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The Banach–Mazur game as well as the strong Choquet game are investigated on the
Wijsman hyperspace from the nonempty player’s (i.e. α’s) perspective. For the strong
Choquet game we show that if X is a locally separable metrizable space, then α has a
(stationary) winning strategy on X iff it has a (stationary) winning strategy on the Wijsman
hyperspace for each compatible metric on X . The analogous result for the Banach–Mazur
game does not hold, not even if X is separable, as we show that α may have a (stationary)
winning strategy on the Wijsman hyperspace for each compatible metric on X , and not
have one on X . We also show that there exists a separable 1st category metric space
such that α has a (stationary) winning strategy on its Wijsman hyperspace. This answers a
question of Cao and Junnila (2010) [6].

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

There has been a considerable effort in exploring various completeness properties of the Wijsman hyperspace topology
τw(d) , i.e. the weak topology on the nonempty closed subsets CL(X) of the metric space (X,d) generated by the distance
functionals viewed as functions of set argument [24]. The Wijsman topology is a fundamental tool in the construction of the
lattice of hyperspace topologies, for many studied hypertopologies arise as suprema and infima, respectively, of appropriate
Wijsman topologies (cf. [4,11]).

It was first shown by Effros [13], that a Polish space admits a metric for which the Wijsman topology is Polish; later, Beer
showed [3,4], that given a separable complete metric base space, the corresponding Wijsman hyperspace is Polish. Finally,
Costantini demonstrated in [9], that Polish base spaces always generate Polish Wijsman topologies (a short proof, using
the so-called strong Choquet game, was found by the second author in [26]). As a related result, note that the Wijsman
hyperspace is analytic iff X is analytic [2].

Beer asked, whether complete metrizability of X alone (without separability) is equivalent to some completeness prop-
erty of the Wijsman hyperspace. Costantini [10] showed that a natural candidate, Čech-completeness, is not the right
property; on the other side, complete metrizability of X guarantees Baireness [25], even strong α-favorability [26], of the
Wijsman hyperspace regardless of the underlying metric on X . It is also known, that less than complete metrizability of X
– e.g. having a dense completely metrizable subspace [27] or being an almost locally separable Baire space [28], or being
hereditarily Baire [7], respectively – guarantees Baireness of the Wijsman topology; however, τw(d) may be non-hereditarily
Baire, even if X is separable, hereditarily Baire and has a dense completely metrizable subspace [27], or X is completely
metrizable [8], respectively. All these results suggested that at least as strong a completeness property is needed on the base
space as one wants to impose on the hypertopology, so it was somewhat surprising to find a separable 1st category metric
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space with a Baire Wijsman hyperspace [28,29]. This result was recently strengthened in [6] by showing that the example
of [28] and an other 1st category metric space give rise to a Wijsman topology with various Amsterdam properties.

It is the purpose of this paper to continue this research by investigating α-favorability, and strong α-favorability, re-
spectively, of τw(d) which are completeness properties associated with the so-called Banach–Mazur game, and the strong
Choquet game, respectively (see Section 3 for definitions and basic results about these games). We partially answer Beer’s
question for locally separable spaces in Theorem 4.1, and we show that this characterization may break down in spaces that
are not locally separable (Theorem 4.2).

It has been shown in [28], that if X is an almost locally separable metrizable space, and τw(d) is not β-favorable for each
compatible metric d on X , then X is not β-favorable. In Theorem 5.5 we show that if we replace non β-favorability with
the stronger property of α-favorability, the corresponding statement is not true, not even for a separable X . We answer in
the positive Question 4.2 of [6] about almost countable base-compactness of τw(d) .

2. Preliminaries

Let X be a metrizable space and d a compatible metric on X . Denote by CL(X) the set of all nonempty closed subsets
of X , and by CB(X) (resp. OB(X)), the proper closed (resp. open) balls B(x, ε) = {y ∈ X: d(x, y) � ε} (resp. S(x, ε) = {y ∈
X: d(x, y) < ε}), where ε > 0, x ∈ X . For any S ⊆ X denote

S− = {
A ∈ CL(X): A ∩ S �= ∅}

and S+ = {
A ∈ CL(X): A ⊆ S

}
.

