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Abstract

In income and wealth data modeling Pareto distribution and its several vari-

ants play an important role. Both univariate and multivariate variations of this

model have been extensively used as a suitable model for various non-negative

socio-economic variables, for pertinent details, see Arnold (2015). In this article, we

consider the most general Feller-Pareto (FP, in short) distribution, which subsumes

all four types of Pareto distributions and show that it can be represented as a mix-

ture of a conditional generalized gamma and an unconditional gamma distribution.

Using this strategy, we consider a data augmentation based method (under the en-

velope of Bayesian paradigm) to estimate the parameters of the FP distribution.

This mixture representation allows us to easily derive conditional Jeffery’s type non

informative priors. For illustrative purposes, one data set is considered to exhibit

the utility of the proposed method.

1 Introduction

Applications of several Pareto models and its various generalizations in modeling socio-

economic phenomena are well established in literature. For an excellent survey on several

Pareto models along with its stochastic properties see Arnold (2015) and the references

cited therein. In the hierarchy of several Pareto models, Pareto (Type IV) is the most

general which subsumes three other models. Feller (1971) came up with a different rep-

resentation for the Pareto (Type IV) model, expressing it as a ratio of two independent

gamma variables, a distribution alternatively known as Beta distribution of the second

kind. According to Feller, if Yi ∼ Γ(δi, 1), i = 1, 2, are independent random variables, if
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for µ ∈ R, σ > 0, γ > 0, we define W = µ + σ
(
Y2
Y1

)γ
, then W has a Feller-Pareto (FP,

henceforth, in short) distribution, and we write W ∼ FP (µ, σ, δ1, δ2, γ). The correspond-

ing density can be easily obtained as

g(w) =

(
w−µ
σ

)δ1/γ−1

γΓ(δ1)Γ(δ2)

Γ (δ1 + δ2)(
1 +

(
w−µ
σ

)1/γ
)δ1+δ2

I(w > µ). (1.1)

There is another construction of the FP distribution as defined in the next. Let Y1 and

Y2 be two independent radon variables having gamma distribution with scale parameter

σ and shape parameters δ1, δ2. Then, X = µ + γ
(
Y2
Y1

)γ
has FP(µ, σ, δ1, δ2, γ) . Indeed

Arnold (2015) has shown that the FP distribution is a generalization of the Pareto (IV)

distribution.

The FP family appears to be an unimodal distribution which subsumes a variety of

continuous probability models as special cases. For example, it includes Pareto (type I),

Pareto (type II), Pareto (type III), and Pareto (type IV) which are identified as special

cases by appropriately selecting model parameters in Eq. (1.1) given below:

• Pareto (I)(σ, α)=FP(σ, σ, 1, α, 1) ,

• Pareto (II)(µ, σ, α)=FP(µ, σ, 1, α, 1) ,

• Pareto(III)(µ, σ, γ)=FP(µ, σ, γ, 1, 1) ,

• Pareto(IV)(µ, σ, γ, α)=FP(µ, σ, γ, α, 1) ,

Another special case of the FP distribution is the transformed beta family which

includes several well-known probability models such as Burr, Generalized Pareto, and

Inverse Burr among others. Noticeably, a salient feature of these distributions is that

they possess relatively high probability in the upper tail. However, it is also interesting

to note that there are some distributions that exhibit distinctly non-Paretian behavior in

the upper tail. For instance, Log-logistic, Inverse Pareto, and Inverse Paralogistic -each

is a special case of Inverse Burr have relatively “light” tails as independently observed by

Brazauskas (2002). Application of such probability models covers a wide spectrum of areas

ranging from actuarial science, economics, finance to health science domain and telecom-

munications, for distributions of variables such as sizes of insurance claims, incomes in a
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population of people, stock price fluctuations, duration of responses to medical treatment,

and length of telephone calls. For pertinent details, see Arnold (1983, 2015); Johnson et

al. (1994); Klein and Moeschberger (1997). Moreover, some of these distributions are

relevant within much broader classes of probability models. For example, a generalized

Pareto distribution arises in semiparametric modeling of upper observations in samples

from distributions which are regularly varying or in the domain of attraction of extreme

value distributions, see Embrechts et al. (1997). This motivates us to consider the study

of this distribution from the estimation perspective.

Next, without loss of generality, we consider µ = 0. Alternatively, we can estimate µ

from a given data as w1:n = min1≤i≤nwi, which is a consistent estimate of µ. Then, we can

subtract from w and set µ equal to zero. Kalbfleisch and Prentice (1980) identified Eq.

