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Abstract: We calculate the intrinsic entropy of a Schwarzschild black hole in an asymptotically anti-
de Sitter space. The statistical calculation of the entropy is based on a model for particle structure that 
leads to confinement. The constituents of the particle are distinguishable quasiparticles. The entropy 
(temperature) is less (greater) than the entropy of a Schwarzschild black hole in an asymptotically flat 
space. The equilibrium thermodynamic states are described by pure states, myriotic fields, and the 
distinguishability of the internal microstates may provide a solution to the black hole information 
paradox by suggesting a Bose-Einstein condensate whereby the zero mass state is a limit point (or 
accumulation point) of condensates on the event horizon. 
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1. Introduction 
 

Recent interesting work has been done on the use of the anti-de Sitter/conformal field theory 
( / )AdS CFT  correspondence [1] to describe the distinguishable microstates of black holes [2, 3], 
where finite temperature configurations in the decoupled field theory correspond to black hole 
configurations in AdS  spacetimes. Black hole microstates become perfectly distinguishable when 
the Holevo information achieves its maximum value, which is the Bekenstein-Hawking BHS  
entropy of the black hole [2]. An interesting issue is the unitarity inherent in the time-development 
of a quantum state, which implies that information is conserved. It is hoped that the 
distinguishability of the microstates in a black hole may solve the black hole information paradox 
[3] when information is irretrievably lost.  

Rapidly rotating black holes can produce Bose-Einstein condensate (BEC) of extremely 
lightweight particles in the range 20 1010 10 ,eV− − −   not occurring in the Standard Model, but are 
predicted in other theories such as Quantum Chromodynamics (QCD) axion, axionlike particles in 
string theory, and interesting new possibilities for Dark Matter (DM) [4]. A new method has been 
proposed to probe BEC of ultralight Dark Matter with the aid of gravitational waves [5].  

The /AdS CFT  correspondence can be used to describe strong interactions [6]. Similarly, 
particle or quasiparticle statistics can be used to generate interparticle interactions. For instance, 
Bose-Einstein and Fermi-Dirac statistics correspond to attractive or repulsive interactions, 
respectively, between classical particles, viz., the “statistical attraction” between bosons and the 
“statistical repulsion” between fermions [7].  

In an attempt to understand the structure of elementary particles by means of statistical 
mechanics, the Gibbs paradox was used to describe the “confinement” of the strongly interacting 
constituents of an elementary particle and define a size for a particle [8]. The statistical mechanics 
of truly distinguishable, strictly classical particles gives rise to a heat of evaporation per particle that 
is independent of the number of constituents and depends only on the volume of the particle. In the 
words Schrödinger [9], “what is then determined (given the temperature) is not the vapour pressure, 
but the vapour volume, the absolute volume of the vapour, independent of the number n  of particles 
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it contains. Given this “correct” volume any amount of liquid could evaporate into it, or vice versa, 
without disturbing the equilibrium!”  

Traditionally, quasiparticles have been used in many-body theories for systems of infinite 
extent. However, one very important feature of the interacting system describing a particle is that it 
should be confined (localized in ordinary space). Therefore, the question arises if the notion of a 
quasiparticle is sufficiently general to describe a localized system. The surprising result is that if the 
Gibbs paradox is introduced quasiparticles can describe successfully a localized system, which is 
herein also applied to black holes.  

The model for particle structure [8] gives rise to many-body forces amongst (Fermi or Bose) 
constituents that are purely a manifestation of the correlations resulting from the distinguishable 
statistics of the quasiparticles [10]. Nonetheless, the distinguishable quasiparticles behave in many 
respects like an ideal Bose (not Fermi) gas [10]. A relativistic quantum field theory was developed 
for such a model which turns out to be nonlocal [11]. The model was subsequently used to describe 
a black hole as being constituted by distinguishable microstates with zero-mass constituents [12].  

This paper is arranged as follows. In Sec. II, we review the thermodynamics of a black hole 
based on a model for particle structure that leads to confinement. The particle constituents are 
noninteracting, distinguishable quasiparticles giving rise to the Gibbs paradox. The model was 
applied to a Schwarzschild black hole in an asymptotically flat space. The thermodynamic 
properties include a characteristic temperature bhT , inversely proportional to the mass of the black 
hole and an intrinsic entropy bhS , proportional to the area of the event horizon. In Sec. III, we 
consider the black hole information paradox and suggest that physical information could be stored 
on the event horizon. This is accomplished by the presence of a Bose-Einstein condensate of 
quasiparticles on the event horizon where the zero mass state is a point of accumulation of 
condensates. In Sec. IV, the black hole model of Sec. II is applied to a Schwarzschild black hole in 
an asymptotically anti-de Sitter space. The thermodynamic properties include a characteristic 
temperature ( )AdS

bh bhT R r T+=   and an intrinsic entropy ( )AdS
bh bhS r R S+= , where R  is the 

Schwarzschild event-horizon radius and r+  is the Schwarzschild anti-de Sitter event-horizon radius 
and ( ) 1r R+ ≤  since 0Λ ≤ . Note that .AdS AdS

bh bh bh bhT S T S=  Finally, Sec. V summarizes our results. 
 