The Wijsman topology τw(d) on CL(X) is the weak topology generated by the distance functionals d(x, A) = infa∈A d(x,a)

(A ∈ CL(X), x ∈ X ), viewed as functions of the set argument.
The ball topology τb(d) on CL(X) has as a subbase sets of the form V − , where V is an open subset of X , plus sets of the

form (Bc)+ , where B is a finite union of members of CB(X) ∪ {∅} (here, Bc is the complement of B). It is not hard to see,
that a base Bd for the ball topology consists of the sets

〈V 0, . . . , Vn〉B = (
Bc)+ ∩

⋂
i�n

V −
i ,

where B is a finite union of members of CB(X) ∪ {∅}, and V 0, . . . , Vn ⊆ X are pairwise disjoint open sets missing B (n < ω).
We will also use the notation 〈V 〉B , where V = {V 0, . . . , Vn}. See [16] for a characterization of the coincidence of the ball
and the Wijsman topologies.

With a slight modification of [20, Lemma 2.3.1], it is not hard to show

Theorem 2.1. The following are equivalent:

(i) 〈U0, . . . , Um〉D ⊆ 〈V 0, . . . , Vn〉B ;
(ii) B ⊆ D and ∀i � n ∃ j � m with U j ⊆ V i .

3. Topological games

Let X be a topological space, and P a fixed π -base. The Banach–Mazur game BM(X) is played as follows: players β ,
and α alternate in choosing elements of P , with β choosing first, so that B0 ⊇ A0 ⊇ B1 ⊇ A1 ⊇ · · · ⊇ Bn ⊇ An ⊇ · · · . Then
B0, A0, . . . , Bn, An, . . . is a play in BM(X), and α wins this play if

⋂
n<ω An (= ⋂

n<ω Bn) �= ∅, otherwise, β wins. A strategy
in BM(X) is a function σ : P <ω → P such that σ(W0, . . . , Wn) ⊆ Wn for all n < ω, and (W0, . . . , Wn) ∈ P n+1. A tactic
in BM(X) is a function t : P → P such that t(W ) ⊆ W for all W ∈ P . A winning strategy (resp. winning tactic) for α is
a strategy (tactic) σ such that α wins every play of BM(X) compatible with σ , i.e. such that σ(B0, . . . , Bn) = An (resp.
σ(Bn) = An) for all n < ω. A winning strategy (resp. winning tactic) for β is defined analogously. The space X is called
(weakly) α-favorable [22], if α has a winning tactic (resp. winning strategy) in BM(X) (these properties are not equivalent
in general – see [12]). A space X is called β-favorable, if β has a winning strategy in BM(X) (this is equivalent to β having
a winning tactic in BM(X) – see [15]).

It is known that if X is metrizable, then X is (weakly) α-favorable iff X contains a dense completely metrizable sub-
space [23]; on the other side, a topological space X is not β-favorable iff X is a Baire space (i.e. each sequence of dense
open subsets of X intersects in a dense subset of X – see [19]).

A mapping f from a topological space X onto a topological space Y is said to be feebly continuous (feebly open) iff
int f −1(V ) �= ∅ (int f (U ) �= ∅) for any nonempty open V ⊂ Y (U ⊂ X ). A feeble homeomorphism is a feebly continuous feebly
open bijection [17].

Proposition 3.1. Let f : X → Y be a feeble homeomorphism. Then X is (weakly) α-favorable if and only if Y is (weakly) α-favorable.

Proof. Let σX be a winning strategy (tactic) for α in BM(X). Define a strategy (tactic) σY for α in BM(Y ) as follows: given
Y -open sets V 0, . . . , Vk (resp. Y -open V ), let



L. Pia̧tkiewicz, L. Zsilinszky / Topology and its Applications 157 (2010) 2555–2561 2557
σY (V 0, . . . , Vk) = intY
(

f
(
σX

(
intX f −1(V 0), . . . , intX f −1(Vk)

)))
(resp. σY (V ) = intY ( f (σX (intX f −1(V ))))). If V 0, . . . , Vk, . . . is a run of BM(Y ) compatible with σY , then intX f −1(V 0), . . . ,

intX f −1(Vk), . . . is a run of BM(X) compatible with σX , thus, we can find some x ∈ ⋂
k intX f −1(Vk). Then f (x) ∈ ⋂

k Vk ,
so σY is a winning strategy (tactic) for α in BM(Y ). The equivalence now follows since f −1 : Y → X is a feeble homeomor-
phism, too. �

Let B be a base for X , and denote

E = E (X) = E (X, B) = {
(x, U ) ∈ X × B: x ∈ U

}
.

