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Abstract: 

Purpose/Objectives: To introduce the use of a statistical technique known as multilevel growth-curve analysis 

and illustrate how the method can be advantageous in comparison with traditional repeated measures for the 

study of trajectories of signs and symptoms in individual patients over time.  

Data Sources: Data were derived from use of the technique in a randomized clinical trial of a 

psychoeducational intervention to reduce severity of oral mucositis and oral pain.  

Data Synthesis: The development of new biologic models that seek to explain clustering of signs and 

symptoms or the appearance and resolution of signs and symptoms motivates the need to use more sophisticated 

statistical techniques to test such models.  

Conclusions: The application of multilevel growth model to an existing data set demonstrates that the model 

can be effective in the study of individual differences in trajectories of change in signs and symptoms.  

Implications for Nursing: This method for the study of changes in patients' signs and symptoms over time can 

be of particular interest to nursing, both from a clinical point of view and as a way to test theoretical models that 

have been proposed to capture patient experiences with signs and symptoms. 

 

Article: 

The study of symptom clusters has become an important focus of oncology nursing research (Barsevick, 2007). 

Concurrently, longitudinal studies of clinical phenomena in which individuals are measured across time have 

become common. As the study of symptom clusters has matured, research has evolved beyond describing 

symptom clusters to questioning the underlying processes that lead to symptom clusters. These changes in 

research foci have led to biologic models of symptom clustering (Lee et al., 2004; Sonis, 2004a, 2004b) and a 

need for sophisticated statistical methods to test such models.  

Lee et al. (2004) proposed a general inflammatory model in which cancer therapies (chemotherapy or 

radiotherapy) lead to the release of cytokines that, in turn, generate specific clusters of symptoms in patients 

receiving treatment. In a model specific to oral mucositis (OM), Sonis (2004b) proposed a pathobiologic model 

of OM that models the development and resolution of that serious side effect of cancer therapy. Linkage of 

these models and related models represents an important development in symptom cluster research. Both of the 

biologic models propose a longitudinal chain of processes that underlie the clinical phenomena under study. For 

the science to progress, researchers must use statistical methods that can appropriately model individual 

trajectories of change, capture interindividual variability in change over time inherent in the models, and model 

factors that explain that variation.  

The traditional repeated-measures analysis of variance (ANOVA), which uses ordinary least-squares estimation, 

has long been the mainstay for statistical analyses of longitudinal clinical trials with continuous outcomes 

(Maxwell & Delaney, 2004). Repeated-measures ANOVA is highly effective in studying mean change and 
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treatment group differences in mean change over a limited number of occasions with balanced data. However, it 

is less useful for the study of interindividual variability in trajectories of change that practitioners commonly see 

in clinical settings, specifically in the context of signs and symptoms related to cancer treatment. An alternative 

to traditional repeated-measures ANOVA is one of several growth-curve modeling approaches to examine 

interindividual variability in trajectories of change. One commonly used method is the multilevel growth model 

in which observations (sign or symptom severity) over time are "nested" within a patient. The patient's 

trajectories of change then are linked to patient-related characteristics (e.g., age, gender) or treatment-related 

characteristics (e.g., radiation dose) that can be thought of as correlates of change.  

The purpose of this article is to introduce growth-curve modeling of longitudinal data via the use of multilevel 

modeling and to illustrate the advantages of multilevel modeling with longitudinal clinical data over the 

traditional repeated-measures ANOVA model. It focuses on inter individual differences in trajectories of OM, a 

significant side effect of cancer therapy (Peterson, Keefe, Hutchins, & Schubert, 2006; Sonis et al., 2004).  

Oral Mucositis  

The current pathobiologic model of OM supports variations in clinical expression and is supported by 

substantial basic and clinical research (Sonis, 2002). Multilevel growth-curve models have the potential to 

integrate patient-based variations in clinical expression of OM within the pathobiologic model. Selected patient 

cohorts, including those receiving head and neck radiation (Elting, Cooksley, Chambers, & Garden, 2007) or 

hematopoietic stem cell transplantation (HSCT) (Sonis et al., 2004), typically demonstrate predictable peaks 

and troughs in severity of OM. However, distinct differences in the expression of signs and symptoms often 

occur across patients, even among those receiving similar treatment regimens, such as high-dose chemotherapy 

in preparation for stem cell transplantation. The variation may be seen in different trajectories of oral mucosal 

injury over time (the peaks and troughs noted previously) across individual patients. Such variation can include 

incidence and duration of clinically significant oral mucosal injury and can affect dose delivery of multi-cycle 

chemotherapy (Peterson, Jones, & Petit, 2007). In addition, the number of patients with solid tumors who 

experience OM is substantially higher than the number of patients undergoing head and neck radiation and 