2. Schwarzschild Black Hole 
 

The statistical entropy of an ideal gas of  distinguishable quasiparticles (microstates) with 
masses im  whose number is not conserved was calculated in order to describe the interior of a 
Schwarzschild black hole in an asymptotically flat space [12]. The grand-canonical partition 
function Z  with chemical potentials 0iμ =  for all i  is given by  

{ } 11 ( ) ,i
i

Z C T −
= −∏       (1) 

 
where the partition function ( )iC T  for the i -th type of quasiparticle with mass im  is bounded  

 

( ) ( ) ( )2( )/ 2 2
23 3 3

4( ) 1,iE kT
i i i

VC T e d m c kT VK m c kT
h c h

π−≡ = ≤ p p   (2) 

where  
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2 2 2 4 2

0( )i iE c p m c m c= + ≥p       (3) 
with 0m  the lowest mass of the system, V is the volume, and ( )K xμ  is the modified Bessel function 
of the second kind with subscript μ  . If the lowest mass 0 0,m =  then inequality (1) implies that for 
fixed volume V , maxT T≤  with  

3 2 3
max ( )VT c kπ=        (4) 

 
since 2 2

2 1( ) ( ) ( ) 0d dx x K x x K x  = − <   for 0 x≤ < ∞  and  1( ) 2 ( )v v
vz K z v−→ Γ as 0z →  for 0.v >R   

The internal energy U  is  
( )(ln ) ,

(1/ ) 1 ( )
i

i iV

B TZU
kT C T

 ∂= − = ∂ − 
      (5) 

where  
( )

3( ) ( ) .iE kT
i i

VB T e E d
h

−=  p p p      (6) 

The entropy S  is given by  

[ ]( ln ) ln 1 ( ) .i
iV

T ZS k k C T U T
T

∂ = = − − + ∂ 
    (7) 

 
The internal energy U  has a simple pole, for fixed V , at maxT T=  owing to the lowest mass state. 
Therefore, near the singularity we have that  
 

maxlnUS k Z U T
T

= − ≈      (8) 

as maxT T→ .  
Now the event horizon with proper area 24A Rπ=  encloses a finite proper volume 2 3V Rπ=  

and so one has for the entropy and temperature of a Schwarzschild black hole with 2U Mc=  we 
have that [12]  

( )31 4 ,
2bhS kc A G
π

=       (9) 

and  
( )34 8 ,bhT c kGMπ π=       (10) 

 
where we have used the Schwarzschild or gravitational radius of the mass M , viz., 22 .R GM c=   
The quantities in braces in Eqs. (9) and (10) are the corresponding values obtained by Hawking 
[13]. The specific heat at constant volume is given by 
 

( )

22 2

22 2 2

( ) ( )1 1 ,
1 ( )1 ( )

i i
V

i iV ii

B T B TU UC
T kT kT C T kTC T

 ∂ = ≈ ≈ =    ∂ − −
    (11) 
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where in both approximations we have kept the leading singularity as max .T T→  Condition 
1U kT   is satisfied for Schwarzschild black holes with masses M  much greater than the Planck 

mass, ( )1 2 52 10pM c G g−= ≈ × , since (10) gives that ( )22 2 1.bh bhU kT Mc kT M Mp= =    
Therefore, in obtaining result (11), we have neglected the term with a simple pole and kept only the 
term with a pole of order 2 at ( ) 1iC T =  coming from the 0m =  quasiparticles. Mass 0m =  is a 
(nonisolated) limit point (or accumulation point) of condensates (see below Sec. III).  

We have then for the specific heat of a Schwarzschild black hole of mass M  in an 
asymptotically flat space  
 

222 ,bh
V

GMC k
c

 
=   

     (12)  

 
where we have used (10) for the temperature of the black hole and the internal energy 2.U Mc=    

The description of an equilibrium state as a pure state was proposed as a generalization of the 
formalism of axiomatic quantum field theory to systems with an infinite number of particles but 
finite densities [14]. This approach indicates that the notions of “the approach to equilibrium” in 
statistical mechanics and that of the “asymptotic condition” in axiomatic quantum field theory are 
the same. A Hilbert space formulation of quantum statistical mechanics was developed [15] by 
using the notion of myriotic fields [16]. The pure nature of the equilibrium state together with the 
distinguishability of the internal microstates suggests that information may be stored inside the 
black hole thus possibly solving the black hole information paradox when information is 
presumably irretrievably lost [3]. 
 