(1.1) as a generalized F density. However, the seemingly unattractive and complicated

(although it does have a closed form density) expression of the density function discour-

aged researchers to investigate further about this model. In the literature attempts have

been made to discuss structural properties of the FP distribution as well as methodolo-

gies related to methods of estimation under a frequentist approach. A not-exhaustive

list of such references are mentioned as follows. Tahmasebi and Behboodian (2010) have

discussed and derived the exact analytical expressions of entropy for the FP family and

order statistics of FP subfamilies. Dutang et al. (2022) developed an R package actuar

for implementing FP distribution in actuarial applications numerically. Odubote and

Oluyede (2014) discussed a weighted version of a Feller-Pareto distribution and discussed

several useful structural properties. Brazauskas (2022) derived the exact form of Fisher

Information matrix for the FP distribution. However, none of the above cited references

have discussed the estimation of the model parameters under a frequentist approach. Ad-

ditionally, classical estimation appears to have serious limitations in efficiently estimating

the parameters of the FP model that has a total of 5 parameters. In particular, one is

faced with the following problems:

• The classical maximum likelihood method of estimation may not perform satis-

factorily well, because we have 4 parameters (assuming µ = 0) in total, and the

associated likelihood is not a well behaved function as it involves gamma functions.

Moreover, even if we estimates for the parameters, it is quite difficult to examine

mathematically or otherwise, whether or not the estimated values are global or local

maximum.
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• From Eq.(1.1), with µ = 0, the k-th order moment (k ≥ 2) of FP distribution will

be

E
(
W k
)

=
σkΓ(kγ + δ2)Γ(δ1 − kγ)

Γ(δ1)Γ(δ2)
.

It is quite obvious from this expression that for the k-th order of moment to exist,

we must have δ1 > kγ. This is quite a strong assumption, and at the same time we

do not know for sure whether for a given data set, this condition will be satisfied.

Although, one may use the method of fractional moments (which always exists), but

that too, might not yield satisfactory results as several estimation methods under

the classical set-up involves selecting a starting value for the parameters under study.

As a remedy, we seek a different approach in this paper. We write the density function

in Eq. (1.1) as a mixture of one conditional generalized gamma and an unconditional

gamma distribution. Later on, we will show that this mixture representation helps us to

derive easily conditional Jeffery’s type non informative prior. This is quite fascinating in

the sense that we are not assuming any external prior, but by rewriting the model in terms

of two known distributions by invoking the argument of data augmentation. Needless to

say, similar technique might well be considered for a multivariate FP distribution. The

rest of the paper is organized as follows. In Section 2, the maximum likelihood estimation

method is used to estimate the model parameters for the FP distribution given in Eq.

(1.1). In section 3, we discuss mixture representation of the density given in Eq. (1.1).

In Section 4, we discuss a simulation study. Section 5 deals with the application of the

proposed methodology to a data set having varying complexities. Finally, some concluding

remarks are presented in Section 6.

2 Estimation by the method of maximum likelihood

For a random sample of size n the associated log-likelihood function drawn from the

probability model in Eq. (1.1) will be

logL (σ, γ, δ1, δ2) =

(
δ1

γ
− 1

) n∑
i=1

log

(
Wi

σ

)
+ n (Γ (δ1 + δ2))− n {Γ(δ1) + Γ(δ2)}

−n log γ − (δ1 + δ2)
n∑
i=1

log

(
1 +

(
Wi

σ

)1/γ )
. (2.1)
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The corresponding maximum likelihood equations will be by differentiating Eq. (2.1)

with respect to γ, σ, δ1 and δ2 will be

∂ logL (σ, γ, δ1, δ2)

∂γ
= − (δ1 + δ2)

n∑
i=1

−
(
Wi

σ

) 1
γ log

(
Wi

σ

)
γ2
((

Wi

σ

) 1
γ + 1

) − δ1

∑n
i=1 log

(
Wi

σ

)
γ2

− n

γ
. (2.2)

∂ logL (σ, γ, δ1, δ2)

∂σ
= − (δ1 + δ2)

n∑
i=1

−
Wi

(
Wi

σ

) 1
γ
−1

γσ2
((

Wi

σ

) 1
γ + 1

) − n
(
δ1
γ
− 1
)

σ
. (2.3)

∂ logL (σ, γ, δ1, δ2)

∂δ1

=

∑n
i=1 log

(
Wi

σ

)
γ

−
n∑
i=1

log

((
Wi

σ

) 1
γ

+ 1

)
+ nΓ(δ1 + δ2)ψ(0)(δ1 + δ2)

−nΓ(δ1)ψ(0)(δ1). (2.4)

∂ logL (σ, γ, δ1, δ2)

∂δ2

= −
n∑
i=1

log

((
Wi

σ

) 1
γ

+ 1

)
+ nΓ (δ1 + δ2)ψ(0) (δ1 + δ2)

−nΓ(δ2)ψ(0)(δ2). (2.5)

The maximum likelihood estimates of the parameters σ, γ, δ1, δ2 are obtained by equat-

ing Eqs. (2.2)-(2.5) to zero, and ψ(0)(z) = d
dz

log(Γ(z)), is the polygamma function.

