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          Curcumin is a carotenoid natural product isolated from the rhizome 

of the plant Curcuma longa.  Among its many biological effects, 

curcumin has anti-inflammatory, anti-infective, and anti-cancer activity.  

The anti-cancer activity of curcumin has been studied extensively.   

      Angiogenesis plays a pivotal role in the metastasis of cancer: 

curcumin showed excellent anti-angiogenesis activity on metastatic 

tumors.  Several curcumin analogues have been synthesized and studied, 

and their biological activity was reported in the literature. One class of 

potent analogues are aromatic enones. In Dr Bowen’s laboratory sixty 

three compounds were synthesized and in the laboratory of Dr Jack 

Arbizer (Emory University, Atlanta, GA) they were tested for their anti-

angiogenic activity with an SVR endothelial cell growth assay developed 

by Dr Arbizer. The precise mechanism or the specific biological target on 

which these analogs exert their inhibition potential as anti-angiogenic 

agents is unknown. Therefore, structure-based molecular modeling is not 

a possibility. However, ligand based molecular modeling methods are 

available for studying and predicting which compounds among the sixty 

three can be further optimized for selectivity and desired property.  

 



 

            Computational studies were carried out to identify which 

structural features within the series of analogues are significantly 

important for activity. Initially, pharmacophore modeling was carried out 

in Molecular Operating Environment (MOE) software to identify the 

Interaction Pharmacophore Elements (IPE) and their relative geometry in 

three-dimensional space. Two different three dimensional quantitative 

structural Activity Relationship (3D-QSAR) studies, Comparative 

Molecular Field Analysis (CoMFA), and Comparative Molecular 

Similarity Indices Analysis (CoMSIA) were carried out with this dataset.  

SYBYL (versions 7.2 and 7.3) were used for the development of the 

models. Forty six compounds were used as the calibration or the training 

set. The model yielded a cross validated q2 of 0.289 for CoMFA and 

0.146 for CoMSIA analyses.  Eleven compounds were used as the test set 

(or the prediction) set to externally validate the QSAR models and their 

robustness. The predictions of the model are acceptable with a few 

outliers. 
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GLOSSARY OF TERMS 

 

Metastasis: The migration of cancer or tumor cells from the primary site 

of origin to random locations of the body via the blood or the lymphatic 

tissue to produce a secondary cancer growth. 

VEGF: vascular endothelial growth factor. 

bFGF: basic fibroblast growth factor. 

MMPs: matrix metalloproteinases. 

RI-QSAR: Receptor independent quantitative structural activity 

relationship study. 

RD-QSAR: Receptor dependent quantitative structural activity 

relationship study. 

Pharmacophore: Pharmacophore is defined as the three dimensional 

models of essential structural features of congeneric molecules that are 

necessary for biological activity. 

Descriptors: Descriptors are the independent variables in a QSAR study. 

They provide information of molecules that can be correlated to their 

biological affinity in a QSAR or QSPR (Quantitative structural property 

relationship) study. 
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Force fields:  Force fields are the energy functions of a microscopic 

system of particles (molecules). They indicate the total potential energy 

possessed by the specific system of atoms or molecules. 

Dataset: Data set is defined as the biological affinity data of a congeneric 

series used in developing a quantitative structure activity correlationship 

studies. 

Training set:  Training set is defined as the set of compounds in a dataset 

used to develop a QSAR model. 

Test set (Predictive set): Test sets are the compounds used to externally 

validate the predictive property of a developed QSAR model. 

Dependent variables:  These are the biological affinity or biological 

response produced by the compounds of the dataset. 

Independent variables:  These are the molecular properties of the 

compounds. These are also called as descriptors in QSAR analysis. 

Biological affinity:  It is the biological response produced by the 

compounds in the assay. 

Predicted values:  These are the biological activity predictions of the 

QSAR model.  

Actual (Experimental) values: These are the experimentally reported 

biological affinity data used in developing the structure biological 

correlation analysis. 
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Residuals:  Residuals are the difference between the experimental values 

and the predicted biological activity values in a QSAR model. 

Biological Affinity - ED50 :  The amount of compound (concentration) 

that can produce a response in 50 % of the population. 

LD50 :  The concentration of the compound that can produce a lethal 

effect in 50% of the population 

Ki:  The concentration of the compound that inhibits the enzyme 

completely in an enzyme catalyzed reaction. 

ADME properties:  Absorption, distribution, metabolism, and excretion 

are the pharmacokinetic parameters of drug like compounds. 

CoMFA:  Comparative molecular field analysis. 

COMSIA:  Comparative molecular similarity index analysis. 

MSS:  Molecular spread sheet. 

PCA:  Principal component analysis. 

PLS:  Partial least squares regression. 

SAMPLS:  Samples distance partial least squares; Regression analysis. 

