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Galactokinase (ATP:  D-galactose 1-phosphotransferase, EC No. 

2.7.1.6) was demonstrated in extracts prepared from the fungus Neuros- 

pora crassa.  This enzyme was found to have maximal activity at pH 8.5 

in Tris-HCl buffer, and optimal concentrations of magnesium chloride 

and adenosine triphosphate were determined. 

An important part of the study was comparison of the galacto- 

kinase enzyme with the closely related enzyme glucokinase (ATP:  D- 

glucose 6- phosphotransferase, EC No. 2.7.1.2) from Neurospora. 

Glucokinase was found to be much more thermostabile than galactokinase, 

and both enzyme activities sedimented at the rate of approximately 4 S 

on glycerol or sucrose gradients in the preparative ultracentrifuge, 

Electrophoretic analysis of extracts containing both enzyme 

activities clearly demonstrated the migration pattern of glucokinase, 

but galactokinase was inactivated during this separation procedure. 

This electrophoretic study therefore provided no evidence concerning 

the separate identity of the proteins associated with the two 

activities.  The process of extraction of protein from the mycelium, 

however, demonstrated that glucokinase is freely extractable, but a 

large portion of the total galactokinase activity is associated with 

some insoluble component of the cell debris. This suggests that 

separate proteins provide the two enzyme activities, but the evidence 

on this point is not definitive because of the possibility of activa- 

. tion, inhibition, or steric effects associated with attachment to a 

7. ellular organelle. 

- 
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A purification of galactokinase of approximately 12-fold was 

obtained by salt fractionation and gel filtration, and this partially 

purified preparation was used for kinetic studies.  In this way a 

Michaelis constant of 5.8 x 10~ Molar galactose was determined for 

Neurospora galactokinase.  Comparative studies of glucokinase demonstra- 

ted a Michaelis constant of 5.8 x 10~ Molar glucose. 

From these studies it is obvious that Neurospora crassa produces 

a galactokinase enzyme. This enzyme is present in crude extracts in an 

amount approximately 4% of the level of glucokinase.  Although 

glucokinase and galactokinase could be separate activities of a single 

protein, the evidence suggests that these are separate, but very 

similar, proteins. 
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INTRODUCTION 

In 1856 lactose was first identified by Pasteur.  In 1902 Tanet 

described the structure of lactose, a disaccharide which contains glu- 

cose as well as a previously unidentified sugar which he called galac- 

tose.  D-galactose is an epimer of D-glucose at the hydroxyl group of 

the number four carbon atom.  Glycolysis of glucose involves the 

phosphorylation of glucose to glucose-6-phosphate, and this reaction is 

catalyzed by the enzyme glucokinase (ATP:  D-glucose 6-phosphotransfer- 

ase, EC No. 2.7.1.2). The glycolysis of galactose requires phosphoryla- 

tion by adenosine-5--triphosphate, catalyzed by the enzyme galactokinase 

(ATP:  D-galactose 1-phosphotransterase, EC No. 2.7.1.6).  In 1943 

Kosterlitz reported the isolation of galactose-1-phosphate from livers 

of rabbits which had been fed galactose and on the basis of this he 

postulated the existence oi galactokinase.  The ultil^ation of galactose 

is now known in the Leloir , or undine dlphosphate-galactose pathway 

ot galactose metabolism (Kalckar, et al., 1958; Robichon-Szulmajster, 

1958; and Cardini and Leloir, 1961;. Galactose metabolism includes 

the following steps: 

Galactokinase 
1.  Gal + ATP ^ ^ Gal-l-P + ADP 

Gal-l-P, G-l-P uridyl transterase 
2.  Gal-l-P + UDPG < — f    G-l-P + UDPGal 

UDPGal pyrophosphorylase 
2a. Gal-l-P + UDP ^ ■ ^ UDPGal + Pi 



UDPGal 4-epimerase 
3. UDPGal  < ^ UDPG 

UDPG synthetase 
4. UDPG + Pi 4; ■ ^    G-l-P + UTP 

The abbreviations used are listed in the Methods Section. 

Galactosemia is well known as a human hereditary disease.  A 

lack of galactokinase can cause galactose to be excreted in the urine. 

The concentration of galactose in blood is elevated and also galactose- 

1-phosphate is accumulated in the red blood cells.  The disease may 

also be caused by a lack of epimerase (Schwartz, et al., 1956).  A 

person with galactosemia shows cataracts and may be mentally retarded, 

probably because of abnormal production of galactoliplds in the brain. 

Folch-Pi (1955) and Kalckar, et al., (1956) found that galactosemia 

resulted primarily from a block in step 2. 

A study of the UDPGal pathway in tumor cells showed that a 

number of tumor cells were defective in galactose metabolism (Robinson, 

et al., 1963). 

Galactokinase has been identified in a large number of micro- 

organisms.  Kosterlitz (1943) postulated the existence of galactokinase 

in yeast.  Subsequent studies were carried out by Trucco, et al., (1948) 

in Saccharomyces fragilis; by Cardini and Leloir (1953) in rat liver and 

brain; by Schwartz, et al., (1956) in human erythrocytes; by Weinberg 

and Segal (1960) in leukocytes; by Sherman and Adler (1963) in 

Escherichia coli; by Heinrich (1964) and Howard and Heinrich (1965) in 

yeast; by Ballard (1966) in pig liver; and by Gulbinsky and Cleland 

(1968) in Escherichia coli. 



A manometric Method was used by Colowlck and Kalckar (1943) and 

a titrametric Method was used by Kunitz and McDonald (1946) for assay 

of hexokinase. Robinson, et al., (1963) assayed galactokinase by paper 

chromatography using 1- C galactose with an automatic scanner. 

Colowick, et al., (1947) and Trucco, et al., (1948) determined hexo- 

kinase activity by using Nelson's procedure (1944) to measure the amount 

of the reducing sugars left in the solution after the protein and the 

phosphorylated sugars had been precipitated out by zinc sulphate and 

barium hydroxide. 

Maxwell, et al., (1962) used Gal-l-P, G-l-P uridyl transferase, 

UDPG, phosphoglucomutase, TPN, and G-6-P dehydrogenase mixture to 

determine the Gal-l-P produced by galactokinase.  The following reac- 

tions were involved: 

Gal-l-P, G-l-P, uridyl transferase 
(a) Gal-l-P + UDPG ^ > G-l-P + UDPGal 

Phosphoglucomutase 
(b) G-l-P { > G-6-P 

G-6-P dehydrogenase 
(c) G-6-P + TPN ^ ^ 6-phosphogluconate + TPNH 

The absolute molar amount of TPNH formed is a direct measurement of 

galactose-1-phosphate and thus of galactokinase activity. 

