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Abstract

In income and wealth data modeling Pareto distribution and its several vari-
ants play an important role. Both univariate and multivariate variations of this
model have been extensively used as a suitable model for various non-negative
socio-economic variables, for pertinent details, see Arnold (2015). In this article, we
consider the most general Feller-Pareto (FP, in short) distribution, which subsumes
all four types of Pareto distributions and show that it can be represented as a mix-
ture of a conditional generalized gamma and an unconditional gamma distribution.
Using this strategy, we consider a data augmentation based method (under the en-
velope of Bayesian paradigm) to estimate the parameters of the FP distribution.
This mixture representation allows us to easily derive conditional Jeffery’s type non
informative priors. For illustrative purposes, one data set is considered to exhibit

the utility of the proposed method.

1 Introduction

Applications of several Pareto models and its various generalizations in modeling socio-
economic phenomena are well established in literature. For an excellent survey on several
Pareto models along with its stochastic properties see Arnold (2015) and the references
cited therein. In the hierarchy of several Pareto models, Pareto (Type IV) is the most
general which subsumes three other models. Feller (1971) came up with a different rep-
resentation for the Pareto (Type IV) model, expressing it as a ratio of two independent
gamma variables, a distribution alternatively known as Beta distribution of the second

kind. According to Feller, if Y; ~ I'(;,1), ¢ = 1,2, are independent random variables, if
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forp € R, 0 >0,v >0, we define W = p+o (%) , then W has a Feller-Pareto (FP,
henceforth, in short) distribution, and we write W ~ F P(u, 0,81, 2,7). The correspond-

ing density can be easily obtained as

(w) _ (%)61”—1 I (51 + 52)
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o
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There is another construction of the FP distribution as defined in the next. Let Y; and
Y5 be two independent radon variables having gamma distribution with scale parameter
o and shape parameters 01,d,. Then, X = u + v (%)y has FP(u,0,01,09,7) . Indeed
Arnold (2015) has shown that the FP distribution is a generalization of the Pareto (IV)

distribution.

The FP family appears to be an unimodal distribution which subsumes a variety of
continuous probability models as special cases. For example, it includes Pareto (type I),
Pareto (type II), Pareto (type III), and Pareto (type IV) which are identified as special

cases by appropriately selecting model parameters in Eq. (1.1) given below:

Pareto (I)(o,a)=FP(0,0,1,a,1),

Pareto (II)(u, o, )=FP(u,0,1,a, 1),

Pareto(IlI) (i, 0,7)=FP(p, 0,7,1,1),

Pareto(IV)(u, o, v, «)=FP(u, 0,7, a, 1),

Another special case of the FP distribution is the transformed beta family which
includes several well-known probability models such as Burr, Generalized Pareto, and
Inverse Burr among others. Noticeably, a salient feature of these distributions is that
they possess relatively high probability in the upper tail. However, it is also interesting
to note that there are some distributions that exhibit distinctly non-Paretian behavior in
the upper tail. For instance, Log-logistic, Inverse Pareto, and Inverse Paralogistic -each
is a special case of Inverse Burr have relatively “light” tails as independently observed by
Brazauskas (2002). Application of such probability models covers a wide spectrum of areas
ranging from actuarial science, economics, finance to health science domain and telecom-

munications, for distributions of variables such as sizes of insurance claims, incomes in a



population of people, stock price fluctuations, duration of responses to medical treatment,
and length of telephone calls. For pertinent details, see Arnold (1983, 2015); Johnson et
al. (1994); Klein and Moeschberger (1997). Moreover, some of these distributions are
relevant within much broader classes of probability models. For example, a generalized
Pareto distribution arises in semiparametric modeling of upper observations in samples
from distributions which are regularly varying or in the domain of attraction of extreme
value distributions, see Embrechts et al. (1997). This motivates us to consider the study
of this distribution from the estimation perspective.

