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Abstract.We consider the bipartite state of a two-photon polarization system and obtain the exact 
analytical expression for the von Neumann entropy in the particular case of polarization when the 
entropy depends on only five parameters rather than the full fifteen parameters. We investigate and 
graphically illustrate the dependence of the entropy on these five parameters, in particular, the 
existence of exotic to nonexotic statetransitions in single- and two-photon correlations.  
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1. General 
 
Inspired by the pioneering experiments on quantum entanglement by Aspectet al. [1,2], 

thetheory of two-photon polarization phenomena were developed at theInstitute for Physical 
Research of the Armenian Academy of Sciences in the latter part of the 1980’s[3-5].In these 
works, all possible states of polarization of the two-photon system were classified and 
analyzedand, thus, related toall possible outcomes of polarization measurements of the two-
photon system.All such properties were studied in the case of two-photon emission from an 
atom in an external resonant field [4]. In addition, symmetry properties of a two-photon system 
were analysed with respect to transformations of both space rotations and inversion [6]. 

The role of the von Neumann entropy [7] has gained in importance in recent years owing 
to the extensive development of the physics of entangled quantum states. The entropy plays a 
fundamental role as a quantitative measure of entanglement [8,9]. Accordingly, any exact result 
of the von Neumann entropy for a correlated quantum system is of extreme importance. In this 
paper, we consider the bipartite system of a pair of photons and exactly calculate the general 
expression for the von Neumann entropy for correlated, polarized states [5,10].  

The generalized conditional entropy has been analysed for this system [11] for which 
knowledge of the eigenvalues of the density matrix is not required.   

Correlation transfer from one-photon to two-photon systems, not in any restricted 
subspace, but in the complete space of the polarization degree of freedom has been studied 
[12]. Three protocols for directly measuring the concurrence of two-photon polarization-
entangled states, including pure states and mixed states has been considered [13]. An 
experimentally realizable scheme for manipulating the entanglement of an arbitrary state of 
two polarization entangled qubits has been introduced, where the von Neumann entropy 
provides a convenient and useful measure of the purity of the state [14].  

The paper is arranged as follows. In Sec. 2, we review the general properties of the 
normalized polarization density matrix for two photons. In Sec. 3, we obtain the exact, general 
expression for the entropy, which is used in Sec. 4 to study three relatively simpler cases.  
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2. Von Neumann entropy for two-photon system 
 

The general form of the normalized polarization density matrix for two photons [5,10] is 
given by 
 

(1,2) (1) (2) (1) (1) (2) (1) (2) (2) (1) (2)ˆ ˆ ˆ ˆ ˆ(1 / 4) ,ij i jI I I Iρ ζ σ σ = ⊗ + ⊗ + ⊗ + ⊗ ξ σ ξ σ              (1) 
 
where (1,2 )I and (1,2)σ̂ are 2 × 2Pauli vector matrices acting in the polarization space of photons 
and the real dimension less quantities (1,2) , ( , 1,2,3)ij i jζ =ξ are functions of the photon 
momenta and of the parameters of the emitting system. The vectors (1,2)ξ are the Stokes vectors 
of photons 1, 2 respectively, while the parameter ijζ  describes the two-photon polarization 
correlation. In the case of no photon entanglement, one has that 
 

(1) ( 2) .ij i jζ ξ ξ=                                                              (2) 
 

 The Stokes parameters (1,2 )ξ and ijζ  satisfy the inequalities [5] 
 

(1) (2) (1) (2)1 1i j ij i jξ ξ ζ ξ ξ+ − ≤ ≤ − +                                   (3.a) 
 

2 2(1) (2) 2 3.ijξ ξ ζ+ + ≤                                               (3.b) 
  

The reduced density matrix for photon 1, viz., (1)ρ̂ , is obtained by taking the trace of (1) 
over the quantum states of photon 2 , which gives us the Stokes matrix of photon 1, 

 
(1) (1,2) (1) (1) (1)

2ˆ ˆ ˆ(1 / 2) .Tr Iρ ρ  = = + ξ σ                               (4.a) 
   

Conversely, by taking a trace of (1) over the quantum states of photon 1, one obtains the Stokes 
matrix of photon 2 , viz. (2)ρ̂ , 
 

(1) (1,2) (2) (2) (2)
1ˆ ˆ ˆ(1 / 2) .Tr Iρ ρ  = = + ξ σ                                (4.b) 

  
The goal of our paper is to calculate the von Neumann entropy [1] 