Heinrich (1964), Howard and Heinrich (1965) and Ballard (1966) 

used a Spactrophotometric Method in which phosphoenol pyruvate, pyruvate 

kinase, DPNH, and lactic dehydrogenase were added to the solution under 

investigation. The ADP formed by galactokinase was then coupled to the 

following reaction:  phosphoenol pyruvate f—      ,) pyruvate which is 

catalyzed by pyruvate kinase and which phosphorylates ADP to ATP. Then 



in the presence of lactic dehydrogenase the pyruvate was reduced to 

lactic acid with the oxidation of DPNH.  This oxidation was measured 

at 340 tnp. 

Sherman (1963) has reported an assay for galactokinase using 

14 radioactive galactose as substrate. The product, " C-galactose-1- 

phosphate, was measured as the radioactivity remaining on DEAE-cellu- 

lose anion exchange paper after elution of the unreacted substrate, 

galactose-1- C, from the paper with water. This specific and sensi- 

tive method was chosen for the study described in this thesis. 

Medina and Nicholas (1957) have reported that hexokinase in 

Neurospora crassa is zinc-dependent. This hexokinase catalyzes the 

phosphorylation of glucose and, at a slower rate, of mannose, fructose, 

and glucosamine. Galactose did not serve as substrate under their 

assay conditions.  These workers also stated that chromatographic 

and enzymatic evidence indicated the phosphorylation product to be 

glucose-6-phosphate. 

A search of the Chemical Abstracts, the Neurospora Bibliography 

and Index, and recent biochemical journals disclosed no previous 

studies of galactokinase from Neurospora.  The objective of this study 

is to identify this enzyme and to compare the biochemical behavior of 

galactokinase with glucokinase from the same organism. The question 

of the existence of this and other enzymes of galactose metabolism in 

Neurospora is especially significant because of the importance of 

galactose derivatives in the structure of the cell wall (Crook and 

Johnston, 1962) and because of the importance of regulatory processes 



which respond to galactose in this organism (Bates, et al., 1967). 



METHODS 

1.  ABBREVIATIONS USED 

ADP: Adenosine diphosphate; ATP: Adenosine triphosphate; cm.: 

Centimeter; cpm:  Counts per minute; DTT: Cleland's reagent, Dithio- 

threitol; g: Force of gravity; G-l-P: Glucose-1-phosphate; Gal.: 

Galactose; Gal-l-P: Galactose-1-phosphate; Gly.: Glycerol; gm.: 

Gram; IEU:  International Enzyme Unit; M: Molar concentration, moles 

per liter; MCE:  2-Mercaptoethanol; mg.: Milligram; ml.: Milliliter; 

Pi:  Inorganic phosphate ion; PPO:  2,5-diphenyl oxazole; rpm:  Revolu- 

tions per minute; S:  Sedimentation rate, Svedberg unit; TPN:  Triphos- 

pho pyridine nucleotide; TPNH:  Reduced triphospho pyridine nucleotide; 

Tris:  Tris (hydroxymethyl) aminomethane; UDP:  Uridine diphosphate; 

UTP: Uridine triphosphate; UDPG: Uridine diphosphate-glucose; UDPGal: 

Uridine diphosphate-galactose; V:  Volume; W: Weight; Xyl.:  Xylose. 

2.  CHEMICALS 

All chemicals used were reagent grade and readily available 

unless otherwise noted. D-galactose-U-C-14, glucose-U-C-14, DTT, and 

MCE were from Calbiochem.  Purified galactose was from SIGMA Chemical 

Company.  Sucose used for gradients was Mann Crystalline, Density 

Gradient Grade, RNase free. PPO, galactose-l-C-14 and glucose-l-C-14 

were from New England Nuclear Corporation.  Sephadex is the trade name 

for a cross-linked dextran polymer made by Pharmacia, Inc. 



3.  GROWTH OF NEUROSPORA CRASSA 

The strain 411-L5-A (Bates and Woodward, 1967) was chosen for 

study because it Is a wild type with superior glycerol growth 

characteristics. Mycelia were cultured on Vogel's minimal medium 

(Vogel, 1956), with various carbon sources, in shaking or standing 

culture at 30 C. Diluted Vogel's medium and carbon sources were auto- 

claved separately and were mixed after cooling.  Inoculum was 1.0 x 10 

conldia per ml,  Standing cultures were grown in one liter Roux bottles. 

Shaking cultures were grown in 500 ml, Erlenmeyer flasks on a rotary 

shaker at a speed of 172 cycles per minute. Mycelial pads were harvested 

using Buchner filtration on qualitative filter paper, and were washed 

with at least 500 ml, of deionized water for each flask.  The resulting 

pads were squeezed dry in several thickness of paper towel, and the wet 

weight was determined.  Mycelia were immediately frozen. 

4.  EXTRACTION OF MYCELIAL PROTEIN 

Protein in Neurospora crassa can be extracted in many ways 

(Stine, et al., 1964; Bates, et al., 1967). The crude extract used in 

this paper was prepared by grinding mycelium in an OMNI MIXER (Ivan 

Sorvall, Inc.) with 10  M sodium phosphate buffer, pH 7.7, containing 

10~2 M DTT or MCE and glass beads according to the following combina- 

tions: 



Crude Extract 
Mycelium 
Wet Weight 
(grams) 

Buffer 
(ml.) 

Glass 
Beads 
(grams) 

Speed 
(rpm) 

Extraction 
Time 

(minutes) 

Micro diluted 0.2 3 1.00 4,600 10 

Micro concentrated 1.2 3 1.05 4,600 20 

Macro diluted 1.2 15 5.00 9,600 10 

Macro concentrated 8,0 20 7.00 9,600 20 

The reducing agents DTT and MCE were added to stabilize the thlol 

group on the enzymes in the reduced form (Cleland, 1964). After 

grinding the mycelium, the ground mixture was shaken for at least one 

hour. All the preparations were carried out in ice and the cell debris 

was spun down at 15,000 rpm (27,000 x g) for 20 minutes for diluted 

crude extracts, or 30 minutes for concentrated crude extracts, at 2 C. 

The extract was used within 8 hours.  For macro concentrated extracts, 

centrifugation was repeated three times. 

Dialysis was for a total of 4 hours, or as otherwise indicated, 

v-2 -2 
against 10  M sodium phosphate buffer, pH 7.7, containing 10  M 

-4 
MCE or 3 x 10  M DTT, cooled in ice. 