Next, without loss of generality, we consider ;1 = 0. Alternatively, we can estimate
from a given data as w;., = min;<;<, w;, which is a consistent estimate of p. Then, we can
subtract from w and set p equal to zero. Kalbfleisch and Prentice (1980) identified Eq.
(1.1) as a generalized F' density. However, the seemingly unattractive and complicated
(although it does have a closed form density) expression of the density function discour-
aged researchers to investigate further about this model. In the literature attempts have
been made to discuss structural properties of the FP distribution as well as methodolo-
gies related to methods of estimation under a frequentist approach. A not-exhaustive
list of such references are mentioned as follows. Tahmasebi and Behboodian (2010) have
discussed and derived the exact analytical expressions of entropy for the FP family and
order statistics of FP subfamilies. Dutang et al. (2022) developed an R package actuar
for implementing FP distribution in actuarial applications numerically. Odubote and
Oluyede (2014) discussed a weighted version of a Feller-Pareto distribution and discussed
several useful structural properties. Brazauskas (2022) derived the exact form of Fisher
Information matrix for the FP distribution. However, none of the above cited references
have discussed the estimation of the model parameters under a frequentist approach. Ad-
ditionally, classical estimation appears to have serious limitations in efficiently estimating
the parameters of the FP model that has a total of 5 parameters. In particular, one is

faced with the following problems:

e The classical maximum likelihood method of estimation may not perform satis-
factorily well, because we have 4 parameters (assuming p = 0) in total, and the
associated likelihood is not a well behaved function as it involves gamma functions.
Moreover, even if we estimates for the parameters, it is quite difficult to examine
mathematically or otherwise, whether or not the estimated values are global or local

maximum.



e From Eq.(1.1), with g = 0, the k-th order moment (k > 2) of FP distribution will
be

EWY) == Term)

It is quite obvious from this expression that for the k-th order of moment to exist,
we must have d; > kv. This is quite a strong assumption, and at the same time we
do not know for sure whether for a given data set, this condition will be satisfied.
Although, one may use the method of fractional moments (which always exists), but
that too, might not yield satisfactory results as several estimation methods under

the classical set-up involves selecting a starting value for the parameters under study.

As a remedy, we seek a different approach in this paper. We write the density function
in Eq. (1.1) as a mixture of one conditional generalized gamma and an unconditional
gamma distribution. Later on, we will show that this mixture representation helps us to
derive easily conditional Jeffery’s type non informative prior. This is quite fascinating in
the sense that we are not assuming any external prior, but by rewriting the model in terms
of two known distributions by invoking the argument of data augmentation. Needless to
say, similar technique might well be considered for a multivariate FP distribution. The
rest of the paper is organized as follows. In Section 2, the maximum likelihood estimation
method is used to estimate the model parameters for the FP distribution given in Eq.
(1.1). In section 3, we discuss mixture representation of the density given in Eq. (1.1).
In Section 4, we discuss a simulation study. Section 5 deals with the application of the
proposed methodology to a data set having varying complexities. Finally, some concluding

remarks are presented in Section 6.

2 Estimation by the method of maximum likelihood

For a random sample of size n the associated log-likelihood function drawn from the

probability model in Eq. (1.1) will be

log L (0,7,61,8,) = (% - 1) illog (g) (T (8) + 62)) — n {T(6;) + T(62)}

= 3w (1 (1)) -
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The corresponding maximum likelihood equations will be by differentiating Eq. (2.1)
with respect to v, o, 4; and 9, will be

Olog L (a,7,01,02) G -I—%)Zn:— (Vg)? log (7) B 01> log (%) _n (2.2)
oy =2 ((%)? + 1) 7 8
. N i b
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oo =1 o2 ((2@)? 4 1) o
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00, v = o
dlog L (c,7, 61,0 " A
o8 (g(;;; LL 2) = — ; log ((7) + 1) + nF (51 -+ (52) w(O) ((51 -+ (52)
—nF(ég)z/)(o)(ch). (2.5)

The maximum likelihood estimates of the parameters o, v, d1, d2 are obtained by equat-
ing Eqs. (2.2)-(2.5) to zero, and ¢(9(z) = L log(I'(z)), is the polygamma function.

For the elements of the Fisher information (FIM, in short), an interested reader is
referred to the paper by Brazauskas (2002) with +; and 75 need to be replaced by ¢; and
09 as per the notation utilized in this paper in the probability density function in Eq.
(1.1).