For the elements of the Fisher information (FIM, in short), an interested reader is

referred to the paper by Brazauskas (2002) with γ1 and γ2 need to be replaced by δ1 and

δ2 as per the notation utilized in this paper in the probability density function in Eq.

(1.1).

The asymptotic variance-covariance matrix of the MLE θ̂ =
(
σ̂, γ̂, δ̂1, δ̂2

)
can be obtained

from the inverse of the observed FIM as

U = I−1 def.
=


u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 u44

 .

Lehmann and Casella (2006) have discussed the asymptotic normality of the MLE under

certain conditions (see, Theorem 3.10, p.449). For the FP distribution given in Eq. (1.1),

it is straightforward to see that

| ∂4

∂σ ∂γ ∂δ1 ∂δ2

[log fX(x|θ)]| = 0.
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In addition, all the remaining necessary and sufficient conditions of Theorem 3.10 of

Lehmann and Casella (2006) are satisfied, and therefore, it can be assumed that(
σ̂, γ̂, δ̂1, δ̂2

)
asymp∼ N4

(
σ, γ, δ1, δ2, (U[θ])−1jj

)
.

Consequently, a 100 (1− q)% approximate confidence intervals of the parameters θ̂i,

will be

θ̂i ± Zq ×
√
uii, (2.6)

i = 1, 2, 3, where Zq is the 100q-th upper percentile of the standard normal distribution.

2.1 Simulation Study

In this section, we conduct a Monte Carlo simulation study to evaluate the performance

of the likelihood inference for the FP distribution given in Eq. (1.1). Random samples

from the FP distribution are obtained using the actuar package in R. In particular, we

consider the sample sizes n = 50, 75 and 100 with the following six sets of choices of the

model parameters.

(a) Choice 1: σ = 2, γ = 1.5 and δ1 = 0.35, δ2 = 0.35.

(b) Choice 2: σ = 2.5, γ = 2 and δ1 = 0.65, δ2 = 0.75.

(c) Choice 3: σ = 1.75, γ = 1.2 and δ1 = 1.35, δ2 = 1.40.

(d) Choice 4: σ = 1.45, γ = 1.6 and δ1 = 1.40, δ2 = 1.52.

(e) Choice 5: σ = 3, γ = 1.8 and δ1 = 1.65, δ2 = 1.75.

(f) Choice 6: σ = 3.5, γ = 2.25 and δ1 = 0.95, δ2 = 0.85.

For each setting, 20000 sets of random samples are generated. Regarding the MLE

estimates, we have mimicked the strategy adopted in Duatang et al. (2022). For each

simulated random sample, we also compute the 95% approximate confidence intervals for

the parameters σ, γ, δ1, and δ2 based on Eq. (2.6) with the asymptotic variances ob-

tained from inverting the observed Fisher information matrix as well as the approximated

variances obtained from a parametric bootstrap method with 400 bootstrap samples, for

details on the bootstrapping, see Efron and Tibshirani (1993). The estimated biases
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and mean squared errors (MSEs) of the MLEs of σ, γ, δ1, and δ2 are presented in Table

2.1. The estimated coverage probabilities and average widths of the confidence intervals

are presented in Table 2.2. Since the observed information need not be positive definite

which results in negative asymptotic variances, see, for example, Verbeke and Molenberghs

(2007). Additionally, we also represent the percentage of cases in which the asymptotic

variances are negative and the confidence intervals cannot be computed in Table 2.2. In

those cases that the asymptotic variances are negative, we recommend using a parametric

bootstrap method as an alternative method to approximate the variances of the MLEs.

One may observe from Table 2.1, that the estimated MSEs for the four parameters

σ, γ, δ1 and δ2 decrease as the sample size increases. However, for the estimated biases,

there is not a steady decreasing pattern with the increase of sample sizes, and on the

contrary, in some cases, it appears that there is a negligible amount (by 0.01 − 0.05) of

increase. Whether this is an anomaly or not will be investigated in a separate article. We

also observe that the estimated MSEs of δ2 is larger than the MSEs of σ, γ and δ1. Next,

from Table 2.2, one may also observe the following

• that the proportions of cases in which negative variance estimates are obtained is

negligibly small.