Debris from crude extracts was prepared by resuspending the 

centrifuged pellet in fresh buffer at the original extraction volume. 

5.  DETERMINATION OF PROTEIN 

Protein was determined in crude extracts or trichloroacetic acid 

precipitates by the biuret method as described by Gornall, et al., 

(1948).  Bovine serum albumin was used as standard.  The samples con- 

taining DTT tended to turn the biuret reagent to black. This color 



would disappear atter about 24 hours depending on the amount of DTT in 

the solution.  Iheretore photometric readings were taken after this 

period of time.  In the occasional samples in which a black precipitate 

occurred, this was removed by centritugatlon prior to reading. 

Protein was estimated in effluent fractions from columns by 

absorbance at 280 mp (Layne, E., 1957). A Gilford 222 digital read out 

connected to a Beckman monochromomator was used tor photometric readings. 

Photometric accuracy for this instrument was 0.5% A. 

6.  DETERMINATION OF ENZYME ACTIVITY 

A moditicatlon of the procedure of Sherman (1963) was used 

through all the experiments. The procedures are the following:  Stock 

solutions of Tris-HCl buffer, 0.1B2 gm./ml., pH 8.5; NaF, 6.06 mg./ml.; 

MgC1..6H20, 24.38 mg./ml.; MCE, 7.81 mg./ml.; and C-14 labelled sub- 

strate, galactose and glucose, were made and stored in the refrigerator. 

ATP, 16.5 mg./ml. and DTT, 7.7 mg./ml. were made fresh because of the 

unstable character of ATP and oxidation of DTT on exposure to the air. 

During the assay five stock solutions were involved: first was the 

buffer-metal ion mixture which is the mixture of equal volumes of Tris, 

Mg"1-1" and F~ solution; second was the newly prepared ATP; third was the 

newly prepared DTT; fourth was the C-14 labelled substrate. After mixing 

those four stocks in equal volumes, an aliquot of 0.12 ml. of this 

mixture was pipetted to three inch test tubes. This solution was pre- 

mcubated in a water bath at 30 C tor about ten minutes before adding 

enzymes.  The enzyme source was prepared by diluting the concentrated 

crude mycelial extract with distilled water just betore use. A routine 
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dilution ot 1 co 5 ot concentrated crude extract or an original diluted 

crude extract was used tor galactokinase and a dilution of 1 to 40 of 

concentrated crude extract or 1 to 8 of diluted crude extract was used 

tor giucokinase assays.  Effluent tractions from Sephadex columns were 

assayed directly tor galactokinase, but a 1 to 10 or 1 to 20 dilution 

ot these tractions was used for giucokinase assay. After preincubatlon, 

0.03 ml. of the enzyme was added to start the reaction. One blank was 

tormed in each set by adding 0.03 ml. of distilled water instead ot 

enzyme.  The final concentrations are: O.lmillimole of Tns/ml.; 8.0 

micromoles of MgCl2.6H20/ml.; 9.6 micromoles ot NaF/ml.; 5.3 micromoles 

of ATP/ml.; 10 micromoles of DTT/ml.; and 1 mlcromole of substrate/ml. 

Atter 10 minutes, the reaction was stopped by placing the tube in a 

boiling water bath for two minutes.  The time for all steps was pre- 

cisely controlled since the reaction was time dependent and excess 

evaporation during boiling should be avoided. After cooling, 0.03 ml. 

of the reacted mixture was applied to the 2 x 6.5 cm. DEAE cellulose 

paper strip at about 1 cm. from one end of the strip. Four strips 

or less were suspended in a 1 liter beaker containing double deiomzed 

water for two to five minutes. This process washes away the unreacted 

substrate, leaving the phosphorylated sugar on the paper. Three changes 

ot deiomzed water were made during the wash (total of tour washes). 

The strips were placed on aluminum toil and then dried in an oven at 

50° C for at least 30 minutes. After the strips were dried, a 2.4 cm. 

section (1.2 cm. away from both sides of the center ot the point of 

application) was cut off and placed in a counting vial (see counting 
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technique In Section 7). Net counting rates were obtained and the 

specific activities were calculated after determination of protein 

(see Data Processing in Section 8). 

7.  COUNTING TECHNIQUE 

Dry DEAE cellulose paper strips containing the labelled reaction 

product were placed in standard scintillation counting vials containing 

10 ml. of nitrogen-flushed counting mixture (8 grams of PPO per liter 

of toluene), and counted in a full C-14 window at gain setting 3, in a 

Beckman LS-100 Liquid Scintillation Spectrometer. Efficiency for C-14 

under these conditions was 91 per cent. Since this counting efficiency 

was high and was essentially the same for all samples, quench correction 

was not necessary. The paper strip was put in the vial with the 2.4 cm. 

side at the bottom.  Samples were counted to 40,000 total counts, 

corresponding to a Standard Error of 0.5% with rejection of low activity 

samples after 200 minutes.  After the counting was finished, the paper 

strip was taken away from the vial. The used counting mixture was 

filtered and pooled in an amber bottle, and flushed again with nitrogen 

for five minutes. This cocktail was then ready for re-use. The filter 

paper used was Rapid Filtering Paper, Arthur H. Thomas Company. 

8.  DATA PROCESSING 

(a) UNIT DEFINITION:  One International Enzyme Unit (IEU) is 

defined as that amount of enzyme that phosphorylates one micromole of 

D-galactose or D-glucose at 30° C in one minute under the conditions 

described in the experiment. 
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(b) TREATMENT OF THE ASSAYS:  In the biuret method the 

absorbancies of a set of standards were determined at the same time as 

the samples.  These standards formed a linear calibration curve which 

was used for calculation of protein concentration of the samples. 

Counting rates, as counts per minutes (cpm), were calculated from the 

Liquid Scintillation Counter. Routine quench determinations were 

carried out by the External Standard Channels Ratio Method using Cs-137. 

Net counting rates and standard deviations corrected for controls were 

calculated by appropriate computer programs. 

(c) COMPUTER PROGRAMS: A program for linear least square fitting 

was used for calculation of protein content in the samples (Wm. K. 

