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I.  INTRODUCTION 

Over the years, much work has been done in developing sets of 

equations describing the physical properties of gaseous mixtures. 

One person to do such work was Walker , who developed a set of equations 

for a gaseous mixture of Maxwell molecules.  His theory is valid for 

gases having arbitrary velocity and temperature differences but small 

stresses and heat fluxes.   Since the proposal of his equations, there 

has been no attempt made to solve these equations numerically.  One 

purpose, then, of this paper is to offer numerical solutions to a 

dimensionless form of Walker's equations for the case of a binary 

gas mixture.  Another purpose is to verify a qualitative prediction 

2 
by Morse  as to what a solution of this type might reveal.  His 

prediction is that when a gaseous mixture of a light and heavy gas is 

initially far from equilibrium, it will relax in three stages.  In 

the first stage, the lighter gas molecules will relax with one another. 

In the second stage, the heavier molecules will equilibrate, and in the 

third stage, through cross-collisions, the lighter molecules and the 

heavier molecules will reach equilibrium with one another.  This is be- 

cause the relaxation time is directly proportional to the square root 

of the mass of the molecules in the gas. 

In Sec. II, the method of obtaining Walker's equations in 

dimensionless form and analytic solutions to the first four of those 

equations is presented.  A discussion of the numerical solution to the 

remaining four equations is given in Sec. Ill, and a program listing 



is given in the Appendix.  The solution method used is a numerical 

integration process for solving a system of first-order ordinary 

differential equations known as Hamming's modified predictor-corrector 

method.   The solutions are plotted for the cases of colliding gases 

and gases moving in the same direction.  In Sec. IV, a discussion of 

the results is given. 



II.  THE DEVELOPMENT OF DIMENSIONLESS EQUATIONS 
DESCRIBING A RELAXING BINARY GAS IN ONE DIMENSION 

A volume element of a binary gas in equilibrium may be described 

microscopically in terms of a Maxwellian distribution function for 

each type of molecule.  The physical properties of the mixture, which 

are constant in space and time, can be determined from these Maxwellian 

distributions.  If the gas is not in equilibrium, it may be described 

by non-Maxwellian distribution functions.  The physical properties 

of the gas in this case are determined by these distribution functions 

and are not constant in time and space.  If left alone, a non-equili- 

brium gas will relax to an equilibrium Maxwellian gas. 

Let us consider a non-equiilbrium gas composed of one type of molecule, 

The physical properties of this gas are its density n, pressure p, and 

temperature T.  These properties are functions of position r and time t. 

Aside from these, further properties are needed to describe the motion, 

internal stresses, and flow of heat of the gas.  Thr first property 

is the flow or drift velocity denoted by <v> or u.  It is the velocity 

at time t of a small volume element of the gas, d?, located at position 

r.  The second is the pressure or stress tensor whose elements are 

denoted by P. ..  It is a three by three matrix which basically des- 

cribes the rate at which momentum is transported across an arbitrary 

plane in the gas.  The third is the heat flux vector denoted by q. 

It is the amount of heat crossing a plane perpendicular to q per unit 



time per unit area.  These physical properties of the gas can be 

expressed in terms of a distribution function f(?,$,t) such that 

f(r,v,t)dr dv is the number of molecules located between r and 

r + dr that have velocities between v and v + dv".  In terms of the. 

"moments" of this distribution function, one may define the physi- 

cal properties of the gas.   The density is defined as 

where the integration is performed over all velocity space.* The 

flow velocity is 

uXr,t> n Jv ktftt)d ̂ =<v>  . 
The temperature T is defined by the following: 

-LC-L f kTlr^'njim 5"-fftv,t)^ = <i msx> D 

where s(r,t) = v - u(r,t), is sometimes called the "perculiar" or 

"thermal" velocity.  It is a measure of the deviation of the molecu- 

lar velocity from the average molecular velocity, and k is the 

Boltzmann constant.  The pressure tensor is described in component 

form.  Let 

Therefore, we can write 

I ptt- nmaft$fc*tM*-WfCM.*)*- n<ms)-3nkT= 3p 
where p = nkT is the scalar or ordinary pressure of the gas.  The 

*A11 integration unless otherwise stated is over the entire 
range of the variable of integration. 



pressure tensor elements, P.., are then defined as 

where o.- is the Kronecker delta whose definition is 

""t-i  "^O^oHve-ruiis^. 

The heat flux vector, q(r,t) is defined as 

The non-equilibrium properties of the gas can be completely 

determined, using the above definitions, from a knowledge of the 

distribution function f(r,v,t).  The basic equation used to determine 

the distribution function is called the Boltzmann Transport Equation. 

Since this equation is a very complex integro-differential equation, 

no exact analytic solution is known to exist.  Various approximation 

schemes for a solution have, however, been proposed.  The mommr 

equations used in this paper were obtained by Walker using Grad' s 

13-Moment Approximation.  The adaptations imposed on those equati.<<>"< 

for use here are that no internal energies or heat fluxes are con- 

sidered, and that the moments are uniform in position and vary only 

in time.  With these restrictions, the moment equations to be con- 

sidered for type "a" molecules are: 

momentum, 

ffkrv^CuOL" Z lA(rr> a,)]ab   . 
translational   energy, 

Kkil^^^     ; 

(1) 

(2) 



viscous stress, 

translational heat flux, 

where the summations are over all the type molecules in the mixture 

and the subscripts i and j go from one to three.  The right hand 

sides of these equations represent the collision integrals of the 

Boltzmann operator.  Expressions for these collision integrals are 

given by Walker and Tanenbaum for the special case of Maxwell 

molecules which interact by means of an inverse fifth power central 

4 
force.  These expressions are: 

momentum, 

ktatuJL = r^t^lV^  ; 'ate 
translational energy, 

(5) 

k(imrfL = a^%xy[iktVX)*M(Vul] >« 
viscous stress, 

L^(sLsri^s^=2^Mo-tev4(i-A"^ 

rr\ 
translational heat flux, 

(7) 

U+nwisJL" 2wvvwU**0 >fcnb-u-6-mvt«b) 



-*- p ■• 
^U^JfivOft.      A^Tf  mt^   '  ^-"vTV + A< hr-fcr+^fa^) 

i(^J+UUa
+ 55(>b)(Tb-Tj +(■ SkCr*aJ-M^i 

&Jj'-<, fn, 8) ) 

where a and b denote a particular pair of molecules, Uf  = m ni /(m + m, ), 

x = ma/(ma + 0^), y = «^/(«a + 
m

t))> 
A = ua " ub' /B=  0.22b, 

"tf      ■ 0.968, and J^u is the cross collision frequency given by 

Mtb    ■ 21r*A. (5)CB^b/>/ )  n , with AL(5) being the dimensionless 

collision cross section, and 21  being the interparticle force constant. 