P:  Inhibition potential (LD50, ED50, Ki) 
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CHAPTER I 

BACKGROUND INFORMATION - CANCER 

 

              Among the subspecialties of internal medicine, medical 

oncology is an important frontier which has gained attention from various 

research communities.  Cancer and its associated ailments are second 

only to cardiovascular diseases that lead to death of an individual.  

Demographical evidence shows one in every six deaths are caused by 

some type of cancer.1  The mortality rate of cancer patients is usually 

high (65%).  Appropriate therapeutic approaches are crucial factors in 

cancer treatment.  Therapeutic approaches undertaken depend on the type 

of cancer, its pathological stage, and the condition of the patient.  

Primarily there are three treatment methods for cancer:2 (a) Invasive 

methods e.g., surgical removal of cancer tissue (surgical oncology); (b) 

Irradiation methods, which involve the use of high energy radiation, (c) 

chemotherapy, which involve the administration of toxic drugs.  Surgical 

methods are the most effective approaches since the bulk of the tumor 

tissue can be removed.  Surgical removal of a mass is an option 

applicable for solid tumors and also for tumors that have not yet 
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metastasized.  Metastasis is defined as the migration of the cancer cells 

from the primary region of origin to other parts of the body via blood and 

the lymphatic tissue.  Usually, additional surgery is not an option if the 

tumor is in the vital organs such as the heart, lungs, nervous tissue, and 

kidneys. 

 

        Radiation therapy is an effective method as it can selectively destroy 

the tumor cells with minimal effects with surrounding tissue. Radiation 

therapy kills cancer cells directly or indirectly by inducing apoptosis 

(programmed cell death). Surgical and radiation therapy are the effective 

methods for a complete “cure” if the tumor is still benign and has not yet 

transformed to a metastatic form. Radiation therapy uses high energy 

radiation; usually the source is a radioactive decaying isotope. 

 

        Chemotherapy is the most widely used and effective method for the 

treatment of cancer, as metastasis is not a limiting factor in 

chemotherapy. There are various classes of drugs that target cancer cell 

growth and division. These chemotherapeutic agents exert their 

therapeutic action by hampering the nucleic acid metabolism of the cell 

directly or indirectly. These include (a) drugs that inhibit the synthesis of 

precursors for nucleic acid synthesis (antimetabolites); (b) drugs that 
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interfere with the replication of DNA (alkylating agents and DNA 

intercalating agents); (c) drugs that inhibit various enzymes in nucleic 

acid metabolism; (e) drugs that inhibits the formation of mitotic spindles 

during cell division. 

 

Alkylating agents 

       These are the most widely used chemotherapeutic agents that were 

used to treat cancer in the 1960’s and 1970’s. They undergo activation to 

form strong electrophiles3. These electrophilic intermediates are attacked 

by nucleophilic groups such as hydroxyl, sulfhydryl, phosphate, amino, 

carboxyl, and imidazole groups of nucleic acids.  The chemotherapeutic 

effects of these are due to alkylation of DNA.  Alkylation occurs at the 

nucleophilic center of guanine (7th nitrogen position in guanine is the 

most nucleophilic atom) of the DNA strand. These alkylating agents are 

either monofunctional or bifunctional.  In addition to the guanine, other 

nitrogens in purine and pyrimidine bases of DNA are also involved as 

nucleophiles. The 1st and 3rd nitrogen of adenine, 3rd nitrogen of 

cytosine, and the 6th oxygen of guanine are the nucleophilic centers. 

 

        Nitrogen mustards were the first alkylating agents used in the early 

days of cancer chemotherapy. The below mentioned are some of the 

 3



widely used nitrogen mustards: mechlorethamine, cyclophosphamide, 

ifosfamide, melphalan and chlorambucil. The other classes of alkylating 

agents are dacarbazine, methylnitrosoureas (MNU): streptozocin, 

carmustine, lomustine, semustine and chlorozotocin.  some are prodrugs, 

e.g. cyclophosphamide. 

 

Antimetabolites-folic acid analogs 

        Folic acid is a precursor for nucleotide synthesis. Antimetabolites 

are a class of antineoplastic agents that inhibit the enzyme that catalyze 

the biosynthesis of nucleotides. These are the building blocks of nucleic 

acids, so inhibition of nuclei acid synthesis can retard cell division. 

Antimetabolites have structural resemblance with folic acid; they 

competitively inhibit the enzyme dihydrofolate reductase, which is a 

pivotal enzyme in nuclei acid metabolism. 

 The structures of the aforementioned agents are some of the most widely 

used anticancer drugs that act by the mechanism of DNA alkylation. 
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Fig 1.1.  Antimetabolite (folate analogue) methotrexate. The compound 

has a structural resemblance to PABA ( para amino benzoic acid ), which 

is a natural precursor of folic acid and eventually depletes nucleotides in 

the cell. 
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Miscellaneous anti-cancer agents 

        There are miscellaneous drugs that act at various stages of the cell 

cycle.  They include antibiotics, DNA intercalating agents, and drugs that 

inhibit the formation of mitotic spindles formation during cell division. 