Bates, unpublished). Additional programs were used for calculation of 

the net counting rate and its standard deviation and for specific 

activities, 

(d) CONVERSION OF COUNTING RATE TO INTERNATIONAL ENZYME UNITS : 

Most of the graphs in Results Section are presented as counting 

rates.  This can be converted to International Enzyme Units (IEU) by the 

following formula: IEU - R x Mr x t  , where R is counting rate in 

cpm; Mr is the micromole of substrate per cpm; and t is reaction time, 

(10 minutes or as otherwise noted). Mr values for different substrates 

are listed in the following: 

Mr 

Substrate Symbo Is (Mi« :romoles/cpm, x 10" 6) 

Galactose-U-C-14 A-l 2.556 

Glucose-U-C-14 B-l 2.209 

Galactose-l-C-14 A-2 2.802 

Glucose-l-C-14 B-2 2.867 

Glucose-l-C-14 B-3 3.710 
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9.  ISOLATION OF MUTANTS 

Ultraviolet light was used as the mutagen.  Conidia obtained 

from 8 day old cultures of the 411-L5-A strain at a concentration of 
Q 

1 x 10 conidia /ml. (based on hemocytometer count) were placed in a 

Petri plate on a magnetic stirrer for exposure to ultraviolet light. 

Irradiation was done under a hood for twelve minutes. After irradia- 

tion, the conidial suspension was inoculated into a 500 ml. Erlenmeyer 

flask containing Fries minimal medium (Beadle and Tatum, 1945) with 

1% (W/V) galactose. This was shaken for five days at 30° C. During 

these days the wild types were filtered off as they germinated. Then 

the mutant spores were preserved by plating onto supplemented media 

(Tatum, et al., 1950). All plating media included 0.5 or 1% sorbose, 

which caused colonial growth of the mycelium (Tatum, et al., 1949). 

All the colonies germinating on the sorbose plates (about 600) were 

transferred to three inch slants containing Vogel's minimal medium, 

plus 1% glycerol, 0.5% yeast extract and 0.5% Bacto Casitone. After 

growth and conidiation, these isolates were tested on liquid minimal 

medium plus 1.5% galactose. The ones which did not grow or which 

showed reduced growth were retained for further study. These isolates 

were then grown on slants of Vogel's medium plus sucrose. Ability to 

produce galactokinase and glucokinase was then tested under different 

conditions using wild types 411-L5-A as control. 

10.  SEDIMENTATION VELOCITY STUDIES 

A Model L-2 Spinco preparative ultracentrifuge (Beckman 

Instruments, Inc., Spinco Division Palo Alto, California) with a 
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swinging bucket, rotor (SW-39) was used tor this study. Gradients were 

made by using a linear gradient former as described by Britten and 

Roberts (.I960; and moditied by Martin and Ames (,1961).  Both sucrose, 

5% (W/V; 0.146 M; and 20% (W/V; 0.548 M); and glycerol, 8.1% (W/V; 

0.88 M) and 33% (W/V; 3.58 M), in 0.05 M Tris-HCi buffer, pH 7.5, con- 

taining 10~2 M DTT were used in the study.  Linearity of the gradients 

was tested by adding methyl orange to the 20% sucrose solution used, 

and the absorbance ot test fractions was determined photometrically at 

505 mu.  Beet liver catalase, with a known sedimentation constant of 

11.3 S, was used as a standard. Catalase (Worthmgton; diluted 1/100 

with 0.05 M Tris-HCl buffer, pH 7.5) was dialyzed against 0.05 M Tris- 

HC1 buffer, pH 7.5. An aliquot of 0.02 ml. was applied to the top of 

the gradient, followed by 0.2 ml. ot sample. After centrifugation, the 

tube was punctured at the bottom, and fractions of eight drops each 

were collected at room temperature, then transferred to an ice bath. 

The tractions were analyzed for catalase, galactokinase and glucokmase 

activities.  Catalase activity was assayed by a photometric method, 

using H202 as substrate at 240 mjx  (Beers and Sizer, 1952). 

11.  GEL FILTRATION 

Sephadex G-75 or G-150 was packed in a column 28 cm. long and 

1.6 cm. in diameter. To prepare the column, the gel was allowed to 

swell m the eluant without DTT tor at least three days or heated in a 

boiling water bath for five hours followed by at least one overnight 

soaking. After the column was packed, a disc of Whatman No. 1 filter 

paper was placed on the surface ot the gel bed. The column was used 
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within one day after it was prepared.  The sample was applied to the 

top of the column directly or by layering under the buffer already 

present.  The sample was the 40% (W/V) ammonium sulphate precipitate, 

redissolved in buffer at a total volume of 1/10 that of the original 

crude extract. The eluant used was 10"2 M sodium phosphate buffer, pH 

7.7, containing 10 mg. of DTT per ml.  The efluent was collected 

manually into three inch tubes. Each fraction was 2 or 5 ml. and the 

flow rate is described for each experiment. 

12.  DISC ELECTROPHORESIS 

Disc electrophoresis was carried out as described by Davis 

(1964), except the lower gel had 1.0 to 1.5 mg. of DTT per ml. Running 

current was 3-2/3 milliamperes per tube. After electrophoresis, one 

gel was stained with amido black and de-stained with 7% acetic acid 

for protein analysis. The destained gel was then read in a recording 

densitometer with a light source collimated by a 0.1 millimeter slit 

and filtered through a #595 filter. Duplicate gels were sliced in 

1.6 millimeter slices.  Then the enzyme was extracted from each slice 

in 0.4 ml. of an equal volume mixture of buffer-metal ion mixture, 

DTT, and deionized water.  The tubes were covered with corks and were 

shaken at room temperature for one to two hours. After centrifugation 

at 5,000 rpm (3,020 x g) at 2° C, 0.09 ml. of supernate was transferred 

to the 0.06 ml. mixture of substrate and ATP used routinely for assay. 

The rest of the procedures were the same as that described in Section 6. 
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RESULTS 

1.  OPTIMUM CONDITIONS FOR ASSAY OF GALACTOKINASE AND GLUCOKINASE 

(a) pH. optimum:  Both galactokinase (using substrate A-l) and 

glucokinase (using substrate B-l) have pH optima at pH 8.5 in Tris-HCl 

buffer as shown in Figure la and lb. Therefore this was used routinely 

for assay of both enzymes. Citrate-phosphate buffer slightly inter- 

feres with the activity of both enzymes at pH 7.1, and glycine-NaOH 

buffer severely interfers with the activities at pH 8.5.  It seems 

that galactokinase and glucokinase reach their pH optima at pH 10.0 or 

greater in glycine-NaOH buffer. 

