
Utilizing the Constrained K-Means Algorithm and Pre-Class
GitHub Contribution Statistics for Forming Student Teams

Jialin Cui
jcui9@ncsu.edu

North Carolina State University
Raleigh, USA

Fangtong Zhou
fzhou@ncsu.edu

North Carolina State University
Raleigh, USA

Chengyuan Liu
cliu32@ncsu.edu

North Carolina State University
Raleigh, USA

Qinjin Jia
qjia3@ncsu.edu

North Carolina State University
Raleigh, USA

Yang Song
songy@uncw.edu

University of North Carolina
Wilmington

Wilmington, USA

Edward Gehringer
efg@ncsu.edu

North Carolina State University
Raleigh, USA

ABSTRACT
In modern software engineering education, team formation is cru-
cial for mimicking real-world collaborative scenarios and boosting
project-based learning outcomes. This paper introduces a simple,
innovative, and universally adaptable method for forming student
teams within a software engineering class. We utilize publicly avail-
able pre-class GitHub metrics as our input variables (e.g., number of
commits, pull requests, code size, etc.). For team formation, the con-
strained k-means algorithm is employed. This algorithm embraces
domain-specific constraints, ensuring the resulting teams not only
resonate with the inherent data clusters but also meet educational
requirements. Preliminary results suggest that our methodology
yields teams with a harmonious blend of skills, experiences, and
collaborative potentials, thereby setting the stage for enhanced
project success and enriched learning experiences. Quantitative
analyses show that teams formed via our approach outperform both
randomly assembled teams and student self-selected teams con-
cerning project grades. Moreover, teams created using our method
also display a reduced standard deviation in grades, suggesting a
more consistent performance across the board.

CCS CONCEPTS
• Social and professional topics → Software engineering edu-
cation; • Software and its engineering→ Programming teams;
Open source model; Object oriented development.

KEYWORDS
Software Engineering Education, Teamwork and Collaboration,
Qualitative Study, Statistical Study, GitHub

ACM Reference Format:
Jialin Cui, Fangtong Zhou, Chengyuan Liu, Qinjin Jia, Yang Song, and Ed-
ward Gehringer. 2024. Utilizing the Constrained K-Means Algorithm and
Pre-Class GitHub Contribution Statistics for Forming Student Teams. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE 2024, July 8–10, 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0600-4/24/07
https://doi.org/10.1145/3649217.3653634

Proceedings of the 2024 Innovation and Technology in Computer Science Edu-
cation V. 1 (ITiCSE 2024), July 8–10, 2024, Milan, Italy. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3649217.3653634

1 INTRODUCTION
Team-based projects have been consistently highlighted as founda-
tional components of software engineering education. Such projects
offer students a hands-on experience that closely mirrors real-
world software development. Furthermore, these projects encour-
age collaboration, critical thinking, and problem-solving. Conse-
quently, to prepare students effectively for their future careers,
educators must incorporate applied, team project-based courses
[17, 20, 21, 34, 37, 43]. The composition of software project teams is
pivotal for the success of software projects. In a university setting,
the right team composition significantly influences the learning
experience [31]. Allowing students to form teams on their own or
assigning them randomly has often led to less-than-optimal results
[27, 38]. Meanwhile, there exists a widely held belief that a stu-
dent’s prior programming experience considerably influences their
performance in software engineering courses and team projects
alike. Numerous studies have explored the relationship between
students’ prior programming exposure and their performance in
software engineering courses, consistently finding positive correla-
tions [6, 18, 19, 24, 41, 42]. Given that students often possess varied
prior programming experience, balancing project teams based on
programming experience has proven beneficial, allowing less ex-
perienced members to learn from their more experienced peers
[38]. A systematic mapping study [8] revealed that the majority of
team formation methods (80.00%) utilize technical attributes (pro-
gramming experience) to construct individual profiles before team
assembly.

However, existing research has adopted diverse methods to deter-
mine students’ programming experience. Some studies [26, 28, 39]
rely on previous academic achievements to gauge programming ex-
perience, while others [5, 17] utilize self-developed questionnaires
to ascertain this. Another study [25] designed specific exercises to
assess students’ technical capabilities. These varyingmethodologies
result in two significant challenges: the inconsistency in findings,
leading to difficulties in generalizing results, and challenges in repli-
cation due to the unique nature of the tools and exercises employed
in prior studies.

https://doi.org/10.1145/3649217.3653634
https://doi.org/10.1145/3649217.3653634

ITiCSE 2024, July 8–10, 2024, Milan, Italy Jialin Cui et al.

To address these challenges, this paper presents an innovative,
universally applicable method to form student teams within a soft-
ware engineering course. We leverage publicly available pre-class
GitHub metrics as our primary variables (e.g., number of commits,
pull requests, code size) to measure students’ technical ability. Var-
ious studies [10–14] have confirmed the efficacy of these metrics
in quantitatively representing prior programming knowledge. For
team formation, we employ the constrained k-means algorithm.
This algorithm embraces domain-specific constraints, ensuring the
resulting teams not only resonate with the inherent data clusters
but also meet educational requirements. Preliminary results suggest
that our methodology yields teams with a harmonious blend of
skills, experiences, and collaborative potential, setting the stage
for enhanced project success and enriched learning experiences.
Quantitative analyses indicate that teams formed using our ap-
proach outperform both randomly assembled teams and student
self-selected teams in terms of project grades. Moreover, teams
created through our method display a reduced standard deviation
in grades, suggesting not only more consistent performance across
the board but also a more equitable learning environment.