The drugs in this category are taxol and cis-platin. 
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CHAPTER II 

TUMOR ANGIOGENESIS AND CANCER 

 

              It is imperative for living cells to obtain nutrients, oxygen, and 

essential metabolites for their normal sustenance and growth.  The 

diffusion limit for cells to acquire any of these nutrients is 100-200 

micrometers, so any further beyond this point requires a direct blood 

supply.4  To render these vital necessities, cells recruit new blood vessels 

in the form of rudimentary endothelial cell based capillaries.  This 

phenomenon is termed as vasculogenesis and angiogenesis. Angiogenesis 

is defined as the development of new rudimentary blood vessels in the 

form of capillaries from pre-existing vasculature. Angiogenesis is a 

phenomenon normally observed in several disease states like arthritis, 

corneal ulceration, proliferative retinopathy5, and tumors.  

 

            It is a well known fact that cancer cells divide at a faster rate and 

possess a higher metabolic rate than normal cells. Cancer cells promote 

angiogenesis via numerous biochemical messengers. Tumors can grow up 

to a certain mass (few microns in diameter) without direct vascular 

supply, but beyond this critical mass, tumors require direct blood vessels 

 9



for their survival and reproduction. This forces the tumor directly to 

stimulate angiogenesis from preexisting surrounding blood vessels. 

 

                   Angiogenesis is observed as a normal phenomenon only in 

the physiological cases of embryonic development and morphogenesis, 

during wound healing, and in tissue regeneration. Pathological and 

pathophysiological angiogenesis is a hallmark of various aliments and 

diseases (eg. stroke, ischemic heart diseases, and rheumatoid arthritis). As 

evident from the above information, angiogenesis is a predetermining 

phenomenon for the survival and progression of a variety of solid tumors. 

J Folkman et al was the first to propose this hypothesis.5 Thus, 

therapeutic intervention of the multiple targets that promote angiogenesis 

can significantly retard or completely inhibit angiogenesis and eventually 

suppress cancer growth by indirectly cutting off the supply of various 

necessities for normal cell growth. 

 

          Angiogenesis is a complex phenomenon, and the biochemical 

mechanisms that control it are delicate in nature. Angiogenesis is 

controlled by a sensitive physiological switch, which is triggered either 

by proangiogenic factors or antiangiogenic factors. These angiogenic 

factors are diverse in their function and broadly distributed both in 
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intracellular and extracellular environments. In normal tissues 

antiangiogenic factors predominant over proangiogenic factors. The most 

prominent proangiogenic factors are VEGF (vascular endothelial growth 

factor), bFGF (basic fibroblast growth factor), MMPs (Matrix 

metalloproteinases), cyclo-oxygenase - 2 (COX-2).6  the antiangiogenic 

factors are VEGFR-1, VEGFR-2, vasostatin, and endostatin. 
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CHAPTER III 

THERAPEUTIC PROPERTIES OF CURCUMIN 

 

             Curcuma longa L is a tropical herb usually seen in Southeast 

Asia. Since medieval times, the herb was reported in the literature for its 

various therapeutic effects.  The curative property was attributed to the 

yellow pigment constituent in the rhizome of the plant.  This active 

principle is curcumin (diferuloyl methane).  Curcumin has a broad range 

of therapeutic properties.  In recent times in vitro studies of curcumin and 

its various synthetic analogues demonstrated several and diverse 

categories of biological activity, especially anti-inflammatory (Crohn’s 

disease, arthritis, and several disorder of the cardiovascular system) and 

antimetastatic-antiangiogenic (anticancer potential and several other 

miscellaneous diseases).  In addition to the above, it also has anti-oxidant, 

anti-viral, and anti-infective activity.  Curcumin with its antioxidant and 

anti-inflammatory activity has invaluable therapeutic advantages.  

Experimental studies have demonstrated that curcumin is a potent 

scavenger of reactive oxygen species, which include superoxide anion 

radical and hydroxyl radical.7 Various pathophysiogical effects of 

curcumin at the cellular level include: induction of apoptosis 
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(programmed cell death) in cancer cell lines through downregulation of 

proangiogenic genes mediated by transcription factor NF-kB8 and IKB 

kinase, consequently.  Arrest cancer cell growth in S, G2 and M phases of 

the cell cycle.8  Northern blot analysis indicates a time dependent down 

regulation of VEGF and angiopoietin; these two targets are the most 

potent stimulators of angiogenesis.  With the above mentioned basis of 

anticancer potential and potent antiangiogenic property against various 

biological targets.  Curcumin and several synthetic analogs of curcumin 

were studied extensively.  Inhibition of arachidonic acid metabolism is 

the most prominent feature of curcumin in cellular system.  Arachidonic 

acid is also a key promoter of carcinogenesis in living systems. 

