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This study attempts  to define the spermatogenic cycle and its 

environmental effectors  in the male upland chorus frog,  Pseudacris 

triseriata feriarum  (Wied)  and  to investigate  the environmental stimula- 

tion of breeding behavior  such as calling and mating.     It was hypothesized 

that  some environmental cue or cues might be operating   to   trigger 

reproductive behavior.     It was also  thought that spermatogenesis might be 

subject  to  environmental  influences. 

Frogs were collected monthly,   preserved,  and  their  testes removed. 

Some  frogs were kept  in outdoor cages and others were held in indoor 

aquaria.     Caged frogs were killed  and preserved  in the same manner as 

wild frogs at   times when wild frogs were not available.     The   testes were 

sectioned,   stained,  and examined microscopically.     Counts were made of 

spermatogonia,   spematocytes,  spermatids,   and sperm.     The cell counts were 

compared   to environmental data using a computer-based multiple regression 

analysis.     A computer program for discriminant  function analysis was used 

to compare environmental data with mating call data. 

The  testicular cycle consists of two periods of spermatogenesis;  one 

occurring concurrent with breeding which lasts from January to mid-March, 

and  the other begins  in late June and ends before November.     "Resting 

periods" occur during  the intervening months.    P_. .t.   feriarum may be a 

potentially continuous breeder exhibiting a discontinuous  breeding 

behavior   in Guilford County,  N.C.     Spermatogenesis and breeding  behavior 

correlate strongly with environmental factors such as  photoperiod, 



temperature,  and rainfall.     Interstitial   tissue exhibits a cycle 

characterized by proliferation of   tissue before and during breeding and 

by degeneration of   tissue during  the remainder of   the cycle.     Keeping 

frogs at room temperature   (20°C)   causes degeneration of  existing sperm- 

Sertoli cell complexes and  initiates spermatogenesis.    The cell counts of 

frogs kept  in cages outdoors did not differ significantly  (at  the 0.05 

level)   from cell counts of  frogs captured  in the wild. 
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INTRODUCTION 

The experimental study of  the environmental events  influencing the 

reproductive cycle of anuran amphibians dates from 1924 when Witschi 

studied  the  influence of  climatic conditions upon spermatogenesis and 

breeding  in Rana  temporaria   (van Oordt,   1960).     R.   temporaria was found 

by Witschi to be a discontinuous breeder   (one that breeds once a year and 

possesses a refractory period  in which the germinal  epithelium is 

unresponsive to gonadotropins) whose behavior and spermatogenic cycle 

were largely independent of environmental events.    However,   subsequent 

work has  shown that raising  the environmental temperature can induce 

spermatogenesis  in R.   temporaria   (van Oordt,   1956),  R.   esculenta   (van Oordt, 

1960)  and R.   graeca   (Lofts,  1974). 

Leptodactylus ocellatus was discovered  to have two breaks  in the 

spermatogenic cycle;   both dependent upon temperature   (Lofts,   1974).     It 

was suggested by Lofts  (1961,   1964)   and van Oordt and Lofts   (1963)   that 

temperature controls  the sensitivity of   the germinal  epithelium to 

gonadotrophic hormones.    Temperature has an influence on the life of 

mature sperm;   in discontinuous breeders,   sperm viability is limited  to one 

spermatogenic cycle   (van Oordt and Lofts,   1963).    van Oordt   (1960)   stated 

that the spermatogenic cycle is genetically controlled,  with low tem- 

perature acting only as a suppressor  of meiotic activity and  thus not a 

primary factor  in the control of spermatogenesis. 

Studies of  the relationship between hormones and  the spermatogenic 

cycle have been numerous.     Glass and Rugh  (1944) described  the spermatogenic 



cycle of R.   piplens and  the effect of administration of pituitary hormones 

upon the cycle.     Lofts   (1961)   investigated the effects of leutinizing 

hormone   (LH)  and follicle-stimulating hormone   (FSH) upon hypophysectomized 

R.   temporaria.     Seasonal changes  in the functional activity of the testes 

in R.   esculenta were also documented by Lofts   (1964).     van Dongen et al. 

(1959,   1960)   established the role of LH in spermiation  (the release of 

mature sperm into  the lumen of  the seminiferous  tubules) while Basu   (1969) 

found  that FSH and LH must be present in order for spermatogenesis to 

occur with LH alone inhibiting spermatogenesis.     Chieffi   (1972)   inves- 

tigated  the effects of  exogenous androgens on spermatogenesis.     Hormonal 

feedback systems  that  influence mating calling have been described for 

many species of frogs by Schmidt   (1966a,   1966b,   1968,  1973).     Feedback 

systems controlling  the release of gonadotropins have been described by 

Lisk  (1960,   1962),   Davidson and Sawyer   (1961a,   1961b),  Kaneumatsu and 

Sawyer   (1963),  and Davidson and  Smith  (1966). 

Perception and mediation of  environmental events by sensory and 

neural components and  their effect on spermatogenesis and breeding 

behavior in anurans have been investigated by several workers.     The role 

of the median  eminence of the brain in controlling gonadotropin release 

has been investigated by Dierickx   (1966) who  found that extirpation of  the 

nervous pathways from  the median eminence to  the hypothalamus resulted in 

sexual  quiescence.     The perception of photoperiod by extraoptic means 

(pineal body)   has been described by Dodt and Morita  (1967)  and Adler   (1970, 

been found  to have a fine structure like that 1971). pineal body 

jf  the rods and cones of  the eye and  is  sensitive to wavelength and inten- 

sity of light  (Dodt and Heerd,   1962;   Dodt and Jacobson,  1963).    Albation 



of  the pineal brings about breeding readiness of  the gonads.     Photoperiod 

cues may cause the production of a gonadotropin inhibitor that may be 

responsible for  the suppression of LH and FSH production and  thus cause 

sexual quiescence   (Thiebolt,  1965). 

Ifft   (1942)   failed  to  show any relation between photoperiod and 

spennatogenesis  in Triturus viridescens   (now Notophthalmus),  a  urodele. 

Werner   (1969)  found  that in Plethodon cinereus, also a urodele,   photo- 

period did cause advances in the spermatogenic cycle at certain stages of 

the cycle,  but was a  secondary factor with temperature being  the primary 

controller of spennatogenesis.    van Oordt   (1960)   states that photoperiod 

does not play a primary role in anurans but may have a secondary signif- 

icance  in the regulation of  spermiation and breeding behavior.     No study 

has shown a primary relationship between photoperiod and  spennatogenesis. 

Gosner and Black  (1955)  described the effects on the breeding 

behavior of Scaphiopus h.  holbrooki    of temperature and rainfall,   stating 

that an inch of rain coupled with temperatures of   10 C or above will 

initiate spawning behavior.     Noble   (1931)   lists Hyla andersoni and Bufo 

fowleri as having rain-controlled breeding behavior.     Hock  (1967) described 

the effects of  temperature on the breeding behavior of  Bufo variegatus  in 

which an air temperature of  6°C is sufficient to  initiate calling. 

Most studies have been done on the larger ranid frogs,   and  few studies 

other  than those on reproductive physiology and behavior have been performed 

on other families,   such as  the family Rylidae.    Wright and Wright   (1949) 

described reproductive behavior of many hylid frogs,  but dealt little with 

the factors that induce the behavior.    Rugh   (1941)  did a study on the 

reproductive physiology of Hyla crucifer in which the spermatogenic cycle 



was described.     Several works have dealt with the breeding behavior  of 

the hylid genus commonly known as chorus frogs   (Pseudacris)■     Bragg   (1948), 

Livezay   (1952), Martof and Thompson   (1958)  and Whitaker   (1971)   are the 

major  investigators who have described breeding behavior  in Pseudacris. 

No paper has described the spermatogenic cycle or dealt with possible 

environmental effectors of spermatogenesis  in Pseudacris. 