HSCT combined (Avritscher, Cooksley, & Elting, 2004; Elting et al., 2003). In this model, clinical changes in 

oral tissue occur because of an underlying biologic process; also, individual trajectories of change are quite 

variable, and the variability may be the result of a host of patient-related (e.g., age, oral health) and treatment-

related (e.g., type of treatment regimen) factors. To test model-related hypotheses, a statistical model must 

quantify individual trajectories of change and correlate the trajectories to patient-related and treatment-related 

variables. It also must have the potential to relate changes in one sign or symptom to patterns of change in other 

signs or symptoms (as a researcher might do in a study of symptom clustering over time). The multilevel 

growth model discussed in this article is one statistical model that is consistent with those requirements.  

Multilevel Growth Models  

Multilevel Growth Models in the Study of Oral Mucositis  

A need exists for novel analytic approaches designed to integrate the modeling of OM among individual 

patients, vis-a-vis the collective patient experience, by quantifying individual trajectories of oral mucosal injury 

over time. As more and more researchers employ repeated-measure, longitudinal designs to study cancer signs 

and symptoms, the authors anticipate that the availability of longitudinal data will create a shift toward the use 

of new models for the study of change. The technique described in this article, multilevel growth-curve 

modeling, is one commonly used approach to the study of change over time.  

Multilevel growth-curve modeling also can contribute to an enhanced understanding of the OM experience 

within a constellation of signs and symptoms in patients undergoing high-dose cancer therapies. The concept of 

symptom clusters has emerged as an important paradigm in oncology (Barsevick, 2007; Dodd, Miaskowski, & 

Paul, 2001; Kim, McGuire, Tulman, & Barsevick, 2005; Lee et al., 2004; Miaskowski & Aouizerat, 2007). In 



that context, OM pathogenesis and clinical outcomes could be contributory to, or an outcome of, molecular-

based toxicities such as fatigue associated with tumor necrosis factor-[alpha], interleukin (IL)-6, IL-8, and 

epidermal growth factor (Lee et al.). The symptom clusters can exhibit considerable variation across patients 

with cancer, even among those receiving comparable treatment regimens. Multilevel growth-curve modeling 

may help to elucidate and integrate data on OM with data related to the collective symptom experience across 

patients.  

Statistical Basis  

The methods presented herein are based on the seminal work by Bryk and Raudenbush (1992) and subsequent 

work of numerous methodologists (Curran, 2000; Singer & Willett, 2003; Verbeke & Molenberghs, 2000). A 

number of approaches to growth-curve modeling exist. Multilevel growth-curve modeling is used commonly 

because it is generalizable to other approaches, such as individual growth-curve modeling or latent curve 

growth-curve modeling. The approaches share a common statistical model discussed in detail later.  

As the name suggests, a multilevel model consists of a number of hierarchically nested regression models in 

which model parameters (i.e., regression coefficients, standard errors, variance components, and covariance 

components) are computed simultaneously. Typical longitudinal multilevel modeling involves two different 

levels of equations: level 1 and level 2. The level 1 equations capture within-subject variability, in this case 

individual change over time, whereas level 2 equations capture between-subject variability. The authors 

describe both levels of equations in the following sections. After the authors present the statistical model, they 

discuss how the statistical model relates to the symptom experience over time in a sample of patients.  

Level 1 equations: In the level 1 equation, each individual subject's change over time is a separate regression 

equation. In other words, each subject's outcome on the dependent variable(s) (erythema and pain in this 

example) is regressed onto the variable of time of measurement (e.g., day 1, day 2, day 3). The result is a 

regression equation (which may be linear or nonlinear) that represents each individual subject's growth curve. 

The coefficients that make up the regression equation are the individual subject's growth-curve parameters. 