Substituting these collision terms, equations(5) - (8), into the 

right hand side of eouations (1) - (4) and considering only a one 

dimensional binary gas of type 1 and 2 molecules, the equations 

describing the gas become: 

momentum, 

flL*. *-D. ii 
hr\,+ro. Cu.-O 

(9) 

(in) 

translational energy, 

3_ 
3L 

J2- 

kfe - Ajt^S^ftK fr/0 tt ^-ujlj (ll) 

viscous stress, 

j&-jt>tt tJi^Wfc-1^)^ - nfltft 



& - JJ.(6-1) P41 2^, WK»" **) 11 P, Tf 

(13) 

(14) 

translational heat flux, 

+ ^ (Ul- u.) ?s ?, u-^iv- a^(^) - 4 (*en 

+ 5-ffl ̂ .(u.-u^MufUJ^^^tVT^I^v^jTj)^) 

at 

♦4 

To obtain these equations in dimensionless form a simple change of 

variable is necessary.  If t = 0, then  Uj = U.QJ U2 = u2Q, T^ = T1Q. 

T2 = T20' Pl = P10' P2 = P20' ql = q10' q2 = q2CT  So' let ul' = ul/u10 ' 

V " U2/U20' Tl' = Tl/T10> V "  T2/T20' Pl' ■ Pl/P10' P2' = P2/P20' 

qi' " qi/qio- q
2' 

= q2/q20« and zn = cMn   ■   We now take the derivative 



with respect to a collision number instead of time.  Using Walker and 

Tanenbaum's expression for the cross-collision frequency, the respective 

cross-collision frequency ratios are determined for these equations 

assuming that the interparticle force constant ratios are all 

equal to unity.  These frequency ratios are: 

= L A. m. J K 

ZK - 
rn, ^<^T-1 ■ 

and 

- t ftl 
Substituting these variable changes and cross-collision frequency 

ratios into equations (9) - (16), rearranging terms, and letting 

,/ m = m,/m„, n = n,/n„, u = uiri/u 
1 2 

K, = k m, u 
1"10 

r 2' 
K„ = ^m„u 

J 10' 20' 
P = P,./P.., T = Tin/T 10  20 10'*20' " <1in/cl 10'M20' 

2"20 
E, = 3/2kT,ft, E, = 3/2kT 1 

R2 
= n„m„u /P. 2"'2U20 /420' XR1 

= \ 

10 

) /q10 

20'  Rl ) /P10 
= n.m.u 

u,_m,n,u and QD„ = %u,.m,n,u,. /q 
■*R2 20 2 2 20 'M20' 

the following equations are obtained: 

momentum, 

du/     Xx., 
rm-\ Y"N wr[70 .¥-*) (17) 

da: _ _r 
dz 2\rr\+\ 

m 
rr>*i 0 LU'- aa •) 

translational   energy, 

(18) 

dX aJL\j .t^+ii 
i I 
S^vfUw 

x .l*-^**M (19) 



10 

JLU/     ^I^LIXL, ft-MkUTOSl L-fc^^HH^TU 
viscous stress, 

a 
3 PftaC I 

R3An2 -au. 
translational heat flux, 

:f] s (22) 

"QM.CU 
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These resulting equations form a set of dimensionless coupled 

differential equations, the analytical solution of which is quite 

involved.  Upon examination, however, it would be relatively simple 

to solve equations (17) - (20) analytically.  These equations may 

first be simplified by defining some new constants as A = m + 1, 

B = [^(m + 1)] 5, L = E1/K1, and W = Z^K.^     Substituting these 

definitions into equations (17) - (20) and rearranging yields: 

ft-*)   J 
da: 
dz, "    An V u. 

art;   TTpri1^-TT«/+ Aaw ^,-uu.j . 
The following method may be used to solve equations (25) and 

Dividing equation (26) by u, subtracting 

id rearranging yiel 

(28) for ^2_ •ti 

u 
equation (25) from the result, and rearranging yields 

the solution of which is 

- LL, 

At z  =0, then u ' = u ' = 1, and the constant of integration is 

u .  Therefore, the complete solution is 

For simplicity, let Al = A (m+ n} and C = — " U1V This 

(25) 

(26) 

(27) 

(28) 

(29) 
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substitution into equation (29) gives the solution as 

C-C^U" -M, 
(30) 

The   same method may  be used   to  solve equations   (27)   and   (28) 

T,. for     2'   -  T   '.     Dividing  equation   (28)   by T,   subtracting equation   (27) 
T 

from the  result,   and rearranging yields 

(31) 
2  2 

For  simplicity,   let F  = V   - T   ' , A     =^(1 + k,   B     = f!^ " "£>. 
T 10 

and B„ = B (—-—) .  Substituting these into equation (31) gives 

This is a differential equation of the form: 

which has a solution of the form 

7 =e 
Therefore, the solution for F is 

•M.T  &>      CAa-i-A^Zu 
tO, 

-A**M 

A, (32) 

where C„ is the constant of integration.  If z^ - 0, then P - - - 1, 

and the constant of integration is C„ = —=^ Aj.-AA, 
a _- 
x -1--  ~ C. .  Substituting 