The genus Pseudacris, as a whole,  ranges from Florida  to the upper 

provinces of Canada and west  to   the Rocky Mountains   (Conant,   1958).     The 

southernmost representatives of the genus,  Pseudacris nigrita verrucosa 

and P_.   clarki, may breed any time of year with breeding activity associated 

with heavy rains   (Conant,   1958).    Generally,  however,   the representatives 

of the genus Pseudacris breed once a year with  the time of year dependent 

upon climate.     The subject of  the present study,   Pseudacris  triseriata 

f eriarum  (Wied),  occupies piedmont and mountain habitats and ranges north 

into Pennsylvania and west to Texas   (Conant,   1958).     V_.   t^.   feriarum breeds 

from late January through early March in Guilford County, N.C.     Breeding 

habitat consists of  temporary rain water pools or ditches usually contain- 

ing various grasses and sedges,  although breeding  can occur  in pools devoid 

of vegetation. 

Since  this frog breeds only once a year  throughout its range,   in a 

fairly limited and predictable period,   it was hypothesized  that some 

environmental cue or cues may be operating to  trigger reproductive behavior. 

The unusual time of breeding   (for a poikilothermic animal)   implies  that 

certain reproductive advantages are inherent  in this behavior.     The temporal 

occurrence of breeding behavior,  however,   has to be related  to the life 

cycle as a whole;   therefore,   the reproductive cycle, as well as possible 



environmental effectors, needed  to be described since this  information 

could not be obtained from the literature.     The present study is an 

attempt  to define the sperraatogenic cycle and its  environmental effectors 

in  the male upland chorus frog,  P.   t.   feriarum and  to investigate the 

environmental stimulation of breeding behavior such as calling and mating. 



MATERIALS AND METHODS 

Male Pseudacris  triserlata feriarum were collected and calling data 

were gathered from five areas of Guilford County,  N.C.    The main collec- 

tion and study site was  in Guilford Counthouse National Memorial approx- 

imately 11 km NNW of Greensboro,  N.C.    The study area was formerly a 

drive-in theatre,  but was acquired in 1969 by  the Federal Government. 

The present  study was  initiated four years after abandonment of  the drive- 

in site.    The study ponds were actually rain pools  that were adequately 

supplied with water during  the winter rains.    All but one of  the ponds 

completely evaporated during the summer.     Before construction in the area 

by the Federal Government in 1975,  four ponds were utilized for collection 

and study;   three ponds remained after construction had ceased,  and were 

designated ponds 1,   2,  and 3.     Pond 1 was approximately 25 m long, with 

the width depending upon the amount of rainfall,  but within the range of 

2-3 m.     Pond 2 was about 30 m in length,  with the approximate width falling 

within  the same range as  pond  1.     Both of  these ponds usually contained 

water to  the depth of 45 cm except when drought occurred and  the ponds 

evaporated.     Pond 3 was 40 m long and 5 m at  its widest point.    Water in 

this pond approached  In In depth until alteration by bulldozer decreased 

this to 0.75 m at  the deepest point.     This pond  decreased  sharply in size 

during drought,   but some water ramined in the deepest portions even when 

ponds 1 and 2 were completely dry.    All three ponds contained  stable 

populations of Typha latifolia   (cattails),  Cyperus sp.   (sedges),  and 

Zizania aquatica   (wild rice).     No fishes were seen at any time in the 



ponds,  but a large assortment of aquatic  invertebrates  (insects and 

arachnids)  were present at all  times.     The other four collection areas 

were within an 11 km radius of  the center of Greensboro,  N.C.   and were 

principally sites utilized  in order that no one population would endure 

intense collection pressures. 

During each of  two breeding seasons,   collections were made at approx- 

imately two-week intervals   (when possible)   in order to obtain a representa- 

tive sample of breeding males.     During  the first year of collection  (1974), 

some of the collected males were placed  in wood and wire cages 60 cm by 

90 cm by 60 cm with a 15 cm layer of sand and humus  in the bottom.    These 

were sampled beginning at  the end of March,  and  every month  thereafter 

until  the supply of frogs was exhausted.     In the second year   (1975) wild 

frogs were collected  in the  same manner as in the previous year,  and a 

portion of  these was also kept in outdoor cages. 

In order to determine what effect captivity had upon the testicular 

cycle,  an indoor population was also  established  from frogs  collected at 

the same time as  the wild sample and outdoor cage  frogs.    These frogs were 

kept in ten gallon aquaria at a mean  temperature of 22.5 C and were watered 

daily with 10 ml of distilled water.     The room in which  the frogs were kept 

had windows facing west across the length of the wall.     The indoor popula- 

tion was  thus maintained at a constant  temperature with constant moisture, 

but was  subject to an altered photoperiod,  as no control over  the use of 

the fluorescent lights in  the room was attempted.     Open cultures of 

Drosophila were placed  in the enclosures of both captive populations. 

Wild frogs were obtained during  the breeding season,  but were dif- 

ficult   to procure after  the season ended due to  the secretive nature of 



these frogs.     A male Pseudacrls was captured  in November,   1975 on a wet 

road after a hard rain.     Indoor  samples were  taken at the same  time as 

wild and outdoor  cage specimens  except during February when an indoor 

sample was  taken two weeks after being placed in the aquaria,  and after 

April, when wild  frogs could no  longer be obtained. 

The sample frogs were preserved  in neutral buffered formalin. 

Stomachs were dissected and  their  contents noted.    Testes were removed, 

measured by ocular micrometer and  fixed in Bouin's fixative.     They were 

later bulk stained with Erlich's  hematoxylin and counterstained with 

eosin,  sectioned at 2-5 micrometers and placed on microscope slides for 

examination.     The sections were examined microscopically at 400X magnifica- 

tion and spermatogonia,   primary and secondary spermatocytes,   spermatids and 

sperm were counted.     Sperm numbers were estimated by using an ocular grid; 

counts were made in one square,  and  this number was multiplied by the num- 

ber of squares  that contained sperm.    Cell  types were recognized by using 

the following diameters:     spermatogonia,   4 micrometers;   primary and  sec- 

ondary spermatocytes,   10-12 and 6-8 micrometers respectively;  and sperma- 

tids,   2-4 micrometers.     In addition,  primary and  secondary spermatocytes 

were  identified by their meiotic activity.     In the absence of such activ- 

ity,   primary spermatocytes were identified by their eosinophilic  appearance 

and secondary spermatocytes were recognized by  their basophilic appearance. 

Sperm were easily identified and needed no definition by size.     Semi- 

niferous  tubule diameter was measured also.     Counts and measurements were 

made using five tubules selected at random,  and  the counts and measurements 

were averaged.     Representative tubules were also photographed.     The cell 

type counts,   testis width and  length,   and seminiferous tubule diameter were 

I 
I 
I 



analyzed with environmental data using a computer program for multiple 

regression analysis   (described  in Nie et al.,   1975).     The three popula- 

tions, wild,   outdoor cage,  and  indoor cage,  were compared using analysis 

of variance for  the two months during which the  three sample populations 

were taken;  March and April.     Environmental data were obtained  from the 

U.S.  Weather Service office at  the Greensboro-High Point-Winston-Salem 

Airport.     Photoperiodic data were obtained from  the American Ephemeris 

and Nautical Almanac;   1972-1975.     Environmental data were recorded at  the 

breeding site,  but were not complete enough for  statistical  treatment. 

However,   the U.S.  Weather Service data did not differ from those recorded 

at the study area,   and thus were used instead. 

From December,   1972 until November,   1975,   the study areas were 

checked for  the presence of calling males.     During  the breeding season, 

including one month prior   to and one month after  calling had  ceased,   there 

was intensive monitoring of   the study areas for mating calls with observa- 

tions being made daily during  this  time.     Thereafter,   spot checks were 

made in an attempt   to collect wild samples out of  season,  but which were 

successful in only one case,   that of  the November frog mentioned above. 

Calling and  environmental data were analyzed using a computer program for 

discriminant analysis   (Nie et al.,   1975).     Slides and  sample frogs are in 

my private collection. 
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RESULTS 

Breeding Behavior 

The breeding period for Pseudacris  in Guilford County ran roughly 

from late January into  early March.     Synchronous and syrapatric breeders 

included Rana pipiens,  Hyla crucifer   (which began to breed during February 

but peaked   in March),  and Bufo americanus   (which began breeding around 

March).    Male Pseudacris were observed several times  calling  from holes  in 

the ice covering  the ponds when water  temperature was 4 C and air   tem- 

perature was 1 C.     Evidence of a chorus structure   (cohesive groups of 

calling individuals within  the total  chorus)  was found.     If  the chorus 

ceased calling which it often did especially during  the waxing and waning 

of the breeding period,   it was usually initiated again by the same male. 