2 RELATEDWORK
The formulation of balanced teams for enhanced knowledge shar-
ing and successful project completion has been extensively studied
within software engineering, with distinct approaches in both in-
dustrial and academic settings.

2.1 Team Formation in Industry
Industry-focused research has often revolved around optimizing
team composition based on a multitude of factors. Gilal et al. [22]
investigated the dynamics of gender and personality in team assem-
bly, suggesting nuanced implications on team synergy. Tsai et al.
[40] presented a human resource approach factoring in individual
productivity, which also touches upon the economic aspects of com-
pensation. André et al. [3] offered a model for personnel allocation
by evaluating diverse attributes like expertise and product knowl-
edge. Similarly, da Silva et al. [15] identified a range of factors that
influence managerial decisions in team formation, highlighting the
complexity of the task at hand.

Innovative strategies have been proposed to tackle the inherent
challenges of team formation, acknowledged as NP-hard by Lappas
et al. [29]. For instance, Chiang and Lin [7] suggested an algorithmic
strategy that aligns team formation with project constraints such
as timeframes and budgets. From the technical perspective, Costa
et al. [9] incorporated Genetic Algorithms with technical profiling
to enhance team formation processes, while Di Penta et al. [16]
demonstrated the utility of search-based methods in various aspects
of project management, including team assembly.
The integration of both technical and social dynamics in team

formation has been exemplified by Ahmad et al. [1], who designed
a recommendation system that balances technical skills with inter-
personal factors. Majumder et al. [33] further expanded on this by
introducing a methodology for identifying socially cohesive teams,
which also addresses workload distribution concerns.

2.2 Team Formation in Academia
Academic settings pose unique challenges for team formation. The
transitory nature of academic projects and the lack of industrial

parameters such as individual cost or long-term productivity ne-
cessitate distinct methodologies. The pioneering work of Henry
[26] used academic performance and student preferences as early
indicators for team potential, setting a foundation for subsequent
research.

Later, H Hashiura et al. [25] leveraged project management exer-
cises to derive data for a genetic algorithm, successfully forming
teams with high satisfaction rates. Sim et al. [39] compared the
outcomes of mixed-ability groups and self-selection processes, find-
ing that students often favored the autonomy of choosing their
team members. Løvold et al. [32] examined the effect of instructor-
assigned versus self-selected teams on performance, concluding
that the method of formation had little impact on the overall results.
Extending the investigation into the efficacy of team formation

methods, D.Dzvonyaretal. [17] used custom criteria based on back-
ground data for team assembly, with the outcomes indicating satis-
faction with the process. Presler-Marshall et al. [35] assessed teams
formed through instructor intervention and student preferences,
suggesting that team composition methods might not be as influ-
ential on performance as previously thought.

More recent studies have sought to refine the team formation pro-
cess using algorithmic approaches. Sahin [36] introduced a model
that outperformed traditional methods in project grades, while Kim
[28] used historical data to predict team success with a high degree
of accuracy. Akbar [2] employed a clustering approach, leveraging
shared topic interests to facilitate team formation.
This body of work highlights the multifaceted nature of team

formation, with each study contributing unique insights into the
array of factors that can influence team dynamics and success. Our
research builds on these foundations by proposing an accessible,
data-driven approach using GitHub metrics, aiming to streamline
the team formation process in academic settings.

3 CLASS STRUCTURE
Our research was carried out within a master’s-level software en-
gineering course emphasizing object-oriented design via Ruby on
Rails. For the past 16 years, the same educator has supervised the
course. Within this environment, students delve into the Ruby pro-
gramming language and undertake projects utilizing the Ruby on
Rails framework. Initial lectures address foundational concepts, in-
cluding crafting use cases, refactoring, Test-DrivenDesign, Behavior-
DrivenDesign, and theAgile and Scrummethodologies. The course’s
latter segment dives into design principles such as SOLID and vari-
ous design patterns, notably the GoF patterns.

The course spans a semester and consists of two minor program-
ming assignments followed by three significant projects. In the
first month, students are introduced to the Ruby programming lan-
guage. They undertake an exercise on GitHub operations and a
fundamental programming task to familiarize themselves with the
properties and data structures of Ruby. In the subsequent month,
the focus shifted to the Ruby on Rails framework. Students use
what they’ve learned to develop a full-stack web application. For
deliverables, they submit both their deployed applications and their
corresponding repositories.
From the third month, students collaborate in teams of three,

working on a variety of Open Source Software (OSS) projects, all
of which are hosted on GitHub. Although various OSS projects
have been integrated into the curriculum, the majority originate

Utilizing the Constrained K-Means Algorithm and Pre-Class GitHub Contribution Statistics for Forming Student Teams ITiCSE 2024, July 8–10, 2024, Milan, Italy

from an NSF-funded project led by the course instructor. Project
themes encompass refactoring, test writing, and addressing sets of
related bugs within existing codebases. In the final month, students,
grouped in teams of 3 or 4, embark on their concluding projects.
Drawing on the design knowledge they’ve learnt throughout the
course, they either enhance the current system by adding features
or updating significant functionalities. Each team is mandated to
submit a pull request against the original repository. Projects un-
dergo assessment based on their software engineering merits, with
exemplary ones being merged into the primary repository.
Our research primarily centers on the second project, which

pertains to full-stack web application development. The primary
reason for this focus is that, in this project, every team works on
the same topic, and the difficulty of the project remains consistent
across different semesters. This consistency allows us to control
variables and specifically analyze the impact of team formation.
When considering the OSS projects in our class, each team tackles
different topics, making it challenging to determine whether differ-
ences in team performance arise from the team’s composition or
the project’s subject. For instance, it’s not straightforward to assert
that a team scoring 90 percent on a front-end project performed
better than another team that secured 85 percent on a back-end
project. To draw valid conclusions about team formation, we need
to control for the variable of the project topic.