 
(1,2) (1,2)ˆ ˆlnS Tr ρ ρ = −          (5) 

 
of the two photon system in a mixed quantum state, that is, when  
 

2(1,2) (1,2)ˆ ˆ .ρ ρ≠  
 
Araki and Lieb [15] have proven that 
 

1 2 1 2 ,S S S S S− ≤ ≤ +         (6) 
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 where 1 2,S S  are the reduced von Neumann entropies of photons 1,2 
 

{ }( ) ( )1 1( ) ( )ln 2 (1/ 2) ln 1 1 , ( 1, 2).S
α αξ ξα α

α ξ ξ α
− +

   = − − + =                    (7) 

 
The entropy Sα is a monotonically decreasing function of the Stokes parameter for ( )0 1αξ≤ ≤   
and achieves its maximum value ln 2 for the completely unpolarized state when ( ) 0αξ =  and 
its minimum value zero when the photon is in a pure polarized state, viz. ( ) 1αξ = . 
 
3. Entropy for two-photon polarization density matrix 

 
The arbitrary polarization state of the photon pair (1) is described by fifteen real parameters 

[5] and owing to the Araki-Lieb inequality (6), the maximum entropy attainable is 
 

max 2 ln 2S =                                                                  (8) 
 
when all 15parameters are set equal to zero. That is to say, no correlations of any kind, 
neither individually nor for the pair of photons. 

The eigenvalue equation of the matrix (1) is 
 

4 3 2
2 1 0 0,c c cλ λ λ λ− + − + =                                                (9) 

 
where the coefficients are defined as follows 
 

2 (1/ 8) ,c p=  
 

(1) (2)
1

ˆ(1/16) 2(1 det ) ,i ij jc p ζ ξ ζ ξ = − + −                                (10) 
 

(1,2)
0 ˆdet .c ρ=   

 
In (10),   is a nonnegative number (see (3.b)) which is called the purity of the state [16] 
 

2 2(1) (2) 2

,
3 ij

i j
p ξ ξ ζ= − − −                                           (11) 

 
and describes the “distance” of the mixed state of the system from the pure state where 0p =   
[10, 5].The four non-negative solutions ( 1,..., 4)j jλ =   yield the von Neumann entropy 
 

ln .j jS λ λ= −                                                           (12) 
 
The roots of the quartic equation (9), with coefficients given by (10), are extremely awkward 
to write and thus the exact expression for the entropy (12) would not be too useful. Accordingly, 
we consider special cases of (9) that lead to the quartic form (9) being reduced to the product 
of two quadratic polynomials. 
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4. Photon correlations 
 
We consider the special case of the density matrix (1) which contains the main properties 

of the two-photon system and which is easier to handle mathematically than the general case 
that includes all 15 real parameters. Namely, we consider the case where the 15 real parameters 
are reduced to actually 5. 
 

(1,2) (1) (2) (1) (1) (2) (1) (2) (2) (1) (2)
3 3 3 3ˆ ˆ ˆ ˆ ˆ(1/ 4) ,ii i jI I I Iρ ξ σ ξ σ ζ σ σ = ⊗ + ⊗ + ⊗ + ⊗ 

      (13) 
 
where the 5 parameters satisfy inequalities (3) 
 

11 221 , 1,ζ ζ− ≤ ≤                                                  (14.a) 
 

(1) (2) (1) (2)
3 3 33 3 31 1,ξ ξ ζ ξ ξ+ − ≤ ≤ − +                                 (14.b) 

 
(1) (2)
3 31 , 1,ξ ξ− ≤ ≤                                                    (14.c) 

 
and 
 

2 2(1) (2) 2
3 3 3.iiξ ξ ζ+ + ≤                                               (14.d) 

 
The density matrix (13) describes all possible polarization states of the pair of photons, that is, 
from the completely unpolarised state to that of the pure polarized state as defined in [5]. The 
eigenvalue equation (9) factors into the product of two quadratic polynomials and the 
eigenvalues are given by 
 

[ ]1,2 33(1/ 4) 1 ,xλ ζ += + ±                                            (15.a) 
 

[ ]3,4 33(1/ 4) 1 ,xλ ζ −= − ±                                          (15.b) 
 
where 
 

( ) ( )
1/22 2(1) (2)

3 3 11 22 , .xν ξ νξ ζ νζ ν = + + − = ±  
  .                      (15.c) 