 

          A significant role of curcumin is its suppression of metastasis and 

the progression of solid tumors.  Curcumin has been shown to inhibit the 

differentiation of human umbilical vein endothelial cells (HUVEC).9  It 

also inhibits bFGF - induced corneal neovascularization in the mouse 

corneal. This phenomenon was discovered by Arbiser et al., and 

curcumin was considered as a promising lead candidate in biomedical 

research.  So, several curcumin analogs were synthesized and tested for 

anticancer and angiostatic activity by various research groups using 

several bioassays with different cell lines. 

 13



          Bioactivity studies have shown that various curcumin analogs are 

angiogenesis inhibitors, as observed in the chorioallantoic membrane 

assay. These inhibitory activities of curcumin analogues are due to 

reduction in the activity of vascular endothelial growth factor (VEGF) 

and matrix metalloproteinases (MMPs). Matrix metalloproteinases play a 

major role in cell membrane restructuring and consequently facilitate 

angiogenesis. 

 

           There are several biochemical mediators that promote cancer 

progression. The biological activity of curcumin can be attributed to the 

ways it affects various modulators of cellular and subcellular receptors  

(EGFR  and HER2), transcription factors (NF-kB , AP-1, Egr-1, beta 

catenin, and PPAR-γ), and various inflammatory mediating enzymes like 

cyclooxygenase (COX-2), 5-lipoxygenase, nitric oxidase synthase 

(iNOS), cyclin protein D1p, and cytokines (TNF, IL-6, IL-1 and  

chemokines). The biological activity of curcumin was attributed to the 

electrophilic property of the β diketone linker.10

  

          With these diverse bioactivity profiles, curcumin is considered a 

potential natural product lead for structure optimization in drug 
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discovery. But its poor solubility, undesired pharmacokinetic-

pharmacodynamic profile, and the lack of selectivity towards a single 

target limits its utility.  Structural modifications of curcumin analogs are 

an available alternative.  Novel analogs may be designed through in silico 

methods, synthesized, and subsequently tested for their biological affinity 

towards a single biological target of intent.  Curcumin is a benchmark 

reference. 

 

Molecular features of curcumin 

                 Curcumin exists in keto-enol tautomeric form, characteristic of 

1,3 carbonyl systems and there is intramolecular hydrogen bonding 

present in the molecule. The herbal extract of Curcuma longa has three 

fractions: curcumin (77%), demethoxycurcumin (17%), and 

Bisdemethoxycurcumin (3%). The later two are collectively called 

curcuminoids. The central β-diketone linker is an essential 

pharmacophoric feature for biological activity, and the two aromatic 

groups attached to the linker can be structurally modified for desired 

pharmacokinetic factors and selective biological affinity.  
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                                    Structure of curcumin  

 

 

 

 

 B 

               Fig 3.1. Three regions of curcumin: A and C are regions 

accommodating aromatic systems, and region B is the diketone linker.  

 

The following are the therapeutic activities of curcumin/turmeric; 

Antioxidant activity, anti-inflammatory, enhance wound healing, 

immunomodulatory, antispasmodic activity, antifungal, antiparasitic and 

antibacterial activity, antimutagenic, antimetastatic, and antiangiogenic 

activity. 
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CHAPTER IV 

QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP  

(QSAR) STUDIES 

                                      

         In silico molecular modeling methods are extremely useful in the 

biomedical sciences.  Fundamentally, molecular modeling methods are 

classified into structure - based or structure - dependent and ligand - 

based or structure - independent methods.  Here, structure refers to the 

biological target (receptor, enzyme, nucleic acid, ion channel, or carrier 

protein). QSAR analysis, pharmacophore modeling, putative receptor 

modeling, and consecutive search query fall in the later class of molecular 

modeling methods.  The predictions of these ligand based methods are 

pivotal in making critical decisions in future analog synthesis.  

 

          The primary intent of this thesis is to develop a three - dimensional 

QSAR model of experimentally validated compounds (curcumin analogs) 

as anti-angiogenesis agents.  The QSAR model development and its 

predictions are used to develop synthetic targets of potentially active 

compounds. Presumably, this will significantly reduce research time and 

expenses.  A QSAR, in general, may be a reliable tool when structural 
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information of the biological target is unknown – i.e., has not been 

characterized by X - ray crystallography or by NMR methods.  When the 

drug - receptor structural details are available however, it can yield more 

realistic picture which in turn, leads to robust computational models with 

higher probability for activity prediction. 

