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Abstract. We visit a previously proposed discontinuous, two-parameter generalization of the 

continuous, one-parameter logistic map and present exhaustive numerical studies of the behavior 

for different values of the two parameters and initial points x 0 .  In particular, routes to chaos exist 

that do not exhibit period-doubling whereas period-doubling is the sole route to chaos in the 

logistic map. Aperiodic maps are found that lead to cobwebs with x  = ±∞ as accumulation points, 

where every neighborhood contains infinitely many points generated by the map. 
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1. Introduction 

 

The one-dimensional logistic map xn+1=λxn(1-xn) illustrates the period-doubling route to chaos 

[1, 2]. A detailed history of iterated maps is given by Wolfram [3]. More recently, the logistic map 

is used also to exhibit the effect of chaos on the description of intrinsic fluctuations by constructing 

a master map equation for the logistic map [4]. There is also interest in discontinuous logistic maps 

where inverse cascade arises [5] and where also direct cascade occurs [6]. It is interesting that the 

logistic map has been extended into the quantum realm by deriving a logistic map with quantum 

corrections by coupling a kicked quantum system to a bath of harmonic oscillators [7]. In a new 

proposal for a quantum key distribution, the quantum logistic map is used as a pseudo-random 

number generator for photon polarization state measurement bases choice [8]. 

In this paper we consider a discontinuous map which, however, is also singular and was 

introduced some time ago [9]. This paper is arranged as follows. In Sec. 2, we review the 

discontinuous, one-dimensional map its fixed points and their stability conditions. In Sec. 3, the 

approach to chaos is studied for several cases involving stable and unstable fixed points for 

differing values of the parameter α. In Sec. 4, we present an aperiodic map with accumulation points 

at x = ±∞. Finally, Sec. 5 summarizes our results. 

 

2. Discontinuous one-dimensional map 
 

In what follows, we consider the two-parameter, one-dimensional discontinuous map [9] 

xn+1 = μxn 
        

      
       (1) 

with μ and α real. In the limit |μ| → ∞ and |α| → ∞ such as μ/α → λ,  with -∞ < λ < ∞, map (1) 

reduces to the logistic map 

xn+1 = λxn (1 - xn)       (2) 

The fixed points of (1) are    = 0 and   
  = (μ - α)/(μ - 1) with stability criteria |μ/α| < 1 and 

|(2μα- μ
2
- α)/μ(α - 1)| < 1, respectively. All maps (1) with parameters α and μ in the wedge 0 < μ < α 

give rise to a stable fixed point at x
*
 = 0. 

Under the transformation 
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xn = α/un,       (3) 

map (1) becomes 

      (4) 

Accordingly, map (1) is invariant under the transformation (3) for α = μ
2
 and the above 

transformation is quite useful in determining the values of the iterations of map (1) for values of 0< 

α <μ
2
 and μ > 1 from iterations of map (1) for values α > μ

2
 and μ > 1. 

 

3. Approach to chaos 

 

a. One stable fixed point 

 

It was found [9] that the curve α(μ) with μ > 1 

 

g2(μ) = μ(μ+1) / (3μ-1)       (5) 

 

represents the transition where the fixed   
  is unstable and a new periodic orbit of period-2 begins. 

Note that in the limit μ → ∞ and α → ∞, one obtains μ/α → 3, which corresponds to λ = 3 for the 

logistic map (2). This period-2 orbit becomes unstable in turn as α decreases further and a period-4 

orbit appears when [9] 

 
Note again that in the limit μ → ∞ and α → ∞, one obtains μ/α → 1+√6, which corresponds to                  

λ = 1+√6 for the logistic map (2). Of course, as α decreases further, a period-doubling sequence of 

period-2
n
 with n = 3, 4, · · · emerge for μ > 1. 

It is interesting that one can find the limit of the above period-doubling sequence as n → ∞ by 

considering the value of α for which the maximum value of map (1) is set equal to 1. Now the 

extrema occur at 

 
with the lower value representing the maximum and the upper value representing the minimum. 