With standard Cartesian coordinates, the Y intercept is the value in the outcome variable where the growth 

curve (either individual or group mean) intersects the abscissa axis (typically at a baseline day = 0). The linear 

rate of growth is termed slope, which is the amount of change in the dependent variable per unit of time. A 

quadratic term describes the amount of acceleration or deceleration (nonlinear increase or decrease) of the same 

dependent variable per unit of time squared.  

Equation 1 is the general level 1 regression equation that captures individual change over time in some outcome 

(in this case, the authors used erythema to illustrate the process). Unlike repeated-measures ANOVA, which 

aggregates information and loses individual differences, multilevel models retain individual information and 

develop separate regression equations for each subject. The subscript "i" indicates an individual. The subscript 

"t" indicates time, which could be actual days from a baseline zero or, as more commonly encountered in 

clinical research, an ordinal series of time (e.g., first treatment, second treatment).  

Equation 1: [Y.sub.ti] = [[pi].sub.0i] + [[pi].sub.1i] [[alpha].sub.ti] + [[pi].sub.2i] [[alpha].sub.ti.sup.2] + 

[[epsilon].sub.ti]  

From equation 1, [Y.sub.ti] is subject i's erythema score at measurement t; [a.sub.ti] is the day of measurement 

postchemotherapy (e.g., 0, 1, 2, 3) for the erythema score and represents linear change. The 

[[alpha].sub.ti.sup.2] term is the time of measurement squared and represents curvilinear change over time. 

[[epsilon].sub.ti] is the difference between the observed erythema score at time t for subject i ([Y.sub.ti]) and 

the predicted erythema score. [[epsilon].sub.ti] is a residual value that indicates an individual subject's 

variability. Because the authors must estimate a separate level 1 equation for each subject, the timing of 

measurement occasions and the number of measurement occasions may vary over subjects. Thus, multilevel 

models can handle unbalanced designs as opposed to traditional repeated-measures ANOVA. Unbalanced 



designs refer to data collection processes in which the number of measurement occasions differs from one 

patient to another. The discrepancy may be a result of missing data or duration of treatment regimen conditions 

that often are encountered in longitudinal clinical studies. The ability to handle varying times of measurement 

and number of measurement occasions is critical in the longitudinal study of clinical phenomena.  

Each subject's level 1 equation, called a growth curve, consists of a function of growth parameters: a Y 

intercept, [[pi].sub.0i]; a slope, [[pi].sub.1i]; a quadratic term, [[pi].sub.2i]; and an error term, [[epsilon].sub.ti]. 

The Y intercept, [[pi].sub.0i], is an individual subject i's predicted erythema score where time is zero (i.e., 

[a.sub.ti] = 0). Y intercepts are estimated and interpreted where the other variables in the equation are set to zero 

(Biesanz, Deeb-Sossa, Papadakis, Bollen, & Curran, 2004; Cohen, Cohen, West, & Aiken, 2003; Wainer, 

2000). The linear change rate, or slope of the growth curve for individual subject i, is [[pi].sub.1i]. The slope is 

the predicted linear rate of change in erythema scores per unit of time, t. In the quadratic model, the slope has a 

special meaning. It is the rate of change at the intercept. That is, it is the slope of the line passing through the 

intercept and tangent to the curve represented by the quadratic term (Singer & Willett, 2003). The quadratic 

growth parameter for subject i is [[pi].sub.2i], and it is the rate of acceleration (or deceleration if negative) in 

erythema scores per unit of time squared, [t.sup.2].  

 

 

To illustrate the Y intercept and slope concepts, Figure 1 shows a linear growth curve fitted to a hypothetical 

subject's erythema scores for the first four time points (day 0, day 1, day 2, and day 3) using the equation 

described earlier. For simplification purposes, the figure does not show the quadratic term. The circles represent 

the measured erythema score at days t = 0, 1, 2, and 3, and the dotted line is the subject's growth curve. The Y 

intercept, [[pi].sub.0i]; slope, [[pi].sub.1i]; and residuals, [[epsilon].sub.ti], for the subject's growth curve are 

labeled.  

Level 2 equations: Estimation of the growth parameters (i.e., intercept, slope, and quadratic term) in level 1 

equations involves a different set of regression equations. Each growth parameter is modeled by a regression 

equation that captures the population main effect plus the variability resulting from each individual. The level 2 

equations for the current example consist of three regression equations. As shown here, equation 2 examines 

subjects' intercept values, equation 3 estimates subjects' linear slope parameter values, and equation 4 estimates 

subjects' quadratic parameter values.  