One obtains for the entropy (12) the expression 
 

[ ] [ ]{ }33 331 1
max 33 33(1/ 4) ln 1 1x xS S x xν ννζ νζ

ν νν
νζ νζ+ + + −= − + + + −          (16) 

 
Entropy (16) depends on the three quantities 33, ,x xζ + − . The requirement that the eigenvalues 
(15) be real, positive quantities in order to give rise to a real valued entropy implies that 
 

331 1ζ− ≤ ≤                                                        (17) 
 
and  
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33 331 1 .xζ ζ±− ≤ ≤ ±                                             (18) 
 
Note, that the general expression for the entropy (16) is a function of the three variables 

33, ,x xζ + −  .  For definiteness, we consider 33 0ζ ≥ . The entropy (16) assumes its maximum 
value 2 ln 2  when 
 

33 0x xζ + −= = =                                                  (19) 
 
(completely unpolarised state) and it assumes the value of zero (pure state of two photon 
polarization) when 
 

33 1, 2, 0.x xζ + −= = =                                                  (20) 
 
The requirement that the eigenvalues (15) be positive quantities is also satisfied provided 
 

2
331 / 2 ,p ζ≤ +                                                   (21.a) 

 
2
33/ 2 1,q p ζ≤ + −                                                 (21.b) 

 
where  is defined by 
 

(1) (2)
3 3 33 11 22.q ξ ξ ζ ζ ζ= − −                                        (21.c) 

 
The parameter q also describes the purity of the two-photon polarization state given by the 
density matrix (13), which is equal to zero for pure polarized states of the pair of photons [5]. 
 
4.1 Two-photon correlations  

 
Consider the correlated density matrix 
 

( )(1,2) (1) (2) (1) (2) (1) (2) (1) (2)
1 1 2 2 33 3 3ˆ ˆ ˆ ˆ ˆ ˆ ˆ(1/ 4) ,I Iρ ζ σ σ σ σ ζ σ σ = ⊗ + ⊗ − ⊗ + ⊗ 

         (22) 
 
where the positivity of the eigenvalues requires that 
 

331 1ζ− ≤ ≤                                                     (23.a) 
 
and 
 

33 331 2 1 .ζ ζ ζ− − ≤ ≤ +                                         (23.b) 
 
The von Neumann entropy (16) is 
 

( ) ( )

33

33 33

1
33 max 33

1 2 1 2
33 33

( , ) (1/ 2) ln(1 )

(1/ 4) ln 1 2 1 2

S S ζ

ζ ζ ζ ζ

ζ ζ ζ

ζ ζ ζ ζ

−

+ + + −

= − − −

 − + + + − 
   (24) 

 
The plot of the entropy (24) is shown in Fig.1 where it is evaluated for different values of 33.ζ   
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Fig. 1: Plot of the entropy (24) for   0,  , which gives 2| | 

and 0. Inequality (18) becomes 0 1 and 0 2 1 .The values for  are as follows: 0 (solid), 0.66 (dash-dot), 0.85 (dot), and 1.0 (single - photon entropy (7)) (dash). 
 
 
Note that the range of values for ζ is restricted by the reality condition for the von Neumann 
entropy by 330 2 1 .ζ ζ≤ ≤ + The decrease of the entropy for increasing values of 33ζ  is to be 
expected since decreasing the value of 33ζ  means that the state of the two photons becomes 
more chaotic. 
 
4.2 Exotic to non-exotic transition in single- and two-photon correlations 

 
The previous example and the one to follow below given by (26) are in agreement with 

our common understanding of entropy as a measure of the disorder of a system. In both these 
cases, the entropy is a monotonically decreasing function of the polarization. However, the 
system in this second example, gives rise to a very different behaviour of the entropy as a 
function of the polarization.  

 
Suppose that two of the eigenvalues in (15) are set equal to zero, viz. 2 4 0,λ λ= =  which 

is satisfied for, ( )( )(1) (2)
11 22 3 31 1ζ ζ ξ ξ= = − −  and (1) (2)

33 3 3 1.ζ ξ ξ= + −   The density matrix (13) 

becomes 
 

 
{

( )( ) ( ) }
(1,2) (1) (2) (1) (1) (2) (1) (2) (2)

3 3 3 3

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)
3 3 1 1 2 2 3 3 3 3

ˆ ˆ ˆ(1/ 4)

ˆ ˆ ˆ ˆ ˆ ˆ1 1 1

I I I Iρ ξ σ ξ σ

ξ ξ σ σ σ σ ξ ξ σ σ

= ⊗ + ⊗ + ⊗ +

 + − − ⊗ + ⊗ + + − ⊗ 

   
                (25) 
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Entropy (16) for the density matrix (25) is 
 

