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Abstract: We consider the equilibrium thermal state of photons and determine the mean number and 

number variance of squeezed coherent photons. We use an integral representation for electro-magnetic 

radiation applicable both to systems in equilibrium and to systems in nonequilibrium to determine the 

spectral function of the radiation. The system considered is in thermal equilibrium and we find that the 

squeezed coherent photons are at a higher temperature than the photons themselves. Also, as expected, 

the mean number of squeezed coherent photons is greater than that of photons. 
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1. Introduction 

 

There are three basic states in quantum optics and in a recent paper [1], we dealt with the quantum 

Rabi oscillations via one- and two-photon transitions in two of these basic states, viz., coherent and 

squeezed coherent states. In this paper, we deal with the third state, viz., thermal states, and study the 

mean number and number variance of squeezed coherent photons in a thermal state of photons. In 

particular, one would expect the mean number of squeezed coherent states in a thermal state of 

photons to consist of the sum of three separate contributions, that is, the contribution from the thermal 

state, that from the coherent state, and that from the squeezed state. Indeed one does obtain such a 

sum of three terms; however, the contribution from the thermal state occurs with a temperature, which 

is higher than the temperature of the thermal state of photons. Squeezed coherent thermal states are 

studied with the aid of the Glauber second-order correlation functions [2]. Also, the Glauber P-

representation for the squeezed thermal state are calculated and compared to the P-representation for 

the squeezed states [2]. Thermal coherent states have also been used to generalize the usual (zero-

temperature) P- and Q- representations of operators to their nonzero temperature counterparts [3]. 

This paper is arranged as follows. In Sec. 2, we review the use of the Bogoliubov-Valatin 

transformation to generate the creation and annihilation operators for the squeezed coherent photons. 

In Sec. 3 A, we calculate the mean number and number variance of photons in a thermal state of 

squeezed coherent photons. In Sec. 3 B, we calculate the mean number and number variance of 
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squeezed coherent photons in a thermal state of photons. In Sec. 4, we review the integral 

representation for the mean number of bosons in thermal equilibrium and evaluate the spectral 

function to the cases considered in Sec. 3. Finally, Sec. 5 summarizes our results. 

 

 

2. Bogoliubov-Valatin Transformation  

 

In a recent paper [1], we considered the Bogoliubov-Valatin [4, 5] canonical transformation, 

which is in general not unitary, to generate quasiparticles 

 

𝑨̂ = 𝛽𝑎̂ + 𝛾𝑎̂† 𝑨̂† = 𝛽∗𝑎̂† + 𝛾∗𝑎̂     (1) 

 

where 𝑎̂, 𝑎̂† are the photon annihilation and creation operators, respectively, with vacuum state 

𝑎̂|0⟩ = 0. The creation and annihilation operators 𝑨̂ and 𝑨̂†satisfy the communication relation  

 

[𝑨̂, 𝑨̂†] = 1      (2) 

 

provided |𝛽|2 − |𝛾|2 = 1. 

 

The corresponding normalized vacuum state, viz., 𝑨̂|0⟩ = 0, is given by [1] 

 

|𝟎⟩ = 𝑆̂(𝜁)|0⟩                      (3) 

 

where  

𝑆̂(𝜁) = 𝑒𝑥𝑝 (−
𝜁

2
𝑎̂†2 +

𝜁∗

2
𝑎̂2)                                                       (4) 

 

is the squeezing operator with  
𝛾

𝛽
= 𝑒𝑖𝜑 tanh(𝑟)                                                                  (5) 

and  𝜁 = 𝑟𝑒𝑥𝑝(𝑖𝜑). 

 

The non-unitary transformation (1) contains three real variables. One can reduce the number of 

variables to only two real variables and thus make the transformation (1) unitary by choosing 

 

𝛽 = cosh(𝑟) 𝛾 = 𝑒𝑖𝜑 sinh(𝑟)     (6) 

 

and so one obtains from (1) the unitary transformation 

 

𝑆̂(𝜁)𝑎̂𝑆̂(−𝜁) = cosh(𝑟) 𝑎̂ + 𝑒𝑖𝜑 sinh(𝑟) 𝑎̂† = 𝑨̂    (7) 
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𝑆̂(𝜁)𝑎̂†𝑆̂(−𝜁) = cosh(𝑟) 𝑎̂† + 𝑒−𝑖𝜑 sinh(𝑟) 𝑎̂ = 𝑨̂†   (8) 