Trios and duets could also be discerned.     It was noted with some interest 

that if jet planes crossed  over the field,   it could  initiate calling of a 

silent chorus.     Conversely,   if a plane passed over when a chorus was call- 

ing,  it would  immediately become silent.     This confirms observations by 

Bellis   (1957)   and Hardy   (1959). 

Gastro-Intestinal Contents 

Numerous  insects were found around the breeding area,   so  food during 

this period was not an apparent limiting factor.     Checks of  the stomachs 

and intestines showed that  23 breeding males had gastro-intestinal tracts 

full  (out of a total of 47 captured while breeding);   3 had  traces of mate- 

rial in  their stomachs,  but with full intestines;   and 12 had  empty gastro- 

intestinal tracts.     Therefore,   55.3% contained some material in their 
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stomachs  (Table I).     Since 12 had completely empty gastro-intestlnal 

tracts,   80.9% contained some material in the tracts   (Table I).     The 

remains found most often were those of arthropods,  with arachnids found 

more often than any other form.     Mud and plant remains were also found, 

and in one case a sprouting seed was discovered.     These observations 

agree with those of Whitaker   (1971)  who also found arachnids to be present 

more than any other group,  and who also found mud and vegetation in the 

stomachs of Pseudacris   triseriata  triseriata.     Whitaker's figure of 64.9% 

for  the percentage of frogs with gastro-intestinal contents also agrees 

generally with  the 80.9% figure noted above. 

Both captive populations,   indoor and outdoor,  were observed capturing 

food  items.     Of a  total of  13 frogs caged  outdoors,   4 had full gastro- 

intestinal  tracts,  and   4 had  empty gastro-intestinal  tracts,  while 5 had 

empty stomachs with material  in the intestines   (Table I).     Contents 

consisted of Drosophila, various arachnids,  and some isopods.    A total of 

30.7% had full gastro-intestinal tracts,   and 69.3% had  some gastro- 

intestinal contents   (Table  I).     The indoor population consisted of 16 

frogs,  of which 4 had  full gastro-intestinal tracts,   8 had empty gastro- 

intestinal  tracts,  and 4 had  empty stomachs with full intestines   (Table I). 

All contents were Drosophila remains.    A total of  25% had a  full gastro- 

intestinal  tract, whereas  50% had  some gastro-intestinal contents   (Table 1). 

Any "captivity effect"   (Zwarenstein and  Shapiro,  1933)   therefore,   is prob- 

ably not due to  starvation. 

Calling 

One such "captivity effect" is cessation of calling.     Frogs placed  in 

outdoor cages continued   to call for approximately two weeks after capture, 
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TABLE I.     Gastro-intestinal contents of  sample frogs 

Breeding frogs 

Gastro-intestinal  tract full 

Intestines full   (but stomach empty) 

Gastro-intestinal   tract empty 

Trace in stomach  (intestines  full) 
Total 

N % of  total 

23 48.9% 

9 19.2% 

12 25.5% 

3 6.4% 
47 100.0% 

Non-breeding  frogs   (outdoor cage) 

Gastro-intestinal tract full 

Intestines full   (but  stomach empty) 

Gastro-intestinal  tract empty 

Trace in stomach  (intestines full) 
Total 

4 30.7% 

5 38.6% 

4 30.7% 

0 0.0% 
13 100.0% 

Non-breeding frogs   (indoor cage) 

Gastro-intestinal tract full 

Intestines full  (but stomach empty) 

Gastro-intestinal tract empty 

Trace in stomach  (intestines full) 
Total 

4 25.0% 

4 25.0% 

8 50.0% 

0 0.0% 
16 100.0% 



13 

whereas  the indoor population ceased calling within three days except  for 

periodic release calls and a few aberrant mating calls.     All calling  in 

the indoor population ceased after a week of captivity. 

Discriminant analysis of calling data is summarized  in Table II. 

TABLE II. Significant (at a level below 0.001) discriminant function 
coefficients of independent environmental variables deter- 
mining calling 

Month 

Photoperiod   (length of daylight) 

Daily low temperature 

Daily rainfall 

-0.34222 

-0.31743 

0.16680 

0.03223 

The higher  the absolute value of   the number,   the greater is   the importance 

of  the factor.     All other factors were discarded by the computer as being 

not significant   (at a level below 0.001) as coefficients in the equation 

used  to predict calling.    The month,  of course, would be important,  as 

these frogs usually call only during the breeding  season,   though calling 

in October and November  occurred during 1975.     Late calling  has also been 

noted by Evenden   (1946),  Blair   (1951),  and Whitaker  (1971).     Photoperiod 

(length of daylight)   is the most important environmental factor in deter- 

mining calling having a high negative discrimination coefficient.    As 

photoperiod  increases,   calling decreases   (Table II).    Daily low temperature 

is  the second important environmental variable   (Table II)  having a positive 

value.     The higher   the low temperature of  the day,   the greater the 

possibility of frogs calling.     Pseudacris was rarely heard calling  in the 
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field  if   the temperature dropped below freezing.     Of  the factors studied, 

the least  important of   the significant environmental variables was rain- 

fall which had a  positive effect on calling   (Table II).    As rainfall 

amounts  increase,   so does calling.     On the basis of  the values in Table II, 

the computer attempted   to predict whether or not,  on any given day,   call- 

ing or no calling would be observed.     Table III shows the accuracy of  the 

predictions.    The computer predicted correctly that on any given day,   no 

calling would occur on 860 out of 1007 actual days  that no calling was 

observed for an 85.4% correct record.     It also predicted correctly that 

calling would occur  on 111 of  119 actual days  that calling was observed 

for a 93.3% correct record.    The total per cent of correctly classified 

cases was 86.23%.     The discrimination coefficients,   therefore,  are highly 

accurate when used   to predict calling activity. 

TABLE  III.     Calling or no calling predication results based on 
discrimination function coefficients   (Table II) 

No.   of cases 

No call 1007 

Call 119 

Percentage of  cases correctly classified:     86.23% 

Predicted Group Membership 

No Call Call 

85.4%   (860) 14.6% (147) 

6.7%  (8) 93.3%  (111) 
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Cell Counts 

In addition     to    calling data analysis,   cell counts were examined 

and analyzed with environmental data.     Table IV shows   the mean,   standard 

deviation, variance,  number, and range for  the cell  type counts of wild, 

outdoor cage, and  indoor cage  samples.     These cell counts are graphed   in 

Figure 1.     An analysis of variance was performed on the cell counts for 

the months of March and April at  the 0.05 level of significance.     No 

significant difference was found between the  three sample populations, 

except in spermatid numbers,  where March outdoor cage specimens differed 

from wild specimens  in March. 

Figure  1 shows  the relationships of  the three sample populations with 

respect  to cell counts.     In Figure 1A,   the graph of  spermatogonia counts 

shows   that   there is not much difference in the curves of  the three sample 

populations.     The wild  population hit a low at the end of the breeding 

season.     The outdoor cage population fluctuated  in monthly pattern while 

indoor cage numbers remained constant.     The November wild sample showed a 

spermatogonia count lower  than January's which probably indicates   that 

new sperm wave formation began    in January,   the start of  the breeding 

season for Fseudacris.     The count  is almost the same as   in April when 

sperm wave formation had ceased. 

In Figure IB,   combined primary and  secondary counts are graphed. 

The count for  the wild population increased slightly as  the season prog- 

ressed,  and fell off   in April  to correspond with cessation of breeding. 