4 EXPERIMENT DESIGN
We carried out our team formation experiment in the Spring 2023
semester with 83 registered students. Initially, we gathered the
pre-class contribution metrics of these students (details provided
in section 5). The class was then randomly split into two groups:
Group A with 42 students and Group B with 41 students.
For Group A, we applied the constrained k-means algorithm

(as detailed in section 6), using their pre-class GitHub contribu-
tion metrics as input to cluster the 42 students into three groups
of 14. Ideally, these three clusters should represent students with
differing inter-cluster technical abilities but similar intra-cluster
technical abilities. The instructor then formed teams of three, se-
lecting one student from each cluster randomly to ensure each team
had members from all clusters.

Group B acted as our control group. For this group, no algorithm
was applied. The instructor randomly assigned these students into
13 teams of three and one team of two. This group represents teams
that are formed randomly.
In the subsequent Fall 2023 semester, we had 94 registered stu-

dents. We call this Group C. For Group C, we didn’t intervene in the
team formation process, allowing students to form teams on their
own. This resulted in 30 teams of three and two teams of two. These
32 teams served as another control group, representing teams that
were self-formed by students.

Subsequently, we conducted an analysis to discern the differences
among teams formed using our approach, those formed randomly,
and teams arising from student preferences.

5 DATA COLLECTION
5.1 GitHub ID
We collected project submissions in the form of pull requests from
Fall 2011 to Spring 2023. Each project was submitted via a pull
request. For every submission, we identified the corresponding

GitHub accounts and matched them with individual students by
cross-referencing GitHub profiles with the class roster. Our data
indicates that the retrieval rate of GitHub accounts over the past
decade has been steadily increasing, as shown in Figure 1.

Figure 1: GitHub Account Retrieval Rate From 2011 to 2023 by Se-
mester

Furthermore, among the collected GitHub accounts, there is a
growing trend of students creating their accounts before enrolling
in our class. This trend is particularly noteworthy given that our
course encourages students to utilize public GitHub repositories,
prompting many to establish accounts if they hadn’t done so previ-
ously. The rise in students with pre-existing accounts signifies that
we can gather more comprehensive data regarding their pre-course
GitHub contributions. As depicted in Figure 2, there has been a
significant increase in the number of students with pre-existing
GitHub accounts enrolling in our courses over the past decade.

Figure 2: Proportion of Students with Pre-existing GitHub Accounts
from 2011 to 2023

Given this trend, we believe that utilizing students’ pre-course
GitHub contribution metrics as indicators of their technical pro-
ficiency and subsequently using these metrics to form balanced
teams is a feasible approach. It’s worth mentioning that in recent
semesters, approximately 90% of the students already possessed
records prior to the start of the class. We expect this proportion to
grow, reflecting the broader acceptance and use of GitHub within
the community.

5.2 Pre-class GitHub Contribution Metrics
Specifically, for the Spring 2023 semester, we collected students’
GitHub accounts at the beginning of the course. We then leveraged
the GitHub API to create a tool that retrieves publicly available user

ITiCSE 2024, July 8–10, 2024, Milan, Italy Jialin Cui et al.

GitHub contribution statistics, starting from the account’s inception
until the beginning of the Spring 2023 semester (pre-class GitHub
contribution). Table 1 outlines the metrics employed in this study.
It is worth noting that several metrics aren’t provided directly by
GitHub; some calculations are required on our part. For example,
while GitHub discloses the amount of code written by a user in a
specific language for a given repository, it’s our job to calculate the
cumulative code volume across different languages. Furthermore,
we calculated the code volume within a user’s repositories for
each of the top 10 languages on GitHub [23], including Python,
JavaScript, Java, TypeScript, Shell, C++, Ruby, PHP, C#, and C. We
also aggregated similar metrics into unified indicators; for instance,
we combined all types of user comments into a singular count.

Table 1: GitHub Metrics Collected from GitHub
Metric Explanation
Days Days of GitHub experience.

A The number of private contributions and public commits made by
this user.

B The number of comments made by this user in commits, issues, gists,
and pull request discussions.

C The number of PR and PR reviews made by this user.
D The number of issues, gists, and projects created by this user.
E The number of different languages used in all user’s repositories.

F The size of code written in GitHub popular languages in all user’s
repositories.

G The total number of repositories that the user own or collaborate on.

It’s important to note that all contributions logged pertain ex-
clusively to those made by the user prior to the semester’s com-
mencement. This serves as a logistical representation of a student’s
technical proficiency at the beginning of the course.

