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ON THE CLASS OF FUNCTIONS HAVING
INFINITE LIMIT ON A GIVEN SET

BY

J. T ÓTH AND L. Z S I L INSZKY (NITRA)

Introduction. Given a topological space X and a real function f on X
define

Lf (X) = {x ∈ X : lim
t→x

f(t) = +∞}.

According to [1] for a linear set A there exists a function f : R → R such
that A = Lf (R) if and only if A is a countable Gδ-set. Our purpose is
to prove a similar result in a more general setting and to investigate the
cardinality and topological properties of the class of functions f : X → R
for which Lf (X) equals a given non-empty, countable Gδ-set.

We will need some auxiliary notions and notations. Denote by E and
Ec, respectively, the closure and the set of all condensation points of a
subset E of a topological space, and by card E its cardinality. Denote by F
the space RX .

A topological space X is called a Fréchet space if for every E ⊂ X and
every x ∈ E there exists a sequence in E converging to x (cf. [2]). Every
first-countable space is a Fréchet space ([2], p. 78), but there exists a Fréchet
space that is not first-countable ([2], p. 79).

A topological space X is said to be hereditarily Lindelöf if for each
E ⊂ X every open cover of E has a countable refinement. A well-known
property of these spaces is as follows ([4], p. 57):

Lemma 1. If X is a hereditarily Lindelöf space, then E \Ec is countable
for each E ⊂ X.

Main results. Using Lemma 1 it can be shown similarly to [1] that for
a Hausdorff, hereditarily Lindelöf space X having no isolated points, Lf (X)
is a countable Gδ-set for every f ∈ F . We will be interested in the reverse
problem, namely to find, for every non-empty, countable Gδ-set A ⊂ X, a
function f ∈ F for which Lf (X) = A.
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In what follows X will be a Fréchet, Hausdorff, hereditarily Lindelöf
space such that X = Xc. Let A be a given non-empty, countable Gδ-subset
of X. Define

S = {f ∈ F : Lf (X) = A}.
Theorem 1. The set S is non-empty.

P r o o f. Let A = {a1, a2, . . .} ⊂ X, A =
⋂∞

n=1 Gn where G1 = X, Gn is
open in X, Gn+1 ( Gn (n ∈ N). We can assume that Fn = Gn \ Gn+1 is
uncountable for each n ∈ N. Put H =

⋃∞
n=1(Fn ∩ F c

n).
According to Lemma 1 the set B = (

⋃∞
n=1 Fn) \ H is countable, since

B ⊂
⋃∞

n=1(Fn \F c
n). Write B = {b1, b2, . . .}. Observe that A∩

⋃∞
n=1 Fn = ∅,

so

X \H =
(
A ∪

∞⋃
n=1

Fn

)
\H = A ∪B.

Therefore B ⊂ H (since B ⊂ Xc), hence for each k ∈ N there exists a
sequence c

(k)
i ∈ H (i ∈ N) converging to bk. Set C =

⋃
i,k∈N{c

(k)
i }. Define a

function f ∈ F as follows:

f(ak) = k for all k ∈ N,

f(c(k)
i ) = k for all i, k ∈ N,

f(x) = n for all x ∈ Fn \ C, n ∈ N.

We will prove that Lf (X) = A.
First choose x ∈ X\A. Then either x ∈ B or x ∈ H. If x ∈ B then x = bk

for some k ∈ N, and consequently x 6∈ Lf (X) since limi→∞ f(c(k)
i ) = k. If

x ∈ H then x ∈ F c
m for some m ∈ N, so there exists a directed set Σ and a

net {xσ : σ ∈ Σ} in Fm \ C converging to x. Thus again x 6∈ Lf (X) since
limσ f(xσ) = m.

Finally, suppose x ∈ A. Take an arbitrary n ∈ N. Then x ∈ Gn. The
space X is Hausdorff, so there is a neighbourhood S1 of x which contains
no member of the sequence {c(k)

i }∞i=1 for all 1 ≤ k ≤ n (notice that c
(k)
i →

bk 6∈ A as i →∞). Further, there exists a neighbourhood S2 of x containing
none of a1, . . . , an except possibly x. It is now not hard to see that f(t) ≥ n
for each t ∈ Gn ∩ S1 ∩ S2, t 6= x, whence x ∈ Lf (X).

R e m a r k 1. If X is a Hausdorff, second-countable, Baire space with
no isolated points (in particular, if X is a separable, complete metric space
with no isolated points) then Theorem 1 holds. Indeed, in this case every
non-empty open subset of X is uncountable (see [3], Proposition 1.29) and
thus X=Xc; further, second-countable spaces are Fréchet and hereditarily
Lindelöf.

Theorem 2. We have cardS = card(F \ S) = 2card X .
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P r o o f. Let f ∈ S (see Theorem 1). Using the notation of Theorem 1
put αn = card(X \ Gn) (n ∈ N) and α = card(X \ A) = cardX (X is
uncountable). Then {αn}∞n=1 is a non-decreasing sequence of infinite ordi-
nals converging to α (in the order topology; see [4]). Fix n ∈ N. For every
M ⊂ X \ Gn define the function fM = max{1, f} · χX\M , where χX\M is
the characteristic function of X \M .

It is not hard to see that fM 6= fN and fM , fN ∈ S for any different
subsets M,N of the closed set X \ Gn. Thus cardS ≥ 2αn . Since α is a
limit ordinal we have cardS ≥ sup{2αn : n ∈ N} = 2α = 2card X . On the
other hand, making allowance for the uncountability of X we get cardS ≤
cardF = (card R)card X = 2card X .

To show that card(F \ S) = 2card X it suffices to notice that χB ∈ F \ S
for any B ⊂ X. Hence 2card X ≤ card(F \ S) ≤ cardF = 2card X .

To be able to investigate S from the topological point of view introduce
the sup-metric d on F :

d(f, g) = min{1, sup
x∈R

|f(x)− g(x)|}, where f, g ∈ F .

It is known that (F , d) is a complete metric space.

Theorem 3. The class S is simultaneously open and closed in F .

P r o o f. If f, g ∈ F and d(f, g) < 1 then Lf (X) = Lg(X). So if f ∈
S (resp. f ∈ F \S) then the open 1-ball around f is in S (resp. in F \S).

Theorem 4. Both S and F \ S are of second category in F .

P r o o f. According to Theorems 2 and 3, S and F \ S are non-empty
open sets, and consequently they are of second category in the complete
metric space (F , d).

R e m a r k 2. In the light of Theorems 2 and 4 it is worth noticing that
neither S nor F \ S is dense in F . Actually, if, say, S were dense in F then
in view of Theorem 3 it would be a residual set in F and hence F \S of first
category in F .

Theorem 5. We have S ⊂ Sc and F \ S ⊂ (F \ S)c.

P r o o f. Let f ∈ F and 0 < ε < 1. For 0 < η < ε define fη(x) =
f(x) + η (x ∈ X). Then d(f, fη) = η < ε for all η ∈ (0, ε); furthermore,
fη ∈ S if and only if f ∈ S (0 < η < ε).

R e m a r k 3. It is easy to see that the set

S ′ = {f ∈ F : lim
t→x

f(t) = −∞ if and only if x ∈ A}

also has the properties established in Theorems 1–5 for S.
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