Indoor and outdoor samples  paralleled one another closely.     Peaks occurred 

in March,  and  lowest counts occurred  in May as sperm replenishment ceased 

and spennatocytes were being reabsorbed.     Peaks were noted again in July 
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TABLE IV.    A.     Mean,  standard deviation,  variance, number and range for 
spermatogonia counts 

Month Standard 
and Year Type Mean Deviation Variance N Range 

1/74 wild 13.077 7.000 50.410 13 4-28 

1/75 wild 5.800 1.330 1.067 10 3.6-7.4 

2/74 wild 8.800 1.304 1.700 5 6.6-10.2 

2/75 wild 5.000 1.054 1.111 10 3.4-5.8 

2/75 indoor 5.222 1.641 2.694 9 3-7.6 

3/74 wild 4.000 0.000 0.000 2 3.6-4.4 

3/75 wild 3.800 1.643 2.700 5 2.2-6 

3/75 outdoor 5.500 1.915 3.667 4 4-8.4 

3/75 indoor 4.750 0.957 0.917 4 4-6.2 

4/74 wild 5.000 0.000 0.000 1 5 

4/75 outdoor 5.000 1.320 3.000 3 3.6-7.2 

5/74 outdoor 15.000 12.738 162.000 2 6.4-23.8 

5/75 outdoor 4.000 0.000 0.000 1 4 

5/75 indoor 4.600 0.000 0.000 2 4.6 

6/74 outdoor 5.600 0.707 0.500 2 5.2-6 

7/74 outdoor 7.800 0.000 0.000 1 7.8 

7/75 indoor 2.600 0.000 0.000 1 2.6 

11/75 wild 4.400 0.000 0.000 1 4.4 
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TABLE IV.     B.    Mean,  standard deviation, variance,  number and range for 
sperraatocyte counts 

Month Standard 
and Year Type Mean Deviation Variance N Range 

1/74 wild 22.615 10.959 120.090 13 8-41.8 

1/75 wild 12.900 5.384 28.989 10 4.2-24 

2/74 wild 14.600 7.537 56.800 5 5.6-23 

2/75 wild 21.800 10.789 116.401 10 4.8-41.6 

2/75 indoor 44.889 20.019 437.611 9 18.8-88 

3/74 wild 22.000 5.657 32.000 2 17.6-26 

3/75 wild 18.800 11.649 135.700 5 4.2-35.6 

3/75 outdoor 42.000 26.013 676.667 4 19.6-73 

3/75 indoor 32.000 12.247 150.000 4 20.4-49 

4/74 wild 15.400 0.000 0.000 1 15.4 

4/75 outdoor 34.000 35.595 1267.000 3 11.4-75 

5/74 outdoor 2.000 2.828 8.000 2 0.4-4.4 

5/75 outdoor 7.000 0.000 0.000 1 6.6 

5/75 indoor 13.000 11.314 128.000 2 5.4-21.4 

6/74 outdoor 10.300 14.849 220.500 2 0-20.6 

7/74 outdoor 45.200 0.000 0.000 1 45.2 

7/75 indoor 55.600 0.000 0.000 1 54.6 

11/75 wild 4.000 0.000 0.000 1 4 
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TABLE IV.     C.     Mean,  standard deviation, variance,  number and range for 
spermatid counts 

Month Standard 
and Year Type Mean Deviation Variance N Range 

1/74 wild 10.846 10.383 107.808 13 0-31 

1/75 wild 17.300 17.945 322.011 10 0-62 

2/74 wild 16.000 8.515 72.500 5 7.2-26.4 

2/75 wild 14.900 10.630 112.989 10 3-34 

2/75 indoor 18.667 10.909 119.000 9 4-37 

3/74 wild 15.500 16.263 264.500 2 4.2-27 

3/75 wild 41.600 23.923 572.301 5 14.6-78 

3/75 outdoor 10.750 6.076 36.917 4 3.8-18.2 

3/75 indoor 20.750 12.038 144.917 4 5.4-32.2 

4/74 wild 7.000 0.000 0.000 1 7 

4/75 outdoor 4.666 1.528 2.333 3 3.4-6.2 

5/74 outdoor 5.000 7.071 50.000 2 0-9.8 

5/75 outdoor 20.000 0.000 0.000 1 20 

5/75 indoor 30.000 32.527 1058.000 2 7-53 

6/74 outdoor 6.500 9.192 84.500 2 0-13 

7/74 outdoor 0.000 0.000 0.000 1 0 

7/75 indoor 20.000 0.000 0.000 1 20 

11/75 wild 5.400 0.000 0.000 1 5.4 
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TABLE IV.     D.     Mean,  standard deviation, variance,  number,  and range for 
sperm counts 

Month Standard 
and Year Type Mean Deviation Variance N Range 

1/74 wild 235.693 44.973 2022.568 13 181.4-298 

1/75 wild 215.700 66.625 4438.902 10 120.6-351.8 

2/74 wild 259.000 30.257 915.500 5 216.2-297 

2/75 wild 229.600 46.261 2140.049 10 136-312 

2/75 indoor 91.889 41.787 1746.117 9 25-162.4 

3/74 wild 170.000 41.012 1682.000 2 140.8-199.2 

3/75 wild 142.200 67.703 4556.703 5 39.4-208.3 

3/75 outdoor 162.000 41.545 1726.000 4 126.8-221.8 

3/75 indoor 117.750 39.178 1534.917 4 79.4-169.2 

4/74 wild 154.000 0.000 0.000 1 154 

4/75 outdoor 168.667 115.820 13414.344 3 40.6-267.4 

5/74 outdoor 76.500 28.991 840.500 2 56.2-96.6 

5/75 outdoor 173.000 0.000 0.000 1 173 

5/75 indoor 153.500 4.950 24.500 2 150.2-156.8 

6/74 outdoor 118.500 6.364 40.500 2 114.2-122.8 

7/74 outdoor 84.000 0.000 0.000 1 84 

7/75 indoor 69.000 0.000 0.000 1 69 

11/75 wild 307.400 0.000 0.000 1 307.4 
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as spermatogenesis began in both populations.     The November wild frog, 

having completed spermatogenesis,   had a low spennatocyte count,  which was 

different from January's when waves of sperm were being formed. 

Figure 1C  shows  spermatid counts.     The wild population again displayed 

a rise in numbers as spermatids began to replenish depleted  sperm in breed- 

ing frogs.     This was followed by a precipitous fall in numbers by April 

when  this process ceased.     The  indoor population exhibited a peak in 

spermatid numbers in May which was a result of  the  initiation of spermato- 

genesis occurring after  the frogs were placed in captivity.     Sperm numbers 

of indoor caged frogs  in May exhibited the same pattern as the wild frogs 

and outdoor cage frogs did  in April   (Figure ID).     Outdoor population 

counts of spermatids displayed a rise in May,  after a drastic decline 

which began at the time of capture in February,  when spermatid numbers 

were at a peak.     Numbers were lowest  in July before the newly formed 

spermatocytes reached  spermatid stage.    The November wild frog had a low 

spermatid count as no breeding was occurring and virtually no spermato- 

genesis of any kind appeared  to be occurring. 

The number of sperm is graphed  in Figure ID.     The wild population 

had a peak in sperm number in February,   the height of  the breeding season, 

and the  lowest number was  in April.     The outdoor population followed  the 

wild population closely until April,  when the wild population samples 

ceased,   then dropped   to the lowest point in July.     The November wild frog 

showed  the greatest number of sperm found in any sample.     The frog had not 

bred, and was merely storing sperm to be released upon spermiation which 

occurred  in January.     Frogs captured  in January may have already bred once, 

which was evident   in the counts from January,   as no breeding has ever been 
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observed by me in  the Guilford County area from November to January  (and 

there is no reference  to such activity in the literature)   thus no appar- 

ent spermiation occurred during this  time.     This   is also evident from the 

photographs   (Figure 2)   in which released  sperm was evident in the January 

frog   (Figure 2B)  whereas all sperm were embedded  in the November wild frog 

(Figure 20). 

Environmental Factors 

The influences of  environmental factors on the various stages of 

spermatogenesis and related variables were examined using a multiple 

regression from which a  correlation table and "R Square" values were 

derived.     This  is  shown  in Tables V and VI.     Only significant values are 

shown in Table VI.     In Table V,  an absolute value of 0.5000 or better was 

considered significant.     In summary,   significant relationships with respect 

to spermatogenesis are as follows:     the date had a  strong correlation with 

the number of days  in the month  the frogs called and with testis width; 

mean monthly temperature had a negative correlation with sperm number; 

mean monthly photoperiod was negatively correlated with the number of days 

of calling and  testis width  (photoperiod is,   of course,  strongly correlated 

with the date);  and number of primary and secondary  spermatocytes had a 

negative correlation with  the number of sperm  (Table V). 

These data,   in turn,   correlate to  the graphs in Figures 1A-1D.    As 

the months progressed  the temperature rose,  and  photoperiod  increased. 