6 METHODOLOGY
6.1 Constrained k-mean for Team Formation
The k-means clustering algorithm is a widely-used method that par-
titions a dataset into 𝑘 distinct, non-overlapping clusters based on
their distances to the centroid of these clusters. Given a set of obser-
vations (𝑥1, 𝑥2, . . . , 𝑥𝑛), where each observation is a 𝑑-dimensional
real vector, k-means clustering aims to partition the 𝑛 observa-
tions into 𝑘 (𝑘 ≤ 𝑛) sets 𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑘 } so as to minimize the
within-cluster sum of squares (WCSS). Formally, the objective is:

argmin
S

𝑘∑︁
𝑖=1

∑︁
x∈𝑆𝑖

∥x − 𝜇𝑖 ∥2

where 𝜇𝑖 is the mean of points in 𝑆𝑖 .
However, the vanilla k-means algorithm occasionally encoun-

ters issues like empty clusters or clusters with very few points,
leading to suboptimal or non-intuitive results. The constrained
k-means algorithm [4] is an enhancement to the traditional ap-
proach, which tactically integrates constraints to preempt these
pitfalls. Specifically, it can be tailored to ensure that each cluster
houses at least a predefined minimum number of data points. This
is achieved by incorporating a cluster assignment step fortified with
constraints. These constraints can be efficiently tackled using meth-
ods like linear programming or network simplex, thereby ensuring
a substantial population density within every formed cluster. This

constrained approach not only provides more interpretable and
meaningful clusters but also tends to produce more robust results
in practice.
In our scenario, using the vanilla k-means for Group A would

not yield the desired number of clusters, and the distribution of
students across clusters would be unequal. For instance, a student
with an extensive GitHub contribution record might be isolated into
their own cluster. Such an outcome would be counterproductive to
our team formation objectives. To address this, we employ the con-
strained k-means library [30], setting n_clusters to 3 and size_min
to 14. This configuration results in three clusters, each containing 14
students. The instructor then selects one student from each cluster
to form a team, ensuring diversity by incorporating a student from
every cluster within each team. This approach ensures that each
team comprises students with a variety of programming experi-
ences, circumventing scenarios where highly experienced students
are grouped together separately from their novice counterparts.

6.2 Shapiro-Wilk test, Levene’s test, Student’s
𝑡-test, and Mann-Whitney𝑈 -test

To compare the results of our team formation approach statistically
with other prevalent methods, such as random team assignment
and student self-selection, we first employed the Shapiro-Wilk test
on the project grades for Group A, Group B, and Group C teams.
The Shapiro-Wilk test is particularly apt for our dataset since its
sizes (14 teams in Group A, 14 teams in Group B, and 32 teams in
Group C) are relatively small, rendering the central limit theorem
inapplicable.

The Shapiro-Wilk test is renowned for verifying dataset normal-
ity. This test assesses the null hypothesis, which posits that a sample
𝑥1, 𝑥2, . . . , 𝑥𝑛 originates from a normal distribution. A significant
p-value (commonly below 0.05) rejects this hypothesis, suggesting
a non-normal data distribution. The test is notably effective for
smaller sample sizes.
Subsequent to the normality test, we applied Levene’s Test to

assess variance homogeneity—a prerequisite for the Student’s 𝑡-
test. Levene’s Test verifies if variances across multiple groups are
homogeneous. A significant p-value (usually below 0.05) implies
variances significantly differ across groups.

Specifically, we first applied the Shapiro-Wilk test to the project
grades of Groups A, B, and C. Thereafter, we used Levene’s Test
on the project grades of Groups A and B, and again on Groups A
and C. For datasets adhering to both the normal distribution and
equal variance criteria, we employed the Student’s 𝑡-test to identify
statistically significant mean differences.

In instances where datasets didn’t conform to the normal distri-
bution and equal variance criteria, we opted for the Mann-Whitney
𝑈 -test. This non-parametric test ascertains differences between
two independent samples, especially when normality assumptions
aren’t met. Instead of contrasting means, it examines if the distri-
butions of two distinct variables significantly differ.
For the Mann-Whitney𝑈 -test, the null hypothesis asserts iden-

tical group distributions, inferring a 50% probability that a data
point from one group exceeds one from another group. A p-value
below the common 0.05 threshold leads to this hypothesis’ rejection,
indicating a notable distribution difference between groups.
Within our research framework, these tests corroborate data

normality, verify variance equality across groups, and highlight

Utilizing the Constrained K-Means Algorithm and Pre-Class GitHub Contribution Statistics for Forming Student Teams ITiCSE 2024, July 8–10, 2024, Milan, Italy

significant group mean differences and dissimilarities between in-
dependent samples even when data doesn’t meet parametric stipu-
lations.

7 RESULTS
Our main results are presented in Figs 3, 4, 5 and Table 2. Fig 3 de-
picts the grade distribution of constrained k-means cluster formed
student teams from Spring 2023. The grades are spread between
89 to 99, the distribution is more uniform across the scale with a
reduced frequency of high grades compared to Figure 5. The peak
frequencies are more modest, indicating a more balanced team per-
formance overall. This could imply that the K-Means clustering
method for team formation results in teams that are more evenly
matched in terms of abilities and potential, leading to a more equi-
table distribution of grades.

Figure 3: Grade Distribution of K-mean Cluster Student Teams,
Spring 2023

Fig 4 shows the Grade Distribution of Randomly Assigned Stu-
dent Teams, also from Spring 2023. In this distribution, there is a
marked concentration of grades in the 90 to 95 range, but fewer
teams achieve the highest grades of 95 to 100 compared to the self-
selected teams (Fig 5). The distribution also has instances of lower
grades not as prominent in Fig 3, suggesting a wider variance in
the performance of randomly assigned teams.