• the computed approximate confidence intervals based on bootstrap variances per-

forms satisfactorily well. Note that these approximate confidence intervals can be

used as an alternative when the asymptotic variances are negative, for pertinent

details, see Ghosh and Ng (2019) and the references cited therein.

3 Mixture representation

In this section, we represent the mixture representation of the FP distribution. Suppose,

X1 ∼ Γ(δ1, 1) and X2 ∼ Γ(δ2, 1) and they are independent. Let us define Zi = Xγ
i ,

i = 1, 2, with γ > 0. Then, the distribution of Zi will be

f(zi) =
1

γΓ(δi)
exp

(
−z1/γ

i

)
z
δi/γ−1
i zi > 0.

Note that the above density function has been independently derived and explored by

Stacy (1962). The joint density of Z1 and Z2 will be
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f(z1, z2) =
1

γ2Γ(δ1)Γ(δ2)
exp

{
−(z

1/γ
1 + z

1/γ
2 )
}
z
δ1/γ−1
1 z

δ2/γ−1
2 , zi > 0, i = 1, 2.

Next, let us consider the following transformation. W = σZ1

Z2
, with σ > 0, and U = Z2.

We are interested in the distribution of W. The Jacobian of the above transformation is

|J | = u
σ
. Then, the joint distribution of W and U will be

f (u,w) =
1

γ2σΓ(δ1)Γ(δ2)

(uw
σ

)δ1/γ−1

uδ2/γ−1
(u
σ

)
exp

(
−
((uw

σ

)1/γ

+ u1/γ

))
I (w > 0, u > 0) .

Hence, the marginal distribution of W will be

g(w) =

(
w
σ

)δ1/γ−1

γ2σΓ(δ1)Γ(δ2)

∫ ∞
0

u
δ1+δ2
γ
−1 exp

(
− u1/γ(

(w
σ

)1/γ

+ 1)

)
du

=

(
w
σ

)δ1/γ−1

σγΓ(δ1)Γ(δ2)

Γ (δ1 + δ2)(
1 +

(
w
σ

)1/γ
)δ1+δ2

I(w > 0). (3.1)

Noticeably, it is the ratio of two independent Stacy random variables with the same

shape parameter. Jordanova, P.K et al. (2023) discussed and studied the distribution of

the ratio of two independent Stacy random variables when both the shape parameters for

the numerator and denominator random variables is equal to one. However, it must be

noted that Jordanova, P.K et al. (2023) did not work on a subset of this current work.

Precisely, the authors in that paper work on different sets of the values of the powers

in the numerator and denominator, and just have an intersection when these powers are

equal to 1.

Next, observe that we can rewrite Eq. (3.1) as

g(w∗) =

∫ ∞
0

f1(w∗|u)f2(u)du,

where W ∗ = W
σ

and

• W |U = u ∼ Γ
(
δ1
γ
, u
)
, with

f1 (w|u) =
uδ1/γ

γΓ(δ1)
wδ1/γ−1 exp

{
−uw1/γ

}
I(w > 0).
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• U ∼ Γ
(
δ2
γ
, 1
)
.

In this case, the associated complete data likelihood takes the following form:

L

(
δ1, δ2, γ,W1,W2, · · · ,Wn, U1, U2, · · · , Un

)

=
1

(γσ)n

(
1

Γ(δ1)

)n(
1

Γ(δ2)

)n n∏
i=1

u
δ2/γ−1
i exp

{
−

n∑
i=1

u
1/γ
i

}

×
n∏
i=1

(uiwi)
δ1/γ exp

{
−

n∑
i=1

(uiwi)
1/γ

}

=

(
1

γσΓ(δ1)Γ(δ2)

)n n∏
i=1

u
(δ1+δ2)/γ−1
i

n∏
i=1

(wi
σ

)δ1/γ−1

exp

{
−

n∑
i=1

u
1/γ
i

(
1 +

(wi
σ

)1/γ
)}

.

(3.2)

Next, we try to derive from Eq.(3.2), the full conditionals of (δ1, δ2, γ, σ, U1, U2, · · · , Un),

given (W1,W2, · · · ,Wn) as follows:

• For i = 1, 2, · · · , n,

Ui|u−i, w, γ, δ1, δ2, σ ∝ u
(δ1+δ2)/γ−1
i exp

{
−u1/γ

i

(
1 +

(
wi
σ

)1/γ
)}

∼ Generalized gamma
(

(δ1 + δ2)/γ, 1/
(

1 +
(
wi
σ

)1/γ
)
, γ
)

.

