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Abstract. We introduce a dynamical system that instead of exchanging a single photon as in the 

atomic system of the usual Jaynes-Cummings model (JCM), it exchanges instead a squeezed 

coherent photon. Accordingly, the creation and annihilation photon operators in the JCM are 

replaced by the creation and annihilation operators of squeezed coherent states, respectively. This 

transformation generates a photon Hamiltonian that modifies the JCM that includes terms usually 

omitted in the JCM when making the rotating-wave approximation and, in addition, the 

transformation introduces atom exchange terms absent in the JCM. 
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1. Introduction 

 

The Jaynes-Cummings model (JCM) [1] of a two-level atomic system coupled to a single-

mode radiation field is known to exhibit interesting optical phenomena, such as the collapse and 

revival of Rabi oscillations of the atomic coherence [2–5]. There have been may attempts to extend 

the model to deal with differing physical phenomena. A generalized kinematic approach to compute 

the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models, which 

provide a fully quantum description for a two-level system interacting with a single mode of the 

(cavity) electromagnetic field, in a perfect or dissipative cavity, respectively [6]. The calculation of 

the cavity- field distribution in the Wigner representation for the two-photon resonance of the 

weakly driven Jaynes-Cummings oscillator in its strong-coupling limit. Using an effective four-

level system, one analytically demonstrate the presence of steady state and transient bimodality, 

which breaks azimuthal symmetry in phase space [7]. The effective simulation of light-matter 

ultrastrong-coupling phenomena with strong-coupling systems. Recent theory and experiments have 

shown that the quantum Rabi Hamiltonian can be simulated by a Jaynes-Cummings system with the 

addition of two classical drives. This allows one to implement nonlinear processes that do not 

conserve the total number of excitations [8]. A reliable scheme to realize the ultrastrong Jaynes-

Cummings model is proposed by simultaneously modulating the resonance frequencies of the two-

level system and the bosonic mode in the ultrastrong quantum Rabi model [9]. 

In this paper, we introduce a dynamical system that instead of exchanging a single photon as 

in the atomic system of the usual JCM, it exchanges instead a squeezed coherent photon. 

Accordingly, the creation and annihilation photon operators  ̂  and  ̂ in the JCM are replaced by 

the creation and annihilation operators of squeezed coherent states, viz.,  ̂  and  ̂, respectively. 

This transformation generates a photon Hamiltonian that modifies the JCM that includes terms 

usually omitted in the JCM when making the rotating-wave approximation and, in addition, the 

transformation introduces atom exchange terms absent in the JCM. This paper is arranged as 

follows. In Sec. 2, we review the creation and annihilation operators for squeezed coherent states. In 

Sec. 3, we introduce the generalized JCM. In Sec. 4, we calculate the dynamical behavior of our 

system for an initial photon coherent state. In Sec. 5, we study the collapse and revival of our 
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dynamically generated state. Finally, Sec. 6 summarizes our results. 

 

2. Squeezed coherent photons 

 

In recent paper [10], the creation and annihilation operators  ̂ and  ̂ , respectively, for the 

squeezed coherent photons are given by, where  ̂ and  ̂  are the photon creation and annihilation 

operators, 

 

and 

with inverses 

and 

where 

is the Glauber displacement operator with                            and 

is the squeezing operator with                         . Note that [  ̂  ̂ ] = 1 follows from [ ̂  ̂ ] = 1. 

One can generate a squeezed coherent state from the vacuum as follows 

where the state               is the vacuum state since                          Consider the state 

 

where the state            is called an n-photon squeezed coherent state with the ordinary squeezed 

coherent state               being the 0-photon coherent state. It follows from (1)-(4) and (8) that 

 

3. Generalized Jaynes-Cummings model 

 

Consider the modified JCM 

 
 

where                           is a constant of the motion and represents the number of quanta and the 

detuning              ,  with         are the energies of the uncoupled states |1〉 and |2〉, 
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respectively, and   is the frequency of the field mode. The system can be in two possible states |i〉,   
i  = 1, 2 with |1〉 being the ground state of the system and |2〉 being the excited state, respectively. 

The transition in the JCM is based on the exchange of one photon, here the transition is via a 

squeezed coherent photon. The four Paul operators are 

 

The Schrödinger equation of motion is  

 

with 

 

and so 

 
for the probability amplitudes with initial state 

 
These equations are precisely the same as in the ordinary JCM with solutions [13] 

 
where is the photon-number dependent Rabi frequency. 

The Hamiltonian (10), when expressed in terms of the photon operators via (1) and (2), gives 

rise to terms neglected when deriving the JCM that is based on the rotating-wave approximation

 
The last term in (17) gives rise to corrections to the rotating-wave approximation. In fact, for φ = π, 

α = 0, and r  ≫ 1 such that, sinh(r)  cosh(r)  e
r
/2  one has that 

 
which is the Hamiltonian prior to making the rotating-wave approximation, albeit, in the ultrastrong 

coupling limit since λ → λe
r
/2. 