For simplicity, let C,   - ^ -ilfc. and C. -  -p 
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this into equation (32) gives 

F-G, 
Now,   it   is   desirable,  to  solve  for T. '   and T„'   since   these 

(33) 

1 ~~  2 

quantities appear alone in equations (23) and (24).  Substituting 

equations(30) and (33) into equation (27) and rearranging gives 

sffi -3£-\   r "***"      r\  ~A*2"     4-(*sM£."*A,*,,l d2u" ™ LMvt      -t^t        tL\u./e.       J. 
The solution for T ' may be found simply by integrating to yield, 

after rearranging, 

-t-.      z&i f-J- V    ^     _L/\-u\2]  -aM„ £& -\*»} ./n 

where C, is the constant of integration.  If z . = 0, then T^' = 1, 

thus   giving 

Cr- l^taU^-tC^T]* 
yv\Ca 

For  simplicity,   let 

C.^^^UC^-K-^T1)]   a^a   (L»   n<?!j'  , 
so that C  = 1 + C3 + C4.  The result is that 

-aM„ ^,= _c —...._ c 
- ^a.2i> tC. . 

T   ' 
From  the  definition of F = _2_ ■ V'  we  can solve   for T2'   slnce 

T 
we  now know T   ',   obtaining 

T'-TCF+T,') . 
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In summary, then, the equations to be solved numerically are 

equations (17) - (22) where, 

T; 
-aA»a...     /-,     -Aaz. 

«4»' -u.' • C-») a**" 
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III.      PROGRAMMING  CONSIDERATIONS 

The   dimensionless  differential   equations were  solved numerically 

using  the   IBM 360/75   located at Triangle Universities Computation 

Center.     The program for   the  solution  consists  of   four main parts: 

a. A driving program. 

b. A subroutine HPCG, available in the IBM Scientific 

Subroutine Package, for solving a set of first order 

ordinary differential equations. 

c. A subroutine FCT required by HPCG which defines the differen- 

tial equations to be solved. 

d. A subroutine OUTP required by HPCG which regulates the 

output of the program. 

A listing of the program is given in the appendix.  In order to define 

the differential equations for the program in the subroutine FCT 

and to print out the required information in the subroutine OUTP, it 

was necessary to rename the variables and constants used previously. 

This renaming was quite extensive.  To aid with the transition from 

the theoretical equations to the programmed equations, the renaming 

procedure is summarized in Table I.  As an aid to the reader, a listing 

of the expressions used in the program to simplify calculations is 

given in Table II. 

The solution technique utilized by the subroutine HPCG is an 

integration method known as Hamming's modified predictor-corrector 
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method.  It obtains an approximate solution of a general system of 

first-order ordinary differential equations with given initial values. 

(For a detailed description of the procedure, one should refer to 

reference 3.)  The initial values for the dependent and independent vari- 

ables, the beginning and end points of the integration range, the 

initial integration increment, and various error parameters are ob- 

tained and saved by the main program.  The required data for the 

subroutines FCT and OUTP are the values for n, m, P, q, and T and are 

read in at appropriate places in the subroutines. 

Two versions of the OUTP subroutine serving two different 

purposes by the user are given in the program listing.  The general 

purpose of both versions are naturally to generate a printing of the 

information required from the program.  Version I simply generates 

a solution to the dimensionless equations for two colliding gases. 

Version II creates an entirely different form of output.  In essence, 

it prints relaxation collision numbers for each of the computed 

dimensionless variables of "temperature difference", TEM = (1' '/T - T ') , 

"stresses", P.' and P '  and "heat fluxes", q ' and q ' for two 
'1 

** 
gases going in the same direction.    Version II accomplishes that 

end in the following manner.  By using a series of If-statements, the 

subroutine checks each value of P,', P~', q,',   and q ' to see if it 

has reached 1/e of its initial value.  If that value has been reached, 

the value of the corresponding z.. value is printed.  When this con- 

dition for all four of the variables is satisfied, the subroutine 

**The quotations emphasize that the obtained information is 
actually indimensionless form. 
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continues to increment z.. and calculate the temperature difference 

of T_'/T - T.' until that quantity has reached 1/e of its initial 

value.  When that value has been reached, the corresponding z . is 

printed.  At this point, the ratios of the respective z..'s to the 

z11 for the temperature difference is calculated and printed.  Also 

printed for each value of z..   are the values of the velocity and 

temperature differeneces, VEL and TEM respectively, P ', P '  q ' , 

q ', and cross-collision frequencies z  , Z
JI>   

an(* z?2-  Now> t*le 

values for the dependent and independent variables are re-initialized, 

a new set of data is read by the subroutines, and the procedure is 

restarted. 
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TABLE  I 

Renaming of   the  Variables  and  Constants   for Use   in the  Program 

Theoretical  Equations 

'11 

V 
V 
V 
V 

u„'/u   -  u   ' 

v -uv 
T2'/T  -  T   ' 

T2'    - TT^ 

dPl'/dZll 

dP
2'
/dzll 

cV/dzu 

dq2'/d«n 

T 

P 

Program 

X 

Y3 

Y4 

Y(l) 

Y(2) 

Y(3) 

Y(4) 

C 

D 

F 

G 

DERY(l) 

DERY(2) 

DERY(3) 

DERY(4) 

M 

N 

U 

T 

P 
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Theoretical   Equations 

VKi 

VK2 
nimiuio2/pio 

n2m2U202/P20 

^u10nlmlu10  /c>10 

i2u20n2m2u20
2/q20 

ra +  1 

Cl   -   C8 

Program 

Q 

L 

W 

PR1 

PR2 

QR1 

QR2 

A 

B 

ART 

Al 

A2 

Bl 

B2 

Cl   -  C8 



TABLE   II 
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Expression 

PRl/u  PR2 

2. 