 

One can generate a coherent state for the quasiparticles [1] by the action on the vacuum |𝟎⟩ of 

the Glauber displacement operator 

 

𝑫̂(𝛼)|𝟎⟩ = 𝑒𝑥𝑝(𝛼𝑨̂† − 𝛼∗𝑨̂)|𝟎⟩ = 𝑆̂(𝜁)𝐷̂(𝛼)|0⟩,    (9) 

 

where 𝛼 = |𝛼| exp(𝑖𝜃). Therefore, the coherent state of quasiparticles is the squeezed coherent state 

of photons.  

The creation and annihilation operators 𝐵̂ and 𝐵̂†, respectively, for the squeezed coherent 

photons are given by  

 

𝐵̂ = 𝑆̂(𝜁)𝐷̂(𝛼)𝑎̂𝐷̂(−𝛼)𝑆̂(−𝜁) = cosh(𝑟) 𝑎̂ + 𝑒𝑖𝜑 sinh(𝑟) 𝑎̂† − 𝛼   (10) 

 

and 

𝐵̂† = 𝑆̂(𝜁)𝐷̂(𝛼)𝑎̂†𝐷̂(−𝛼)𝑆̂(−𝜁) = 𝑒−𝑖𝜑 sinh(𝑟) 𝑎̂ + cosh(𝑟) 𝑎̂† − 𝛼∗,   (11) 

 

with inverses  

𝑎̂ = 𝐷̂(−𝛼)𝑆̂(−𝜁)𝐵̂𝑆̂(𝜁)𝐷̂(𝛼) = cosh(𝑟) 𝐵̂ − 𝑒𝑖𝜑 sinh(𝑟) 𝐵̂† + 𝛼 cosh(𝑟) − 𝛼∗𝑒𝑖𝜑 sinh(𝑟)  (12) 

 

and  

𝑎̂† = 𝐷̂(−𝛼)𝑆̂(−𝜁)𝐵̂†𝑆̂(𝜁)𝐷̂(𝛼) = −𝑒−𝑖𝜑 sinh(𝑟) 𝐵̂ + cosh(𝑟) 𝐵̂† + 𝛼∗ cosh(𝑟) − 𝛼𝑒−𝑖𝜑 sinh(𝑟). 

(13) 

 

3. Mean Number and Number Variance 

 

We evaluate the mean number and number variance of photons in the thermal state of squeezed 

coherent photons and the mean number and number variance of squeezed coherent photons in the 

thermal state of photons. Actually, the two results are related via a transformation of parameters as 

shown in Sec. 3 B. 

 

A. Thermal state of squeezed coherent photons 

 

We consider the thermal equilibrium state of an ideal gas of squeezed coherent photons with 

density matrix  

 

𝜌̂𝐵 =
exp(−𝛽𝐵ℏ𝜔𝐵̂†𝐵̂)

𝑇𝑟[exp(−𝛽𝐵ℏ𝜔𝐵̂†𝐵̂)]
,                                                     (14) 
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where 𝛽𝐵 = (𝑘𝐵𝑇)−1, 𝑘𝐵 being Boltzmann’s constant and 𝑇 being the absolute temperature. The 

thermal average of operator 𝑂̂ is denoted by  

 

〈𝜌̂𝐵𝑂̂〉 ≡ 〈𝑂̂〉𝐵.      (15) 

 

We obtain for the mean photon number in the thermal state of squeezed coherent photons 

 

〈𝑎̂†𝑎̂〉𝐵 =
cosh(2𝑟)

𝑒𝛽𝐵ℏ𝜔−1
+ sinh2(𝑟) + |𝛼 cosh(𝑟) − 𝛼∗ sinh(𝑟)𝑒𝑖𝜑|

2
,    (16) 

 

with the aid of (12) and (13). 