Calling fell off as  the breeding  season ended as did  sperm number.     Because 

new sperm were formed  from the preceding stages,   one would expect spermato- 

cyte numbers   to fall as sperm numbers  increased.     The reverse was also 

true.     The decrease  in testis width was  interesting as  it seemed  to  indicate 
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TABLE  V.     Correlation  coefficients 

01           02 03             04 05             06             07             08             09 

01 1.000 

02 -0.044  1.000 

03 0.666* -0.513* 1.000 

04 0.986* -0.025 0.657* 1.000 

05 -0.516* -0.157 -0.400 -0.554* 1.000 

06 -0.265 -0.234 -0.116 -0.254 0.086  1.000 

07 -0.523* -0.337 -0.148 -0.532* 0.368  0.443  1.000 

08 -0.225  0.211 -0.345 -0.216 0.081 -0.128 -0.083  1.000  ■ 

09 0.070    -0.478 0.312      0.021 0.057      0.228      0.268    -0.209      1.000 

10-0.012    -0.161 0.087    -0.004 -0.152      0.115      0.099    -0.179      0.071      1.000 

11-0.489      0.361 -0.732* -0.479 0.237      0.174      0.140      0.240    -0.511* -0.302      1.000 

12-0.372    -0.075 -0.232    -0.356 0.188      0.332      0.427    -0.276      0.013      0.085      0.340      1.000 

*Signifleant values   (any coefficient over 0.5000 in absolute value). 

01 Date 
02 Total Monthly Rainfall 
03 Mean Monthly Temperature 
04 Mean Monthly Photoperiod 
05 I of Days Calling 
06 Testis Length 

07 Testis Width 
08 I of Spennatogonia 
09 f of Primary and  Secondary Spermatocytes 
10 I of Spermatids 
11 if of Sperm 
12 Seminiferous Tubule Diameter 
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TABLE VI.     Relationship of  environmental factors  to spermatogenic stages 
and related variables as shown by R Square values 

Dependent variable:     if of days in month frog called 

Mean monthly photoperiod 
Date 
Total monthly rainfall 
Mean monthly  temperature 

R Square Value 
0.30742 
0.34229 
0.36509 
0.41715 

Above factors account for 42% of  the variability in the data 

Dependent variable:    Mean testis width 

Mean monthly photoperiod 
Total monthly rainfall 
Mean monthly temperature 
Date 

R  Square Value 
0.28311 
0.40586 
0.40827 
0.40944 

Above factors account for 41% of  the variability in the data 

Dependent variable:     // of sperm 

Mean monthly temperature 
Total monthly rainfall 
Mean monthly photoperiod 
Date 

R Square Value 
0.53646 
0.53674 
0.53690 
0.53739 

Above  factors account  for  54% of  the variability in  the data 
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that  the tubules were no longer  packed with sperm and  thus had  shrunk to 

some extent. 

Table VI shows  the relationship of  environmental factors to  spermato- 

genic stages and related variables  (such as  testis width).     In summary, 

mean monthly photoperiod   (a function of the date),   the date,   total monthly 

rainfall, and mean monthly temperature accounted for a high percentage of 

variability and were significant  in the following:     the number of days per 

month that the frog called,  42% of   the variability;  mean testis width, 

41% of  the variability;  and number of sperm,   54% of  the variability.    The 

order  in which  these factors are placed in Table VI  indicates  their degree 

of importance in determining variability of data.    Mean monthly photo- 

period was of greatest importance in determining  the number of sperm.    The 

remaining unaccounted for variability was due to factors which could not 

be ascertained from the data given. 

Histology of   the Testes 

Figure 2  is a  series of photographs depicting representative  tubules 

from each month and  population  type.     Figure 2A shows representatives of 

each cell type.     Figure 2B depicts a testis from a  frog captured wild in 

January.     There was well-developed  interstitial  tissue,  and most sperm 

were embedded  in Sertoli cells.     Very few other cell types were evident. 

A February testis showed signs of breeding activity.    More  sperm were 

loose in  the lumen and meiotic  figures could be seen as well as primary 

and secondary spermatocytes,  as sperm formation had begun  (Figure 2C).    A 

February indoor cage sample is shown in Figure 2D.     This specimen had been 

in captivity for  two weeks.     No sperm were embedded and many of the early 

cell stages of spermatogenesis were present.     Interstitial  tissue showed 



29 

signs of decline compared   to  that of   the wild February sample  (Figures 

2C and 2D).     March wild frog  testes show the last wave of sperm of  the 

breeding season   (Figure 2E).     Interstitial tissue was not as well devel- 

oped as in previous months,   but blood vessels were still  large indicating 

a generous blood supply to the testes at   that  time.    Testes from frogs 

taken in March from outdoor cages showed good  interstitial cell devel- 

opment, with all  sperm loose in the lumen of  the tubule,   and  sperm wave 

formation occurring   (Figure 2F).    Testes from frogs kept in indoor cages 

in March showed very little interstitial  tissue development,  but meiotic 

figures and all stages of spermatogenesis were seen  (Figure 2G).    Testes 

from wild frogs  taken in April showed  the lumen full of loose sperm  (some 

degenerating), and very few interstitial cells,   though connective tissue 

capsules for  each tubule had begun to  thicken (Figure 2H).     There was very 

little evidence of maturation of spermatocytes,  with only a few spermatids 

present   (Figure 2H).     Testes from outdoor cage frogs sampled  in April 

resembled  the  testes from wild frogs  taken in April except  interstitial 

cells were present and spermatocytes  indicated  sperm formation had been 

occurring   (Figure 21).     Testes from outdoor cage frogs  taken in May showed 

thick connective tissue capsules,  few interstitial cells,  loose and 

degenerating sperm,  and degenerating  spermatocytes  (Figure 2J).     Testes 

from frogs kept in indoor cages and  sampled  in May contained all stages of 

spermatogenesis,   including embedded sperm   (Figure 2K).     Interstitial tissue 

was still thick and fibrous,  with very few interstitial cells.     Testes from 

samples  taken in June from the outdoor  cages showed spermatogenesis begin- 

ning  (Figure 2L).     Though degenerate  sperm were still present,   new sperm 

could be seen embedded  in Sertoli cell cytoplasm and many primary and 
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secondary spermatocytes could be seen,   though the interstitium was still 

thick and fibrous   (Figure 2L).     Figure 2M shows  the process of  spermato- 

genesis beginning in a  testis  taken from an outdoor cage frog in July, 

which indicates   individual variability.     Some frogs begin spermatogenesis 

earlier  than others.     The same features noted in Figure 2L apply to this 

testis.     Testes from frogs  taken from indoor cages in July showed spermato- 

genesis occurring, with all cell  types present  (Figure 2N).    The  testes 

from the November wild frog showed  the culmination of spermatogenesis 

(Figure 20).    All sperm were  embedded,   Sertoli cell cytoplasm was thick, 

interstitial tissue was developing, and only residual spermatogenic stages 

were evident.    As mentioned before,   this was probably the state of the 

testis until  late January, when spermiation occurred,   releasing sperm 

from Sertoli cell "nests" and  initiating a new wave of  sperm. 

The drop in  sperm number from November  to January and  the subsequent 

rise  in numbers   in February indicates new sperm formation.     Figure 2P shows 

diplotene of meiosis  in a wild frog  taken in February.     Chromocenters and 

the double stranded nature of   the chromosome of this stage is evident. 

Figure 2Q depicts  several groups of   tetrads of meiosis also  in a wild frog 

taken in February.     Pseudacris possesses 24 chromosomes.    Twelve groups 

of   tetrads are visible in the photographs.     Inspection of the serial sec- 

tions revealed  that the chromosomes did lie in the same plane and  that 

twelve was an accurate count of  the number of  tetrads.    Meiotic stages 

were observed  in a number of breeding frogs indicating spermatogenesis 

was occurring at  this  time. 
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Figure 2A.     Testis   tubule showing spermatogonia   (A),  primary 
and secondary spermatocytes   (B and C respectively), 
spermatids   (D),   sperm (E),   Sertoli cell nucleus 
(F), and  interstitium  (G).     Magnification X 400. 
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Figure 2B.  Testis tubule of a wild frog captured in January. 
X400. 

Figure 2C;  Testis tubule of a wild frog captured in February. 
X400. 
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Figure 2D.    Testis tubule of a  frog taken from the  indoor cage 
population in February.    X400. 