Equation 2: [[pi].sub.0l] = [[beta].sub.00] + [[mu].sub.0l]  

Equation 3: [[pi].sub.1l] = [[beta].sub.10] + [[mu].sub.1l]  

Equation 4: [[pi].sub.2l] = [[beta].sub.20] + [[mu].sub.2l]  

Recalling equation 1,  

[Y.sub.ti] = [[pi].sub.0l] + [[pi].sub.1l] [[alpha].sub.tl] + [[pi].sub.0l] [[alpha].sub.tl.sup.2] + [[epsilon].sub.tl]  

the authors substitute the [beta]s and [mu]'s for the growth parameters to yield equation 5.  

[Y.sub.ti] = ([[beta].sub.00] + [[mu].sub.0l]) + ([[beta].sub.10] + [[mu].sub.1l])[[alpha].sub.tl] + ([[beta].sub.20] 

+ [[mu].sub.2l]) + [[epsilon].sub.tl]  

Figure 2 shows a hypothetical grand mean linear growth curve shown as a solid line with the individual 

subject's growth curve shown as a dashed line. The coefficients of the level 2 equations are labeled.  



Figure 2 illustrates the relationship between the individual's trajectory of erythema and the mean (across all 

individuals) trajectory of erythema. In the figure, the dashed line is identical to the line portrayed in Figure 1. 

The solid line in Figure 2 portrays the mean trajectory, and the parameters of interest include the parameters for 

the mean trajectory (the [beta] terms) as well as the parameters for the deviation of the individual from the mean 

(the [mu] terms). The parameters are described in the following sections.  

[beta]-terms fixed effects: Three [beta] terms exist: [[beta].sub.00], [[beta].sub.10], and [[beta].sub.20]. In 

repeated-measures ANOVA terminology, the terms represent population main effects. In growth-modeling 

terminology, [[beta].sub.00] is the grand mean intercept. The interpretation of this mean intercept for growth 

modeling is different from repeated-measures ANOVA, which interprets the intercept as the value aggregated 

across all subjects and all time points. Therefore, it is the average value of erythema regardless of time. For 

growth modeling, the intercept typically is set to represent the initial or beginning value of the dependent 

variable at time 0 ([[alpha].sub.ti] = 0). The statistical testing of [[beta].sub.00] determines whether the intercept 

value differs from zero. Other interpretations of the intercept can be accomplished by centering the data on a 

time point that is not zero. For example, if the time variable was centered on the mean time value, in the current 

example 1.5 days ([[alpha].sub.ti] = 1.5), then the intercept would be consistent with the repeated-measures 

ANOVA results, because the mean intercept value would be calculated at the mean time value. [[beta].sub.10] 

is the grand mean slope, or average linear rate of change per unit of time for the population growth curve. 

Testing [[beta].sub.10] against zero is similar to orthogonal linear contrasts in repeatedmeasures ANOVA 

terminology (Biesanz et al., 2004). [[beta].sub.20] is the grand mean quadratic term, or average change in slope 

value per squared unit of time.  

[mu]-terms random effects: Figure 2 illustrates two random coefficients: [[mu].sub.0i] is the random coefficient 

for the intercept, whereas [[mu].sub.1i] is the random coefficient for slope. The term [[mu].sub.0i] is the 

difference between the individual's Y intercept ([[pi].sub.0i]) and the overall grand mean intercept 

([[beta].sub.10]), whereas the term [u.sub.1i] is the deviation between the individual's slope and the overall 

grand mean slope ([[beta].sub.10]). Referring to Figure 2, the individual's Y intercept is higher than the grand 

mean intercept, whereas the individual's slope is shallower than the grand mean slope.  

Each individual has his or her own random coefficient [[mu].sub.0i] and [[mu].sub.1i] terms. The statistical 

testing of the variability of the terms is the key difference between multilevel modeling and traditional repeated-

measures ANOVA. If statistically significant variability exists in any of the growth parameters (intercepts, 

slopes, and quadratic terms), a researcher can add predictor variables to the level 2 equations to explain the 

variability. The ability to use patient-level predictor variables allows multilevel models to explore individual 

differences.  