(b) ATP optimum:  Figure 2a shows that 5 micromoles and 4 micro- 

moles per ml, of reaction mixture are the optimal ATP concentrations 

for galactokinase (using substrate A-2) and glucokinase (using substrate 

B-2) respectively. The concentration used for both enzyme assays was 

16.5 mg./ral. stock solution which gave a final concentration of 5.3 

micromoles per ml, of reaction of mixture. 

(c) Magnesium optimum: Mg  ion is necessary for both galacto- 

kinase and glucokinase activities. Substrates A-2 and B-2 were used 

for the study.  Figure 2b shows that both enzymes have a broad Mg 

optimum, 7.5-22.5 micromoles of MgCl2.6H,,0 per ml. of reaction mixture, 

and a higher magnesium chloride concentration severely inhibits the 

phosphorylation reaction. 

(d) Studies of incubation time and concentration of extracts: 
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Figure 3 (substrate A-l) and Figure 4 (substrate B-l) show that 

dilutions of 1 to 5 of concentrated crude extract for galactoklnase and 

1 to 40 of concentrated crude extract for glucokinase were linear for 

10 minutes.  Therefore these were considered the most suitable concen- 

trations for the assay.  Similar studies of the partially purified 

enzymes eluted from Sephadex G-150 columns indicated that galactokinase 

could be assayed either undiluted or at a 1/2 dilution. Similarly, 

glucokinase requires a 1/10 or 1/20 dilution. These dilutions were 

therefore used for the assay, with 10 minutes incubation, for the 

partially purified enzymes. 

(e) Stablity of the enzymes: At 5° C galactokinase loses 

42% of its activity in 13 hours and 76% in 42 hours; similar studies 

showed no detectable loss of glucokinase activity during 103 hours. 

Additional thermostability studies (Figure 5) showed that glucokinase 

(substrate B-3 was used) is stable up to 40° C, but galactokinase 

(substrate A-2 was used) is very labile at this temperature.  Incuba- 

tion at 30° C for 10 minutes caused a loss of 10% of galactokinase 

activity. 

2.  INDUCTION 

The strains 411-L5-A, 425-L5-A, and 417-L5-a were wild types 

isolated by Bates and Woodward (1967).  Since these show improved 

glycerol growth characteristics, and have proven more suitable than 

other wild strains for beta-galactosidase induction studies, they were 

tested for production of elevated galactokinase and glucokinase levels 
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under  various  conditions tor  growth.    Micro diluted crude extracts were 

used  for galactoklnase  and  1/8 dilutions  of diluted crude extracts were 

used  for glucokinase.     Substrates A-2 or B-2 were used for  all these 

studies.    The  results are summarized in Tables  1,   2,  and  3.     These 

studies show that  the best  conditions  for elevated enzyme activities 

are 43 hours  growth on 0.018 M glycerol plus  1.5% galactose and 1 x 10"    M 

D-fucose In shaking culture.    Table  1 shows  the elevated  levels  ot 

galactoklnase on xylose;  on galactose,  xylose and D-fucose combinations; 

and on galactose,  xylose combinations.    According to Table  2,  galactose 

induced galactoklnase  about 3 to 6  times depending on the growth con- 

ditions.    Galactose did not induce glucokinase.     From Table  3 we can 

see that D-fucose slightly  elevated the levels of  both galactoklnase 

and glucokinase when present at  5 x 10~4 M to 1 x 10"    concentrations. 

The following conditions were selected for preparation ot 

adequate yields of  enzymes for  further  studies:     43 hours  growth on 

0.018 M glycerol plus  1.5% galactose in shaking  cultures. 

Figure 6 shows a comparison of specific  activities  of  galac- 

toklnase and glucokinase of  411-L5-A grown on 0.018 M glycerol plus 

1.5%  galactose as a function of  time of  growth.     Similar  cultures of 

411-L5-A grown on 4% galactose  in shaking and standing conditions were 

tested.    No significant  increase in the activities of both enzymes were 

observed. 

Mycelium of  411-L5-A grown on 0.018 M glycerol plus  1.5% galac- 

tose  for  43 hours  in shaking culture was examined for  distribution of 

enzymes between the soluble, extractable fraction and the cell debris. 



Table 1 

Galactokinase and Glucokinase levels in 411-L5-A grown in Standing Culture 

on Various Carbon Sources 

Experiment 
Number Sugars 

Growth 
Time 
(hours) 

Wet 
Weight 
(grams) 

Protein 
(mg./ml.) 

Specific Activities 
(units/mg. protein) 

Galactokinase 
x 10"4 

Glucokinase 
x 10"2 

48 1.5% Glucose 48 1.84 3.35 1.74 3.09 

48 1.5% Arabinose 96 1.24 3.92 1.26 2.19 

48 1.5% Xylose 96 2.50 3.02 6.99 2.21 

48 1.5% Glycerol 96 1.56 4.93 2.84 1.50 

48 1.5% Galactose 98 0.16 4.70 5.38 2.79 

48 1.5% Gly. + 1.5% Gal. 96 1.51 3.80 5.33 2.94 

50 
1.5% Gal. + 0.15% XyL 
+ 0.15% Fucose 72 0.82 6.95 15.50 2.43 

50 
1.5% Gal. + 0.15% Xyl. 
+ 0.15% Fucose 

97 0.71 7.10 7.14 2.09 

50 1.5% Gal. + 0.15% Xyl, 97 0.85 7.21 8.00 1.96 

51 
1.5% Gal. + 0.15% 

Fucose 
72 0.17 6.23 5.18 2.97 

51 
0.18 M Gly. + 0.15% 

Xyl. + 0.15% Fucose 
72 0.75 7.34 1.80 3.19 

51 
0.18 M Gly. + 0.15% 

Gal. + 0.15% Fucose 
72 0.72 7.74 1.62 2.99 

. 



Table 2 

Induction of Galactokinase and Glucokinase by Galactose in Shaking and Standing Culture 

Experi- 
ment 
Number 

Strains 

Sugars Growth 
Condi- 
tion 

Growth 
Time 
(hours) 

Wet 
Weight 
(grams) 

Protein 
(mg./ml.) 