The strong Choquet game Ch(X) is played similarly to the Banach–Mazur game, but in addition to the open B , β also
chooses a point x ∈ B . More precisely, players β and α alternate in choosing (xn, Bn) ∈ E and An ∈ B, respectively, with
β choosing first so that for each n < ω, xn ∈ An ⊆ Bn , and Bn+1 ⊆ An . The play (x0, B0), A0, . . . , (xn, Bn), An, . . . is won
by α, if

⋂
n<ω An (= ⋂

n<ω Bn) �= ∅; otherwise, β wins. A strategy in Ch(X) for α is a function σ : E <ω → B such that
xn ∈ σ((x0, B0), . . . , (xn, Bn)) ⊆ Bn for all ((x0, B0), . . . , (xn, Bn)) ∈ E <ω . A tactic in Ch(X) for α is a function t : E → B such
that x ∈ t(x, B) ⊆ B for all (x, B) ∈ E . Winning strategies and tactics in Ch(X) are defined similarly to the ones for the
Banach–Mazur game.

The space X is strongly α-favorable [22] (resp. strongly Choquet [19]), provided α has a winning tactic (resp. winning
strategy) in Ch(X). Choquet’s Theorem (see [5,19]) claims, that a metrizable space is strongly α-favorable, and equivalently,
strongly Choquet iff it is completely metrizable; however, α having a winning strategy or tactic in Ch(X) is not necessarily
equivalent in nonmetrizable spaces (the example in [12] is strongly Choquet and not α-favorable).

4. Strong α-favorability of the Wijsman topology

The celebrated Beer–Costantini Theorem claims that (CL(X), τw(d)) is Polish iff (X,d) is Polish [3,9]. Since in a metrizable
space, complete metrizability is equivalent to strong α-favorability, we can rephrase this theorem as follows:

Theorem B-C. Let X be a separable metrizable space. Then the following are equivalent:

(i) (CL(X), τw(d)) is strongly α-favorable for each compatible metric d on X,
(ii) X is completely metrizable.

It turns out that separability can be weakened to local separability:

Theorem 4.1. Let X be a locally separable metrizable space. Then the following are equivalent:

(i) (CL(X), τw(d)) is strongly α-favorable for each compatible metric d on X,
(ii) (CL(X), τw(d)) is strongly Choquet for each compatible metric d on X,

(iii) X is completely metrizable.

Proof. (iii) ⇒ (i) holds for any metrizable X (see [26, Theorem 2]), and (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii) Without loss of generality, assume that X is a locally separable, non-separable metrizable space. Then X =⊕

i∈I Xi where each Xi is separable [14, 4.4.F(c)], so there is a compatible, bounded by 1
2 , totally bounded metric di on Xi

for each i ∈ I . If (x0, U0) ∈ E (X) is β ’s first step in Ch(X), then x0 ∈ Xi0 for some i0 ∈ I . Define a compatible metric on X via

d(x, y) =
⎧⎨
⎩

di(x, y), if x, y ∈ Xi, i ∈ I,

1, if x ∈ Xi, y ∈ X j, with i �= j, i0 /∈ {i, j},
2, otherwise.

Let σw be a winning strategy for α in Ch(CL(X), τw(d)). For each S(x, ε) ∈ OB(Xi0), fix a finite set F (x, ε) ⊆ Xi0 \ S(x, ε) such
that

Xi0 \ S(x, ε) ⊆
⋃

z∈F (x,ε)

B

(
z,

ε

2

)
.