Figure 4: Grade Distribution of Randomly Assigned Student Teams,
Spring 2023

Fig 5 illustrates the Grade Distribution of Self-Selected Student
Teams from Fall 2023. The grades range from 67 to 100, with the
distribution showing a higher concentration of teams achieving
grades in the upper echelons of the scale, particularly notable is a

peak around the 95 to 100 range. This suggests that self-selected
teams might have a propensity to include members with similar
motivations or abilities, which could lead to a polarization of out-
comes where some teams perform exceptionally well. However,
this also signifies a wider variance.

Figure 5: Grade Distribution of Self-Selected Student Teams, Fall
2023

In summary, self-selection appears to lead to a higher likelihood
of exceptional performance but may also result in greater disparity.
The K-Means Cluster method results in a more consistent distribu-
tion of grades, suggesting a balance in team capabilities. Random
assignment shows a wider range of outcomes, which can be attrib-
uted to the unpredictable nature of random team composition.

In Table 2, we present the analysis results of team project grades.
Group A represents teams we formed using the constrained k-
mean clustering algorithm in Spring 2023. Group B consists of
teams formed randomly during the same semester, while Group
C encompasses teams that students formed on their own in Fall
2023. The row labeled "Shapiro-Wilk" displays the Shapiro-Wilk test
results for the project grades across all three groups. The “Mean"
row provides the average project grades, and “STDEV" indicates the
standard deviation of project grades for each group. The Levene’s
test results present the 𝑝-value for comparisons between Group A
and B, as well as Group A and C. Lastly, the Student’s 𝑡-test and
Mann-Whitney 𝑈 -test rows show the respective 𝑝-values for com-
parisons between Group A and B, and Group A and C, respectively.

The cell marked in red in the first row indicates that the 𝑝-value of
the Shapiro-Wilk test for Group C teams (self-formed teams) is less
than 0.05, signifying that the grades are not normally distributed.
The Levene’s test result on the 6th row for A vs. C is 0.03, which
is also less than 0.05. This suggests that the variances of these
two populations are not equal. Consequently, we should use the
Student’s 𝑡-test to test the difference in means between Group A
and B and the Mann-Whitney𝑈 -test to examine the difference in
means between Group A and C.

8 DISCUSSION
8.1 Team Performance and Team Formation
The statistical analysis presented in Table 2 indicates that the team
formation method employing the constrained k-mean clustering
algorithm (Group A) significantly affects team performance in soft-
ware engineering projects. Group A’s higher mean grade (94.0)
compared to Group B (90.7), supported by a Student’s 𝑡-test 𝑝-value

ITiCSE 2024, July 8–10, 2024, Milan, Italy Jialin Cui et al.

Table 2: Students’ Team Project Contribution and Grade in Fall 2023

Statistics Group A Group B Group C
Shapiro-Wilk 0.80 0.95 0.00005
Mean 94.0 90.7 92.0
STDEV 2.63 5.06 8.09
Levene’s test A vs B Levene’s test A vs C

0.14 0.03
Student’s 𝑡-test A vs B Mann-Whitney𝑈 -test A vs C

0.04 1.00
Notes: Group A teams: teams that we formed; Group B teams: teams that were
formed randomly; Group C teams: teams that were formed by the students
themselves; Shapiro-Wilk: Shapiro-Wilk test results for the project grades of
Group A teams, Group B teams, and Group C teams; Mean: Mean project grades
for Group A teams, Group B teams, and Group C teams; STDEV: Standard
deviation of project grades for Group A teams, Group B teams, and Group C
teams; Levene’s test: Levene’s test 𝑝-value for A vs B and A vs C; Student’s 𝑡 -
test: Student’s 𝑡 -test 𝑝-value for A vs B; Mann-Whitney𝑈 -test: Mann-Whitney
𝑈 -test 𝑝-value for A vs C.

of 0.04, provides evidence that algorithmically assembled teams
perform better than those formed randomly. This suggests that the
balanced mix of technical skills, possibly due to the inclusion of
GitHub metrics in team formation, contributes to more effective
collaboration and project success.
Interestingly, the comparison between Group A and student-

formed teams (Group C) yields a 𝑝-value of 1.00 in the Mann-
Whitney𝑈 -test, which does not indicate a statistically significant
difference. This outcome challenges the assumption that algorith-
mic intervention is always superior to self-organization among
students. It appears that the pre-existing relationships and mutual
selection among peers (Group C) may compensate for the lack of
systematic team balancing, potentially leading to effective collabo-
ration due to interpersonal familiarity.

The standard deviation of the grades provides additional insight
into the consistency of team performance. The notably lower stan-
dard deviation for Group A (2.63) relative to Groups B (5.06) and C
(8.09) reinforces the hypothesis that a methodologically sound team
assembly contributes to a more predictable and stable team perfor-
mance. This stability is crucial for equitable learning experiences,
as it suggests a more uniform distribution of learning opportunities
and outcomes among all team members.