Figure 2E.     Testis  tubule of a wild frog captured  in March. 
X400. 
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Figure 2F.     Testis  tubule of a frog  taken from the outdoor cage 
population in March.    X400. 

Figure 2G.     Testis tubule of a frog taken from the indoor cage 
population in March.    X400. 
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Figure 2H.  Testis tubule of a wild frog captured in April. 
X400. 

Figure 21.  Testis tubule of a frog taken from the outdoor cage 
population in April. X400. 
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Figure 2J.     Testis  tubule of a frog taken from the outdoor cage 
population in May.     X400. 

Figure 2K.     Testis  tubule of a frog taken from the indoor cage 
population  in May.    X400. 



37 

Figure 2L.     Testis tubule of a frog  taken from the outdoor cage 
population in June.     X400. 

i 

Figure 2M.     Testis  tubule of a frog taken from the outdoor cage 
population in July.    X400. 
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Figure 2N.     Testis tubule of a  frog taken from the indoor cage 
population in July.    XAOO. 

Figure 20.     Testis  tubule of a wild frog captured  in November. 
X400. 
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Figure 2P. Diplotene of meiosis in the testis of a wild frog 
taken in February. X1000. 

Figure 2Q. Meiotic figures in the testis of a wild frog taken 
in February. X1000. 
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DISCUSSION AND CONCLUSIONS 

The breeding behavior of Pseudacris triseriata feriarum is like  that 

of an anuran with a discontinuous  testicular cycle.    However,  P.t^.   feriarum 

exhibits at least  two periods  of  spennatogenesis:     one occurring during 

the period from July to November,  and the other occurring simultaneously 

with spermiation,  which occurs from January through March.     There is no 

spennatogenesis  in April, and  the rise of spermatid numbers during March 

is probably a reflection of the last meiotic products of breeding season 

spennatogenesis.     There is a "resting period"   (period of no spennato- 

genesis)   extending from April until June,  but  it was not determined 

whether or not  it is a  true resting period characteristic of  a discontin- 

uous  testicular cycle,   in which the germinal epithelium is refractory to 

gonadotropins.     There is possibly another  "resting period" from November 

until January.     Again,   exogenous gonadotropins were not administered. 

However,   there are striking histological similarities between the testes 

of the wild November frog and the description of the testes and photographs 

of  testes from Rana temporaria   (van Oordt,   1960).    Environmental events 

relating  to  the spermatogenic  cycle accounted for 54% of  the variability 

in the sperm number data   (Table VI).     What about  the remaining unaccounted 

for variability the 46% that's  left over in the R Square for sperm numbers? 

Environmental factors cannot account for this,   so perhaps it  is an 

endogenous rhythm of   the frog,  genetically encoded,   that determines  the 

rest of  the cycle.     In experiments on Amphibia in general and R.   temporaria 

in particular   (van Oordt,   1960;  van Oordt and Lofts,  1963),   it was found 
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that at certain times of  the cycle,   such as  In winter, when only sperm 

bundles and  spermatogonia are present,  exogenous gonadotropins failed  to 

initiate spermatogenesis.     This was explained by lack of sensitivity of 

the germinal  epithelium to gonadotropins   (van Oordt,  1960;  van Oordt and 

Lofts,   1963).     This  implies either chemical inhibition of  the germinal 

epithelium or a genetic  "block" preventing cell division from taking 

place, and subsequently preventing spermatogenesis from occurring.     Thus, 

the period of  gonadal  inactivity in P_.   t.   feriarum may correspond with 

the resting period described by van Oordt   (1960)   for R.   temporaria.     The 

"resting period" occurring from April until June does not in any way 

resemble  that described by van Oordt   (1960).    Old sperm are cleared from 

the tubules,  and   the germinal epithelium appears  to begin the process of 

spermatogenesis again very slowly.    The fact that frogs kept  in indoor 

cages underwent spermatogenesis without a "resting period" indicates that 

the germinal epithelium may not be refractory to gonadotropins at this 

time.     The cell numbers  in breeding P.   t_.   feriarum corresponded roughly 

with those reported for breeding R.  pipiens   (a discontinuous breeder)  by 

Glass and Rugh   (1944).    However,   the cell counts of P_.   t_.   feriarum dif- 

fered markedly from those reported for R.   pipiens during the remainder of 

the cycle by Glass and Rugh  (1944).    P.  nigrita yerrucosa and P.   clarki 

exhibit continuous breeding behavior   (Conant,   1958), and thus probably 

have a continuous  testicular  cycle.     P.   t.   feriarum,  a closely related 

species,  has what appears  to be a potentially continuous testicular cycle, 

and appears to be a potentially continuous breeder,   though it exhibits 

discontinuous behavior.     Civen the correct environmental cues, P.   t. 

feriarum might be capable of breeding at any time of year. 
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An alternate hypothesis for biraodal spermatogenesis is   that a sizable 

proportion of wild sample frogs were first year frogs that were undergoing 

delayed spermatogenesis.     This  is true for the great-tailed grackle 

(Quiscalus mexicanus)   in which first year males exhibit breeding behavior, 

and in the population as a whole there is bimodal spermatogenesis   (Selander 

and Hauser,   1965).     However, no reliable method of determining age of 

frogs captured   in the field exists   (except for recapture of previously 

marked specimens)  and  thus  this hypothesis was not   tested in  this  study. 

In addition,   the number of  sample frogs exhibiting spermatogenesis  in 

February greatly exceeded  the number of  first year male frogs   that would 

be expected  in a random sample according to Green's   (1957)   figures on 

longevity of £.   brachyphona. 

The causitive agent of  spermiation is luteinizing hormone   (LH), which 

is secreted by the alpha cells of the pars distalis of the pituitary 

(van Dongen and DeKort,   1959; van Dongen et al.,  1959; and van Dongen 

et al.,  1960).     In conjunction with follicle-stimulating hormone   (FSH) 

spermatogenesis continues, while LH alone inhibits spermatogenesis   (Basu, 

1969).     LH also  stimulates  the Leydig cells to produce androgens, which 

are responsible for secondary sexual characters   (throat pigmentation, 

calling,   etc.).     Chieffi  (1972)   found  that exogenous androgens  inhibit 

spermatogenesis,  but FSH can ameliorate the effects of both LH and andro- 

gen and allow the process of  spermatogenesis  to continue (Basu,   1969). 

As long as FSH is at high enough levels to counter the effects of LH and 

androgen,   spermatogenesis will continue.    The rise in spermatid numbers 

from November  to January is  indicative of  the process of spermatogenesis 

which probably begins at  the end of January.    A new wave,  however,  cannot 
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start until  the  tubules are cleared of sperm through spermiation, as these 

sperm and  their  Sertoli cells are target sites for FSH and use most of 

the available hormone,   thus  inhibiting spermatogenesis   (van Oordt and 

Lofts,  1963).     This may explain the lack of spermatogenic activity in 

November   (and probably December), but  the increase in such activity in 

January, when sperm are released from Sertoli cells. 

After April,  no captures were made of wild frogs,  but some conclusions 

can be drawn from the evidence presented by samples from the outdoor cage. 

No difference was found between cell counts of the three sample populations 

except in regard  to spermatid counts of the March outdoor cage frogs and 

the spermatid counts  from wild frogs captured in March.     It  is conceivable 

that the last spermatogenic wave had already been completed  in the majority 

of the outdoor cage specimens, while wild frogs had not done so,   and  thus 

the two populations diverged  in spermatid numbers.     Since this is  the only 

difference between cell counts  found  in the  three sample populations,   it 

can be assumed  that differences between the three populations are not 

quantitative but qualitative.     Numbers of cells do not reflect the condi- 

tion of  the cells   (degenerating as opposed to viable). 

Assuming  this relationship is valid,  some conclusions about  the 

testicular cycle can be made from the testicular cell counts of outdoor 

cage frogs  for  the months during which no wild population frogs could be 

procured.     The second period of  spermatogenesis appears to begin in June. 

Apparently, maturation of  secondary spermatocytes was not fast  enough to 

be reflected  in spermatid numbers in July  (Figure 1C).    As no   spermatids 

had matured,   sperm numbers,  that had steadily dropped since February,   also 

did not exhibit an increase in July,  but fell   to a low point.     Between 
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July and November,  however,   this maturation of intermediate stages was 

probably occurring,  as  the November cell counts showed a peak in sperm 

numbers,  but a low point for  the cell counts of all other stages  (Figure 1) 

Thus,  between July and November,  spermatogenesis had apparently occurred 

and by November,   the testes were full of   sperm embedded in Sertoli cells 

with no sign of additional spermatogenesis being evident  (Figure 20). 