 

          Microscopic characteristics of matter are important for compounds 

possessing biological activity.  In biological systems, these properties are 

the results of the constituent atomic composition and arrangements within 

the molecules. Most biomolecules, natural ligands, and drug-like 

molecules usually interact with their biological target through non 

covalent molecular forces. These Interactions are usually shape 

dependent. Non-covalent interactions fundamentally depend on the 

magnitude of steric and electrostatic forces. Computational drug 

designing strategies are fundamentally classified into two methods: (a) 

structure (receptor)-based molecular modeling methods, and (b) ligand - 

based molecular modeling methods.  When the biological structural data 

(receptors, ion channels, enzymes, or Nucleic acids) are available, 

transition state analog design, docking studies or molecular dynamic 

simulation studies can provide an in-depth picture of the interaction of the 

active ligand with the interacting elements in the active domain of the 

biological target.  The prerequisite for drug-like molecules is to have high 
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affinity at the active site of the biological target when compared to the 

natural ligand.  It has been postulated that the pharmacodynamic activity 

is achieved through drug-receptor binding with subsequent 

conformational changes in the drug receptor complex, which results in a 

cascade of biological events leading to the observed physiological 

change.  This is achieved when the affinity for a drug like molecule is 

higher than the natural ligand in a biological system. 

 

         When the biological structure data are unknown, structure-activity 

correlation studies with statistical methods can provide information 

regarding the characteristics of the putative target/receptor.  Structure-

activity relationship studies (SAR), de novo ligand design, and semi-

empirical calculation methods are some of the other alternative 

approaches used in ligand design.  Several computational methods are 

used to develop structure-property relationships (QSPR).  QSAR 

empirical studies are one of the extensive methods used to predict 

structure-property co-relations of bioactive molecules.  In the drug 

discovery process various properties (e.g. physicochemical, quantitative 

structure property relationship (QSPR), pharmacokinetic and 

toxicological) are important.  Quantitative structure toxicity relationship 

(QSTR) are to be evaluated collectively with an intention to develop a 

successful clinical candidate.  A QSAR study can be undertaken to 
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predict any of the above mentioned properties.  These structure-property 

correlationship studies are pivotal in the drug discovery pipeline.  QSAR 

studies provide an invaluable tool for identifying the important structural 

features required for activity, and eventually a computational tool for lead 

optimization. 

 

           Minor changes in the constituents of the molecules, functional 

groups changes, or alternation in geometry can affect biological activity: 

stereo chemical properties in a molecule for a series of structural 

congeners can profoundly affect biological activity. Three-dimensional 

quantitative structure activity relationship (QSAR) analyses can provide 

an in-depth analysis based on two most likely interaction forces: steric 

and electrostatic. 

 

            When biological activity for a series of molecules which differ in 

their structural features is observed, empirical methods like docking, 

scoring, and structure property or structure activity relationships can be 

used.   QSAR in a pharmacodynamic perspective is a statistical corelation 

method between molecular properties and their corresponding biological 

activity in vitro or in vivo.  This approach has the potential to predict for a 

wide range of properties (e.g., water solubility, lipophilicity, partition 

function and biological affinity).  Also, QSAR aids in differentiating 
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drug-like molecule from non drug-like molecules based on toxicicity 

predictions, drug metabolism, and ADME properties, as well as drug 

deposition in the tissue.   

 

           The vast majority of target specific drugs fall in either one of the 

following categories: organic small molecules, nucleotides, 

oligosaccharides, peptides, or proteins.  The most significant properties of 

these are steric (shape and volume) and electronic (electrostatic potential 

and electric charge).  The above mentioned two are the major properties 

of drug-like molecules for their affinity towards their biological target.               

 

           A dataset of a homologous series of molecules (target specific 

ligand or molecules) that has biological affinity towards a specific target 

can be modeled to predict the properties of unknown molecules.  QSAR 

studies were first developed by Hanch and Fujita.11   The proposed study 

was based on substitution constants.  These quantitative structural-

activity relationship studies are based on how the property is being 

affected as a function of the substitution groups in a series of congeners.  

These substituent constants are hydrophobic constants (π), Hammett 

constants (σ), and molar refractivity (MR).  The hydrophobicity constant 

(π) provides information of the logarithm of the partition constant (logP) 

of a substituted molecule relative to an unsubstituted molecule. The 
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hydrophobicity constant is an indicator of the non-polar/polar nature of 

the substituent.   The Hammett constant σ is an indicator of electron-

donating or electron-withdrawing effects of the substituent.  It is derived 

from the ionization constant of acids, and the substituent present in the 

acid molecule.   Molar refractivity is an indicator of polarisability of the 

substituent on the molecule, and it is derived from the Lorentz-Lorentz 

equation.  This equation is a function of density and molecular weight of 

the compound and its refractive index.  QSAR studies can be feasible 

with the above methods when there is a similar motif with the principle 

structure and few substituents.  When there is structural diversity and 

increased three dimensional conformations.  QSAR analysis with the 

above mentioned constants become a difficult task to try to correlate 

structure with bioactivity.  Even though correlation can be achieved, 

validation of the results is a difficult task.  Later the two-dimensional 

QSAR methods were developed, which are based on the topographical 

indices, but these methods were also found to have some drawbacks.                