Specific Activities 
(units/mg protein) Glycerol 

(M) 
Galactose 

(%) Galactokinase 

x 10-4 

Glucokinase 
x 10-2 

54 411-L5-A 0.018   Shaking 44 1.07 2.69 3.43 1.71 

54 411-L5-A 0.018 1.5 Shaking 44 4.17 4.17 13.10 3.08 

54 425-L5-A 0.018   Shaking 44 0.99 2.89 3.09 3.20 

54 425-L5-A 0.018 1.5 Shaking 44 2.74 4.94 9.29 2.86 

51 417-L5-a 0.18 — Standing 72 0.65 6.29 0.88 2.58 

51 417-L5-a   1.5 Standing 72 0.11 4.15 6.01 2. 70 

51 425-L5-A 0.18   Standing 72 0.58 6.73 1.12 3.21 

51 525-L5-A   1.5 Standing 72 0.18 7.21 6.79 2.40 

o 
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Figure 6 

Speciiii. Activities oi Galactokinase and Glucokinase ot 411-L5-A Grown on 0.018 M Giycerol 

Pius 1.5% Galactose as a Function ol Time ot Growth 

0 0  :  Specitic activity ol glucokinase 

«2i A. :  Specinc activity ot galactokinase 

f  :  Wet weight ot mycelium 
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Micro concentrated crude extracts were used.  Galactokinase was assayed 

directly trom both the soluble extracts and the resuspended debris, and 

glucokinase was assayed from 1/40 dilutions for soluble extracts and 

resuspended debris  Substrates of A-2 or B-3 were used and the studies 

are summarized in Table 4.  It is apparent from these studies that much 

of the galactokinase activity is associated with the cell debris and is 

slowly removed by repeated extraction.  Glucokinase is, in contrast, 

primarily a soluble enzyme. 

3.  TESTS OF MUTANTS 

The isolated mutants were tested on different sugars in 

standing culture as summarized in Table 5.  Substrate A-2 or B-2 was 

used. Although the isolates show some differences from wild type 

galactokinase levels, it is clear that none lack galactokinase 

activity. 

4.  SEDIMENTATION CONSTANTS 

Mycelium of 411-L5-A grown on 0,18 M glycerol plus 0.5 M 

galactose tor 48 hours was used for both galactokinase and glucokinase 

sedimentation studies on both sucrose and glycerol gradients (Figure 7) 

Beef liver catalase with a known sedimentation constant of 11.3 S was 

used as a reference protein.  Substrates A-l and B-l were used for 

galactokinase and glucokinase activity assays.  Sedimentation values 

of 3.67 S on sucrose gradients and 4.10 S on glycerol gradients were 

obtained for glucokinase, and at the same time sedimentation values of 

4.26 S on sucrose gradients and 4.34 S on glycerol gradients were 



Table 4 

Distribution ol Enzymes Between the Soluble, Extractable Fraction and the Cell Debris 

Samples Galactokinase 
Net Counting Rate, cpm 

Glucokmase 
Net Counting Rate, cpm 

First Extraction 
Soluble Extract 704.5 - 10.0 1158.8 - 14.4 

Resuspended Debris** 1459.6 ± 17.3 240.4 ± 5.8 

Second Extraction 
Soluble Extract 957.4 ± 12.4 211.6 ± 5.6 

Resuspended Debris 1235.7 -  15.1 50.0 - 4.3 

Third Extraction 
Soluble Extract 644.2 - 9.4 34.1 - 4.2 

Resuspended Debris 457.0 - 7.7 6.4 - 4.0 

Fourth Extraction 
Soluble Extract 166.1 - 5.2 -1.5 - 4.0 

Resuspended Debris 131.6 - 4.9 -20.7 - 3.9 

* Activity remaining in the supernant fraction after centrifugation at 15,000 rpm (27,000 x g) 
for 30 minutes 

_2 
** Debris was resuspended in the same sodium phosphate buffer containing 10  M DTT used for 

extraction.  The total volume of the resuspended debris was equal to that of the 
soluble extract. to 



Table 5 

Comparison of the Growth and of the Spcific Activities of Galactokinase and Glucokinase on 

Different Sugars in the 411-L5-A Strain and the Mutants (GKL-numbers) in Standing Culture 

Strain 

On 0.018 
% Growth 

of 
411-L5-A 
(a)-l 

M Glycerol for 72 Hours 
Specific Activities 
(units/mg. protein) 
Galacto- 
kinase, 
x It)"4 

Gluco- 
kinase, 
x 10"2 

On 1.5% Xylose for 48 Hours On 1.5% 
% Growth 

of 
411-L5-A 
(a)-2 

Specific Activities]% Growth 
(units/mg. protein)!   of 
Galacto-  Gluco-   411-L5-i 
kinase,  kinase,   (a)-3 

Xylose for 72 Hours 

x 10 -4 

Gluco- 
kinase, 
x 10-2 

Specific Activities 
(units/mg. protein) 
Galacto- 
kinase, 
x 10"4 

Gluco- 
kinase, 
x 10"2 

411- 
L5-A 100 0.64 2.25 100 0.81 2.10 100 3.64 2.44 

GKL-1 15 1.25 2.65 100 2.93 2.31 71 5.10 2.60 

GKL-3 61 0.81* 2.63 114 3.58 2.48 85 7.24 1.92 

GKL-6 86 0.39 2.60 100 2.31 2.21 94 2.7? 2.52 

GKL-7 65 0.35 2.00 104 1.17 1.89 83 2.04 2.40 

GKL-13 29 0.36 2.95 74 1.86 2.21 

GKL-14 82 0.69 1.78 102 1.02 2.35 88 1.85 1.73 

GKL-15 31 0.80 2.45 44 0.64 1.68 61 4.84 1.88 

GKL-16 56 0.59*    3.38* 

o> 



Table 5 Continued 

Strain 

On 1.5% Galactose for 96 Hours On 1.5% Xylose +1.5% Galactose for 72 Hours 
% Growth 

of 
411-L5-A 

(a)-4 

Specific Activities 
(units/mg. protein) 

%  Growth 
of 

411-L5-A 
(a)-5 

Specific Activities 
(units/mg. protein) 

Galactokinase 
x 10"A 

Glucokinase 
x 10-2 

Galactokinase 
x 10-4 

Glucokinase 
x 10-2 

411- 
L5-A 100 0.66 2.23 100 1.20 1.68 

GKL-1 «17     <  70 1.39(b)-3 1.85(b)-3 

GKL-3 < 17 10.10(b)-l 1.78 < 70 1.42(b)-3 1.95(b)-3 

GKL-6 39 5.08 2.15 101 0.61 2.10 

GKL-7 61 5.16 2.76 70 1.87 2.36 

GKL-13 96 5.04 2.38 78 1.36 1.96 

GKL-14 17     103 2.36 2.18 

GKL-15 « 17   34(b)-2     

GKL-16 < 17   24(b)-:     

(a) Wet weight of 411-L5-A: -1, 1.01 gram; -2, 0.50 gram; -3, 1.18 gram; -4, 0.23 gram; -5, 
0.67 gram. 