Fix y ∈ X \ Xi0 . Given k < ω, and Gk = ((x0, U0), . . . , (xk, Uk)) ∈ E (U0)
k+1, find ε(Gk) � 1

2 with S(xk, ε(Gk)) ⊆ Uk , and define

Gk =
[

S

(
xk,

ε(Gk)

2

)]−
∩

{
A ∈ CL(X): d(y, A) >

3

2

}
∩

⋂ {
A ∈ CL(X): d(z, A) >

ε(Gk)

2

}
.

z∈F (xk,ε(Gk))
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If σw(({x0},G0), . . . , ({xk},Gk)) = W − ∩ ⋂
j�m{A ∈ CL(X): d(y j, A) > ε j} for some y j ∈ X , ε j > 0, and X-open W , then

⋃
z∈F (xk,ε(Gk))

B

(
z,

ε(Gk)

2

)
⊆

⋃
j�m

B(y j, ε j),

and xk ∈ W ⊆ S(xk,
ε(Gk)

2 ). Then there exists δ > 0 such that S(xk, δ) ⊆ W , and we can put σ(Gk) = S(xk, δ). Now, if α plays
according to σ in Ch(X), then the play

({x0},G0
)
,σw

({x0},G0
)
, . . . ,

({xk},Gk
)
,σw

(({x0},G0
)
, . . . ,

({xk},Gk
))

, . . .

generated in Ch(CL(X), τw(d)) is compatible with σw , so there exists some A ∈ ⋂
k<ω Gk . It follows that for all k � 1,

A ⊆ Xi0 \ ⋃
z∈F (xk,ε(Gk))

B

(
z,

ε(Gk)

2

)
⊆ S

(
xk, ε(Gk)

) ⊆ Uk ⊆ σ(Gk−1);

thus,
⋂

k σ(Gk) �= ∅, so X is strongly Choquet, and by Choquet’s theorem, X is completely metrizable. �
It follows from example [6, Example 3.4] that in Theorem B-C we cannot completely remove separability, we give a direct

proof here:

Example 4.2. There is the 1st category metric space (X,d), such that (CL(X), τw(d)) is strongly α-favorable.

Proof. Let X be the eventually zero sequences from ωω
1 , where ω1 has the discrete topology. For every s ∈ ω<ω

1 denote by
|s| the cardinality of s, and put [s] = { f ∈ X: s ⊂ f }. This topology is metrizable by the Baire metric d( f , g) = 1/min{n + 1:
f (n) �= g(n)} for f , g ∈ X . Also, if f ∈ [s], then [s] = B( f , 1

|s|+1 ). The set Xn = { f ∈ X: ∃i � n f (i) > 0} is open and dense for
each n < ω, so X = ⋃

n<ω Xc
n is of 1st category. Notice, that

(
B

(
f ,

1

k

)c)+
=

{
A ∈ CL(X): d( f , A) >

1

k

}

for each k > 0; thus, τb(d) = τw(d) , so it suffices to prove that (CL(X), τb(d)) is strongly α-favorable: let V ∈ Bd and A ∈ V.
A winning tactic t for α can be defined by putting t(A,V) = V. To see this, let (A0,V0),V0, . . . , (Ak,Vk),Vk, . . . be a play of
the strong Choquet game in (CL(X), τb(d)) compatible with t . Denote

Vk = 〈[sk,0], . . . , [sk,nk ]
〉
Bk

where Bk = ⋃
j�mk

[bk, j], sk,i,bk, j ∈ ω<ω
1 .

Claim. If s,bn ∈ ω<ω
1 with bn � s for each n < ω, then [s] \ ⋃

n<ω[bn] �= ∅.

Indeed, if f ∈ X is defined as

f (m) =
⎧⎨
⎩

s(m), if m < |s|,
1 + sup{⋃n<ω ran bn}, if m = |s|,
0, if m > |s|,

then f ∈ [s] \ ⋃
n<ω[bn].

To complete the proof, denote B = ⋃
k<ω Bk and, using the Claim, pick fk,i ∈ [sk,i] \ B for each k < ω and i � nk . Since B

is open in X , the X-closure F of { fk,i: k < ω, i � nk} is disjoint from B . It follows, that F ∈ ⋂
k<ω Vk . �

5. (Weak) α-favorability of the Wijsman topology

Theorem 5.1. The following are equivalent:

(i) (CL(X), τw(d)) is (weakly) α-favorable,
(ii) (CL(X), τb(d)) is (weakly) α-favorable.

Proof. Proposition 3.1 applies, since the spaces are feebly homeomorphic, as can be seen using the proof of [28, Theo-
rem 1.1]. �

The following is a consequence of [27, Theorem 4.3] (recall that weak α-favorability and α-favorability coincide in metriz-
able spaces):
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Proposition 5.2. If (X,d) is (weakly) α-favorable, then (CL(X), τw(d)) is α-favorable.