The photon number variance follows from (12) and (13) and gives 

 

∆𝑛2 = 〈(𝑎̂†𝑎̂)2〉𝐵 − (〈𝑎̂†𝑎̂〉𝐵)2 =
cosh(4𝑟)

(𝑒𝛽𝐵ℏ𝜔 − 1)2
+

cosh(4𝑟) + 2|𝛼 cosh(2𝑟) − 𝛼∗ sinh(2𝑟)𝑒𝑖𝜑|
2

(𝑒𝛽𝐵ℏ𝜔 − 1)
 

+
1

2
sinh 2(2𝑟) + |𝛼 cosh(2𝑟) − 𝛼∗ sinh(2𝑟)𝑒𝑖𝜑|

2
    (17) 

 

Both results for the mean photon number and variance lead, in the limit  𝑇 → 0, to the results 

given by Eqs. (18) and (19), respectively, in Ref. (1) for 𝜑 = 2𝜃. Also, one obtains the results for the 

ideal photon gas when 𝛼 = 0 and 𝑟 = 0, viz., ∆𝑛2 = 𝑛̅(𝑛̅ + 1), where 𝑛̅ = [𝑒𝛽𝐵ℏ𝜔 − 1]
−1

. 

 

 

B. Thermal state of photons 

 

We consider the thermal equilibrium state of an ideal gas of photons with density matrix 

 

𝜌̂𝑎 =
exp(−𝛽𝐵ℏ𝜔𝑎̂†𝑎̂)

𝑇𝑟[exp(−𝛽𝐵ℏ𝜔𝑎̂†𝑎̂)]
,                                                     (18) 

 

One can easily evaluate the mean number of squeezed coherent photons in the thermal state of 

photons, viz., 

 

〈𝐵̂†𝐵̂〉𝑎 =
𝑇𝑟[𝐵̂†𝐵̂𝑒−𝛽𝐵ℏ𝜔𝑎̂†𝑎̂]

𝑇𝑟[𝑒−𝛽𝐵ℏ𝜔𝑎̂†𝑎̂]
=

cosh(2𝑟)

𝑒𝛽𝐵ℏ𝜔 − 1
+ sinh2(𝑟) + |𝛼|2                   (19) 

 

with aid of (10) and (11). 

The number variance of squeezed coherent photons follows from (10) and (11) yielding 

 



Mean Number and Number Variance of Squeezed Coherent Photons||Armenian Journal of Physics,2020, vol.13, issue 1 

 

35 

 

∆𝑛2 = 〈(𝐵̂†𝐵̂)2〉𝑎 − (〈𝐵̂†𝐵̂〉𝑎)
2

=
cosh(4𝑟)

(𝑒𝛽𝐵ℏ𝜔 − 1)2
+

cosh(4𝑟) + 2|𝛼 cosh(𝑟) + 𝛼∗ sinh(𝑟)𝑒𝑖𝜑|
2

(𝑒𝛽𝐵ℏ𝜔 − 1)
 

+
1

2
sinh 2(2𝑟) + |𝛼 cosh(𝑟) + 𝛼∗ sinh(𝑟)𝑒𝑖𝜑|

2
.    (20) 

 

The squeezed coherent photon of Sec. 3 A is given by 𝑆̂(𝜁)𝐷̂(𝛼)|0⟩. The results in this Sec. 3 B 

can be equally obtained as in Sec. 3 A but with a “squeezed coherent photon” given by the adjoint, 

that is, (𝑆̂(𝜁)𝐷̂(𝛼))
†

|0⟩ = 𝐷̂(−𝛼)𝑆̂(−𝜁)|0⟩  instead. In fact, we obtain the results (16) and (17) from 

the results (19) and (20) under the transformation 

 

𝛼 → 𝛼 cosh(𝑟) − 𝛼∗ sinh(𝑟) 𝑒𝑖𝜑  and 𝜁 → −𝜁.   (21) 

 

 

4. Integral Representation 

 

Sometime ago, an integral representation for an interacting or a non-equilibrium Bose gas was 

derived [6, 7]. The integral representation of a Bose gas in thermal equilibrium at temperature 𝑇  is 

given by 

 

𝑛(𝜔, 𝑇) = ∫ 𝑑𝑇′

∞

0

∫ 𝑑𝜇

∞

0

𝜎(𝑇, 𝑇′, 𝜇)

𝑒𝜇𝑒ℏ𝜔 𝑘𝐵⁄ 𝑇′
− 1

,                                          (22) 