Note that real values of xex occur only for α > 1 or α < 0. Accordingly, for the maximum value set 

equal to 1 at xex = α −√α
2
 − α one has for the value of α 

 
and one obtains for map (1) what is equivalent to λ = 4 in the logistic map (2), where chaos ensues, 

viz., sensitive dependence on initial conditions. Note that in the limit μ → ∞ and α → ∞ with a 

finite ratio one obtains μ/α → 4, which corresponds to λ = 4 for the logistic map (2). Note that (8) is 

invariant under the transformation μ → 1/μ. 

All routes, beginning at α < μ
2
 with μ > 1 in Fig. 1 and ending at g∞(μ), represent the period-

doubling route to chaos precisely as in the logistic map in the range 0 < λ ≤ 4. For μ < α < μ
2
, x  = 0 

is a stable fixed point and it corresponds to the logistic map with 0 < λ < 1. For 

μ(μ+1)/(3μ−1)<α<μ,   
  = (μ−α)/(μ−1) is a stable fixed point and corresponds to the logistic map 

with 1 < λ < 3. For α<μ, on obtains the period-doubling route to chaos, with Fig. 2 showing the 

period-doubling and Fig. 3 the chaotic behavior. 

It is important to remark that the logistic map has always a stable fixed point for −1 < λ < 3 

but never two stable fixed points. The latter is not the case for map (1), which can possess two 

stable fixed points, which leads to novel route to chaos. 
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The analytic continuation of the behavior of map (1), for α>1 and μ > 1, to values of μ < 1 

and α > 1 is accomplished with the aid of the transformed map (4). The g∞(μ) is analytically 

continued to 

 
for μ < 1 and α > 1, owing to the invariance of (μ + 1)

2
/4μ under the transformation μ → 1/μ. For 

given values of α, (8) has two solutions, viz., μ and 1/μ, with their product being unity. However, 

for g2n(μ) with 1 ≤ n < ∞, the application of transformation (3) is somewhat different. For instance, 

for g2(μ), the analytic continuation to μ < 1 implies that 

 
with the aid of (4). In order to compare the iterations of the two maps, we must consider a particular 

value of α. For instance, for α = μ(μ+1)/(3μ−1) = 5, we have two solutions for μ, viz., μ = 7+ 2√11 

≈ 13.633 and μ = 7 – 2 √ 11 ≈ 0.367. The fixed points   
  are 0.683 and 7.319, respectively, and are 

unstable since by the stability criteria of the derivative at the fixed point, viz., 

|(2αμ−μ
2
−α)/(μ(α−1))|< 1, one obtains instead a value of -1.00 for both fixed points, which leads to 

period-doubling. 

Fig. 1. Plots of α = g2n (μ), n = 1 (coral), n = 2 (blue), and n = ∞ (red). 

 

Fig. 2. Iteration scheme for map (1) with α = (μ + 1)
2
/(4μ) = 3 and μ = 9.89897948 leading to period-2 behavior. 

The two attractor points lie at the top left and bottom right of the rectangle 

at 0.3949806332 and 0.9080809102, respectively. 

 

The maps g2n(μ), for μ > 1 and α > 1, can be considered for values μ < 1 and α > 1. It is clear 

that the stability criteria indicate that x  = 0 is a stable fixed point for all maps g2n(μ) for μ < 1 and    

α  

μ
α  

x  
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α > 1. At the highly singular point α = μ = 1 of map (1), all points x is fixed points, albeit, not stable 

fixed points. Any route from the region with μ < 1 and α > 1 via the singular point can lead to any 

period-2
n
 orbit including directly into chaos thus avoiding the period-doubling route to chaos, 

which is the norm in the logistic map. 

Fig. 3. Chaotic map (1) with α = (μ+1)
2
/(4μ) with μ = 9.89897948, i.e., α = 3.00, with initial point x0 = 0.5. 

The approach to chaos is via period-doubling. Precisely the same result is obtained with map (9) 

with μ = 0.1010205144 with same initial point. Fig. 2 shows period-2 behavior for same parameters. 