The asymptotic variance-covariance matrix of the MLE /Q\ = (U, v, 3\1, gg) can be obtained

from the inverse of the observed FIM as

Uyp U2 U3 U4
_ 1 def. |U21 U22 U2z U4

U=1"'<

U3r U3z U33 U34

| Uq1  Ug2  Uy3  Ugyq |
Lehmann and Casella (2006) have discussed the asymptotic normality of the MLE under
certain conditions (see, Theorem 3.10, p.449). For the FP distribution given in Eq. (1.1),
it is straightforward to see that
o
| do 0y 00, 852[

log fx(z]0)]] = 0.

5



In addition, all the remaining necessary and sufficient conditions of Theorem 3.10 of

Lehmann and Casella (2006) are satisfied, and therefore, it can be assumed that
(87 % 3\17 /5\2> i N4 (07 Y (517 527 (U[Q]>_L]1> :

Consequently, a 100 (1 — ¢)% approximate confidence intervals of the parameters (9:-,

will be

0; &+ Z, X \/ua, (2.6)

i =1,2,3, where Z, is the 100g-th upper percentile of the standard normal distribution.

2.1 Simulation Study

In this section, we conduct a Monte Carlo simulation study to evaluate the performance
of the likelihood inference for the FP distribution given in Eq. (1.1). Random samples
from the FP distribution are obtained using the actuar package in R. In particular, we
consider the sample sizes n = 50, 75 and 100 with the following six sets of choices of the

model parameters.
(a) Choice 1: 0 =2, v = 1.5 and §; = 0.35, d, = 0.35.
(b) Choice 2: 0 = 2.5, v =2 and §; = 0.65, d, = 0.75.
(¢) Choice 3: 0 = 1.75, v = 1.2 and 6; = 1.35, do = 1.40.
(d) Choice 4: 0 = 1.45, v = 1.6 and 6; = 1.40, 6 = 1.52.
(e) Choice 5: 0 =3,y = 1.8 and 6; = 1.65, 0o = 1.75.

(f) Choice 6: 0 = 3.5, v = 2.25 and §; = 0.95, §, = 0.85.

For each setting, 20000 sets of random samples are generated. Regarding the MLE
estimates, we have mimicked the strategy adopted in Duatang et al. (2022). For each
simulated random sample, we also compute the 95% approximate confidence intervals for
the parameters o, v, 1, and Jd; based on Eq. (2.6) with the asymptotic variances ob-
tained from inverting the observed Fisher information matrix as well as the approximated
variances obtained from a parametric bootstrap method with 400 bootstrap samples, for

details on the bootstrapping, see Efron and Tibshirani (1993). The estimated biases
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and mean squared errors (MSEs) of the MLEs of o, 7, d;, and d are presented in Table
2.1. The estimated coverage probabilities and average widths of the confidence intervals
are presented in Table 2.2. Since the observed information need not be positive definite
which results in negative asymptotic variances, see, for example, Verbeke and Molenberghs
(2007). Additionally, we also represent the percentage of cases in which the asymptotic
variances are negative and the confidence intervals cannot be computed in Table 2.2. In
those cases that the asymptotic variances are negative, we recommend using a parametric

bootstrap method as an alternative method to approximate the variances of the MLEs.

One may observe from Table 2.1, that the estimated MSEs for the four parameters
o, v, 01 and o decrease as the sample size increases. However, for the estimated biases,
there is not a steady decreasing pattern with the increase of sample sizes, and on the
contrary, in some cases, it appears that there is a negligible amount (by 0.01 — 0.05) of
increase. Whether this is an anomaly or not will be investigated in a separate article. We
also observe that the estimated MSEs of ¢5 is larger than the MSEs of o, v and ;. Next,

from Table 2.2, one may also observe the following

e that the proportions of cases in which negative variance estimates are obtained is

negligibly small.

e the computed approximate confidence intervals based on bootstrap variances per-
forms satisfactorily well. Note that these approximate confidence intervals can be
used as an alternative when the asymptotic variances are negative, for pertinent

details, see Ghosh and Ng (2019) and the references cited therein.