Expressions Used in   the Program to  Simplify Calculations 

Expression Name 

H 

I QRl/u"PR2 

J QR1/PR1 

Z QR2/PR1 

ZZ QR2/PR2 

E B/N 



IV.  SUMMARY AND CONCLUSIONS 

21 

The aforementioned equations were solved numerically by the 

computer program listed in the Appendix.  The values of the program 

24 24 
parameters PR1 = 3.0 x 10  and QRl = 1.0 x 10  were chosen for the 

colliding gas case and the values PR1 = 30 and QRl = 10 were used 

for the case of the two gases traveling in the same direction.  These 

values were chosen to satisfy an assumption used in deriving the 

13-Moment equations, viz., that the stresses and heat fluxes represent 

small departures from equilibrium. 

The solutions are plotted as shown in Figs. 1-5.  In the case 

of the colliding gases, the heat fluxes and stresses are initially 

zero but grow with the increase in the collision number, z  .  This 

occurence is a consequence of the mathematics in that the heat flux 

and stress equations have terms containing velocity and temperature 

differences which are not always zero.  For reference sake, we call 

the portion of the gaseous mixture containing type 1 molecules, gas 1, 

and that containing type 2 molecules, gas 2.  In the case of equal 

densities and masses and initially equal temperatures (Fig. 1), the 

dimensionless variables behave the same for both gases.  The tempera- 

ture difference remains zero and the velocity difference is a decaying 

exponential.  As the velocity difference decreases, the temperature 

of both gases increases indicating a transfer of energy from localized 

translational energy to random thermal energy.  As the mass of the 

molecules in gas 2 is increased, holding the density of both gases 
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the same, there is a marked seperation of the dimensionless variable 

curves (Fig. 2).  The heat flux and stress curves increase to a maxi- 

mum and then begin to decrease to zero.  This decrease for both curves 

for the lighter gas begins at a smaller collision number.  Also, the 

lighter gas approaches a constant temperature long before the heavier 

gas.  As in Fig. 1, while the velocity difference decreases, the 

temperature of both gases increases, the lighter gas increasing much 

faster than the heavier gas.  In Fig. 3, where the mass of the molecules 

in gas 2 is further increased, the same type of results are obtained. 

2 
These occurences are qualitatively predicted by Morse.   He says that 

in a gaseous mixture, the lighter species will equilibrate before the 

heavier species. 

The case for various mass ratios having a density ratio of 0. 1 

was also computed for these colliding gases.  The graphs are not 

included here, but they are the same as for equal density ratios. 

The only difference is that the curves peak much more sharply than 

in the equal density case. 

In Figs. 4 and 5, the ratios of the respective relaxation colli- 

sion numbers to the relaxation collision number for the temperature 

difference is plotted as a function of the mass ratios.  In both 

figures, the curves have generally the same shape.  Changing the 

density ratio from n = 1.0 to n = 0.5, lowers the curves by a small 

amount with the exception of the q„' curve which is raised for a mass 

ratio larger than about 0.10.  It should be also noted from these graphs 

that for mass ratios equal to and below 0.01, the values of the 

relaxation collision numbers q ' and P ' compared to the relaxation 
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collision number for the temperature difference is not negligible, 

ranging from 0.1.5 to 0.38 for q„' and from 0.11 to 0.30 for P ' 

for a density ratio of n = 1.0.  This means that extreme caution must 

be used when saying that the heat flux and stress for the heavier gas 

relax much faster than the temperature difference between the two 

components of the mixture. 

A 



Fig. 1.  Plot of dimensionless variables as a function of collision 
number, z,. , for n = 1 and m = 1 24 
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Fig.   2.     Plot   of dimensionless  variables  as  a   function of collision 
number,   z,,.   Ior  n =   1   and m = 0.1 
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Fig.   3.     Plot   of  dimensionless variables  as a   function  of  collision 
number,   t,.,   for n =   1  and m = 0.01 26 
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Fig. 4.  Plot of the ratios of the respective z.'s to z . for the 

temperature difference as a function of the mass ratios, m, 
for n = 1.0 
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S to 2, for the Fig. 5-  Plot of the ratios of the respective z . ^ ..~ «... 
temperature difference as a function of the mass ratios, m, 
for n = 0.5 
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APPENDIX 

PROGRAM LISTING 

C   THE 

102 
THE 
THE 
UF 
IN 

C 
C 

FOLLOWING   IS   THE   MAIN   PROGRAM. 
REAL   M,N,K1,K2,I,L,J 
DIMENSION   Y(4),DERY(4),PRMT(5),AUX(16,4),SA(2) 
DIMENSION   SERY(4),SY(4>,SRMT(4) 
EXTERNAL   FCT,OUTP 
READtNDIM   
INITIAL   VALUES OF THE DEPENDENT VARIABLES AND THEIR 
INITIAL AND FINAL VALUES OF THE INDEPENDENT VARIABLE, 

THE INDEPENDENT VARIABLE, AND VARIOUS ERROR PARAMETERS 
AND STURED HERE. 
READ,(DERYIJJ),JJ=1,NDIM) 
READ,(Y(JJ),JJ=1,NDIM) 
READ,(PRMT(JJ),JJ=1,4) 
SDIM=NDIM 
DO 7 II=1,NDIM 
SERY(II)=DERY(II) 

7 SY( II)=YUI) 
DO 8 11=1,4 

8 SRMT(11)=PRMT(I I) 
9 CALL HPCG(PRMT,Y,DERY,NDIM,IHLF,FCT,UUTP,AUX) 

NUMO IS A SEGMENT OF DATA INDICATING WHETHER OR NOT A NEW SET 
DATA IS TO BE READ INTO THE PROGRAM. 