( )

(1) (2) (1) (2)
(1) (2) 3 3 3 3
3 3

(1) (2) (1) (2)
(1) (2)3 3 3 3

1 3 3

( , ) ln
2 2

1 ln 1 .
2 2

S

S

ξ ξ ξ ξξ ξ

ξ ξ ξ ξ ξ ξ

+ += − −

   + +− − − = +   
   

                         (26) 

 
Note that the dependence of entropy (26) on the Stokes parameters (1)

3ξ  and (2)
3ξ  is via their 

sum, while such is not the case for the density matrix (25).  
 
      The case (1) (2)

3 3ξ ξ ξ= = , shown in Fig.2 by the solid plot, gives for the entropy (26)  
 

( ) ln (1 ) ln(1 ),S ξ ξ ξ ξ ξ= − − − −                                      (27) 
 

which is actually the binary entropy function ( )h ξ  introduced by Wooters [2] in the definition 
of the entanglement of formation. Also, one obtains the reduced single-photon entropy (7), 
dash plot in Fig.2, for (1) (2)

3 3 1 .ξ ξ ξ+ = −   
 

Figure 2 shows the reduced single-photon entropy (7), dash graph, together with the two-
photon entropy (26) as a function of the Stokes parameter for photon 1, (1)

3ξ , for various fixed 

values of the Stokes parameter for photon 2, (2)
30 1.ξ≤ <  The points of intersection between 

the dash plot and the other plots represent the transition points whereby ( )(1) (2)
3 3S ξ ξ+  as a 

function of  (1)
3ξ , goes from the region where 1S S>  (exotic states) to the region where 1S S>  

(non-exotic states), that is, where the quantum conditional entropy [17] changes sign from 
negative to positive.  
 

 
Fig. 2: Plot of the two-photon entropy (26) as a function of  for different values of . The values are as 

follows: for  (solid), 0 (dash-dot), 0.1 (dot), 0.2 (long-dash), 0.4 (space-
dot), and 1  (dash). The dash plot corresponds to the single-photon entropy of (7) which 

intersects the other graphs at 1 2.⁄  
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4.3 Stokes parameters and normal single- andtwo-photon correlations 
 

In order to find the role of the polarization states of individual photons in the entropy of 
the two-photon system, we consider the case where the Stokes parameters (1) (2)

3 3ξ ξ ξ= ≡  are 
nonzero and the photon correlation parameters 11 22 ,ζ ζ ζ= − ≡  and 33 1.ζ =  The latter choice 
of parameters will allow the pure state to be realized when 0ζ =  for 0ξ =  in the entropy (28) 
given below. The corresponding density matrix and entropy are 
 

( )
( )

(1,2) (1) (2) (1) (2) (1) (2)
3 3

(1) (2) (1) (2) (1) (2)
1 1 2 2 3 3

ˆ ˆˆ ˆ ˆ(1 / 4)

ˆ ˆ ˆ ˆ ˆ ˆ ,

I I I Iρ ξ σ σ

ζ σ σ σ σ σ σ

= ⊗ + ⊗ − ⊗ +
+ ⊗ − ⊗ + ⊗ 

 
                                  (27) 

and  
 

( ) ( )2 2
max (1 / 4) ln 2 2 ,x xS S x x+ ++ −

+ +
 = − + −                            (28) 

 
where 
 

2 22 2,0 1.x ξ ζ ξ+ = + ≤ ≤ ≤                                      (29) 
 
As can be seen in Fig.3, the two-photon entropy mimics that of the single photon entropy, that 
is, the single photon entropy (7) decreases with increasing values of ξ  while the two-photon 
entropy (28) decreases for given value of ξ  with increasing values of ζ .  
 
 

 
Fig.3: Plot of the entropy (28) for ,  and 1, which gives  2 2 and 0. The values for  are as follows: 0 (dash) (single photon entropy (7)), 0.6 

(dot), 0.8 (dashdot), and 0.9 (solid). 
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5 Conclusions 
 
Thus, we have obtained exact results for the joint von Neumann entropy for the 

polarization states of a two-photon system governed by a five-parameter polarization density 
matrix and studied the sign of the quantum conditional entropy. We find that the quantum 
conditional entropy may assume positive or negative values. The latter indicates the presence 
of exotic states. We believe that these results may be of interest in the general area of quantum 
computation and quantum information theories.  
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