3 Mixture representation

In this section, we represent the mixture representation of the FP distribution. Suppose,
X; ~ I'(61,1) and Xy ~ T'(d2,1) and they are independent. Let us define Z; = X,
1= 1,2, with v > 0. Then, the distribution of Z; will be
L exp (—2-1/7) Lt z; > 0.
() v
Note that the above density function has been independently derived and explored by
Stacy (1962). The joint density of Z; and Zy will be

f(z) =
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TG122) = om0y

exp {—(Zi/w + 25/7)} T S 0,6 = 1,2,

Next, let us consider the following transformation. W = 0%, with ¢ > 0, and U = Zs.

We are interested in the distribution of W. The Jacobian of the above transformation is

|J| = %. Then, the joint distribution of W and U will be

o) =iy () (e (<((42) 4 0) Jriw -0,

Hence, the marginal distribution of W will be

I R
glw) = 720f(51)F(52)/o v

()" T (6; + 6)

a

oyI'(61)I'(62) (1 +(

I(w > 0). (3.1)

Noticeably, it is the ratio of two independent Stacy random variables with the same
shape parameter. Jordanova, P.K et al. (2023) discussed and studied the distribution of
the ratio of two independent Stacy random variables when both the shape parameters for
the numerator and denominator random variables is equal to one. However, it must be
noted that Jordanova, P.K et al. (2023) did not work on a subset of this current work.
Precisely, the authors in that paper work on different sets of the values of the powers
in the numerator and denominator, and just have an intersection when these powers are

equal to 1.

Next, observe that we can rewrite Eq. (3.1) as

ow) = [ fiw o) falu)d
0
where W* = W and

(e

o W!UzuwF(%,u),Wi‘ch

udr/
I(61)

w7 Lexp {—uwl/v} I(w > 0).

fi(wlu) =
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In this case, the associated complete data likelihood takes the following form:

L<51752,% W17W2, Tt 7Wn7 U17 U2, T 7Un>

“ oy (1)

= (T nuf“”‘n;’ _exp—nuﬂlJr;Z .
( | ) e f () S, ( <wt)1/7>

i=1 =1 =1
(3.2)

Next, we try to derive from Eq.(3.2), the full conditionals of (1, d2, v, o, Uy, Us, - -+ , Uy,),
given (Wy, Wy, --- | W,,) as follows:

e Fori=1,2,--- n,

U|U i, W 7751752700<u(61+62)/7 ' Xp{ / (

()7}

1
~ Generalized gamma, (((51 +02)/7,1/ < (w?) ) )

’}/|ga w, 517 627 o

ocexp{% ( (01 + 02) Zlogumtcilzlog_) _Zug/v <1+ <%>1/v>} (%) .

=1 =1

o Jolu,w,d1,7,0 x (@) exp {% >, log uz} . Note that this function is log con-

cave.

o 01|u,w,de,7y,0 x (F(§1)> exp {%2 Yoy (log u; + log %)} Note that this function

is also log concave.

. " n w;i \ 1
e Finally, o|u, w, d1, 02,7 x <m> exp (_ > i 11/7 <1 + (;) /7) )
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Therefore, all (n + 4) full conditionals can be sampled using Acceptance Rejection (AR)

sampling using the R-package ars.

On the choice of hyperparameters for the priors:

In this case, the hyperparameter values for the Gamma priors are obtained via the method
of matching first two theoretical moments with the sample moments. Needless to say that
there are other available strategies of selecting hyperparameters, such as the procedure
adopted by Giannone, D. et al. (2013) in relation to vector autoregression models, Singh,
P., & Hellander, A. (2018) in the context of hyperparameter optimization, etc. However,
the methodology adopted in such references might be more applicable to spatial-temporal
models rather than the model that we have here. Additionally, whether such strategies
will be beneficial (in the sense of computational efficiency, computation time) is a subject
matter of a future study. Furthermore, it is safe to opine that we are not claiming that this
set of priors with these specific choice of hyperparameters is optimum for the associated
Bayesian analysis, but, in our cases, we have tried several other prior choices and found
minimal changes in the final estimates. Also, the acceptance probability across found to
be between (0.36,0.73), which indicates that the chain mixing was satisfactory. A full
scale study regarding a wide range of prior choices needs to be done which is beyond the

scope of this present paper.