8.2 Broader Implications
The task of forming effective student teams in educational settings
is not trivial. Educators strive to create groups that are balanced
in terms of skills and experience, foster a collaborative learning
environment, and enhance the overall educational outcomes. The
constrained k-means clustering algorithm, as demonstrated by the
research presented in this paper, emerges as a good approach to
team formation that could significantly benefit pedagogical strate-
gies across various disciplines.
The constrained k-means clustering method is advantageous

for several reasons. Firstly, it incorporates domain-specific con-
straints that ensure teams are not only well-balanced in terms of
students’ technical abilities but also tailored to meet the unique
requirements of each course. By utilizing pre-class metrics such
as GitHub activity, educators can objectively quantify students’
prior experience and programming skills, which are crucial for the
success of software engineering projects. Secondly, the algorithmic

nature of the constrained k-means method facilitates a fair and
unbiased team assembly process. This is particularly important in
educational environments where the objective is to provide equal
learning opportunities to all students. Unlike self-selection, which
can lead to clustering of like-skilled individuals and exacerbate the
disparities in learning experiences, the constrained k-meansmethod
distributes skills more evenly across teams, which can enhance peer
learning and reduce the performance gap.
Empirical evidence from our study supports the efficacy of the

constrained k-means clustering approach. Teams formed using this
method not only outperformed randomly assembled teams but also
exhibited a higher degree of consistency in their performance, as
indicated by the lower standard deviation in grades. While the per-
formance of teams formed by the constrained k-means algorithm
was not statistically different from self-selected teams, the algo-
rithmic method provides a structured and scalable solution that
can be particularly useful for large classes or online courses where
personal acquaintance among students is limited.

9 THREATS TO VALIDITY
The main threats to validity arise from the formation of student
teams based on their technical ability. This method might overlook
other crucial factors in team dynamics, such as interpersonal skills,
communication styles, and work ethics. Teams are multifaceted
entities, and while balancing technical skills is crucial, other ele-
ments could influence the overall team performance and learning
experience.
The study also recognizes the presence of “social factors" in

student-formed teams, suggesting that pre-existing friendships or
relationships could sway team performance. However, these factors
haven’t been quantified or extensively analyzed in the provided
details, leading to potential gaps in understanding their genuine
impact.

Furthermore, the differentiation between teams formed using the
study’s approach, random formation, and student-formed groups
might be affected by external factors not addressed in the study,
such as teaching methods, grading criteria, or project complexities.
Deviations in these areas could introduce confounding variables
that affect the results.

10 CONCLUSIONS
The paper presents a method that utilizes pre-class GitHub contri-
butions as input for the contained k-means clustering algorithm.
This generates clusters representing students’ technical abilities.
Instructors then form project teams by selecting students from each
cluster, aiming to create teams with balanced technical capabilities.
Statistical analysis confirms that teams formed using this method
surpass those that are randomly formed or formed by students
themselves. Moreover, teams formed by this approach have the low-
est standard deviation in project scores, indicating a more equitable
and balanced learning environment among teams. In conclusion,
our study establishes a foundational understanding of student team
formations using pre-class GitHub contribution data. In the future,
we hope to better understand and improve our methods to create a
better team project based learning environment.

Utilizing the Constrained K-Means Algorithm and Pre-Class GitHub Contribution Statistics for Forming Student Teams ITiCSE 2024, July 8–10, 2024, Milan, Italy

REFERENCES
[1] Mahreen Ahmad,Wasi Haider Butt, and Abrar Ahmad. 2019. Advance Recommen-

dation System for the Formation of More Prolific and Dynamic Software Project
Teams. In 2019 IEEE 10th International Conference on Software Engineering and Ser-
vice Science (ICSESS). 161–165. https://doi.org/10.1109/ICSESS47205.2019.9040791

[2] Shoaib Akbar, Edward F Gehringer, and Zhewei Hu. 2018. Improving formation
of student teams: a clustering approach. In Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings. 147–148.

[3] Margarita André, María G Baldoquín, and Silvia T Acuña. 2011. Formal model
for assigning human resources to teams in software projects. Information and
Software Technology 53, 3 (2011), 259–275.

[4] K.P. Bennett, P.S. Bradley, and A. Demiriz. 2000. Constrained K-Means Clustering.
Technical Report MSR-TR-2000-65. 8 pages. https://www.microsoft.com/en-
us/research/publication/constrained-k-means-clustering/

[5] Ivana Bosnić, Igor Čavrak, Marin Orlić, and Mario Žagar. 2013. Picking the right
project: Assigning student teams in a GSD course. In 2013 26th International
Conference on Software Engineering Education and Training (CSEE&T). IEEE.

[6] Nicholas A. Bowman, Lindsay Jarratt, K.C. Culver, and Alberto Maria Segre.
2019. How Prior Programming Experience Affects Students’ Pair Programming
Experiences and Outcomes. In Proceedings of the 2019 ACM Conference on Inno-
vation and Technology in Computer Science Education (ITiCSE ’19). Association
for Computing Machinery, New York, NY, USA, 170–175.

[7] Hui Yi Chiang and Bertrand MT Lin. 2020. A decision model for human resource
allocation in project management of software development. IEEE Access 8 (2020),
38073–38081.

[8] Alexandre Costa, Felipe Ramos, Mirko Perkusich, Emanuel Dantas, Ednaldo
Dilorenzo, Ferdinandy Chagas, André Meireles, Danyllo Albuquerque, Luiz Silva,
HyggoAlmeida, et al. 2020. Team formation in software engineering: A systematic
mapping study. Ieee Access 8 (2020), 145687–145712.

[9] Antonio Alexandre Moura Costa, Felipe Barbosa Araújo Ramos, Mirko Barbosa
Perkusich, Arthur Silva Freire, Hyggo O Almeida, and Angelo Perkusich. 2018.
A Search-based Software Engineering Approach to Support Multiple Team For-
mation for Scrum Projects.. In SEKE. 474–473.