 

where 𝜇 is the chemical potential and the spectral function 𝜎(𝑇, 𝑇′, 𝜇) ≥ 0 and can be no more 

singular than a Dirac 𝛿-function. In the nonequilibrium case, the time variable 𝑡 must be included in 

the arguments of both functions, viz., 𝑛(𝜔, 𝑇, 𝑡) and 𝜎(𝑇, 𝑇′, 𝜇, 𝑡 ). If the contribution to the radiation 

field (22) arises from a single source, then one has the normalization condition 

 

∫ 𝑑𝑇′

∞

0

∫ 𝑑𝜇

∞

0

 𝜎(𝑇, 𝑇′, 𝜇) = 1.                                           (23) 

 

However, in the case of multiple sources, the integral (23) is greater than unity. This occurs, for 

instance, in the description of the cosmic background radiation that deviates from a strictly blackbody 

that requires an additional source other than the remnant of the big bang [8]. 

If the number of bosons, for instance, in the case of photons, is not conserved then 

 

𝑛(𝜔, 𝑇) = ∫ 𝑑𝑇′

∞

0

𝜎(𝑇, 𝑇′)

𝑒ℏ𝜔 𝑘𝐵⁄ 𝑇′
− 1

.                                             (24) 
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Note that the low frequency photons in (24) are in thermal equilibrium, owing to Bremsstrahlung, 

with temperature 

 

𝑇𝑒𝑞(𝑇) = ∫ 𝑑𝑇′

∞

0

  𝑇′𝜎(𝑇, 𝑇′).                                                      (25) 

 

The first term in both expressions for the mean photon number in (16) and (19) are described by (22). 

One has for both (16) and (19) that 

 

𝜎(𝑇, 𝑇′, 𝜇) = cosh(2𝑟) 𝛿(𝑇′ − 𝑇)𝛿(𝜇).                (26) 

 

Therefore, the low-frequency squeezed coherent photons are in thermal equilibrium with 𝑇𝑒𝑞 =

cosh (2𝑟)𝑇 ≥ 𝑇, that is, a higher temperature than the photon temperature 𝑇. However, the remaining 

terms in both (16) and (19) are described by (22) with a non-zero chemical potential albeit infinite 

temperature. 

Therefore, one has for the spectral function for (16) 

 

𝜎𝐵(𝑇, 𝑇′, 𝜇) = cosh(2𝑟) 𝛿(𝑇′ − 𝑇)𝛿(𝜇) + 𝛿(𝜇 − 𝜇𝐵)𝛿(𝑇′ − ∞),   (27) 

 

where  

 

𝜇𝐵 = ln (
cosh2(𝑟) + |𝛼 cosh(𝑟) − 𝛼∗sinh (𝑟)𝑒𝑖𝜑|

2

sinh2(𝑟) + |𝛼 cosh(𝑟) − 𝛼∗sinh (𝑟)𝑒𝑖𝜑|2
).                         (28) 

 

Similarly, one has for the spectral function for (19) 

 

𝜎𝑎(𝑇, 𝑇′, 𝜇) = cosh(2𝑟) 𝛿(𝑇′ − 𝑇)𝛿(𝜇) + 𝛿(𝜇 − 𝜇𝑎)𝛿(𝑇′ − ∞),   (29) 

 

where 

𝜇𝑎 = ln (
cosh2(𝑟) + |𝛼|2

sinh2(𝑟) + |𝛼|2
).                                                        (30) 

 

It is curious that the low frequency, squeezed photons are at a higher temperature 𝑇 cosh (2𝑟) 

than the photons in their own thermal equilibrium state with temperature 𝑇. Therefore, the squeezed 

coherent photons are not only more numerous than the photons but the low-frequency squeezed 

coherent photons are at a higher temperature than the photon temperature. The effect of coherent 

photons, as expected, is only to increase the number of photons. 
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5. Summary and Discussion 

 

The calculation of the mean number of squeezed coherent photons in a thermal state of photons 

is analyzed vis-𝑎́-vis an integral representation for the mean number of bosons. The contributions 

from the integral give rise to two terms one where the number of bosons are not conserved, zero 

chemical potential, and a second term where the number of bosons are conserved, nonzero chemical 

potential. The latter resembles somewhat the condensation of photons in the zero frequency state. It 

is interesting that the temperature of the squeezed coherent photons is greater than the temperature 

of the photon gas. 
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