3.1 Comment on the Convergence of MCMC Procedure

For the convergence diagnostics of the adopted MCMC procedure, the method of Gelman
and Rubin (1992) is utilized. It involves two stages. The first step, before sampling begins,
involves obtaining an over-dispersed estimate of the target distribution(s) and using these
to generate the starting points for the desired number of independent chains (in our case
,we consider running a MCMC procedure with m = 10 parallel independent chains of
length 2k=40000 each). The second step involves using the last £ = 1000 iterations to
re-estimate the target distribution of the scalar quantity of interest (in our case o, 7,
91 and 03). The convergence of the MCMC convergence is monitored by the following

quantity given below:

mkW [ (df —2)’

where B is the variance between the means from the m = 10 parallel chains, W

\/—R:\/{k;1+(m+1)3}( df
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is the average of the m = 10 within-chain variances and df is the degrees of freedom
of the approximating ¢ density, for details, see pp. 465, Eq. (20) of Gelman & Rubin
(1992). Convergence is said to have achieved once the value of \/E is near 1 for all scalar
estimands of interest for a sufficiently large & (k — oo). It is to be noted here that
Gelman and Rubin (1992) had proposed the method for Gibbs sampler but here we have
applied their procedure on the output of MCMC procedure which is a particular case of
Gibbs sampling. For illustrative purposes, we provide the values of \/E for all of our
scalar quantities of interest under the partial dependent conjugate prior set up (provided

in Tables 6.1 — 6.3 in Appendix).

4 Simulation study

For the associated Bayesian analysis, we consider the following two different sets of prior
choices, namely the non-informative & improper and conjugate prior set up. At first, we
consider the non-informative prior set-up and we label it as Choice 1.

Choice 1 (Non-informative prior set-up):

1

Therefore, the joint prior in this case will be II(o) x II(~y) x II(d7) x II(d2).

](52>0)

The associated posterior summary is represented in Table 4.1.
Choice 2 (Conjugate prior set-up):
Next, under the conjugate prior set-up, we consider the same prior choices for all the
parameters, i.e., (d1,02,7,0) each follows a Gamma distribution with shape=0.2, and
rate=0.2 respectively. We consider using WINBUGS (a software for computing Bayesian
analysis) with R interface to conduct the simulation study. We do not claim that the prior

choice made here is optimum, but among different choices of the hyperparameters made
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for this study, this choice appears to be producing satisfactory results for the Bayesian
analysis based on a random sample of size n = 100. The associated posterior summary is
provided in Table and 4.2.

For both the cases, we consider the following four sets of true parameter choices.

(a) Choice 1: ¢ =0.07, v = 0.25 and §; = 0.75, J, = 0.82.
(b) Choice 2: ¢ = 0.158, v = 3.10 and 6; = 0.65, J» = 0.75.
(c) Choice 3: 0 =4.98, v = 6.70 and 6, = 0.57, d2 = 0.61.

(d) Choice 4: 0 = 3.22, v = 3.50 and 6; = 0.52, §, = 0.53.

Remark. From the posterior simulation studies as given in Tables 4.1 and 4.2, one may

comment the following:

e Under the non-informative prior set-up the associated 95% HPD intervals are slightly

wider.

e We cannot make a general comment as to whether prior conjugacy in this scenario
will perform uniformly better or not. A full scale study involving other possible prior
choices and hyperparameter values along with a flat prior of the form T1(0) o 1 will

be the subject matter of a separate article.

5 Real data application

In this section, we consider a data on fault-trace lengths from Clark et al. (1999). As per
the authors, mimicking their words, "It has often been observed that fault-trace lengths
tend to follow a power-law or Pareto distribution, at least for sufficiently large lengths.”
The applicability of the FP model under the classical paradigm (using the MLE method)
has already been discussed in Clark et al. (1999). In this paper, we discuss the Bayesian
estimation of the FP model parameters. One prominent reason for selecting the FP
distribution is that it is the most general model in the hierarchy of Pareto distribution and
many other distributions have been assumed to fit this particular data set which assumes
a Pareto like behavior (especially mimicking the tail-behavior). Here, we consider the
estimates of the parameters using moment matching (i.e, equating the sample moments

with the theoretical moments) strategy and treat them as the initial prior choice for the