3.  Information Paradox 
 

Quantum determinism follows from the future time development of a pure quantum state being 
determined by a unitary evolution operator acting on the state of the system. This also is associated 
with the reversibility whereby the evolution operator has an inverse and so past states of the system 
are similarly uniquely determined. Accordingly, unitarity implies that information is conserved in 
the quantum sense. Now physical information may permanently disappear in a black hole by many 
different physical states collapsing into the same state. This is referred as the information paradox 
for black holes. The partition function Z  in (1) is the expected value  

 
1 ( )

, ,i ii
E n

kTZ e
− = Φ Φ  

p
     (13)  

 
where Φ  is the product of conditioned equidistribution states, which is a functional ( )nφ  of the 
occupation function in , and is the equilibrium state of a system of noninteracting particles or 
quasiparticles of masses im  [15]. It is clear from inequality (2) that the zero mass quasiparticle 
determines the volume of the black hole. Now in order to provide a mechanism whereby 
information can be stored in the black hole, we consider macroscopic occupation of many zero-
mass states with the 0m =  state a limit point (or accumulation point) of condensates. Note that the 



Alexanian || Armenian Journal of Physics, 2019, vol. 12, issue 2 

182 
 

mere macroscopic occupation of the 0m =  state will not do since many different physical states 
collapsing into the same state will not solve the information paradox. However, the occurrence of 
macroscopic occupation of a dense set of zero-mass states can be used to store information in those 
states and thus resolve the information paradox. The notion of limiting point of condensates, which 
gives rise to spatially nonuniform condensates, was considered for one- and two-dimensional 
superfluids since such lower dimensional systems could not possess a uniform condensate [17].  

This characterization of where the information can be stored in the black hole suggests that the 
condensate resides on the event horizon and so is the information content of the black hole. 
Hawking suggested in 2015 that the information sucked into a black hole is permanently encoded 
on the boundary (or event horizon) of the black hole [18]. 
 

4.  Anti-de-Sitter Black Hole 
 

In Sec. II, the thermodynamics of a Schwarzschild black hole in an asymptomatically flat space 
was obtained with the aid of constituent quasiparticles that follow strictly classical statistics and so 
are distinguishable and give rise to the Gibbs paradox [8]. The quasiparticles represent the internal 
distinguishable microstates of the black hole [12].  

The Einstein equations with a negative cosmological constant Λ  admit black hole solutions 
which are asymptotic to anti-de Sitter space [19, 20] with metric  

 

( )
12 2

2 2 2 2 2 2 22 21 1 sin .
3 3

GM r GM rds dt dr r d d
r r

θ θ ϕ
−

   Λ Λ= − − − + − − + +      
 (14) 

 
The metric (14) possesses a single event horizon at 22r r GM c+= ≤ since 0,Λ ≤  viz., an event 

horizon smaller than that of a Schwarzschild black hole in an asymptotically flat space.  
The results of Sec. II apply equally to anti-de Sitter black holes but with area 24A Rπ= , volume 

2 3V rπ +=   and 
 

2 3 4
2 2 2 21 3 3 ... ,

3 3 3 3
r R R R R R+

 Λ Λ Λ Λ       = + + + + +                 
  (15) 

 
with the aid of the Newton-Raphson iteration and 22R GM c= , the Schwarzschild event-horizon 
radius.  

One obtains for the entropy and temperature of the Schwarzschild black hole in an 
asymptotically anti-de Sitter space 

 
31 ,

2 4
AdS

bh
r kc AS
R Gπ
+   =       

     (16) 

and  
3

4 .
8

AdS
bh

R cT
r kGM

π
π+

   
=      

      (17) 
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Note that the product AdS AdS
bh bhT S  is independent of the cosmological constant Λ  and is equal to the 

product bh bhT S , which is consistent with (4). The above black holes have positive specific heat and 
can be in stable equilibrium with thermal radiation at a fixed temperature. One obtains that  

22

2
AdS bh bh

V V V
rUC C C

kT R
+ ≈ = ≤  

     (18) 

since 20, U McΛ ≤ = , and the temperature is given by (17). 
 

5.  Summary and Conclusion 
 

The thermodynamic properties of a Schwarzschild black hole in an asymptotically anti-de Sitter 
space follows from a model of particle physics where the constituents of the particle are 
noninteracting, distinguishable quasiparticles. The model was applied previously to a Schwarzschild 
black hole in an asymptotically flat space. The thermodynamic properties included a characteristic 
temperature bhT , inversely proportional to the mass of the black hole and an intrinsic entropy bhS , 
proportional to the area of the event horizon.  

The thermodynamic properties for the anti-de Sitter black hole include also a characteristic 
temperature ( )AdS

bh bhT R r T+=  and an intrinsic entropy ( )AdS
bh bhS r R S+= , where R  is the 

Schwarzschild event-horizon radius and r+  is the Schwarzschild anti-de Sitter event horizon radius 
and ( ) 1r R+ ≤  since 0Λ ≤ . Note that .AdS AdS

bh bh bh bhT S T S=   
The nonseparable nature of the Hilbert space of equilibriums states, described by myriotic 

fields, together with the distinguishability of the internal microstates of the equilibrium states 
suggests that physical information could be stored on the event horizon of a black hole. The 
mechanism would be the presence of a Bose-Einstein condensate whereby the zero mass state is a 
limit point (or accumulation point) of condensates on the event horizon. 
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