 

           Three-dimensional QSAR methods are becoming the most 

extensively used QSAR methods in property prediction in biological 

systems, as well as in toxicological studies.  As mentioned before, the 

interaction is dependent on the three-dimension arrangement of groups in 

the molecule.  The independent variables used in QSAR studies are the 
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indicators of the microscopic properties of molecules.  These can either 

be derived or calculated by quantum mechanical methods.  These 

independent molecular information rich variables are termed as 

descriptors.  Descriptors provide information of the molecules and how it 

affects their physicochemical properties.  
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CHAPTER V 

DESCRIPTORS IN QSAR STUDIES 

 

           Descriptors are information rich variables defining molecules.  

Descriptors are grouped in two categories: (a) whole molecules 

descriptors, and (b) fragment descriptors.  Whole molecule descriptors 

are indicator properties of the entire molecule itself (e.g., molecular 

weight, molar refractivity).  Fragment descriptors are calculated based on 

the constituent atoms or substituent functional groups of the molecule.  

Substituent constants like the hydrophobicity constant (π) and the 

Hammett constant (σ) fall in this category.   

 

         Molecular descriptors can be calculated by computational methods. 

Currently, molecular descriptors are calculated readily with currently 

available computer hardware and computational software.  Fragment 

based descriptors are independent of the configuration and the three-

dimensional confirmation of the molecules.  They are not as information 

rich when compared to whole molecule descriptors.  Whole molecule 

descriptors are efficient and widely used descriptors, as they provide 

information of three- dimensional properties of molecules. 
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          The classic whole molecule descriptor is clogP, which is the 

octanol-water partition function.  Partition of drug molecules through the 

biological membrane into the cell is an important factor to exert its 

biological activity. Other three-dimensional descriptors are derived from 

molecular fields i.e.,  steric and electrostatic fields. 

 

           Judicious selection of descriptors or a group of descriptors is 

critical for the intended QSAR analysis and property prediction.  

Descriptor selection is based on the information content and its degree of 

relevance to the QSAR study.  Some descriptors provide desired results 

for one QSAR property prediction, while other types of descriptors are 

useful for different types of property predictions. There is some 

interdependency between descriptors, so when they are used as 

independent variables in a QSAR study they yield similar results.  Thus, 

an appropriate selection of descriptors is an important factor.  Poor 

selection of descriptors yields inefficient QSAR models or even gives 

misleading predictions.  Selections of many descriptors are to be avoided 

as they might tend to over fit the model.  This can be due to chance 

correlations because many descriptors were tried in developing the 

model.  Chance correlation is a major setback in QSAR model 

development. To avoid chance correlation, variable selection methods 
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through genetic algorithms and progressive scrambling are carried out.  

This can avoid the potential problem to some extent.  But the modeler is 

to be always wary of these factors during QSAR model building. 

 

       QSAR method based on Comparative Molecular Field Analysis – 

CoMFA and Comparative Molecular Similarity Indices Analysis – 

CoMSIA  

           Biomolecules interact significantly through steric and electrostatic 

forces, so it is obvious to use descriptors derived from these two 

contributing fields in the QSAR model development. Based on this 

hypothesis, comparative field analysis (CoMFA) and comparative 

molecular similarity indices analysis (COMSIA) QSAR methods were 

developed.  First, CoMFA analysis was developed for a series of steroid 

and their binding affinity towards carrier proteins by Richard D.  Cramer 

et al.12 This work laid the foundation for computational studies in which 

shape (three-dimension arrangement of atom or groups in a molecule) can 

significantly affect their affinity to a biological target.  Three-dimensional 

QSAR studies based on the CoMFA method or alternative methods are 

considered to be reliable for property predictions of unknown 

compounds. 
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          There exists a relationship between molecular structure and 

biological affinity: BA (eg.,  Ki, IC50, LD50, ED50). This biological 

response is expressed as Log (1/BA) = f (x1, x2, x3, ………xN). The 

descriptor variables, x1, x2, x3,…………xN (steric and electrostatic fields) 

are determined by PLS (Partial least squares) analysis. 