 

b. Two stable fixed points: α > 0 
 

An interesting feature of map (1) is the realization of maps with two stable fixed points, which 

cannot occur in the logistic map. Consider the map 

 
for 0 < μ < 1. The stable fixed points are x =0 and   

 =(μ
3/2
−1)/[μ

1/2
(μ−1)]. The fixed point at x =0 

is stable for all values 0 < μ < 1. The stability of the fixed point   
  is indicated in Fig. 4, which 

becomes unstable for μ < 0.5304. Therefore, as μ decreases we observe a period-doubling route to 

chaos as shown in Fig. 5. For μ > 1, both fixed points become unstable. Fig. 6 shows the nature of 

the transition to chaos, which is quite different from the logistic map since the chaotic region 

encompasses a larger region of the x-axis. 

Fig. 4. Stability of fixed point    
  = (μ

3/2
−1)/[μ

1/2
(μ−1)] for map (11). Stable for 0.5304 < μ < 1, unstable otherwise. 

 

c. Two unstable fixed points: α < 0 
 

x

α  

μ
α  
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One obtains interesting behavior for map (1) for negative values of α. Consider the following 

map 

 
The fixed points are x  = 0 and   

  = (μ
2
 + 2μ − 1)(3μ − 1)/(μ

4
 + 3μ

3
 + 4μ

2
 − 5μ + 1), the former is 

unstable at μ ≈ 0.2956 and the latter at μ ≈ 0.3084, both with df(x)/dx = −1. The iteration scheme 

leading to chaos is shown in Fig. 7 for initial points x0 > −0.2956 for μ ≈ 0.2956 when x  = 0 is just 

unstable. The iteration scheme leading to chaos is shown in Fig. 8 for x0 < −0.1854 for μ ≈ 0.3084 

when   
  is just unstable. In both Fig. 7 and Fig. 8, the approach to chaos is via period-doubling 

bifurcations, where the chaotic regions are over small regions of x. 

Fig. 5. Period-doubling for map (11) for μ = 0.49 with initial point x0 = 2.2382. 

 

 

Fig. 6. Chaotic region for map (11) for μ = 0.39. 

 

 

Fig. 7. Chaotic behavior of map (12) for μ ≈ 0.2956 with x0 = 0.8. 

x  

x  



Alexanian || Armenian Journal of Physics, 2022, vol. 15, issue 4 

 

156 
 

 

Fig. 8. Chaotic behavior of map (12) for μ ≈ 0.3084 with x0 = −0.3. 

 

d. Two unstable fixed points: α = μ 

 

Consider the following map 

 
where α = μ in (1). Both fixed points are equal to zero, i.e, x  =   

  = 0, and df(x)/dx = 1. A very 

novel case for map (13) is obtained for μ ≈ −0.522341 and shown in Fig. 9. All initial point x0 in the 

iteration process with starting points 0 ≤ x0 ≤ 1 remain in the domain 0 ≤ x ≤ 1. In one-dimensional 

maps, one encounters fixed points, which are either attractors to which the trajectory moves to or to 

repellors, which repel nearby trajectories. Here we have a rather curious case where the repellor is 

actually all trajectories obtained from a starting point x0 of the iteration that lie in the interval 0 ≤ x0 

≤ 1. 

Fig. 9. Chaotic behavior of map (13) for μ ≈ −0.522341 with x0 = 2.0. 

Fig. 10. Period-2 for map (13) for μ = −0.5 and x0 = 2.732050808. 
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Consider map (13) for μ=−0.5. It is remarkable that for a fixed value of μ, we can obtain a 

sequence of period-n, with n = 2, 3, 4, 5, · · · , by just starting the iteration scheme at different 

values of the initial starting point x0. Fig. 10 shows the iteration scheme leading to period-2 for 

μ=−0.5 and x0=2.732050808. Fig. 11 shows the iteration scheme leading to period-3 for μ=−0.5 and 

x0=1.879385242. Fig. 12 shows the iteration scheme leading to period-4 for μ=−0.5 and 

x0=2.358929287. Fig. 13 shows the iteration scheme leading to period-5 for μ=−0.5 and 

x0=2.075558177. Preliminary numerical iterations indicate that the chaotic state associated with a 

particular initial x0 for μ=−0.5 would be equal as that given by Fig. 9. The sequence of period-n for 

real values of x0 is true only for |μ|<1 while for |μ|>1 the corresponding values are imaginary 

numbers. 