 

 

Using Raudenbush amd Bryk's (2002) terminology, a model that describes the variability among growth 

parameters without predictor variables is called an unconditional model. An unconditional model that adds 

predictor variables to explain any significant variance in growth parameters is called a conditional model. The 

authors present a numerical example of unconditional and conditional growth modeling in the next section.  

Relationship of the Statistical Model to Clinical Phenomena  

The model discussed earlier is a representation of how a sample of patients might change over time with regard 

to a single sign or symptom. The level 1 model captures the process of change in an individual. What clinicians 

might see as an absence of a sign or symptom at the start of therapy followed by a rapid development and 

resolution of erythema for a given patient would be captured as growth parameters for that patient. The 

parameters would indicate an intercept of zero and a quadratic term that is highly negative (the slope term is 

less important in a quadratic model than in a linear model). Just as each patient might show a different pattern 

of rise and fall of erythema, the level 1 parameters (the Y intercept, [[pi].sub.0i]; slope, [[pi].sub.1i]; and 



quadratic term, [[pi].sub.2i]) would differ. In addition, if the clinical phenomena were known to show a variable 

expression, a researcher would expect that the measures on individual variability in the statistical model (the 

[mu] terms discussed earlier) would show a high degree of variability. Finally, just as a clinician might see that 

the progression of erythema could differ depending on gender or previous history, the conditional model 

discussed earlier could test that association. In those ways, the statistical model can be congruent with the 

clinical picture and can serve as a rigorous test of hypotheses that are developed from clinician experiences or 

from a biologic model such as that proposed by Sonis (2004a). Thus, with an appreciation of the fundamentals 

of growth-curve modeling, researchers can formulate questions about changes in signs or symptoms in a more 

rigorous fashion and develop hypotheses that can be subjected to statistical analyses.  

Example of Growth-Curve Modeling Using Oral Mucositis and Pain Data  

Parent Study  

To illustrate the growth-curve modeling approach to studying change over time, the authors employed 

individual growth-curve modeling to clinicians' observational ratings of erythema and patients' self-reported 

ratings of oral pain, the defining components of OM (McGuire et al., 1993). In the parent study (McGuire, 

Yeager, et al., 1998), a sample of 153 patients received high-dose chemotherapy in preparation for bone marrow 

or stem cell transplantation (n = 133) or for leukemia induction therapy (n = 20). Although the study was a 

randomized clinical trial testing the effects of a psychoeducational intervention for reducing duration and 

severity of OM and pain, data from the experimental and usual control groups were aggregated for the purposes 

of this analysis. After patients completed chemotherapy, researchers collected data from patients in their 

hospital rooms on designated study days (three times per week) in a manner designed to capture developing, 

peaking, and resolving OM and pain. Trained nurses and a dentist conducted observational ratings of OM 

(including erythema) using the 20-item Oral Mucositis Index (McGuire et al., 2002). Patients self-reported 

ratings of oral pain using the Brief Pain Inventory (Cleeland, 1989). The erythema score was computed as the 

mean of severity of erythema (rated on a scale ranging from 0 [normal] to 3 [severe] across nine sites in the 

mouth [upper and lower labial mucosa; right and left buccal mucosa; dorsal, lateral, and ventral tongue; floor of 

the mouth; and soft palate]). Erythema and oral pain scores were similar to total average scores reported in 

earlier studies (McGuire et al., 1993; Schubert, Williams, Lloid, Donaldson, & Chapko, 1992). The focus here 

is on erythema as opposed to ulceration because ulceration was less prominent than erythema in the parent 

study data.  

Modeling  

The unconditional and conditional growth-curve models were estimated, as recommended by Byrk, 

Raudenbush, and Congdon (2002). In the process, the researchers estimated a quadratic form of the trajectories 

of erythema over eight time points that were defined as study days. The quadratic form was chosen because 

previous reports of OM have indicated this type of trajectory (McGuire et al., 1993; Sonis, 2004a; Woo, Sonis, 

Monopoli, & Sonis, 1993). Models were conducted with no centering, so the intercept is equivalent to the level 

of erythema and pain at the beginning of the study, the linear slope indicates the rate of change per unit of time, 

and the quadratic term indicates the curvature (acceleration or deceleration) of erythema and pain scores.  