 

4. Coherent initial state  

 

Consider the initial state with the radiation field in a coherent state and the atom in its ground 

state, viz., 
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One obtains, with the aid of (8) and (15), that 

 
where the generalized hypergeometric series [12] 

 
and the infinity series reduces to a polynomial since l is a positive integer. 

In (23) we choose the phases of α = ae
i θ

, ζ = re
i φ

,  and β  = be
iχ

 as follows: φ  = 2θ  = 2χ  

and so (23) becomes, 

 

 
 

5. Collapse and revival 

 

In order to contrast the dynamics generated by the Hamiltonian (17) and that generated by the 

JCM, obtained from (17) with r  = 0 and α = 0, consider the behavior of the corresponding collapse 

and revival for the initial state (19). We are interested in the probability of the system being in the 

ground state |1❭ at time t  for the resonant case (Δ = 0) and so 

 
while for the JCM we have 

 

 
Fig. 1. Plot for the probability p s c o h (t )  for the collapse and revival given in Eq. (26) with |α| = 10, 

|β|  = 2, and |ζ| =0.1 in (25), that is, with an initial coherent state with four photons. 
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In Fig. 1 we see the contrast of the collapse and revival of the model given by (17) with |α| = 

10 and |ζ| = 0.1 for the initial coherent state with |β| = 2 and of the behavior for coherent state also 

with β = 2 shown in Fig. 2. Notice the drastic difference. In Fig. 3 we show the effect of the 

presence of the fourth term in (17) in the absence of the second term on (17) in the collapse and 

revival with        |α| = 0, |β| = 5 and |ζ| = 0.9. This elucidates the effect of the terms that are 

neglected in the rotating-wave approximation in obtaining the JCM. Fig. 4 shows the behavior of 

the coherent state given by (27) for |β| = 5, that is, with twenty-five initial photons. Finally, in Fig 

5, we do the converse and see the effect of the presence of the second term in (17) in the absence of 

the fourth term in (17). Fig. 5 has |α| = 15, |β| = 5, and |ζ| = 0 to be compared to the behavior of the 

coherent state of Fig. 4 also with |β| = 5. 

 

Fig. 2. Plot for the probability pcoh(t) for the collapse and revival for the coherent state given by (27) 

with |β|  = 2, that is, four initial photons. 

Fig. 3. Plot for the probability p s c o h (t )  for the collapse and revival given in Eq. (26) with |α| = 0, |β|  = 5 

and |ζ| = 0.9 in (25), that is, with an initial coherent state with twenty five photons. 

Fig. 4. Plot for the probability pcoh(t) for the collapse and revival for the coherent state given by (27)  

with |β|  = 5, that is, twenty five initial photons. 
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Fig. 5. Plot for the probability p s c o h (t )  for the collapse and revival given in Eq. (26) with |α| = 15, |β|  = 5 

and |ζ| = 0 in (25), that is, with an initial coherent state with twenty five photons. 

 

It is clear from (17) that in the limit of large values of r and for φ = π, the Hamiltonian (17) 

for    |α| = 0 reduces to the original Hamiltonian for the JCM before requiring the rotating-wave 

approximation [13] with the coupling constant renormalized to λ → λe
r
/2. In order to numerically 

study the behavior for large values of r, we have plotted in Fig. 6 the behavior of the collapse and 

revival for |α| = 0, |β| = 1, and |ζ| = 2.3. Unfortunately, the double series in (25) are slowly 

convergent and so we are limited to numerical evaluations for small values of r. 

Fig. 6. Plot for the probability pscoh(t) for the collapse and revival given in Eq. (26) |α| = 0, |β|  = 1 

and |ζ| = 2.3 in (25), that is, with an initial coherent state with one photon. 

 

The JCM without the rotating-wave approximations give rise to the following differential 

equations, viz., Eq. (18) with Δ = 0 and r = ln(2), 
 

 
 

The dynamics in this case gives rise to a second-order, linear differential equation consisting 

of a three-term recursive relation, rather than the non-recursive equations that results in the JCM 

with the rotating-wave approximation. We have not analytically solved the set (28) since they give 

rise to an infinitely set of coupled equations. However, we believe the solutions will be sinusoidal 

functions with frequency λe
r
/2 and so in the limit of large r the probability P(t) approaches 1/2 for t 

> 0, by the Riemann-Lebesgue lemma, while remaining equal to one at t = 0. This behavior is 

already partially evident in Fig. 6. 
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6. Conclusions 

 

We have generated a new photon Hamiltonian by replacing the creation and annihilation 

operators for photons in the original Jaynes-Cummings model (JCM) with the creation and 

annihilation operators of squeezed coherent photons, respectively. This generalized Hamiltonian 

allows us to study the effects of the terms discard in the JCM when making the rotating-wave 

approximation. In addition, there are new atom exchange interactions that do not appear in the 

JCM, which we are able to study the effects that these new additional interactions have on the 

collapse and revival of an initial coherent state of photons. 
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