsu and Peter A Lachenbruch. 2014. Paired t test. Wiley StatsRef: statistics
reference online (2014).

[17] Robert Marmorstein. 2011. Open source contribution as an effective software
engineering class project. In Proceedings of the 16th annual joint conference on
Innovation and technology in computer science education. 268–272.

[18] Robert Cecil Martin. 2003. Agile software development: principles, patterns, and
practices. Prentice Hall PTR.

[19] Gustavo Pinto, Clarice Ferreira, Cleice Souza, Igor Steinmacher, and Paulo
Meirelles. 2019. Training Software Engineers Using Open-Source Software:
The Students’ Perspective. In 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering Education and Training (ICSE-SEET).
147–157. https://doi.org/10.1109/ICSE-SEET.2019.00024

[20] Gustavo Henrique Lima Pinto, Fernando Figueira Filho, Igor Steinmacher, and
Marco Aurelio Gerosa. 2017. Training Software Engineers Using Open-Source
Software: The Professors’ Perspective. In 2017 IEEE 30th Conference on Software
Engineering Education and Training (CSEE&T). 117–121. https://doi.org/10.1109/
CSEET.2017.27

[21] Jean-Guy Schneider, Peter W Eklund, Kevin Lee, Feifei Chen, Andrew Cain, and
Mohamed Abdelrazek. 2020. Adopting industry agile practices in large-scale
capstone education. In 2020 IEEE/ACM 42nd International Conference on Software
Engineering: Software Engineering Education and Training (ICSE-SEET). IEEE,
119–129.

[22] Diomidis Spinellis. 2021. Why computing students should contribute to open
source software projects. Commun. ACM 64, 7 (2021), 36–38.

https://doi.org/10.1109/CHASE52884.2021.00017
https://doi.org/10.1109/ICSM.2006.66
https://doi.org/10.1145/3626252.3630870
https://doi.org/10.1109/FIE58773.2023.10343357
https://doi.org/10.1145/3611643.3616250
https://doi.org/10.1109/ICSE-SEET58685.2023.00037
https://doi.org/10.1109/ICSE-SEET58685.2023.00037
https://doi.org/10.1145/3287324.3287460
https://doi.org/10.1145/3287324.3287460
https://doi.org/10.1109/ICSE-SEET.2019.00024
https://doi.org/10.1109/CSEET.2017.27
https://doi.org/10.1109/CSEET.2017.27

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Class Structure
	3.2 Data Collection

	4 Methodology
	4.1 Paired Samples t-Test
	4.2 Spearman's Rank Correlation

	5 Results
	5.1 Contributions Before and After Class
	5.2 Contributions and Academic Performance

	6 Discussion
	6.1 RQ1: Changes in GitHub Contributions
	6.2 RQ2: Correlation with Performance

	7 Threats to Validity
	8 Conclusions and Future Work
	References