[10] Jialin Cui, Ruochi Li, Kaida Lou, Chengyuan Liu, Yunkai Xiao, Qinjin Jia, Ed-
ward Gehringer, and Runqiu Zhang. 2022. Can Pre-Class Github Contributions
Predict Success by Student Teams?. In Proceedings of the ACM/IEEE 44th Interna-
tional Conference on Software Engineering: Software Engineering Education and
Training (Pittsburgh, Pennsylvania) (ICSE-SEET ’22). Association for Computing
Machinery, New York, NY, USA, 40–49. https://doi.org/10.1145/3510456.3514144

[11] Jialin Cui, Runqiu Zhang, Ruochi Li, Yang Song, Fangtong Zhou, and Edward
Gehringer. 2023. Correlating Students’ Class Performance Based on GitHub
Metrics: A Statistical Study. In Proceedings of the 2023 Conference on Innovation
and Technology in Computer Science Education V. 1 (Turku, Finland) (ITiCSE 2023).
Association for Computing Machinery, New York, NY, USA, 526–532.

[12] Jialin Cui, Runqiu Zhang, Ruochi Li, Fangtong Zhou, Yang Song, and Edward
Gehringer. 2024. A Comparative Analysis of GitHub Contributions Before and
After An OSS Based Software Engineering Class. In Proceedings of the 2024
Innovation and Technology in Computer Science Education V. 1.

[13] Jialin Cui, Runqiu Zhang, Ruochi Li, Fangtong Zhou, Yang Song, and Edward
Gehringer. 2024. How Pre-class Programming Experience Influences Students’
Contribution to Their Team Project: A Statistical Study. In Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 1 (, Portland, OR,
USA,) (SIGCSE 2024). Association for Computing Machinery, New York, NY, USA,
255–261. https://doi.org/10.1145/3626252.3630870

[14] Jialin Cui, Fangtong Zhou, Runqiu Zhang, Ruochi Li, Chengyuan Liu, and Ed
Gehringer. 2023. Predicting Students’ Software Engineering Class Performance
with Machine Learning and Pre-Class GitHub Metrics. In 2023 IEEE Frontiers in
Education Conference (FIE). 1–9. https://doi.org/10.1109/FIE58773.2023.10343357

[15] Fabio QB da Silva, A Cesar C Franca, Tatiana B Gouveia, Cleviton VF Monteiro,
Elisa SF Cardozo, and Marcos Suassuna. 2011. An empirical study on the use of
team building criteria in software projects. In 2011 International Symposium on
Empirical Software Engineering and Measurement. IEEE, 58–67.

[16] Massimiliano Di Penta, Mark Harman, and Giuliano Antoniol. 2011. The use of
search-based optimization techniques to schedule and staff software projects: an
approach and an empirical study. Software: Practice and Experience 41, 5 (2011),
495–519.

[17] Dora Dzvonyar, Lukas Alperowitz, Dominic Henze, and Bernd Bruegge. 2018.
Team composition in software engineering project courses. In Proceedings of the
2nd International Workshop on Software Engineering Education for Millennials.
16–23.

[18] Madeline Endres, WestleyWeimer, and Amir Kamil. 2021. An Analysis of Iterative
and Recursive Problem Performance. In Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education (Virtual Event, USA) (SIGCSE ’21).
Association for Computing Machinery, New York, NY, USA, 321–327.

[19] Lidia Feklistova, Marina Lepp, and Piret Luik. 2021. Learners’ Performance in a
MOOC on Programming. Education Sciences 11, 9 (2021), 521.

[20] Norman Fenton, Shari Lawrence Pfleeger, and Robert L. Glass. 1994. Science and
substance: A challenge to software engineers. IEEE software 11, 4 (1994), 86–95.

[21] Carlo Ghezzi and Dino Mandrioli. 2005. The Challenges of Software Engineering
Education. In Proceedings of the 2005 International Conference on Software Engi-
neering Education in the Modern Age (St. Louis, MO) (ICSE’05). Springer-Verlag,
Berlin, Heidelberg, 115–127. https://doi.org/10.1007/11949374_8

[22] Abdul Rehman Gilal, Jafreezal Jaafar, Mazni Omar, Shuib Basri, and Ahmad
Waqas. 2016. A rule-based model for software development team composition:
Team leader role with personality types and gender classification. Information
and Software Technology 74 (2016), 105–113.

[23] GitHub. 2022. The top programming languages. Retrieved August 10, 2023 from
https://octoverse.github.com/2022/top-programming-languages

[24] Dianne Hagan and Selby Markham. 2000. Does It Help to Have Some Program-
ming Experience before Beginning a Computing Degree Program? SIGCSE Bull.
32, 3 (jul 2000), 25–28.

[25] Hiroaki Hashiura, Toru Kuwabara, Yumei Qiu, Koutarou Yamashita, Tatsuya
Ishikawa, Kiyomi Shirakawa, and Seiichi Komiya. 2008. A system for supporting
group exercise in software development with facilities to create an optimal plan of
student grouping and team formation of each group. In Electrical And Computer
Engineering Series. Proceedings of the 7th WSEAS International Conference on
Software Engineering, Parallel and Distributed Systems. Cambridge, UK. 149–157.

[26] Sallie Henry. 1983. A project oriented course on software engineering. ACM
SiGCSE Bulletin 15, 1 (1983), 57–61.

[27] Sallie Henry, Nancy Miller, Wei Li, Joseph Chase, and Todd Stevens. 1999. Using
software development teams in a classroom environment. In The proceedings of
the thirtieth SIGCSE technical symposium on Computer science education. 356–357.