 

          Three-dimensional QSAR methods based on CoMFA have some 

inherit inconsistencies that can affect the final predictive property of the 

model. They were addressed later by Gerhard Klebe et al.13 His research 

group implemented similarity indices as descriptors in three-dimensional 

QSAR model development. This formalism of the QSAR model 

development is termed as comparative molecular similarity analysis 

(CoMSIA).  This method is more successful than its predecessor CoMFA 

based QSAR models.  The important drawback of CoMFA is its steep 

region shift; the magnitude of Lennard-Jones and Coulomb potentials 

change is high and increases as the sampling is performed from the outer 

regions towards the center of the molecule.  To avoid this steeper region 

shift in the QSAR model development, cut-off values are used for 

Lennard-Jones potential (steric fields) and the Coulomb potential 

(electrostatic fields) calculation in the CoMFA based QSAR model.  

Actually the regions inside the molecules have some information rich 
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descriptors.  Potential E(r) is inversely proportional to the distance (r) 

from the center of the molecule. CoMFA used Lennard-Jones and 

Columbic potentials in the calculation of the descriptors while CoMSIA 

uses Gaussian approximation in calculating similarity indices at various 

grid points. 

 

          The protocol for developing a three-dimensional QSAR model is 

similar in both CoMFA and CoMSIA.    

 

Three-dimensional QSAR analysis based on CoMSIA and its 

advantages over CoMFA  

    

          CoMSIA analysis uses sampling of similarity indices at various 

grid points of the common alignment of molecules in the dataset.  This 

sampling is performed at all the equally spaced grid points of the defined 

lattice.  These lattice points are present inside and outside the molecule. 

In CoMFA analysis the lattice points located inside the molecules are not 

taken into account in the statistical correlation analysis.  For example in 

PLS analysis15  there is a cut-off value defined before the PLS run is 

carried out.  This cut-off value is assigned to avoid field values that are 

very high in magnitude. But in a CoMSIA analysis, the lattice points 
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present inside and outside the molecule are taken into account.  The 

potentials at the lattice points are the independent variables used in PLS 

analysis.  CoMSIA has five different property fields.  These five different 

fields are used to significantly evaluate the property and partition them 

spatially in different locations of the molecule.  This, in turn, signifies 

which property plays a critical role in their contribution to the affinity or 

binding of the molecule to the receptor. It has significant importance in 

several steps of lead optimization when diverse properties of drug 

molecules are taken into account.  

 

Designing the calibration set or training set 

          In any QSAR method the fundamental basis for developing the 

model is universal.  There should be a statistical correlation between the 

dependent variable and the independent variables (descriptors). These 

relationships are either linear or nonlinear in nature. The dependent 

variable is usually the biological affinity (Ki, IC50, LD50 and ED50), which 

is converted to Log10 (1/activity): pED and pKi. A QSAR analysis is 

usually carried out in two steps.  

 

          The first step is to develop a model that describes the 

correlationship between the independent and dependent variables, which 
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is defined as this function: y = f(x).  The relationship is expressed as a 

function, and this defines how the dependent variable (y) is affected by 

the independent variables (x), the molecular descriptors.  The training set 

model parameters are called regression coefficients or sensitivities.  The 

later step is to derive independent variables from one or more samples 

and the sensitivities from the model.  

 

          In step two the derived independent variables from the training set 

are used to predict the dependent variables (biological affinity).  This 

prediction is performed with the test set or the prediction set.  This is the 

reason why the initially chosen dataset is divided into two groups: 

calibration set (or training set) and prediction set (or the test set). 

 

         The training set is used to develop the QSAR model, and the test set 

is used to validate the model externally and also to predict the degree of 

accuracy of the model. The robustness of the model depends on the 

predictable properties of the model.  The dataset should be large enough 

with the diversity in the structural congeners and their corresponding 

range of biological activity to be meaningful. The training set compounds 

are usually higher in number than the test set. The dividing of the training 

set and the test set is based on random picking of the compounds and 
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classifying them into the training set and the predictive or test set.  The 

selection of training set and test set is done taking into account the 

structural diversity in both the datasets and the corresponding range of 

biological activity of the molecules.  

 

 Three-dimensional QSAR method based on CoMFA and CoMSIA 

analysis are performed with the following protocol 

 

1) Structural input via sketching the molecule in the computer 

program followed by energy minimization, and calculation of 

mathematical descriptor is carried out. The later is the essential 

property of the molecule in three-dimensions.  One should take 

into account which descriptor is efficient in structure property 

correlation studies. 

2) The molecules of the dataset are aligned so that they have a 

common three-dimensional orientation.  Alignment is usually 

carried with atom fit or field fit alignment methods in Sybyl.  

Several modifications can be carried out (changing the 

stereochemistry, modifying the torsion in the common backbone).  

Alignment in carried out in a manner to yield the least possible 
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(RMS) root mean square deviation between the common points 

chosen in aligning.  