READ,NOMO 
IF(NOMO)102,101,100 

100 NDIM=SDIM 
DO 71 11=1,NDIM 
DERY(II)=SERY<II) 

71 Y(II)=SY<11) 
DO 81 11=1,4 

81 PRMT(II)=SRMT(II) 
GO TO 9 

101 STOP 
END 

DERIVATIVES, 
THE INCREMENT 
ARE READ 

OF 

C    THE FOLLOWING    IS   THE   SUBROUTINE   WHICH   DOES   THE    ACTUAL    INTEGRATION. 
SUBROUTINE   HPCG(PRMT,Y,DERY,NDIM,IHLF,FCT,OUTP,AUX) 
DIMENSION   PRMT(5),Y(4),DERY(4),A0X(16,4) 

N=l 
IHLF=0 
X=PRMT(1) 

HP 

HP 
HP 
HP 
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10 
ll 

12 

13 

14 

15 

16 

17 
18 

19 

H=P 
PRM 
DU 
AUX 
AUX 
AUX 
IF( 
IHL 
GUT 
IHL 
CAL 
CAL 
IF( 
IF( 
RET 
DU 
AUX 
ISW 
GUT 
X = X 
DO 
AUX 
IHL 
X=X 
DU 
AUX 
H=. 
N=l 
ISW 
GUT 
X = X 
CAL 
N = 2 
DO 
AUX 
AUX 
ISW 
GUT 
UtL 
DO 
DEL 
DEL 
IF( 
IF( 
IHL 
X = X 
GUT 
X = X 
CAL 
DU 
AUX 

RMT(3) 
T(t>>=0. 
1 I=1,NDIM 
(16,1)=0. 
( 11>, I )=DERY( I ) 
(1,I)=Y(I) 
H*(PRMT(2)-X))3,2,4 
F=12 
0 4 
F=13 
L FCT(X,Y,DERY) 
L UUTP(X,Y,UERY,IHLF,NDIM,PRMT> 
PRMT(S) )6,5,6 
IHLF)7,7,6 
URN 
8 I=1,NUIM 
(8,1)=DERY(I) 
= 1 
U 100 
+ H 
10 I=1,N0IM 
(2,I)=Y(I> 
F=IHLF+1 
-H 
12 I=1,NDIM 
(4,1)=AUX(2,I) 
5*H 

= 2 
0 100 
+ H 
L FCT(X,Y,DERY) 

14 I=1,NDIM 
(2,1)=Y(I) 
(9,1)=DERY(I) 
= 3 
U 100 
T = 0. 
16 I=1,NDIM 
T=DfcLT+AUX(15,I)*ABS(Y(I)-AUX(4,I)) 
T=.06666667*DELT 
DELT-PRMT(4))19,19,17 
IHLF-10)11,18,18 
F=ll 
+ H 
0 4 
♦ H 
L FCT(X,Y,DERY) 
20 I=1,NDIM 
(3,1)=Y(I) 
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20 AUX( 10tl )=DERY<I) 
N=3 

21 

ISW 
GOT 
N=l 
X=X 
CAL 
X=P 
DO 
AOX 

220Y(I 
1-.2 

23 X = X 
N=N 
CAL 
CAL 
IF( 

24 IF( 
25 DO 

AOX 
26 AOX 

IF( 
27 DO 

DEL 
DEL 

28 Y( I 
GOT 

29 DO 
DEL 
DEL 

30 Yd 
GOT 

100 DO 
Z = H 
AOX 

101 Y( 1 
Z = X 
CAL 
DO 
Z = H 
AOX 

102 Y(I 
Z = X 
CAL 
DO 
Z = H 
AOX 

103 Y( I 
Z = X 
CAL 
DO 

= 4 
0   100 

+ H 
L FCT 
RMT( 1 
22 1 = 
(11,1 
)=AOX 
08333 
+H 
+ 1 
L FCT 
L OOT 
PRMT ( 
N-4)2 
26 1 = 
(N,I ) 
(N+7, 
N-312 
28 1 = 
T = AOX 
T = DEL 
)=AOX 
0 23 
30 1 = 
T = AOX 
T = DEL 
)=AOX 
0  23 
101 I 
*AOX( 
(5,1 ) 
)=AOX 
+ .4*H 
L   FCT 
102 I 
*DERY 
(6,1 ) 
)=AOX 
+ .455 
L   FCT 
103 I 
*DERY 
(7,1 ) 
)=AOX 
+ H 
L   FCT 
104 I 

(X,Y,DERY) 
) 
ItNDIH 
)=DERY(I) 
(1,1)+H*(.375*AUX(8,I)+.791666 7*AUX(9,I) 
3*A0X(10,1)+.04166667*DERY(I)) 

(X,Y,DERY) 
P(X,Y,DERY,IHLF,NDIM,PRMT) 
5))6,24,6 
5,200,200 
1,NDIM 
= Y( I ) 
I)=DERY( I ) 
7,29,200 
1,NDIM 
(9,1)+AUX(9,I > 
T+DELT 
(1,1)+.3333 333*H*(AUX(8,I)+DELT+AUX(10,1)) 

1,NDIM 
(9,1)+AUX(10,I) 
T+DELT+UELT 
(1,1)+.375*H*(A0X(8,I)+0ELT+A0X(11,1)) 

=1,NDIM 
N+7, I ) 
= Z 
(N,I)+.4*Z 

(Z,Y,DERY) 
=1,NDIM 
(I) 
= Z 
(N,I)+.2969776*AUX(5,I)+.l587596*Z 
7372*H 
(Z,Y,DERY) 
=1,NDIM 
(I) 
= Z 
(N,I)+.2181OO4*AUX(5,I)-3.050965*A0X(6,I)+3.8 32 865*Z 

(Z,Y,DERY) 
=1,NDIM 
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200 
201 
202 

203 

204 

205 

206 

1040Y( I )=AUX(N,I) + .1747603*AUX(5,I )-.5514807*AUXI 6,I) 
1+1.20 5536*AUXI7,I ) + .1711848*H*DERYI I ) 
GUT0C9,13,15,21),ISW 
ISTEP=3 
IF(N-8)204,202,204 
DO   203   N=2,7 
00   203    I=1,NUIM 
AUX(N-1,I)=AUXIN,I) 
AUXIN+6,I)=AUXIN+7,I) 
N=7 
N = N+1 
DO   205    I=1,NDIM 
AUX(N-1,I)=Y(I) 
AUX(N+6,I)=0ERYII) 
X = X+H 
ISTEP=ISTEP*1 
DO   207    I=1,NDIM 