•

γ|u,w, δ1, δ2, σ

∝ exp

{
1

γ

(
(δ1 + δ2)

n∑
i=1

log ui + δ1

n∑
i=1

log
wi
σ

)
−

n∑
i=1

u
1/γ
i

(
1 +

(wi
σ

)1/γ
)}(

1

γσ

)n
.

• δ2|u,w, δ1, γ, σ ∝
(

1
σΓ(δ2)

)n
exp

{
δ2
γ

∑n
i=1 log ui

}
. Note that this function is log con-

cave.

• δ1|u,w, δ2, γ, σ ∝
(

1
Γ(δ1)

)n
exp

{
δ2
γ

∑n
i=1

(
log ui + log wi

σ

)}
. Note that this function

is also log concave.

• Finally, σ|u,w, δ1, δ2, γ ∝
(

1
γΓ(δ1)Γ(δ2)

)n
exp

(
−
∑n

i=1 u
1/γ
i

(
1 +

(
wi
σ

)1/γ
))

.
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Therefore, all (n+ 4) full conditionals can be sampled using Acceptance Rejection (AR)

sampling using the R-package ars.

On the choice of hyperparameters for the priors:

In this case, the hyperparameter values for the Gamma priors are obtained via the method

of matching first two theoretical moments with the sample moments. Needless to say that

there are other available strategies of selecting hyperparameters, such as the procedure

adopted by Giannone, D. et al. (2013) in relation to vector autoregression models, Singh,

P., & Hellander, A. (2018) in the context of hyperparameter optimization, etc. However,

the methodology adopted in such references might be more applicable to spatial-temporal

models rather than the model that we have here. Additionally, whether such strategies

will be beneficial (in the sense of computational efficiency, computation time) is a subject

matter of a future study. Furthermore, it is safe to opine that we are not claiming that this

set of priors with these specific choice of hyperparameters is optimum for the associated

Bayesian analysis, but, in our cases, we have tried several other prior choices and found

minimal changes in the final estimates. Also, the acceptance probability across found to

be between (0.36, 0.73) , which indicates that the chain mixing was satisfactory. A full

scale study regarding a wide range of prior choices needs to be done which is beyond the

scope of this present paper.

3.1 Comment on the Convergence of MCMC Procedure

For the convergence diagnostics of the adopted MCMC procedure, the method of Gelman

and Rubin (1992) is utilized. It involves two stages. The first step, before sampling begins,

involves obtaining an over-dispersed estimate of the target distribution(s) and using these

to generate the starting points for the desired number of independent chains (in our case

,we consider running a MCMC procedure with m = 10 parallel independent chains of

length 2k=40000 each). The second step involves using the last k = 1000 iterations to

re-estimate the target distribution of the scalar quantity of interest (in our case σ, γ,

δ1 and δ2). The convergence of the MCMC convergence is monitored by the following

quantity given below:

√
R̂ =

√{
k − 1

n
+

(m+ 1)B

mkW

}
df

(df − 2)
,

where B is the variance between the means from the m = 10 parallel chains, W

12



is the average of the m = 10 within-chain variances and df is the degrees of freedom

of the approximating t density, for details, see pp. 465, Eq. (20) of Gelman & Rubin

(1992). Convergence is said to have achieved once the value of
√
R̂ is near 1 for all scalar

estimands of interest for a sufficiently large k (k → ∞). It is to be noted here that

Gelman and Rubin (1992) had proposed the method for Gibbs sampler but here we have

applied their procedure on the output of MCMC procedure which is a particular case of

Gibbs sampling. For illustrative purposes, we provide the values of
√
R̂ for all of our

scalar quantities of interest under the partial dependent conjugate prior set up (provided

in Tables 6.1− 6.3 in Appendix).

4 Simulation study

For the associated Bayesian analysis, we consider the following two different sets of prior

choices, namely the non-informative & improper and conjugate prior set up. At first, we

consider the non-informative prior set-up and we label it as Choice 1.

Choice 1 (Non-informative prior set-up):

Π(σ) ∝ 1

(1 + σ)2 I (σ > 0) .

Π(γ) ∝ 1

(1 + γ)2 I (γ > 0) .

Π(δ1) ∝ 1

(1 + δ1)2 I (δ1 > 0) .

Π(δ2) ∝ 1

(1 + δ2)2 I (δ2 > 0) .