14



(9916°0 ‘96L2°0) | €860 | (6572°0 ‘GTOF0) | 8L0S°0 | (|8TEH¥ ‘C8LY'T) | G8F'€ | (PEITT F2e'T) | 8L9TE p 90107

(L926°0 “L¥S€°0) | 866470 | (G296°0 ‘FO6¥°0) | 6350 | (G2L8L ‘9TETE) | 96629 | (90109 ‘T¥IT'E) | T2E0°G ¢ o107

(2296°0 ‘8G¥€°0) | 9STL0 | (PGL8°0 “GE8€°0) | T6¥9°0 | (¢699°€ ‘Cesv'1) | €99¢'¢ | (€280'T ‘THE10) | #8910 ¢ 9010y

(TTTO'T ‘8L¥E°0) | 9T08°0 | (T288°0 ‘F1ES0) | 8¥EL0 | (F268°0 ‘62L1°0) | ¥EFE0 | (92TE'T ‘692€0°0) | €1L0°0 T 99101
AdH %56 | WNd adH %¢6 | INd AdH %56 |  WNd adH %%6 | INd

m% H% A 0 S9OIOYD I9joWIRIRJ

‘uorjdumsse 10L1d 9AT)RULIOJUI-UOU o1} IOPUN [OPOW J O} 10 AIeWIWINS IOLDISOJ 1§ ORI,

15



(L0T6°0 ‘GL8T°0) | 82T1G°0 | (92€L0 ‘86E°0) | 69TS°0 | (I8EFF ‘QTLS'T) | €49V°¢ |  (PIST'F ‘69G°T) | GEST '€ J 99107

(6186°0 ‘9z€€°0) | 8€6S°0 | (€2S6°0 ‘F&8e'0 ) | 20650 | (FRIL0 ‘C0TT0) | L&FG0 | (FF0T'9 ‘7€98°€) | TV6'¥ ¢ 90101

(¢€86°0 ‘6¥1€°0) | GTOL0 | (59460 ‘TFRE0) | 28590 | (EF8S'E ‘T9€9°T) | 8€IT'E | (P2E8°0 ‘69€1°0) | C0ST0 g 90101

(7690°T “892¥°0) | 9208°0 | (€0S8°0 ‘819S°0) | €0¥L°0 | (T9TL0 ‘TEST'0) | 95¥C°0 | (91€2°0 ‘8¥1S0°0) | GCLO0 T 99101
AdH %S%6 | INd AdH %S6 | INd AdH %%6 | INd AdH %S6 | INd

m% H% %\ 9o SOOIOTD IojouIeIR ]

‘uorjdumsse 1orid 93e3n(uos o) Jepun ppowr J oY) 10j AIRWNS I0OLIDISO] G O[(RL

16



Bayesian analysis. The summary of the Bayesian output is given in Table 5.1. Regarding
the convergence of the adopted MCMC, we provide the \/E values given in the Appendix.

For the Bayesian analysis, we consider the following two different sets of prior choices:

e Choice 1 (Non-informative prior set-up):

(o) %](0 > 0).

e Choice 2 (Conjugate prior set-up):

— II(0) ~ Gamma(shape = 0.27, rate = 0.35).
— II() ~ Gamma(shape = 1.27, rate = 2.09).
— I1(01) ~ Gamma(shape = 1.09, rate = 2.12).

— II(62) ~ Gamma(shape = 1.45, rate = 3.50).

From the 95% HPD intervals for the conjugate prior set-up, it appears that the
Bayesian estimation under the non-informative (and improper) prior set-up is less effi-

cient as expected. The summary of the output is given in Table 4.1.

Sensitivity analysis with respect to the hyperparameters:

An anonymous referee has expressed concern that the results of this analysis might be
influenced by the choice of hyperparameters. As an initial effort to investigate hyperpa-
rameters sensitivity, we re-analyze the data set with two other sets of prior choices that

are given as follows (for the conjugate prior set-up):

1. Choice 3:

e II(0) ~ Gamma(shape = 0.32, rate = 0.49).

17
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e II(y) ~ Gamma(shape = 2.49, rate = 3.28).
o 11(61) ~ Gamma(shape = 1.53, rate = 2.58).

o 11(02) ~ Gamma(shape = 1.68, rate = 1.39).