0DELT=AUX(N-4,I) + 1 ,3 33 333*H*IAUX(N+6 ,1)+AUX(N+6,I>-AUX(N+5, I) + 
1AUX(N+4,I)+AUX(N+4,I)) 
YlI)=UELT-.92 56198*AUX(16,I) 

207   AUX(16,1)=DELT 
CALL    FCT(X,Y,DERY) 
DO   208    I=1,NDIM 

0DELT=.12 5*(9.*AUX(N-1,I)-AUXIN-3,I)+3.*H*(DERY<I)+AUX(N+6,I)+ 
1AUX(N+6,I)-AUX(N+5,I))) 
AUX(16,1)=AUX(16,I)-UELT 
Y(I)=DELT+.0 743 8017#AUX(16,I) 
UELT=0. 
DO   209    I=1,NDIM 

208 

209 

21U 

211 
212 
213 
214 
215 
216 
217 
218 
219 

220 

UELT=DfcLT+AUX<15 , I)*ABS(AUX(16,1) ) 
IF(DELT-PRMT<4) )210,222,222 
CALL FCT(X,Y,DERY) 
CALL UUTP(X,Y,UERY,IHLF,NDIM,PRMT> 
IF(PRMT(5))212,211,212 
IF(IHLF-11)213,212,212 
RETURN 
IF(H*(X-PRMT(2) ))214,212,212 
IF(ABS(X-PRMT(2 ) )-.l*ABS(H)1212,215,215 
IF(DELT-.02*PRMT<4))216,216,201 
IF(IHLF)201,201,217 
IF(N-7)201,218,218 
IF(ISTEP-4)201,219,219 
IM0D=ISTEP/2 
1F( I STEP-IMUD-IMOD 1201,220,201 
H = H+H 
IHLF=IHLF-1 
ISTfcP=0 
DO 221 I=1,NDIM 
AUXIN-1,1)=AUX(N-2,I) 
AUX(N-2,I)=AUX(N-4,I) 
AUX(N-3,I)=AUX(N-6,I) 
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AUX( N+6,1 )=AUX(N+5, I ) 
AUX(N+5,I)=AUX(N+3,I) 
AUX(N+4,I)=AUX(N+1,I) 
0ELT=AUX(N+6,I)+AUX(N+5,I) 
DELT=DELT+UELT+DELT 

22 10AUX(1611)=8.962963*<Y(I)-AUX(N-3,I))-i.361111*H*(DERY(I)+DELT 
1+AUX(N+4,I)) 

GOTO   201 
222 IHLF=IHLF+1 

IF(IHLF-10)223,223,21O 
223 H=.5*H 

1STEP=0 
DO   224    I=1,NDIM 

0Y( I ) = .00390625*(80.*AUX(N-1,1> + 135.*AUX<N-2,I)+40.*AUX(N-3,I) + 
1AUX(N-4,I))-.1171875*(AUX(N+6,I)-6.*AUX(N + 5,I)-AUX(N+4,I))*H 
0AUX(N-4,I)=.00390625*<12.*AUX(N-1,I)+135,*AUX(N-2,I)+ 
1108.*AUX(N-3,I)+AUX(N-4,I))-.0234375*(AUX(N+6,I)+18.*AUX(N+5,1)- 
29.*AUX(N+4,I))*H 
AUX(N-3,I)=AUX(N-2,I) 

224 AUX(N+4,I)=AUX(N+5,I) 
X = X-H 
DELT=X-(H+H) 
CALL    ECT(UELT,Y,OERY) 
OU   225    I=1,NDIM 
AUX(N-2,I)=YII) 
AUX(N+5,I )=L)ERY( I ) 

225 Y(I)=AUX(N-4,I) 
0ELT=0ELT-(H+H) 
CALL    FCT(DELT,Y,DERY) 
DO   226    I=1,NDIM 
DELT = AUX(N+5,I)+AUX(N+4,I ) 
DELT=DELT+DELT+DELT 

0AUX( 16,1 )=8.962963*(AUX(I\,-1,I )-Y ( I ) ) -3. 36 1111*H* ( AUX (N + 6, IJ+DELT 
1+DERY(I)) 

226 AUX(N+3,I)=DERY(I) 
GOTO   206 
END 

WHICH   DEFINES 
VARIAbLES. 

THE   EQUATIONS    TO   BE C   THE   FOLLOWING    IS    THE    SUBROUTINE 
C    INTEGRATED   AND   THEIR   ASSOCIATED 

SUBROUTINE    FCT(X,Y,DERY) 
REAL   M,N,K1,K2,I,L,J 
DIMENSION   Y(4),DERY(4) 
IF(X)20,10,20 

10   READ,U,T,P,0,N,M 
PRINT5,N,M,U,T,P,U 

5   FURMATl'lSSXf'N   = ■ , F 10. 5 , 2X , • M   = ' , F 10. 5 ,2X , • U   = ' , F10 . 5, 2X , • T    =', 
1F10.5,2X,»P    =«,F10.5,2X,«0   =',F10.5) 

PRINT7 
7    FURMATJ «0',5X,'X« •TEM' ,9X, •    PI 8X P2 8X, 
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1' Ql ',8X,« Q2 ',8Xt» Tl 
L=l. 
PRl=30.E+25 
QRl=10.E+25 
W=(M*L)/(T*(U**2)) 
PR2=(P*PR1)/(N*M*(U**2)) 
QR2=(Q*QR1)/(M#N*(U**3>) 
B=SQRT(,5*<M+1.)) 
A=M+1. 
H=PRl/((U**2)*PR2) 
I=QR1/((U**2)*PR2) 
J=QR1/PR1 
Z=QR2/PR1 
ZZ=QR2/PR2 
E = B/N 
ART=((l.-U)/U)**2 
ART1=(2.*M*B)/(A**2) 
A1=B*(M*N+1.)/(A*N) 
A2=ART1*(N+1.»/N 
B1=2.*B*(N*L*((M*U)**2)-W 
B2=B1#ART 
C1=B2/<A2-2.*A1) 
C2=((l.-T)/T)   -Cl 
C3=(B*(M*C1+ART/L))/(A1*N#(A**2 ) ) 
C4=(ART1*C2)/(N*A2) 
C5=l.+C3+C4 