A quasi-regular space X (i.e. for each nonempty open U ⊆ X there is a nonempty open V ⊆ X with V̄ ⊆ U ) is almost
countably subcompact [18], if there is a π -base P such that

⋂
n Bn �= ∅ whenever (Bn) is a sequence of elements of P with

Bn+1 ⊆ Bn for all n < ω. So if B ∈ P and t(B) ∈ P is such that t(B) ⊆ B , then t : P → P is a winning tactic for α in BM(X),
and hence X is α-favorable. Conversely, if X is metrizable and (weakly) α-favorable, then it contains a dense completely
metrizable subspace [23]; thus, by [1, 4.1.3, Theorem 2], X is almost countably subcompact. It follows, that in metrizable
spaces almost countable subcompactness (resp. other almost countable Amsterdam properties defined in [1]) is equivalent
to (weak) α-favorability.

It has been shown in [6, Theorem 2.3], that the separable 1st category metric space X defined in [28, Example 2.5]
(see [29] as well) has an almost countably subcompact Wijsman hyperspace. Since this hyperspace is metrizable (because
X is separable – cf. [4]), we can get an alternative proof of [6, Theorem 2.3] by showing that (CL(X), τw(d)) is weakly α-
favorable. The proof is simpler, moreover, it also implies that (CL(X), τw(d)) is almost countably base-compact (this being one
of the almost Amsterdam properties equivalent to (weak) α-favorability in metrizable spaces), which answers in the positive
Question 4.2 of [6]:

Example 5.3. There exists a separable 1st category metrizable space X with compatible metrics d and ρ such that
(CL(X), τw(d)) is α-favorable, and (CL(X), τw(ρ)) is β-favorable.

Proof. Consider ωω with the Baire metric e(x, y) = 1/min{n + 1: x(n) �= y(n)}, and its 1st category subset ω<ω of se-
quences eventually equal to zero. The product X = ω<ω × ωω is a separable, 1st category space endowed with the metric
d((x0, x1), (y0, y1)) = max{e(x0, y0), e(x1, y1)}. Let p1, p2 be the projection of X onto ω<ω and ωω , respectively.

Using Theorem 5.1, we just need to show that (CL(X), τb(d)) is weakly α-favorable, since in a metrizable space it is
equivalent to α-favorability. Inductively define a strategy σ for α in BM(CL(X), Bd): let n < ω, and assume that

σ(V0, . . . ,Vi) = (
Bc

i

)+ ∩
⋂

u∈Fi

S

(
u,

1

mi

)−

has been defined for (V0, . . . ,Vi) ∈ Bi+1
d , where i � n, Fi ⊂ X is finite, mi � i + 1, Bi is a finite union of members of CB(X),

and {S(u, 1
mi

): u ∈ Fi} is pairwise disjoint and missing Bi so that if i < n and u ∈ Fi , then there is a u� ∈ Fi+1 such that

p1(u) = p1(u�) and d(u, u�) < 1
i+1 .

The inductive step is analogous to the one made in [29], we sketch the idea for readability: let Vn+1 = 〈V 〉Bn+1 ∈ Bd
be such that Vn+1 ⊆ σ(V0, . . . ,Vn), where V is a finite pairwise disjoint collection of X-open balls missing Bn+1, which,
without loss of generality, is the union of the finite pairwise disjoint collection {S(b j,

1
n j

): j ∈ J } of clopen X-balls. Let

A ∈ Vn+1 be finite, and u ∈ Fn . If u /∈ Bn+1, choose u� = u. If, on the other side, u ∈ S(b j0 ,
1

n j0
) for some j0 ∈ J , then

n j0 > mn . Choose k ∈ ω \ {p2(b j)(mn): j ∈ J }, define u2 ∈ ωω via

u2(s) =
{

p2(u)(s), if s �= mn,

k, if s = mn,

and put u� = (p1(u), u2). To complete the induction, let Fn+1 = A ∪ {u�: u ∈ Fn}, and find mn+1 � n + 2 so that

σ(V0, . . . ,Vn+1) = (
Bc

n+1

)+ ∩
⋂

u∈Fn+1

S

(
u,

1

mn+1

)−
⊆ Vn+1.