Therefore, the joint prior in this case will be Π(σ)× Π(γ)× Π(δ1)× Π(δ2).

The associated posterior summary is represented in Table 4.1.

Choice 2 (Conjugate prior set-up):

Next, under the conjugate prior set-up, we consider the same prior choices for all the

parameters, i.e., (δ1, δ2, γ, σ) each follows a Gamma distribution with shape=0.2, and

rate=0.2 respectively. We consider using WINBUGS (a software for computing Bayesian

analysis) with R interface to conduct the simulation study. We do not claim that the prior

choice made here is optimum, but among different choices of the hyperparameters made

13



for this study, this choice appears to be producing satisfactory results for the Bayesian

analysis based on a random sample of size n = 100. The associated posterior summary is

provided in Table and 4.2.

For both the cases, we consider the following four sets of true parameter choices.

(a) Choice 1: σ = 0.07, γ = 0.25 and δ1 = 0.75, δ2 = 0.82.

(b) Choice 2: σ = 0.158, γ = 3.10 and δ1 = 0.65, δ2 = 0.75.

(c) Choice 3: σ = 4.98, γ = 6.70 and δ1 = 0.57, δ2 = 0.61.

(d) Choice 4: σ = 3.22, γ = 3.50 and δ1 = 0.52, δ2 = 0.53.

Remark. From the posterior simulation studies as given in Tables 4.1 and 4.2, one may

comment the following:

• Under the non-informative prior set-up the associated 95% HPD intervals are slightly

wider.

• We cannot make a general comment as to whether prior conjugacy in this scenario

will perform uniformly better or not. A full scale study involving other possible prior

choices and hyperparameter values along with a flat prior of the form Π(θ) ∝ 1 will

be the subject matter of a separate article.

5 Real data application

In this section, we consider a data on fault-trace lengths from Clark et al. (1999). As per

the authors, mimicking their words, ”It has often been observed that fault-trace lengths

tend to follow a power-law or Pareto distribution, at least for sufficiently large lengths.”

The applicability of the FP model under the classical paradigm (using the MLE method)

has already been discussed in Clark et al. (1999). In this paper, we discuss the Bayesian

estimation of the FP model parameters. One prominent reason for selecting the FP

distribution is that it is the most general model in the hierarchy of Pareto distribution and

many other distributions have been assumed to fit this particular data set which assumes

a Pareto like behavior (especially mimicking the tail-behavior). Here, we consider the

estimates of the parameters using moment matching (i.e, equating the sample moments

with the theoretical moments) strategy and treat them as the initial prior choice for the

14
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Bayesian analysis. The summary of the Bayesian output is given in Table 5.1. Regarding

the convergence of the adopted MCMC, we provide the
√
R̂ values given in the Appendix.

For the Bayesian analysis, we consider the following two different sets of prior choices:

• Choice 1 (Non-informative prior set-up):

Π(σ) ∝ 1

σ
I (σ > 0) .

Π(γ) ∝ 1

γ
I (γ > 0) .

Π(δ1) ∝ 1

(1 + δ1)2 I (δ1 > 0) .

Π(δ2) ∝ 1

(1 + δ2)2 I (δ2 > 0) .

• Choice 2 (Conjugate prior set-up):

– Π(σ) ∼ Gamma(shape = 0.27, rate = 0.35).

– Π(γ) ∼ Gamma(shape = 1.27, rate = 2.09).

– Π(δ1) ∼ Gamma(shape = 1.09, rate = 2.12).

– Π(δ2) ∼ Gamma(shape = 1.45, rate = 3.50).

From the 95% HPD intervals for the conjugate prior set-up, it appears that the

Bayesian estimation under the non-informative (and improper) prior set-up is less effi-

cient as expected. The summary of the output is given in Table 4.1.

Sensitivity analysis with respect to the hyperparameters:

An anonymous referee has expressed concern that the results of this analysis might be

influenced by the choice of hyperparameters. As an initial effort to investigate hyperpa-

rameters sensitivity, we re-analyze the data set with two other sets of prior choices that

are given as follows (for the conjugate prior set-up):

1. Choice 3:

• Π(σ) ∼ Gamma(shape = 0.32, rate = 0.49).
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• Π(γ) ∼ Gamma(shape = 2.49, rate = 3.28).

• Π(δ1) ∼ Gamma(shape = 1.53, rate = 2.58).

• Π(δ2) ∼ Gamma(shape = 1.68, rate = 1.39).

2. Choice 4:

• Π(σ) ∼ Gamma(shape = 0.68, rate = 0.89).