The first analysis conducted was an unconditional model to inferentially test that the intercept, slope, and 

quadratic terms were different from zero and to investigate whether the individual differences in the growth 

parameters had sufficient variability. The second analysis consisted of adding the predictor variable of gender to 

explain residual variance (variability), thus creating a conditional model. The models' equations with intercept, 

linear, and quadratic parameters for erythema are shown next. Parameter estimates for both erythema and self-

reported OM pain are shown in Table 1.  

 

Table 1. Results for Unconditional and Conditional Growth Models of 



Erythema 

  

                    Unconditional Model  Conditional Model 

  

Fixed Effect          Estimate     SE      Estimate     SE 

  

[[beta].sub.00] =    0.0313      0.0275   0.0322      0.0276 

intercept 

  

[[beta].sub.10] =    0.0433 ***  0.0122   0.1158 ***  0.0151 

slope 

  

[[beta].sub.20] =   -0.0065 ***  0.0006  -0.0052 ***  0.0007 

quadratic 

  

[[beta].sub.11] =       --         --     0.0638 **   0.0215 

gender (slope) 

  

[[beta].sub.21] =       --         --    -0.0030 **   0.0010 

gender (quadratic) 

  

Random Effect       Variance Component   Variance Component 

  

[[mu].sub.1i]         [[tau].sub.11] =     [[tau].sub.11] = 

                         0.0150 ***           0.0141 *** 

  

[[mu].sub.21]         [[tau].sub.22] =     [[tau].sub.22] = 

                         0.0000 ***           0.0000 *** 

  

[[epsilon].sub.ti]   [[sigma].sup.2] =    [[sigma].sup.2] = 

                         = 0.1678              = 0.1682 

  

* p < 0.05; ** p < 0.01; *** p < 0.001 

  

SE--standard error 

Level 1: [Y.sub.ti] = [[pi].sub.0l] + [[pi].sub.1l] [[alpha].sub.tl] + [[pi].sub.2l] [[alpha].sub.tl.sup.2] + 

[[epsilon].sub.tl]  

Level 2: [[pi].sub.0l] = [[beta].sub.00] + [[mu].sub.0i]  

[[pi].sub.1l] = [[beta].sub.10] + [[mu].sub.1l]  

[[pi].sub.2l] = [[beta].sub.20] + [[mu].sub.2l]  

Unconditional model results: The model for erythema demonstrated no centering of data, which allowed 

[[beta].sub.00] to represent the mean intercept at the beginning of the study. The estimate [[beta].sub.00] = 

0.0313 was not statistically significant from zero (i.e., patients began the study with no erythema on average). 

[[beta].sub.01] was the mean linear rate across time, and the estimate [[beta].sub.00] = 0.1433 was statistically 

significant from zero, indicating an increase in erythema at the outset of the study. The estimate [[beta].sub.20] 

= -0.0065 was negative and differed significantly from zero, indicating that, on average, subjects' erythema first 

rose and then declined (recall that the quadratic term is a nonlinear change, which can be seen by the downward 

curvature of erythema scores in Figure 3). Similar results were obtained with unconditional modeling of self-

reported OM pain over time (see Table 2). Thus, in erythema and oral pain, the overall process of change was 

similar, the intercept was zero, severity increased at the start of the study, and resolution (or partial resolution) 

occurred as the study progressed.  

 



Table 2. Results for Unconditional and Conditional Growth Models of 

Self-Reported Oral Pain From Mucositis 

  

                    Unconditional Model   Conditional Model 

  

Fixed Effect         Estimate      SE      Estimate     SE 

  

[[beta].sub.00] =    0.0570      0.0984   0.0586      0.0985 

intercept 

  

[[beta].sub.10] =    0.4193 ***  0.0400   0.6993 ***  0.1165 

slope 

  

[[beta].sub.20] =   -0.0206 ***  0.0020  -0.0349 ***  0.0059 

quadratic 

  

[[beta].sub.11] =      --          --    -0.1780 *    0.0696 

gender (slope) 

  

[[beta].sub.21] =      --          --     0.0091 *    0.0036 

gender (quadratic) 

  

Random Effect       Variance Component   Variance Component 

  

[[mu].sub.1i]        [[tau].sub.11] =      [[tau].sub.11] = 

                        0.1471 ***            0.1403 *** 

  