To show that σ is a winning strategy for α, let V0,U0, . . . ,Vn,Un, . . . be a play of the Banach–Mazur game on CL(X)

compatible with σ , i.e. Un = σ(V0, . . . ,Vn) for each n. Whenever u ∈ Fi for some i � 1, the sequence u, u�, u��, . . . is
a Cauchy sequence in {p1(u)} × ωω; hence, it converges to some u∞ ∈ S(u, 1

mi
). Because the Bi ’s are disjoint from the

S(u, 1
mi

)’s, the set {u∞: u ∈ ⋃
i�1 Fi} misses the clopen Bn for each n � 1, and ∅ �= {u∞: u ∈ ⋃

i�1 Fi} ∈ ⋂
n�1 Un; thus, α

wins.
If (CL(X), τw(ρ)) were a Baire space for every compatible metric ρ on (the separable) X , then X would be a Baire space

by [28, Theorem 2.3], so there must be a compatible metric ρ such that (CL(X), τw(ρ)) is not a Baire space, and therefore
(CL(X), τw(ρ)) is β-favorable. �

It follows from the above example that Proposition 5.2 cannot be reversed. There is however an other way of looking at
α-favorability of the Wijsman hyperspace. Since (weak) α-favorability is a topological property, we can rephrase Proposi-
tion 5.2 as follows:

Proposition 5.4. If X is (weakly) α-favorable, then (CL(X), τw(d)) is α-favorable for each compatible metric d on X.
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It would be reasonable to think that the converse of the previous proposition is true for at least a separable X , since
the analogous result for the strong Choquet game holds (Theorem 4.1), and non-β-favorability of (CL(X), τw(d)) for every
compatible metric d on X is necessary for non-β-favorability of X [28, Theorem 2.3]. Our last result shows however, that
this is not true:

Theorem 5.5. There exists a separable non-α-favorable metrizable space X such that (CL(X), τw(d)) is α-favorable for each compatible
metric d on X.

Proof. Let X ⊂ R be a Bernstein set, i.e. both X and R\ X intersect each dense-in-itself Gδ-subset of R. It is well known, that
X is not α-favorable [17], since otherwise X would contain a dense completely metrizable subspace, and hence, a dense-in-
itself Gδ (for an alternative proof see [21]).

In what follows, Ā will stand for the closure of A ⊆ R in R. Let d be a compatible metric on X . In view of Theorem 5.1, it
suffices to define a winning tactic t for α in BM(CL(X), τb(d)): first, let B′ be the collection of bounded open intervals in R,
and B = {V ′ ∩ X: V ′ ∈ B′}. Then for any V = V ′ ∩ X ∈ B, V ′ = int(V̄ ) and for U , V ∈ B, U ⊆ V iff U ′ ⊆ V ′ . The collection

Pd =
{
〈V〉B ∈ Bd: δ = distd

(⋃
V, B

)
> 0

}

is a π -base of (CL(X), τb(d)). Let 〈V 〉B ∈ Pd , where V = {V 0, . . . , Vn}, B = ⋃
j�p B(z j, ε j), and denote D = ⋃

j�p B(z j, ε j + δ
2 ).

Note that

a /∈ D implies d(a, B) � δ

2
. (1)

For each i � n define disjoint U ′
i,0, U ′

i,1 ∈ B′ such that for r = 0,1,

U ′
i,r ⊆ V ′

i and length
(
U ′

i,r

)
� 1

2
length

(
V ′

i

)
. (2)

Put t(〈V 〉B) = 〈U0,0, U0,1, . . . , Un,0, Un,1〉D .
Let V0, t(V0), . . . ,Vk, t(Vk), . . . be a run of BM(CL(X), τb(d)) compatible with t . Let V0 = 〈V0〉B0 ∈ Pd , where V0 =