The  spermatogenic cycle of frogs kept in cages indoors differed 

greatly from those of the wild population frogs and frogs kept in cages 

outdoors.     The frogs were taken from a fluctuating outdoor environment, 

put at a relatively high constant temperature,  and put on a regular "rain" 

cycle, and probably a different photoperiod.     In noting the effects of 

high temperature on K.   temporaria, a discontinuous breeder, van Oordt and 

Lofts   (1963) observed  that high temperature  (in the 20 to 24°C range) 

caused breakdown of Sertoli cells and degeneration of sperm and  sperm 

bundles.    As the  indoor cage frogs were maintained at approximately 20 C, 

they exhibited a fall  in sperm numbers beginning in May.    Presumably,   this 

cycle of spermatogenesis,  alternating with a "resting period",  would 

persist as long as  the frog was maintained at a high temperature.    The 

indoor cage frogs may be exhibiting what occurs in the wild and outdoor 

cage frogs much later.     That  is,   the indoor cage frogs,   induced by high 

temperature to begin spermatogenesis, may be manifesting the same 

characteristics of wild and outdoor cage frogs subjected to the higher   (in 

relation to  the breeding season temperatures) environmental  temperatures 

in May,  June, and July.    The alpha cells of   the pituitary are also affected 

by high temperature with LH production suppressed and FSH production stim- 

ulated   (van Oordt and Lofts,   1963);   thus the spermatogonia are stimulated 
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by FSH to divide and proliferate into primary and  then to  secondary 

spermatocytes.     Figure 1C reflects the results of this spermatocyte "boom" 

in the rise in numbers of spermatids occurring in May in indoor cage 

frogs.     Calling in the indoor population ceased after 3 days.     Calling is 

induced by androgen acting on a  "calling center",   the preoptic nucleus  in 

the brain   (Schmidt,   1966a,  1966b,  1968,   1973).    When androgen is no longer 

produced,   then calling ceases.     The accumulation of cholesterol-positive 

lipid   (cholesterol being a constituent of androgen),   indicates  that  the 

Leydig cells are no longer secreting androgen.    This buildup was found in 

h.' esculenta exposed  to high temperatures,   indicating high temperatures 

inhibit androgen production  (van Oordt and Lofts,   1963).    The interstitium 

in Pseudacris degenerates rapidly in frogs kept indoors  (Figures 2D,   2G, 

2K, and  2N) .     This may explain why calling ceases in Pseudacris kept at 

room temperature within a short period of time after capture.     In staining 

the indoor sample testes for sectioning,  it was noticed that  staining  time 

was longer and  the sections were harder to cut due to the thickness of 

the interstitial connective  tissue.    There also exists a feedback system 

of hormonal regulation where high levels of androgen inhibit gonadotropin 

production   (Lisk,  1960,   1962;  Davidson and Sawyer,  1961a,   1961b;  Kaneumatsu 

and Sawyer,   1963;  Davidson and Smith,   1966).     If androgen secretion is cut 

off,   then gonadotropins are produced, which could easily account for 

proliferation of  spermatocytes and spermatids in Pseudacris kept indoors. 

Basu and Nandi   (1965)   found high temperature stimulated spermato- 

genesis  in R.   pipiens.     Thus,   it appears  that in at least  two discontinuous 

breeders,  R.   esculenta and R.   pipiens,  room temperature induces spermato- 

genesis.     Since P.   t.   feriarum may have  the potential for continuous 
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breeding,  a shift of   the indoor cage frogs to the proper temperature, 

photoperiod,  and humidity,  could possibly induce breeding behavior.     Thus, 

the "captivity effect"  that has prevented study of breeding behavior and 

testicular cycles in a laboratory situation without the aid of exogenous 

gonadotropins might be avoided at least in P_. £.  feriarum.     There was a 

problem with die-off of  indoor and outdoor caged specimens.    A survival 

rate of only 30% was managed  the first year of  the study and only 50%  the 

second year.     This is the main reason for the small sample size.    The 

outdoor cage method  is probably valuable in determining what  the state of 

the breeding cycle is if  several requirements are met.    Large collections 

must be made of wild  specimens that are to be caged to  insure against 

die-off,  and fewer frogs must be put  in each cage to avoid territorial 

and feeding problems due to crowding.     Larger numbers will give larger 

sample sizes and decreased variances  in statistical treatments.    No dif- 

ference was found between cell counts of the wild population and the out- 

door caged frogs   (except in spermatid numbers,  which has already been 

discussed)   either qualitatively or quantitatively.    The frogs  in the two 

populations are subject  to   the same environmental events.    Therefore,   it 

seems reasonable  to assume that outdoor cage specimens reflect what is 

happening in wild   specimens.     The evidence of the November wild frog, 

showing a lumen full of  embedded sperm (Figure ID)   implies a spermatogenic 

peak between April and November.     Since  the outdoor cell counts roughly 

follow the extrapolated course of wild sample cell counts, outdoor cage 

study should be valuable in documenting monthly occurrences in the spermato- 

genic cycle of Pseudacris and other frogs displaying discontinuous behavior. 
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van Oordt   (I960)   dismisses the role of all environmental factors 

except  temperature in regulation of  the spermatogenic cycle,   and states 

that the spermatogenic cycle in R.   temporaria is largely dependent upon 

intrinsic factors.     This study of Pseudacris supports the conclusion  that 

environmental factors may regulate the cycle,   though intrinsic factors 

probably do play a role in determining behavioral responses to environmen- 

tal cues as  the unexplained variability in Table IV attests. 

Photoperiod  is  the most  influential environmental factors in deter- 

mining calling   (Table II).     The main photoperiodic event near the breeding 

period  is the winter  solstice in December when photoperiod begins  to 

lengthen.     Increasing photoperiod,   then, may be the environmental cue for 

breeding behavior.     However,   it will be remembered from the previous  sec- 

tion that calling  in November was heard.     It is probable that photoperiod 

of  the right length triggers  the physiological events that induce calling, 

and not increasing photoperiod  since photoperiod in November is about  the 

same as  in January. 

The preoptic center of the brain in the hypothalamus is  the relay 

center for  impulses  to  the trigemino-esthmic  tegmsntum,   the direct calling 

control center   (Schmidt,   1966a,   1966b,   1968,   1973).     This is  true in hylid 

frogs,  among which are Hvla crucifer,  H.  cinerea,  and Pseudacris   (Schmidt, 

1966a,  1966b,   1968,   1973).    The preoptic nucleus is a target organ for 

androgen,  and when  this hormone is in sufficiently high concentrations  in 

the system, calling results  (Schmidt,   1966a,   1966b,   1968,   1973).     High 

levels of androgen are indicative of  interstitial cell development   (Leydig 

cells)  and  thus of high LH levels.     It  is the hypothalamus  that secretes 

gonadotropin-releasing factor   (GRF)   to stimulate the pituitary to release 
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both FSH and LH.     The area responsible for these secretions is the 

hypophysiotrophic area of  the hypothalamus,  also a  target organ for andro- 

gens, and  in this way androgens  can cause  the inhibition of gonadotropin 

secretion  that results in the cessation of spermatogenesis and Leydig 

cell secretion and hence ends breeding behavior   (List,   1960,  1962).     If 

the mechanism of regulation of  the breeding cycle were wholly internal, 

the hypothalamus would be expected to regularly secrete GRF in accordance 

with the internal rhythm.    However,   in R.   temporaria, when nervous path- 

ways to the median eminence in the hypothalamus were cut,  gametogenesis 

and seasonal development of  the gonads were absent  (Dierickx,   1966). 

Thus, neurosecretory fibers ending  in the median eminence in the hypo- 

thalamus could not receive impulses from optic centers,  no GRF was 

produced,   the pituitary released no gonadotropins,  and sexual quiescence 

resulted.     Therefore,   in Dierickx's study,   environmental cues  in the form 

of photoperiod changes could not be responded to by the hypothalamus. 