[[mu].sub.21]        [[tau].sub.22] =      [[tau].sub.22] = 

                        0.0003 ***            0.0003 *** 

  

[[epsilon].sub.ti]  [[sigma].sup.2] =     [[sigma].sup.2] = 

                        = 2.1893              = 2.1933 

  

* p < 0.05; ** p < 0.01; *** p < 0.001 

  

SE--standard error 

 

 

Investigation of the variance components among subjects' linear slope and quadratic random effects (i.e., 

[T.sub.11] and [T.sub.22]) revealed that both the linear slope and quadratic random effects differed significantly 

from zero, indicating variability in linear growth rates and quadratic effects among subjects that may be 

accounted for by additional predictor variables. The nonsignificant random effect of intercept indicates no 

variability in initial levels of erythema that could be accounted for by predictor variables. Thus, the random 

effect for intercept was dropped from the unconditional and conditional model. Explaining the significant 

variance among subjects' growth parameters (e.g., linear slope, quadratic effect) demonstrates how growth 

modeling better represents individual differences in forms of change over time compared to repeated-measures 

ANOVA approaches.  

Conditional model results: By adding the predictor variable of gender to the unconditional model for erythema 

and pain, the researchers obtained the following equations.  

Level 1: [Y.sub.ti] = [[pi].sub.0l] + [[pi].sub.1l] [[alpha].sub.tl] + [[pi].sub.2l] ([[alpha].sub.tl.sup.2]) + 

[[epsilon].sub.tl]  

Level 2: [[pi].sub.0l] = [[beta].sub.00]  

[[pi].sub.1l] = [[beta].sub.10] + [[beta].sub.11] (gender) + [[mu].sub.1l]  



[[pi].sub.2l] = [[beta].sub.20] + [[beta].sub.21] (gender) + [[mu].sub.2l]  

 

 

For the conditional model, gender was coded as female = 0 and male = 1. Like the unconditional model, no 

centering of data occurred, which allowed [[beta].sub.00] to represent the mean intercept at the beginning of the 

study. Investigation of the conditional erythema model indicated that, similar to the unconditional model for 

erythema, the estimate [[beta].sub.00] = 0.0322 was not statistically significantly different from zero. 

Interpreting the other growth parameters requires some care. [[beta].sub.10] was the mean linear rate across 

time when gender = 0 (i.e., female), and the estimate [[beta].sub.01] = 0.1158 was statistically significantly 

different from zero. The estimate [[beta].sub.20] = -0.0052 was the average curvature when gender = 0 (female) 

and was significantly different from zero. [[beta].sub.11] = 0.0638 was the additional linear slope when gender 

= 1 (male) and was significantly different from zero. The additional linear slope effect for being male is 

illustrated in Figure 4, where the males show a faster rise in erythema severity than females. The estimate 

[[beta].sub.21] = -0.0030 was the additional quadratic estimate when gender = 1 (male) and was significantly 

different from zero. The additional quadratic effect for being male also is illustrated in Figure 3, where the 

males show a sharper decline in erythema severity past the zenith (i.e., more curvature). Investigation of the 

variance components among subjects' linear slope and quadratic random effects (i.e., [[tau].sub.11] and 

[[tau].sub.22]) revealed that both the linear slope and quadratic random effects differed significantly from zero, 

indicating variability in linear growth rates and quadratic effects among subjects that may be accounted for by 

additional predictor variables besides gender. Self-reported ratings of oral pain showed very similar results; the 

growth parameters are included in Table 2.  

 

Discussion  

This article delineates the utility of multilevel growth-curve modeling to the study of change over time. The 

authors demonstrated that utility by the application of multilevel models to repeated measures of OM (clinician-

rated erythema and patient self-reported ratings of oral pain). The results for erythema and pain were consistent 

with previous reports in the literature (McGuire et al., 1993; Schubert et al., 1992; Sonis, 2004b; Woo et al., 

1993). The quadratic models of change also resulted in significant models commensurate with published reports 

of patterns of OM based on typical mean scores (McGuire et al., 1993; Schubert et al.; Sonis, 2004b; Woo et 

al.). In addition, the curve parameters of erythema were associated with gender, which also is consistent with 

reports of factors associated with OM (Avritscher et al., 2004). Another important outcome of the analyses is 

that the results help support or extend understanding of the pathobiologic model of OM (Sonis, 1998, 2004b), 

including clinical manifestations, correlates, and risk factors.  