{V 0
0 , . . . , V 0

n0
} for some n0 < ω. Then t(V0) = 〈U0〉D0 where U0 = {U 0

0,(0), U 0
0,(1), . . . , U 0

n0,(0), U 0
n0,(1)}, and by Theorem 2.1,

we can label V1 = 〈V1〉B1 ∈ Pd so that

V1 = {
V 0

0,(0), V 0
0,(1), . . . , V 0

n0,(0), V 0
n0,(1), V 1

0 , . . . , V 1
n1

}
,

where n1 < ω, V 0
i,s ⊆ U 0

i,s for all i � n0, s ∈ {0,1}, and B1 ⊇ D0. Then t(V1) = 〈U1〉D1 , where

U1 = {
U 0

0,(00), U 0
0,(01), U 0

0,(10), U 0
0,(11), . . . , U 0

n0,(10), U 0
n0,(11), U 1

0,(0), U 1
0,(1), . . . , U 1

n1,(0), U 1
n1,(1)

}
,

and we can label V2 = 〈V2〉B2 ∈ Pd so that

V2 = {
V 0

0,(00), V 0
0,(01), . . . , V 0

n0,(10), V 0
n0,(11), V 1

0,(0), V 1
0,(1), . . . , V 1

n1,(0), V 1
n1,(1), V 2

0 , . . . , V 2
n2

}
,

where n2 < ω, V j
i,s ⊆ U j

i,s for all j < 2, i � n j , s ∈ {0,1}2− j , and B2 ⊇ D1. Continuing this labeling, for each k � 1 we can
write Vk = 〈Vk〉Bk ∈ Pd , so that

Vk =
⋃
j�k

⋃
i�n j

{
V j

i,s: s ∈ {0,1}k− j} (
when j = k, write V k

i instead of V k
i,∅

)
,

and if 〈Uk−1〉Dk−1 = t(Vk−1), where

Uk−1 =
⋃
j<k

⋃
i�n j

{
U j

i,s: s ∈ {0,1}k− j},

then V j
i,s ⊆ U j

i,s for all j < k, i � n j , s ∈ {0,1}k− j , and Bk ⊇ Dk−1. It follows by (2) that, for a given k < ω, i � nk , and

s ∈ {0,1}ω ,
⋂

m<ω (V k
i,s�m

)′ is a singleton, and

Ak =
⋂

m<ω

⋃{(
V k

i,s

)′
: i � nk, s ∈ {0,1}m

}

is a closed dense-in-itself subset of R for each k < ω. Then A = ⋃
k<ω Ak is also dense-in-itself, and so is Ā. Moreover, if an

R-open W hits Ā, or Ak , respectively, then Ā ∩ W , Ak ∩ W , respectively, is a dense-in-itself Gδ subset of R; thus, by the
definition of the Bernstein set,
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Ā ∩ W ∩ X �= ∅, and (3)

Ak ∩ W ∩ X �= ∅, respectively. (4)

In particular, (3) implies that F = Ā ∩ X �= ∅, i.e. F ∈ CL(X). Furthermore, if F ∩ W �= ∅, then A ∩ W �= ∅, so Ak ∩ W �= ∅ for
some k, and by (4), Ak ∩ W ∩ X �= ∅; thus, A ∩ X is dense in F .

Fix k < ω, and V ∈ Vk . Then V = V j
i,s for some j � k, i � n j , and s ∈ {0,1}k− j , so if q ∈ {0,1}ω is such that q�k− j+1= s,

then for all m � k − j + 1,

(
V j

i,q�m

)′ ⊆ (
U j

i,q�m

)′ ⊆ (
V j

i,s

)′ = V ′,

so ∅ �= A j ∩ V ′ ⊆ Ā ∩ V ′ , and by (3), F ∩ V = Ā ∩ V ′ ∩ X �= ∅; thus, F ∈ V − .
We will now show that F ∩ Bk = ∅: let x ∈ F . Since A ∩ X is dense in F , we can find a sequence am ∈ A ∩ X that d-

converges to x. For each m < ω denote lm = min{l � k +1: am ∈ ⋃
Vl}. Then am ∈ ⋃

Vlm , so am /∈ Blm ⊇ Dk , and consequently,
by (1), d(am, Bk) � δk

2 for each m, where δk = distd(
⋃

Vk, Bk). Then d(x, Bk) � δk
2 > 0, so x /∈ Bk . It follows that F ∈ ⋂

k Vk . �
Remark 5.6. The previous example suggests the following open problem:

Does there exist a metrizable non-Baire space X such that (CL(X), τw(d)) is a Baire space for each compatible metric d on X?

Note that due to [28, Theorem 2.3], if such a space exists, the set of points of local separability is not dense in X .
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