20   EX1=-A1*X 
EX2=-A2*X 
C=(SQRT(ART))*EXP(EX1) 
D=U#C 
F=C1*EXP(2.*EX1)+C2*EXP(E 
Y3=-C3*EXP(2.*EX1)-C4*EXP 
Y4=T*(F+Y3) 
G=Y4-T*Y3 
DERYQ)=-.775*Y< l)+( .45* 

1+H*Y(2)+.667*PR1*(C**2)) 
DERY(2)=(-.775*(SQRT(M))* 

1Y(2)+(Y(1)/H)+.667*PR2*(D 
DERY<3)=-.508*Y(3)+(2.*E/ 

1*A+1.5*(A**2 ) )*Y(3)+1.936 
22))      *Y(1)+QR1*C*(.968*(C 
DERY(4)=(-.508/N)*(SQRT(M 

l-( ,968-1.968*(A/M)+1.5*(( 
2-2.*ZZ*D*(.968-1.742*(A/M 
3(D**2)+1.613*(W/M)*(-G)+. 

RETURN 

T2   ') 

)/<W*N   *L*(A**2)) 

X2) 
(EX2)+C5 

B/(N*(A**2> ) ) 

Y(2)/N)+.45*B*((M/A) 
**2> ) 
<A**3)) *    (((N*M* 
*I*C*Y(2)+2.*J*C*<.9 
#*2>+1.613*L*M*F+.8 3 
))*Y(4)+2.*B*((M/A)* 
A/M)**2))*Y(4)-1.936 
)+.5*((A/M)**2)>*Y(2 
833*W*((A/M)**2)*Y4 

*(<1.-4.444 

**2)*((1.-4. 

Y(4))/ 
68-1.7 
3*L*(A 
* 3 ) * ( ( 
*Z*(U* 
)-QR2* 
)) 

Q)-(.9 
42*A+. 
*#2)*Y 
(Q*Y( 3 
*2)*D* 
D*(.9 6 

*A)*Y(1) 

444*A/M)* 

68-1.968 
5*(A** 
3      ) ) 
))/(M*N)) 
Y(l) 
8* 
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C   THE    FOLLOWING 
C   PROGRAM. 

ARE    THE    SOBROUTINES   WHICH   CONTROL    THE   OUT POT    UF    THE 

C   THIS    IS    VERSION    I    OF   THE   SOBROUTINE   OOTP. 
SUBROUTINE   OUTP ( X , Y ,DERY , IHLF ,NUIM ,PRMT ) 
REAL   MtN 
DIMENSION   Y(4),UERY(4)»PRMT(5)tSA(9) 
IF(X)31»41,31 

31    SA(2)=X 
GO   TO    131 

^1   READ,UtT,N,M,PR 
JIP=1 
JAY=1 
MAY=1 
LAY=1 
NAY=1 
KAY=1 
IAY=1 
L = 2. 
PR1=30. 
QR1=10. 
W=<M*L)/(T*(U**2)) 
A=M+1. 
B=SORT(,5*(M+1.)) 
ART=(( l.-U)/U)**2 
ART1=(2.*M*B)/(A**2) 
A1=B*(M*N+1.)/(A*N) 
A2=ART1*(N+1.)/N 
B1=2.*B*(N*L*((M*U)**2)-W)/(W*N   *L*(A##2)) 
B2=B1*ART 
C1=B2/(A2-2.*A1) 
C2=((l.-T)/T)        -Cl 

131   EX1=-A1*X 
EX2=-A2*X 
C=(SORT(ART))*EXP(EX1) 
VEL=-C 
F=C1*EXP(2.*EX1)+C2#EXP(EX2) 
TEM=-F 
IF(X)211t20,211 

20 SA(9)=X 
EVEL=VEL/2.71828 
ETEM=TEM/2.71828 
EPl=Y(l)/2.71828 
EP2=Y(2)/2.71828 
EQl=Y(3)/2.71828 
E02=Y(4)/2.71828 

C.    THE   FOLLOWING   SERIES   OF    IF-STATEMENTS   DETERMINES 
C   A   QUANTITY   HAS   REACHED    1/E    OF    ITS   INITIAL   VALUE. 

211    IF(JAY)21,29,21 
21 IF(EVEL-VEL)22,23,23 

WHETHER   UR   NOT 
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22 

23 

600 

29 
50 
53 

54 

602 

55 
56 
58 

59 

603 

60 
61 
63 

64 

604 

65 
66 
69 

70 

605 

72 
74 
75 
76 
77 

578 

78 
27 

SA(9)=X 
GU   TO   29 
XVfcL=(SA( 
PRINT600, 
FORMAT!• 
JAY = 0 
IF(LAY)50 
IF(EP1-Y( 
SA(9)=X 
GU   TO   55 
XP1=(SA(9 
PRINT602, 
FORMAT*' 
LAY = 0 
IF(NAY)56 
IF(EP2-Y( 
SA(9)=X 
GO   TO   60 
XP2=(SA(9 
PRINT603t 

FORMAT(' 
NAY = 0 
IF(KAY)61 
IF(EQ1-Y( 
SA(9)=X 
GO   TO   65 
X01=(SA(9 
PRINT604, 
FORMAT(• 
KAY = 0 
IF(IAY)66 
IF(E02-Y( 
SA(9)=X 
GO   TO   72 
XQ2=(SA(9 
PRINT605, 
FORMAT(' 
IAY = 0 
IF(JAY)71 
IF(LAY)71 
IF(NAY)71 
IF(KAY)71 
IF( IAY)71 
X=X+.01 
EX1=-A1*X 
EX2=-A2*X 
F=Cl*fcXP< 
TEM=-F 
IF(ETfcM-T 
SA(9)=X 
GO   TO   578 

9)+X)/2. 
XVEL 

HOORAY!! 