[28] Moon-Soo Kim. 2017. A team building algorithm based on successful record for
capstone course. Global Journal of Engineering Education 19, 3 (2017), 243–248.

[29] Theodoros Lappas, Kun Liu, and Evimaria Terzi. 2009. Finding a team of experts in
social networks. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining. 467–476.

[30] Josh Levy-Kramer. 2023. k-means-constrained. https://pypi.org/project/k-
means-constrained/ Version 0.7.3.

[31] Robert Lingard and Elizabeth Berry. 2002. Teaching teamwork skills in software
engineering based on an understanding of factors affecting group performance.
In 32nd Annual frontiers in Education, Vol. 3. IEEE, S3G–S3G.

[32] Henrik Hillestad Løvold, Yngve Lindsjørn, and Viktoria Stray. 2020. Forming and
assessing student teams in software engineering courses. In Agile Processes in
Software Engineering and Extreme Programming–Workshops: XP 2020 Workshops,
Copenhagen, Denmark, June 8–12, 2020, Revised Selected Papers 21. Springer.

[33] Anirban Majumder, Samik Datta, and KVM Naidu. 2012. Capacitated team
formation problem on social networks. In Proceedings of the 18th ACM SIGKDD
international conference on knowledge discovery and data mining. 1005–1013.

[34] Tom Nurkkala and Stefan Brandle. 2011. Software studio: teaching professional
software engineering. In Proceedings of the 42nd ACM technical symposium on
Computer science education. 153–158.

[35] Kai Presler-Marshall, Sarah Heckman, and Kathryn T Stolee. 2022. What Makes
Team [s]Work? A Study of TeamCharacteristics in Software Engineering Projects.
In Proceedings of the 2022 ACM Conference on International Computing Education
Research-Volume 1. 177–188.

[36] Yasar Guneri Sahin. 2011. A team building model for software engineering
courses term projects. Computers & Education 56, 3 (2011), 916–922.

[37] Kurt Schneider, Olga Liskin, Hilko Paulsen, and Simone Kauffeld. 2015. Media,
mood, and meetings: Related to project success? ACM Transactions on Computing
Education (TOCE) 15, 4 (2015), 1–33.

[38] Thomas J Scott, Lee H Tichenor, Ralph B Bisland Jr, and James H Cross. 1994.
Team dynamics in student programming projects. ACM SIGCSE Bulletin 26, 1
(1994), 111–115.

[39] Yan Hern Ryan Sim, Zhi Zhan Lua, Kahbelan Kalisalvam Kelaver, Jia Qi Chua,
Ian Zheng Jiang Lim, Qi Cao, Sye Loong Keoh, and Li Hong Idris Lim. 2023. Expe-
riences and Lessons Learned from Real-World Projects in Software Engineering
Subject. In 2023 IEEE 35th International Conference on Software Engineering Edu-
cation and Training (CSEE&T). IEEE, 173–177.

[40] Hsien-Tang Tsai, Herbert Moskowitz, and Lai-Hsi Lee. 2003. Human resource
selection for software development projects using Taguchi’s parameter design.
European Journal of operational research 151, 1 (2003), 167–180.

[41] Susan Wiedenbeck, Deborah LaBelle, and Vennila N. R. Kain. 2004. Factors
affecting course outcomes in introductory programming. In Proceedings of the
16th Annual Workshop of the Psychology of Programming Interest Group, PPIG
2004, Carlow, Ireland, April 5-7, 2004. Psychology of Programming Interest Group,
Carlow, Ireland, 11.

[42] ChrisWilcox andAlbert Lionelle. 2018. Quantifying the Benefits of Prior Program-
ming Experience in an Introductory Computer Science Course. In Proceedings of
the 49th ACM Technical Symposium on Computer Science Education (Baltimore,
Maryland, USA) (SIGCSE ’18). Association for Computing Machinery, New York,
NY, USA, 80–85.

[43] Claes Wohlin and Björn Regnell. 1999. Achieving industrial relevance in software
engineering education. In Proceedings 12th conference on software engineering
education and training (Cat. No. PR00131). IEEE, 16–25.

https://doi.org/10.1109/ICSESS47205.2019.9040791
https://www.microsoft.com/en-us/research/publication/constrained-k-means-clustering/
https://www.microsoft.com/en-us/research/publication/constrained-k-means-clustering/
https://doi.org/10.1145/3510456.3514144
https://doi.org/10.1145/3626252.3630870
https://doi.org/10.1109/FIE58773.2023.10343357
https://doi.org/10.1007/11949374_8
https://octoverse.github.com/2022/top-programming-languages
https://pypi.org/project/k-means-constrained/
https://pypi.org/project/k-means-constrained/

	Abstract
	1 INTRODUCTION
	2 Related Work
	2.1 Team Formation in Industry
	2.2 Team Formation in Academia

	3 Class Structure
	4 Experiment Design
	5 Data Collection
	5.1 GitHub ID
	5.2 Pre-class GitHub Contribution Metrics

	6 Methodology
	6.1 Constrained k-mean for Team Formation
	6.2 Shapiro-Wilk test, Levene's test, Student's t -test, and Mann-Whitney U -test

	7 Results
	8 Discussion
	8.1 Team Performance and Team Formation
	8.2 Broader Implications

	9 Threats to Validity
	10 Conclusions
	References