2. Choice 4:
e II(0) ~ Gamma(shape = 0.68, rate = 0.89).
o 1I(v) ~ Gamma(shape = 2.38, rate = 2.73).
o I1(d1) ~ Gamma(shape = 1.78, rate = 3.46).
o 11(02) ~ Gamma(shape = 1.95, rate = 2.34).

The posterior summaries based on the above two different prior choices (with varying
choices of the hyperparameters) are given in Tables 5.2. It appears that with these two sets
of new choices of hyperparameters for the respective priors the final conclusion remains
the same, i.e., the performance of the Bayesian inference under the conjugate prior set-up

performs slightly better as compared to that of under the non-informative prior set-up.

6 Concluding remarks

In this paper, we have discussed estimation of the model parameters of the Feller-Pareto
distribution under both frequentist and Bayesian paradigm. Under the frequentist ap-
proach, we consider the MLE method and also discussed the asymptotic normality of
the estimates under certain regularity conditions. Noticeably, as mentioned in Section 1,
estimation of the parameters under the classical approach is usually hindered by the fact
that the likelihood function is not well behaved, and the parameter space have constraints.
Some of these problems can be avoided by using computing environment such as R using
specific packages that are designed to handle such types of complicated models in terms
of their estimation. Nevertheless, effficient estimation of model parameters for the most
general members of the Pareto-family, namely the Feller-Pareto distribution under the
classical approach is difficult to achieve, as the existence of moments has some conditions
that are hard to satisfy from a practical point of view. However, by rewriting the density
function in Eq. (1.1) as a mixture of two well-known continuous probability models and
by invoking the strategy of data augmentation, we have conducted a Bayesian analysis

under both non-informative & improper and conjugate prior set-up. Based on our study,
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it is difficult to comment as to which of the two procedures (MLE and Bayesian) will
be performing uniformly better than the other. Now, in the absence of large samples
and in the presence of prior information, one can hope that the inferential aspect under
the Bayesian paradigm will be better than any strategy under the classical set-up. The
results of a small simulation study is encouraging. We have also discussed the utility of
the proposed strategy of estimation of the Feller-Pareto distribution in the context of a
real-life data set. A more comprehensive study is required to explore the usefulness of
Bayesian estimation from a standard Bayesian analysis point of view.

Several possible works in the future direction can be considered, including but not limited

to

e choice of other types of improper priors as opposed to the ones assumed in this

paper and then conduct a Bayesian analysis.

e selecting a dependent & full conditional priors from the exponential family as op-

posed to subjective conjugate and proper priors assumed in this paper.

e estimation of the model parameters by other methods under then classical paradigm,
such as the method of maximum product spacing distance, Cramer Von mises,
method of ordinary and weighted least square estimators etc., and have a comparison
study to see the relative efficiency of each of these estimation strategies in the context

of such type of probability models.

Appendix

In this section, we discuss the proofs of the results mentioned in Section 3.
Log concavity of distributions corresponding to mixture representation in Sec-
tion 3 :
First of all, note that a real valued function g() is said to be log-concave on the interval
(a, b) if the function log ¢() is a concave function on (a, b). Equivalently, one can say,

gg/—(()) is monotonically decreasing on (a,b) or (log g() < 0,) where ¢ stands for the

double derivative and ’ stands for the first order derivative respectively.

Result 1: The kernel of the conditional density of
V|u, w, d1, 55 o exp {% (81 +02) 220 log i + 61 3050, log wi) = 305, ui” (1 + wg”) } <%>

is log concave and integrable.
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Proof. We need to show that the kernel of this distribution is log concave and integrable.

Let us define 4, = 27 u)/? (1 + wj”). Then

)

OA,
A= ——= —log(1
1= g(1/v)

A+ Zn: (uiwi)l/WI )

=1

Therefore,

= 14log (1/7) {

—_ —_~

S (uaw)'” } 1

= 1+log (1/7) -
Z?:l (u”ﬂui)l/7 + Z?:l (ui)l/7 1+ Zi:l(ui)l/,\/

Sy (wiwy)
(6.1)
Note that, from Eq. (6.1), for integer values v > 0 and with (u;,w;) > 0, Vi =
1,2,--+ ,n, as vy increasing, the quantity log (1/7) is decreasing. Also, the term inside the

second parenthesis is decreasing. Hence A; is log-concave.
Next, consider

1 n n
Ay = S ((51 +62) ) logu; +d; Y log wi)

i=1 =1

For the sake of notational simplicity, we write
B = (61 + d2) Zlogui + 6 Zlogwi.
i=1 i=1

Note that B is positive (based on the argument as mentioned earlier.) Also, Ay = %.
Therefore, )
—8 la()szQ = % > 0.
So, A, is log-convex. Again, since A; is log-concave —A; is log-convex. Now, our
kernel for the conditional density

As + (—Ay).