♦55,50 
1))53,54,54 

)+X)/2. 
XP1 

HOURAY!! 

,60,56 
2))58,59,59 

)+X)/2. 
XP2 

HOORAY!! 

,65,61 
3))63,64,64 

)+X)/2. 
XQ1 

HOORAY! ! 

,72,66 
4))69,70,70 

)+X)/2. 
XU2 

HOORAY! ! 

,74,71 
,75,71 
,76,71 
,77,71 
,78,71 

Z1KVEL)    =',F12.6) 

Z1KP1)    =«,F12.6) 

Z1KP2)    =',F12.6) 

Z1K01)    =',F12.6) 

Z1HQ2)    =',F12.6) 

2.*EX1)+C2*EXP(EX2) 

fcM)27,28,28 
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28 

601 

C   THE 
C   Zll 

998 

999 

991 

992 

993 

994 

71 
67 

151 

C   THfc 

= • ,F12.6) 

= • tF12.6) 

= • ,F12.6) 

=•,F12.6) 

=•,F12.6) 

5 
c HER 
c FRE 

6 
132 
133 
271 
171 
134 

33 

XTEM=(SA(9)+X)/2. 
PRINT60UXTEM 
FORMAT!'       HOORAY!! Z1KTEM)    =',F12.6) 
PRMT(5) = 1. 
FOLLOWING   CALCOLATES   THE   RATIOS   OF   THE   RESPECTIVE 

•S   TO   Zll   FOR   THE   TEMPERATORE   DIFFERENCE. 
RXVE=XVEL/XTEM 
RXP1=XP1/XTEM 
RXP2=XP2/XTEM 
RXQ1=XQ1/XTEM 
RX02=XQ2/XTEM 
PRINT998 
FORMAT!•    THE   RATIOS   OF    THE   RESPECTIVE   Z11S   TO   Zll(TfcM)    ARE') 
PRINT999,RXVE 
FORMAT!'    RZ1KVEL) 
PRINT991,RXP1 
FORMAT!'    RZ1KP1) 
PRINT992tRXP2 
FORMAT!'    RZ1KP2) 
PRINT993tRXQl 
FORMAT!'    RZ1KU1) 
PRINT994,RXQ2 
FORMAT!'    RZ1KQ2) 
GO   TO   371 
IF(X)67,151,67 
XD=SA!2)-SA( 1 ) 
IF!XD-PR)371,151,151 
SA(1)=X 
DM=(M+l)/2. 
XN=X/N 
FOLLOWING   DETERMINES   THE   VARIOOS   COLLISION   FREQOENCIES. 
Z12=(SQRT!DM))*XN 
Z21=(SQRT!DM))*X 
Z22=(SQRT(M))*XN 
PRINT5,IHLF,PRMT<3) 
FORMAT!' ',' IHLF = ',13,' INCREMENT =',F12.6) 

E THE DEPENDENT AND INDEPENDENT VARIALBLES AND THE COLLISION 
QOENCIES ARE PRINTED IN THEIR DESIRED FORM. 
PRINT6,X,VEL,TEM,Y(1),Y!2),Y!3),Y(4),Z12,Z21,Z22 
FORMAT!10F12.6) 
IF(X)133,271,133 
SA!1)=SA(2) 
SA!9)=X 
GO TO(134,234,371),JIP 
IF(X-9.999)371,33,33 
PRMT(3)=.01 
PRMT(4)=.0001 
PR=4.999 
JIP = 2 
GO TO 371 
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2 34 
534 

371 

I F(X-95.00)371,534,534 
PRMT(3)=.l 
PRMT(4)=.0001 
PR=49.99 
JIP = 3 
GO   TO   371 
CONTINUE 
RETURN 
END 

C   THIS    IS   VERSION    II    OF   THE    SUBROUTINE   OUTP. 
SUBROUTINE   OUTP(X,Y,OERY,IHLF.NDIM,PRMT) 
REAL   M,N 
DIMENSION   Y(4),DERY(4),PRMT(5),SA(9) 
IF(X)31,41,31 

31    SA(2)=X 
XD=SA(2>-SA(1) 
IF(XD-PR)71,51,51 

41    READ,U,T,N,M,PR 
L = l. 
W=(M*L)/(T*(U**2)) 
A-M+i. 
B=SQRT(.5*(M+1.)) 
ART=((l.-U)/U)**2 
ART1=(2.*M*B)/(A*#2) 
A1=B*(M*N+1.)/(A*N) 
A2=ART1*(N+1.)/N 
B1=2.*B*(N#L*((M*U)**2)-W)/(W*N   *L#(A**2)) 
B2=B1*ART 
C1=B2/(A2-2.*A1) 
C2=((l.-TJ/T)        -Cl 
C3=(B*(M*C1+ART/L))/(A1*N*(A**2)) 
C4=(ART1*C2)/(N*A2) 
C5=l.+C3+C4 

51   SA(1)=X 
EX1=-A1*X 
EX2=-A2*X 
C=(SQRT(ART))*EXP(EX1) 
VEL=   C 
F=C1*EXP(2.*EX1)+C2*EXP(EX2) 
TEM=-F 
Y3=-C3*EXP(2.*EX1)-C4*EXP(EX2J+C5 
Y4=T*(F+Y3) 
Y1=Y(l)*l.E-25 
Y2=Y(2)*l.E-25 
Y33=Y(3)*l.E-25 
Y44=Y(4)*l.E-25 
PRINT5,IHLF,PRMT(3) 



40 

5 FORMAT!' S' IHLF = ',13,' INCREMENT = «,F12.6) 
C HERE THE DEPENDENT AND INDEPENDENT VARIABLES ARE PRINTED IN 
C THEIR DESIRED FORM. 

PRINT6,X,VEL,TEM,Y1,Y2,Y33,Y44,Y3,Y4 
6 FORMAT(10F12.6) 

IF(X)67,71,67 
67 SA(1)=SA(2) 
71 CONTINUE 

RETURN 
END 