• Π(γ) ∼ Gamma(shape = 2.38, rate = 2.73).

• Π(δ1) ∼ Gamma(shape = 1.78, rate = 3.46).

• Π(δ2) ∼ Gamma(shape = 1.95, rate = 2.34).

The posterior summaries based on the above two different prior choices (with varying

choices of the hyperparameters) are given in Tables 5.2. It appears that with these two sets

of new choices of hyperparameters for the respective priors the final conclusion remains

the same, i.e., the performance of the Bayesian inference under the conjugate prior set-up

performs slightly better as compared to that of under the non-informative prior set-up.

6 Concluding remarks

In this paper, we have discussed estimation of the model parameters of the Feller-Pareto

distribution under both frequentist and Bayesian paradigm. Under the frequentist ap-

proach, we consider the MLE method and also discussed the asymptotic normality of

the estimates under certain regularity conditions. Noticeably, as mentioned in Section 1,

estimation of the parameters under the classical approach is usually hindered by the fact

that the likelihood function is not well behaved, and the parameter space have constraints.

Some of these problems can be avoided by using computing environment such as R using

specific packages that are designed to handle such types of complicated models in terms

of their estimation. Nevertheless, effficient estimation of model parameters for the most

general members of the Pareto-family, namely the Feller-Pareto distribution under the

classical approach is difficult to achieve, as the existence of moments has some conditions

that are hard to satisfy from a practical point of view. However, by rewriting the density

function in Eq. (1.1) as a mixture of two well-known continuous probability models and

by invoking the strategy of data augmentation, we have conducted a Bayesian analysis

under both non-informative & improper and conjugate prior set-up. Based on our study,
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it is difficult to comment as to which of the two procedures (MLE and Bayesian) will

be performing uniformly better than the other. Now, in the absence of large samples

and in the presence of prior information, one can hope that the inferential aspect under

the Bayesian paradigm will be better than any strategy under the classical set-up. The

results of a small simulation study is encouraging. We have also discussed the utility of

the proposed strategy of estimation of the Feller-Pareto distribution in the context of a

real-life data set. A more comprehensive study is required to explore the usefulness of

Bayesian estimation from a standard Bayesian analysis point of view.

Several possible works in the future direction can be considered, including but not limited

to

• choice of other types of improper priors as opposed to the ones assumed in this

paper and then conduct a Bayesian analysis.

• selecting a dependent & full conditional priors from the exponential family as op-

posed to subjective conjugate and proper priors assumed in this paper.

• estimation of the model parameters by other methods under then classical paradigm,

such as the method of maximum product spacing distance, Cramer Von mises,

method of ordinary and weighted least square estimators etc., and have a comparison

study to see the relative efficiency of each of these estimation strategies in the context

of such type of probability models.

Appendix

In this section, we discuss the proofs of the results mentioned in Section 3.

Log concavity of distributions corresponding to mixture representation in Sec-

tion 3 :

First of all, note that a real valued function g() is said to be log-concave on the interval

(a, b) if the function log g() is a concave function on (a, b). Equivalently, one can say,

g
′
()

g()
is monotonically decreasing on (a, b) or (log“ g() < 0,) where “ stands for the

double derivative and ′ stands for the first order derivative respectively.

Result 1: The kernel of the conditional density of

γ|u,w, δ1, δ2 ∝ exp
{

1
γ

((δ1 + δ2)
∑n

i=1 log ui + δ1

∑n
i=1 logwi)−

∑n
i=1 u

1/γ
i

(
1 + w

1/γ
i

)}(
1
γ

)n
is log concave and integrable.
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Proof. We need to show that the kernel of this distribution is log concave and integrable.

Let us define A1 =
∑n

i=1 u
1/γ
i

(
1 + w

1/γ
i

)
. Then

A′1 =
∂A1

∂γ
= log (1/γ)

[
A1 +

n∑
i=1

(uiwi)
1/γ

]
.

Therefore,

A′1
A1

= 1+log (1/γ)

{ ∑n
i=1 (uiwi)

1/γ∑n
i=1 (uiwi)

1/γ +
∑n

i=1 (ui)
1/γ

}
= 1+log (1/γ)

 1

1 +
∑n
i=1(ui)

1/γ∑n
i=1(uiwi)

1/γ

 .

(6.1)

Note that, from Eq. (6.1), for integer values γ > 0 and with (ui, wi) > 0, ∀i =

1, 2, · · · , n, as γ increasing, the quantity log (1/γ) is decreasing. Also, the term inside the

second parenthesis is decreasing. Hence A1 is log-concave.