It has been shown in this study  that photoperiod  is a highly significant 

environmental correlate of breeding behavior,  and the evidence of Dierickx 

(1966)  supports  the conclusion that breeding behavior  in some anurans is 

photoperiodically controlled.     It  is probable that the same nervous path- 

ways exist  in P.   t..   feriarum and operate in the same fashion. 

Environmental events may play a role in the termination of gonado- 

tropin secretion.     The pineal body,   located on the roof of   the diencephalon, 

is photo-sensory   (Dodt and Korita,   1967; Adler,   1971).     Its fine structure 

is like that of rods and cones of   the eyes and  it is sensitive both to 

wavelength and intensity of  light   (Dodt and Heerd,   1962;  Dodt and Jacobson, 

1963).    Adler   (1970)  states  that  it is  important in gonadal development 
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and in the establishment of  internal rhythms.    Ablation of  the pineal 

brings about breeding readiness of  the gonads  (Thiebolt,   1965).     Thus, 

photoperiodic cues may cause production of a gonadotropin inhibitor  that 

would result in suppression of FSH and LH production  (Thiebolt,   1965). 

Such an inhibitor has been identified but not in pure form  (Thiebolt, 

1965).     It has been shown in  this study that photoperiod plays a signif- 

icant role in both breeding behavior   (Table II) and in spermatogenesis 

(Table VI).     Thus,  photoperiod may not only be an environmental  effector 

of the onset of spermatogenesis and breeding but may also cue the suppres- 

sion of  these events. 

The final question that must be dealt with is that of why these frogs 

breed at such a seemingly hostile time of the year for a poikilothermic 

animal.     Possible limiting factors at this time of year  include scarcity 

of food,  freezing temperatures, and extremely low humidity   (a hazard for 

frogs traveling  to  the breeding ponds).     These factors   (except for low 

humidity)  apply to all stages of the life cycle from egg to adult. 

Whitaker   (1971)  concluded  in his study of Pseudacris triseriata  triseriata 

that the frogs feed at  the breeding sites during the breeding season. 

Table I shows  that food is not a limiting factor for wild frogs as 80.9% 

of the wild sample frogs contained some material in their gastro-intestinal 

tracts.     Flying  insects,   spiders, and numerous aquatic insects were seen 

at the ponds during this study at times coinciding with the peak of breed- 

ing activity.     It would appear that food,   then,   is not a limiting factor. 

Low temperatures seem to have been the greatest risk to  tadpoles and 

adults.    But,  as noted  in the previous section,   frogs were seen calling 

as long as open water was present,  even if   the ponds contained  ice. 
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Seldom were the ponds frozen over completely,  and on only three occasions 

were there noted any anuran mortality.    A newly formed rain puddle was 

used as a  laying site and  egg masses within 5 cm of the surface were fro- 

zen.    On two occasions,  adults were found dead after a particularly cold 

period, and both were found on the ground at the periphery of  the ponds. 

When  the temperature fell below freezing,  frogs were found in grass 

clumps in  the ponds,  partly submerged,  or  totally submerged and clinging 

to the grass roots.     Whitaker's   (1971)  observations on P.   t>   triseriata 

parallel  these findings.     Water around  the grass clumps rarely froze 

completely,  and  on several occasions, frogs known to call from specific 

grass clumps were calling again from these same clumps after the ponds 

had frozen over.     During cold periods the frog could immerse itself 

entirely  in water and use the bottom silt or the grass roots as  insulation. 

Khitaker   (1971)   found  frogs under the surface of the water with some 

submerged as deep as 20 cm.     Thus,   temperature does not seem to pose a 

great threat  to  the breeding frogs or the eggs and tadpoles.     Pseudacris 

has behaviorally adapted  to survive cold temperatures. 

Low humidity  is no great problem to Pseudacris as migration rarely 

takes place until  after dark when the humidity is highest, or when appre- 

ciable rainfall drives   the frogs from their over-wintering habitat.    Low 

himidity in Guilford County generally is accompanied by very cold tem- 

peratures in winter;   thus,   the frogs do not emerge and no migration to 

the ponds  takes place when these conditions prevail. 

What are the advantages of breeding during the winter months? The 

advantages are manifold. In Guilford County, the wettest months of the 

year usually are January and February.    This creates and maintains the 
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kind of habitat suitable for breeding in Pseudacris.    Closely allied with 

this is  the fact  that potential predators are less likely to be active 

at this   time of year.     Breckenrldge   (1944)  found  the snakes Thamnophis 

radix and T.  sirtalis  to be predators of Pseudacris.    Whitaker   (1971) 

took 7 Pseudacris from the stomachs of the snake Natrix sipedon,  and when 

fishes were introduced  into his study ponds, mortality of  tadpoles hit 

100%.    The ponds  in the present study contained no fishes.     No reptilian 

predators of any kind were seen or anticipated,  since January and February 

are the coldest months of  the year  in Guilford County.    The only possible 

predators noted were grackles   (Quiscalus quiscula)   seen during  the day at 

the ponds,  but the greatest amount of breeding activity,  and also the 

time when Pseudacris  is most conspicuous,   is at night, when grackles are 

not active.     Grackles could,  however, pose a threat to tadpoles,  but the 

healthy population of  froglets  in the spring indicates that predation 

pressure from grackles is not very heavy.     Pseudacris is probably not 

found in more permanent aquatic situations because of predation upon its 

tadpoles,  and at least one reason for  early breeding behavior may be the 

lack of predators on adults. 

Another consideration is food supply for the tadpoles.     R.  pipiens, 

H. crucifer,  and B.   americanus breed sympatrically in this area with 

Pseudacris.     However,   the earliest species of frog to emerge as froglets 

is Pseudacris, whose breeding activity peaks earlier than any sympatric 

breeder.    Only isolated  individuals of R. pipiens were noted breeding,  and 

the peak of breeding  in H.  crucifer is  in March.     B. .americanus begins  to 

breed only at   the very end of Pseudacris activity.    The reasons,   then,   for 

the evolution of early breeding behavior in Pseudacris are probably the 
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lack of predators of either adults or tadpoles, reduced competition among 

tadpoles for food,  and availability of   suitable breeding habitat. 
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SUMMARY 

Pseudacris  trlseriata feriarum may be a potentially continuous 

breeder exhibiting a discontinuous breeding behavior in Guilford County, 

N.C.    The  testicular cycle consists of  two periods of  spermatogenesis; 

one occurring during spermiation  (breeding)  and  the other beginning in 

late June and ending before November.     Spermiation occurs from late 

January to mid-March.     "Resting periods", or periods of no spermatogenic 

activity,  occur from mid-March until May and from November  through late 

January. 

Spermatogenesis and breeding behavior correlate strongly with 

environmental factors such as photoperiod,   temperature,  and rainfall. 

These factors are perceived  through sensory means and stimulate hormone 

production through  the mediation of  the hypothalamus.    Photoperiod,   the 

low temperature of   the day,  and rainfall amounts can be highly signif- 

icant in determining whether or not mating calling will occur on any 

given day, with photoperiod being  the most important environmental 

effector.    Mean monthly  temperature,  rainfall,  and photoperiod are highly 

correlated with the number of   sperm present in the tubules each month, 

with temperature having  the highest correlation coefficient.     A negative 

correlation exists between temperature and sperm number, with high tem- 

peratures causing degeneration of sperm bundles and initiating spermato- 

genesis.     Interstitial tissue also exhibits a cycle, with Leydig cells 

degenerating as  the breeding season ends, and connective tissue becoming 
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increasingly prevalent.     Build up of interstitial tissue parallels the 

sunnier spermatogenic period and  is complete by November. 

Keeping frogs in indoor aquaria at high temperatures initiates 

spermatogenesis.     Frogs in outdoor cages probably reflect  testlcular 

conditions found   in wild frogs.     The degeneration of  sperm and  initiation 

of spermatogenesis  in frogs kept  in indoor aquaria is due  to high tem- 

peratures. 

Lack of food,   freezing  temperatures, and low humidity during the 

winter months do not seem to be limiting factors for Pseudacris in 

Guilford County,  N.C.     Frogs do feed while breeding,  and are behaviorally 

adapted to avoid  freezing and dessication.    The reasons for the evolution 

of early breeding  in Pseudacris probably include lack of predators of 

either tadpoles or adults,  reduced competition with the tadpoles of 

sympatric breeders,  and   the availability of suitable habitat. 
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