(b) Growth time, hours: -1, 113 hours; -2, 160 hours; -3, 97 hours. 

*  Protein was determined in trichloroacetic acid precipitates by the biuret method. 





Figure 7 

Sedimentation Velocities of Galactokinase and Glucokinase on Glycerol Density Gradients 

0 D :  Catalase 

0- -0  :  Galactokinase 

■+  :  Glucokinase 
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observed for galactokinase (33,000 rpm; 14.82 hours). 

The gradient forming apparatus used for these studies was de- 

signed to produce linear gradients.  Linearity was tested by forming 

some gradients with 5 x 10  methyl orange in the 20% sucrose solution. 

Fractions from the gradients were then read photometrically at 505 mu, 

and the linearity of the gradients was thus confirmed. 

5.  DISC ELECTROPHORESIS 

Mycelium of 411-L5-A, grown on 0.018 M glycerol plus 1.5% 

galactose for 43 hours, was used for the electrophoretic studies. A 

total of 0.33 mg. protein from crude extracts was applied to the gel. 

Duplicate samples were analyzed in each experiment. After the electro- 

phoresis, one gel was sliced and eluted for assay of activities using 

substrates A-2 and B-2 and using 20 minutes reaction time, and the 

other was stained for protein with amido black. Glucokinase was clearly 

identified:  it had a relative migration (Protein migration/Tracking 

dye migration) of 64.5%; the position is shown in Figure 8. Activity 

recovery from fractions 18 to 21 in this experiment was about 57%. 

Galactokinase activity could not be detected in these samples and 

therefore electrophoretic migration of this enzyme was not determined. 

Electrophoretic studies of glucokinase were repeated on ammonium 

sulphate precipitates (40% W/V, redissolved at 10 x concentration). 

One milligram of protein was applied to the gel. The migration of 

glucokinase in this preparation was the same as that observed from 

crude extracts.  Even with this increased enzyme concentration, 

galactokinase activity could not be detected after electrophoresis. 
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Figure 8 

Disc Electrophoresis of Glucokinase in Crude Extract 

   :  Protein (Amido Black Stain) 

0 0 :  Glucokinase activity 



42 

z x   aoNvauosav 

(OOlx uido)   31VU    ONIlNnOO 

i 



43 

Another experiment was carried out with carefully pre-cooled 

gels with current applied for 30 minutes prior to sample application 

to remove the ammonium persulphate in the gel. Also DTT was added to 

the running gel at a concentration of 1.5 mg./ml. and MCE was added to 

the upper buffer solution to a concentration of 5 mM in order to pro- 

tect the thiol groups in reduced form.  In addition, the upper spacer 

gel was omitted. The sample applied was partially purified enzyme from 

a lOx concentration of a 40% (W/V) ammonium sulphate precipitate, 

subjected to Sephadex G-150 gel filtration, and further concentrated 

by lyphogel before application. An aliquot of 0.1 ml. (0.788 mg. 

protein) was applied to the gel. Gel fractions were assayed for 

galactokinase only. No detectable activity was observed. 

6.  GEL FILTRATION PURIFICATION 

The behavior of galactokinase and glucokinase on Sephadex G-75 

and G-150 was studied.  The substrates used in these assays were A-2 

and B-2.  With G-75 Sephadex (Figure 9) the sample used was a 60% 

(W/V) ammonium sulphate precipitate redissolved in 1/5 the volume 

(5x concentration) of the original concentrated crude extract from 

411-L5-A mycelium grown on 0.018 M glycerol plus 1.5% galactose for 

43 hours. A 2 ml. aliquot was applied to the column, and 5 ml. 

fractions were collected at a flow rate of about 17 ml./hour. Protein 

was estimated by the absorbance at 280 mu at 1/100 dilution. A 

Sephadex G-150 column with a flow rate of about 12 ml./hour gave a 

better separation of galactokinase and glucokinase from other 

proteins. The sample applied was a lOx concentration from a 40% 
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Figure 9 

Galactokinase and Glucokina6e Activities from Sephadex 

G-75 Gel Filtration 

0 0  :  Galactokinase activity 

Glucokinase activity 

D- Absorbance at   280 mu 

COUNTING    RATE   (cpm  x100 ) 
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(W/V)   ammonium sulphate precipitate.     The maxium purification  obtained 

was   11.7  fold   for  galactokinase  and   4.2  fold for   glucokinase.     Another 

study  was  carried out on Sephadex G-150  (Figure  10).    The sample 

applied was a  dialyzed   lOx concentration  from a   40%   (W/V)   ammonium 

sulphate precipitate.     Dialysis was against 10~2 M sodium phosphate 

buffer,  pH   7.7,   containing  3 x 10~4 M DTT,  in the cold.     Buffer was 

changed one time,  and  total dialysis  time was  two hours.     The flow 

rate   from  the   column was  20 ml./hour.     The  protein was  estimated by 

both  biuret and  280 mu readings   (1/40 dilution). 

7.     KINETIC  STUDIES 

Partially purified preparations obtained  from Sephadex G-150, 

at a  flow rate of  12 ml./hour, were used for kinetic  study of 

galactokinase.     The concentration of  the substrate was controlled by 

direct dilution of   the  stock substrate  (A-2) solution.    A Michaelis 

constant,   Km,   of  5.8 x  10"4 M was obtained   (Figure 11). 

Fraction 12 in Figure 10 was used for the glucokinase kinetic 

study by using substrate B-3. The same substrate dilution procedure 

as used for galactokinase was used. The Michaelis constant, Km, was 

determined  to be 5.8 x  10~4 M  (Figure 11). 
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DISCUSSION 

Ihe preliminary studies of optimal conditions for assay of 

galactoklnase were very important In this project. Attempts to use the 

assay conditions developed tor bacterial galactokinases, without re- 

gard to concentrations of extracts, indicated that Neurospora crassa 

did not contain a detectable galactokinase.  However, after conditions 

were optimized such activity could be demonstrated in crude extracts 

as well as in partially purified preparations.  Early in this project, 

the optimized assay was used for determination of relative thermc— 

stabilities.  It soon became obvious that Neurospora crassa galacto- 

kinase is much more thermolabile than glucokinase from the same 

organism. The ability to determine these properties provided 

additional confidence in the validity of the assay procedure. 

The observation that glucokinase was easily extractable, but 

that galactoklnase was mainly retained in the cell debris suggested 

that galactoklnase may be bound to the cell wall or other organelle. 