Next, consider

A2 =
1

γ

(
(δ1 + δ2)

n∑
i=1

log ui + δ1

n∑
i=1

logwi

)
.

For the sake of notational simplicity, we write

B = (δ1 + δ2)
n∑
i=1

log ui + δ1

n∑
i=1

logwi.

Note that B is positive (based on the argument as mentioned earlier.) Also, A2 = B
γ

.

Therefore,
∂2 logA2

∂γ2
=

1

γ2
> 0.

So, A2 is log-convex. Again, since A1 is log-concave −A1 is log-convex. Now, our

kernel for the conditional density

A2 + (−A1).

This is sum of two log-convex functions, and therefore, it is log-convex.

We must make a note of the following:

• For integer values of γ, log (1/γ) is a decreasing function.

• For fractional values of γ (i.e., 0 < γ < 1) log (1/γ) is increasing.
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• For any values of γ, and with any fractional positive values of (ui, wi) the ratio

1

1+

∑n
i=1(ui)

1/γ∑n
i=1(uiwi)

1/γ

is decreasing.

• But, for integer values of (ui, wi) and for any values of γ, the above ratio is increasing.

However, since the quantity is of the form 1
1+positive quantity

, it will be always < 1.

Similarly, one can establish the log-concavity (and/or log-convexity) of all the other

conditional distributions.

On the integrability of all the conditional density functions for AR sampling:

Here we begin with the following:

1. Since the conditional density of Ui given U−i, γ, δ1, δ2 is a generalized gamma, indeed

it is integrable.

2. The conditional density of γ is given by (without the normalizing constant)

γ|u,w, δ1, δ2 ∝ exp

{
1

γ
((δ1 + δ2)D1 + δ1D2)−

n∑
i=1

u
1/γ
i

(
1 + w

1/γ
i

)}(1

γ

)n
,

where D1 =
∑n

i=1 log ui, and D2 =
∑n

i=1 logwi. Next, if consider the transformation

θ = 1
γ
, then the conditional density of θ given u,w, δ1, δ2 will be

g (θ|u,w, δ1, δ2) ∝ exp

{
θ ((δ1 + δ2)D1 + δ1D2)−

n∑
i=1

uθi
(
1 + wθi

)}
θn−2 = M1M2,

(6.2)

where M1 = exp (θT1) θn−2, M2 = exp
(∑n

i=1 u
θ
i

(
1 + wθi

))
, and T1 = (δ1 + δ2)D1 +

δ1D2.

Next, note that 0 < γ < ∞ will imply 0 < θ < ∞. Also, (ui, wi) ≥ 0. So, the

function M2 will exhibit the following:

• lim
θ→0

M2 = exp(−2n) <∞, provided n <∞.

• lim
θ→∞

M2 =⇒ 0.
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Table 6.1: Values of
√
R̂ for n=100.

Chain number
√
R̂σ

√
R̂γ

√
R̂δ1

√
R̂δ2

1 0.81 1.07 1.08 0.71

2 0.92 1.09 1.10 0.86

3 1.01 1.05 0.83 0.85

4 0.96 1.02 0.77 1.01

5 1.01 0.96 0.87 1.02

6 0.97 1.01 1.06 0.96

7 0.89 0.93 0.98 0.87

8 0.91 0.95 0.84 0.85

9 0.92 0.82 0.86 0.88

10 0.96 0.83 0.89 0.95

Therefore, M2 is a bounded function on the interval [0,∞).

Next, let us consider the integrability of the quantity M1

∫ ∞
0

M1dθ =

∫ ∞
0

exp (θT1) θn−2dθ

=

∫ ∞
0

∞∑
j=0

(θT1)j

j!
θn−2dθ

=
∞∑
j=0

(T1)j

j!

∫ ∞
0

θn−2+jdθ.

This integral will be bounded and integrable, provided n + j < 2. This appears to

be a impossible condition. Hence the proof.
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Table 6.2: Values of
√
R̂ for n=200.

Chain number
√
R̂σ

√
R̂γ

√
R̂δ1

√
R̂δ2

1 0.83 0.84 0.93 0.77

2 0.84 0.91 1.04 0.79

3 1.01 1.03 0.93 0.81

4 0.81 0.95 0.89 1.01

5 0.83 0.96 0.92 0.77

6 0.87 0.92 0.86 0.95

7 0.76 0.81 0.92 0.91

8 0.82 0.84 0.85 0.93

9 0.97 0.88 0.87 0.96

10 0.96 0.95 0.92 0.89
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