Fig. 11. Period-3 for map (13) for μ = −0.5 and x0 = 1.879385242. 

 

Fig. 12. Period-4 for map (13) for μ = −0.5 and x0 = 2.358929287. 

 

Fig. 13. Period-5 for map (13) for μ = −0.5 and x0 = 2.075558177. 
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Fig. 14. Period-2 for map (13) for μ = 0.9 and x0 = 1.229415734. 

 

 

Fig. 15. Period-3 for map (13) for μ = 0.9 and x0 = .6189168183. 

 

Fig. 16. Period-4 for map (13) for μ = 0.9 and x0 = 1.114730637. 

 

Sarkovskii’s theorem states that if a discrete, continuous function on the real line has a 

periodic point of period-3, then it must have periodic points of every other period [2]. Note that in 

our discontinuous, singular map (13), the presence of period-n, n = 2, 3, 4, 5 · · · requires only that 

|μ|<1. Actually, map (13) is equivalent to a large class of rational functions with two unequal zeros 

and a simple pole. 

Consider the three-parameter family of rational functions 

 
where a ≠ b ≠ c. Map (13) corresponds to a = 0, b = 1, and c = μ  = μ. Map (14) possesses two real 

fixed points for μ  ≠ 1 provided 
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If the equality holds in (15), then there is a single fixed point at   
  =    If μ =1, then 

at   
  = there is a single fixed point 

Fig. 17. Bouncing behavior of map (13) for μ = 0.9 and x0 = 5.13. 

 
4. Aperiodic map 

 

Under the transformation xn = a + (b − a)un, (14) becomes 

 
We conjecture that every map of the form (14) with μ  = (c − a)/(b − a) and |μ | < 1 has period-n,         

n = 1, 2, 3, 4, · · · . However, a rather interesting and strange map results for μ  = −1, viz., a = 

(b+c)/2. Consider (14) for a = 2, b = 2.5, and c = 1.5 with resulting μ  = (c − a)/(b − a) = −1. One 

obtains from (16) that 

 
Fig. 18 shows the iterations of map (17) for the initial point x0 = 2.4. 

It is important to remark the difference between the maps associated with Fig. 9 and Fig. 18. 

The former has been verified with orbits with period-n, with n = 1, 2, 4, 6, 7, note the absence of 

period-3, while the latter is strictly aperiodic. This difference gives rise to quite different chaotic 

states. Fig 9 shows most of the real axis as the chaotic-band whereas in Fig. 18, the points ±∞ are 

the accumulation points of the iterations. 

Our result closest to the logistic map follows from (16) when c = 0 and the map contains only 

a single parameter and so 

 
where μ  = −a/(b − a). Map (14) contains a simple pole at x = 0 and so since x0 = a + (b − a)u0 one 

must have x0 ≠ 0, i.e., u0 ≠ μ  , which is the singularity in map (18). Consider map (18) for μ  = 2, 

which has a fixed points at x ≈ 1.2361 and −3.2361 and periodic cycles with period-n, n = 2, 3, 4 · · 

· .      Figs. (19) and (20) show the first of these two periodic orbits. 
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Fig. 18. Aperiodic behavior of map (16) for a = 2.0, b = 2.5 and c = 1.5 and so μ  = −1.0  

with initial point x0 = 2.4, viz., map (17) with same initial point. 

 

Fig. 19. Period-2 for map (18) for μ  = 2 and u0 = −0.4574. 

 

 

Fig. 20. Period-3 for map (18) for μ  = 2 and u0 = 1.1820. 

 

5. Conclusions 

 

We numerically study discontinuous, singular, two-parameter maps that were analyzed only 

qualitatively thirty years ago. The main emphasis of this paper is to numerically study this original 

map and show behavior that is quite distinct from the well-known logistic map. Amongst the many 

difference, the more dramatic are the avoidance of the approach to chaos via period-doubling 

bifurcations as is the case in the logistic map. In addition, we find aperiodic maps where there are 

no periodic trajectory points whatsoever, instead, one has that x = ±∞ are points of accumulations of 

the iterations, where no matter how small the neighborhood, an unlimited number of terms of the 

map can be found arbitrarily close to x = ±∞.  
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