This is sum of two log-convex functions, and therefore, it is log-convex.

We must make a note of the following:

e For integer values of v, log (1/v) is a decreasing function.

e For fractional values of v (i.e., 0 <y < 1) log (1/7) is increasing.
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e For any values of v, and with any fractional positive values of (u;,w;) the ratio

1
n(u )/
1+ Z1:1( 1) 1/7
S (ugwy)

is decreasing.

e But, for integer values of (u;, w;) and for any values of -y, the above ratio is increasing.

1
1+positive quantity ’

However, since the quantity is of the form it will be always < 1.

Similarly, one can establish the log-concavity (and/or log-convexity) of all the other

conditional distributions.

On the integrability of all the conditional density functions for AR sampling:

Here we begin with the following:

1. Since the conditional density of U; given U_;, v, d1, d5 is a generalized gamma, indeed

it is integrable.

2. The conditional density of 7 is given by (without the normalizing constant)

1 n 1 n
Y|u, w, d1, 62 o exp {; (01 + 62) Dy + 61D5) — Zug” (1 + wj”) } (;) :
=1

where Dy = > logu;, and Dy = )" logw;. Next, if consider the transformation

0= %, then the conditional density of 6 given u, w, 1, d5 will be

n

g (0, w, 01, 02) o exp {9 ((61 + 02) Dy + 01D5) — Zuf (14 w)) } 0"=% = M, Mo,
i=1
(6.2)

where M; = exp (611) 0" 2, My = exp (D1 uf (1 +w!)), and Tt = (&1 + d2) D1 +
61D2.

Next, note that 0 < v < oo will imply 0 < 6 < oco. Also, (u;,w;) > 0. So, the

function M, will exhibit the following:

) éir%M2 = exp(—2n) < oo, provided n < oco.
%

e lim M2 — 0.
0—o00

23



Table 6.1: Values of \/}_? for n=100.

Chain number R, R, \/]:2751 \/]:2752
1 0.81 | 1.07 | 1.08 | 0.71
2 092 | 1.09 | 1.10 | 0.86
3 1.01 | 1.05 | 0.83 | 0.85
4 096 | 1.02 | 0.77 | 1.01
5 1.01 | 096 | 0.87 | 1.02
6 0.97 | 1.01 | 1.06 | 0.96
7 0.89 | 0.93 | 0.98 | 0.87
8 091 | 095 | 0.84 | 0.85
9 092 | 0.82 | 0.86 | 0.88
10 0.96 | 0.83 | 0.89 | 0.95

Therefore, M, is a bounded function on the interval [0, o).

Next, let us consider the integrability of the quantity M;

/ Mlde =
0

[e.9]

exp (0T1) 0" 2d6

o0

o0 J
Z (QTl) 9n72d9

=

T [ .
(,1' / g2t g,
0

S— S—

Il
1M
<

This integral will be bounded and integrable, provided n + j < 2. This appears to

be a impossible condition. Hence the proof.
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Table 6.2: Values of \/}_? for n=200.

Chain number R, R, \/]:2751 \/Ri(sz
1 0.83 | 0.84 | 093 | 0.77
2 0.84 | 091 | 1.04 | 0.79
3 1.01 | 1.03 | 0.93 | 0.81
4 0.81 | 0.95 | 0.89 | 1.01
5 0.83 | 0.96 | 0.92 | 0.77
6 0.87 | 0.92 | 0.86 | 0.95
7 0.76 | 0.81 | 0.92 | 0.91
8 0.82 | 0.84 | 0.85 | 0.93
9 0.97 | 0.88 | 0.87 | 0.96
10 0.96 | 0.95 | 0.92 | 0.89
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