This indicated, at an early stage of the project, that the glucokinase 

and galactokinase enzymes were different proteins, and not different 

activities of the same protein molecule. 

The technique of density gradient centrifugation allows a 

determination of sedimentation velocity based upon enzyme activity. 

Since this technique does not require the pure enzyme, we were able to 

determine the sedimentation constant in the crude extract. These 

ll 
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determinations indicated that the galactokinase and glucokinase are 

approximately 4 S molecules.  This suggests a molecular weight of 

approximately 50,000. 

By using ammonium sulfate fractionation and gel filtration, a 

partially purified preparation of both enzymes was obtained. The 

exclusion from Sephadex G-75 and the partial inclusion into G-150 was 

consistent with the molecular weight estimate obtained from the 

sedimentation velocity studies. 

The ability to obtain a partially purified preparation allowed 

the assay of galactokinase in a preparation free of low molecular 

weight contaminants. This greatly reduced the chance that the observed 

activity was an artifact of phosphorylation of sugars present in the 

extracts.  These partially purified enzymes were also used for studies 

of kinetic properties. 

Kinetic studies for both enzymes indicated that they have the 

same Km value of 5.8 x 10"4 M.  This may be compared to the values of 

7 x 10~4 M galactose for galactokinase from Escherichia coli obtained 

by Sherman and Adler (1963); 1 x 10"4 to 3 x 10~4 M galactose for 

galactokinase from pig liver obtained by Ballard (1966); 1 x 10" M 

glucose for glucokinase from Baker's yeast by Darrow and Colowick 

(1962); 2 x 10"2 M glucose for glucokinase from rat liver by Parry and 

Walder (1966); 8 x 10" 5 M glucose for glucokinase from Aerobacter 

aerogenes PRL-R3 by Anderson and Kamel (1966); 1.5 X 10"4 M glucose 

for glucokinase from yeast by McDonald (1955).  Although the Km values 

identical for galactokinase and glucokinase from Neurospora crassa, are 
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the amounts of   the  two activities are quite different.    Crude extracts 

contain glucoklnase activity approximately 23  times that of   the  total 

extractable  galactokinase activity. 

In electrophoresls studies  the migration of   glucoklnase was 

clearly demonstrated  in  the gels.     Galactokinase,  however,  could not 

be demonstrated.     In view of  the thermolability of  galactokinase,   it 

is  likely  that most of   the activity was  lost during the separation. 

The attempt  to  obtain mutants deficient  in galactokinase 

activity were   successful  to   the   extent  that some mutants  showed   a 

sharply  reduced  rate of   growth on galactose.    These isolates, however, 

still retained significant  levels of  galactokinase activity and were 

therefore not  suitable  for a direct gene-enzyme study.    From the growth 

studies of  these mutants,  it appears  that  glucoklnase,   like the D- 

glucokinase  in Aerobacter aerogenes PRL-R3  (Anderson and Kamel,   1966), 

is a constitutive enzyme,  as its  level remains about  the same whether 

the cells are grown on glucose,  galactose, xylose,  or glycerol.     This 

suggests that galactokinase and glucoklnase are controlled by  two 

different genes. 

The general question of   separate  identity  of  the two enzymes 

cannot be answered on  the basis of   the data presented  in this  thesis. 

The similar  sedimentation and gel filtration characteristics demonstrate 

that  If  the  two activities  are associated with different proteins,   the 

two are almost   identical in size.     The different   extraction properties 

support the  conclusion that  these are two different proteins,  but it 

could be argued  that   galactokinase is activated,   or glucoklnase  is 

inhibited when attached  to the  cell debris. 

■   
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The indications that galactokinase and glucokinase in Neurospora 

crassa are two different proteins are consistent with observations in 

other organisms, in which each activity is associated with a single 

protein.  It is clear that the two proteins must have very similar 

properties. 

This study suggests that further work with preparative disc 

electrophoresls, on DEAE ion exchange separation, and on further 

purification would be valuable.  Such studies could provide conclusive 

evidence of whether different proteins are involved.  Similar studies 

of related enzymes of galactose metabolism would also be valuable, in 

view of the importance of galactose derivatives in the Neurospora 

crassa cell wall structure. 

. 
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SUMMARY 

The  studies  described   in this   thesis  have demonstrated   the 

existence of  the enzyme galactokinase  (ATP:     D-galactose 1-phospho- 

transferase,   EC No.   2.7.1.6)   in extracts prepared  from mycelium of  the 

fungus Neurospora crassa.    This enzyme was found to have maximal 

activity at  pH 8.5  in Tris-HCl buffer,  and optimal concentrations of 

magnesium chloride and adenosine triphosphate were determined. 

An important  part  of  the study was comparison of  the galacto- 

kinase enzyme with  the closely related enzyme  glucokinase  (ATP:    D- 

glucose 6-phosphotransferase,   EC No.   2.7.1.2)   from Neurospora. 

Glucokinase was found to be much more thermostabile  than galactokinase, 

and both enzyme activities sedimented at the  rate of  approximately 4 S 

on glycerol  or  sucrose gradients in the preparative ultracentrifuge. 

Electrophoretic analysis of  extracts  containing both enzyme 

activities  clearly demonstrated  the migration pattern of glucokinase, 

but  galactokinase was inactivated during this  separation procedure. 

This electrophoretic study therefore provided  no evidence concerning 

the separate  identity of  the proteins  associated with the two 

activities.     The process of  extraction of  protein from the mycelium, 

however,  demonstrated that glucokinase is freely extractable,  but a 

large portion of  the total galactokinase activity is associated with 

some insoluble component of  the cell debris.     This suggests  that 

separate proteins provide the two enzyme activities, but  the evidence 
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on this point is not definitive because of the possibility of activa- 

tion, inhibition, or steric effects associated with attachment to a 

cellular organelle. 

A purification of galactokinase of approximately 12-fold was 

obtained by salt fractionation and gel filtration, and this partially 

purified preparation was used for kinetic studies.  In this way a 

Michaelis constant of 5.8 x 10" Molar galactose was determined for 

Neurospora galactokinase.  Comparative studies of glucokinase 

demonstrated a Michaelis constant of 5.8 x 10  Molar glucose. 

From these studies it is obvious that Neurospora crassa produces 

a galactokinase enzyme. This enzyme is present in crude extracts in 

an amount approximately h%  of the level of glucokinase. Although 

glucokinase and galactokinase could be separate activities of a single 

protein, the evidence suggests that these are separate, but very 

similar, proteins. 
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