This article is the first report, to the authors' knowledge, to examine the utility of multilevel growth-curve 

analysis in studying changes in OM over a clinical trajectory. Future studies could employ similar methods to 

test predictions based on the evolving pathobiologic model of OM (Anthony, Bowen, Garden, Hewson, & 

Sonis, 2006; Sonis, 2007; Sonis et al., 2007; Sonis, 1998, 2004b), with the aim of adding to existing knowledge 

about this critically important side effect of high-dose chemotherapy. For example, multilevel growth-curve 

analysis might be used to predict whether individual trajectories of change in erythema and ulceration are 

related to patient-related (e.g., demographic) or treatment-related (e.g., diagnosis, treatment regimen) variables 

or to underlying mechanistic processes indicated by biologic measures such as cytokine levels. Thus, this 

analytic strategy could contribute to an enhanced understanding of pathobiologically based individual variations 

in the clinical expression of OM.  

 

Another critical advantage of using multilevel growth-curve analysis is that analyses could lead to fuller 

integration of mechanistic and etiologic models such as Sonis' (2004a) OM model into the broader context of 

symptom clusters in patients with cancer (Barsevick, 2007; Kim et al., 2005; Lee et al., 2004; Miaskowski & 

Aouizerat, 2007). For example, the pathobiologic model of mucositis suggests that the complex processes 

underlying the development of OM also may be implicated in the development of other signs and symptoms 

that are observed concurrently with mucositis, such as pain, sleeping alterations, fatigue, and emotional distress 

(Gaston-Johansson, Fall-Dickson, Bakos, & Kennedy, 1999; Lee et al.; McGuire, 2002; McGuire et al., 1993; 

McGuire, Owen, & Peterson, 1998; Miaskowski & Aouizerat). With increased knowledge of underlying 

causative mechanisms and new ways to analyze change over time in multiple signs or symptoms, the 

interrelationships of pathobiology and clinical trajectories may be explored in ways that advance understanding 

of symptom clusters more rapidly.  

Another potential use of this methodology is in the analysis of other symptoms (e.g., fatigue) or combinations of 

signs and symptoms (e.g., OM, pain, fatigue). It could be an important new approach to analyzing potentially 

complex relationships among symptoms in patients with cancer. Finally, this method offers useful advantages 

for current and future work on uncovering processes that underlie the clustering of symptoms, consistent with 

recommendations by numerous experts (Barsevick, 2007; Barsevick, Whitmer, Nail, Beck, & Dudley, 2006; 

Kim et al., 2005; National Institutes of Health, 2002). Relevant targets could include proposed models for 

relationships among symptoms such as Lee et al.'s (2004) cytokine model and Parker, Kimble, Dunbar, and 

Clark's (2005) symptom interactional framework.  

Limitations  

As with any research, the results presented herein have some inherent limitations. First, they reflect a secondary 

data analysis from a study testing the effects of a psychoeducational intervention in reducing the duration and 

severity of OM and oral pain in patients receiving high-dose chemotherapy, so the data were analyzed for 

different purposes than intended in the original study. Second, considerable data were missing beginning at 

about 14 days after initiation of chemotherapy because of patient discharges from the hospital, which limited 

the researchers' ability to apply the growth-curve techniques across the full trajectory of signs and symptoms. 

Substantive studies may require the use of sensitivity analyses to control for biases resulting from data that are 

not missing at random (Diggle & Kenward, 1994; Troxel, Harrington, & Lipsitz, 1998).  

Conclusion  

This article illustrates the potential utility of multilevel growth-curve modeling techniques in the study of 

change in signs and symptoms over time. The results relative to the analysis of erythema are consistent with 

previously published studies and extend the modeling by delineating several patterns obscured by traditional 

analyses of mean scores. Knowledge of these patterns may help clinicians approach assessment differentially, 

depending on treatment and other factors. The multilevel growth-curve modeling technique appears to be well 

suited to complex modeling of multiple signs or symptoms and related outcomes. The method may enhance the 



ability of researchers to analyze results of the complex data that emerge when symptom clusters are being 

studied. The data include the process of change in clinical signs and symptoms and the relationship of such 

processes to other individual and clinical characteristics of patients, as well as to underlying mechanistic 

models.  
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