3) An evenly spaced (step size) lattice on the superimposed 

alignment is defined.  The dimensions of the grid are with a little 

extension in all the three x, y, z - cartesian co-ordinates so that it 

accommodates all the molecules. Usually the grid spacing of the 

lattice is 2 Å; however, the grid dimensions and the spacing can 

be modified if the superimposed molecules are to be rotated or 

translated in the grid.  The step size or spacing of the lattice can be 

modified to 1.5 Å or 1 Å.  This is observed with a penalty of 

increased computational time in developing the model as the 

number of PLS sampling points increase exponentially in the 

lattice. 

4) The magnitude of the steric (van der W’aals) and electrostatic 

fields (Columbic with a distance dependent dielectric-1/r2) at all 

the lattice points are calculated.  The steric and electrostatic 

interactions are determined with a probe atom (sp3 hybridized 

carbon atom with a unit positive charge). 

5) A molecular spread sheet is created with the dataset. Converting 

the dependent variable, biological affinity (IC50, LD50, ED50, Ki) 
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to Inverse logarithm values (1/biological activity) and entering the 

data as the dependent variable in the QSAR analysis is required.  

6) The columns are created with the independent variable (CoMFA           

columns and CoMSIA Indices as per the analysis whether it is 

CoMFA or CoMSIA). 

7) Statistical correlation analysis is carried out in a sequential 

manner with leave-one-out PLS method first.  This is done to 

identify the optimum number of components to derive the best 

model.  Then these optimum number of components are used in 

cross-validation to predict the q2   (average r2).  The cross validated 

correlation coefficient q2 falls in the range from 0 to 1.  For really 

good predictable models, the cross validated q2   is in the range of 

approximately 0.4 and higher. The final step is the no-validation 

PLS method. 

8) The last step is simultaneously predicting the dependent variables 

of both the training set and the test set. 

9) Residuals or errors for the compounds in the QSAR model 

(training set and test set compounds) are determined. Residual or 

errors of prediction are calculated as follows: Residuals = 

experimental activity – predicted activity. 
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10) The scattered plots of predicted vs experimental or actual 

dependent variable (biological affinity) are generated.  If the 

model is reliable, there is a positive correlation and most of the 

data points are pretty close to the 450  diagonal in the scattered 

plot; however, there usually will be some outliers in the model. 

11) With the magnitude of residuals in the scattered plots, compounds 

that are highly predicted and outliers can be observed in the 

model. 

12) After eliminating the outliers, the QSAR models are derived in an 

iterative manner to check the improvement of predictions of the 

model. Elimination of too many outliers can result in a propensity 

for a biased model. 

13) The final step is the validation of the QSAR model.  This is the 

external validation of the model with the compounds of the test 

set.  The predictions of the QSAR model are interpreted as stereo 

contour coefficient maps. Compounds with good predictions by 

the model are placed in the contour coefficient maps. Now the 

favorable and disfavorable interactions of different field 

contributions, which are represented as contour maps are 

observed. These maps provide insights into any structural 

modifications in the different regions of the compounds (addition 

 34



or elimination of electrostatic - charged groups, steric - bulky 

groups, H - bond donor or H - bond acceptor) and may be inferred 

with stereo view of the contour maps. 
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CHAPTER IV 

HYPOTHESIS AND EXPERIMENTAL DESIGN 

 

          The primary focus of this thesis is to develop a three-dimensional 

QSAR model based on CoMFA fields and COMSIA indices as descriptors. 

Since the structural information of the biological target is neither available 

in the SVR cell growth assay nor reported in literature elsewhere, ligand 

based modeling is the only method to develop a computational model for 

the prediction of potent curcumin analogs.  This study should be able to 

pave the way for further research towards the synthesis of new molecules.                  

 

           Based on whether there is structural information available or not, 

QSAR studies can be carried out by two methods: (1) It can be either 

structure independent or (2) structure dependent.  For the former, the 

biological target structure is not considered directly in developing the 

QSAR model.  The later approach, however, includes structural details of 

the biological target into account when developing the model.  In this 

research study, the precise biological target on which curcumin acts is not 

certain; therefore, the structure independent QSAR methods were 

employed in developing the model. 
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          Three-dimensional QSAR methods are most widely used to predict 

new chemical entities in silico which can possibly have improved 

biological activity.  The Sybyl19 (versions 7.2 and 7.3) molecular modeling 

software was used as the modeling tools in developing the QSAR model 

(based on CoMFA fields and COMSIA indices as descriptors).  The 

computational methods employed in this research are entirely structure 

independent methods.  The dataset of curcumin analogs aromatic enones 

with their corresponding biological activity was determined via the SVR 

assay and previously reported.18

 

Details of experimental assay data: Dataset 

          The endothelial cell proliferation assay was developed Dr Jack 

Arbiser et al at Harvard medical school.16  Based on this experimental 

evidence of in vitro SVR cell growth assay of curcumin, curcumin’s 

biological activity can be attributed to the inhibition of basic Fibroblast 

growth factor (bFGF) whose effects are shown to inhibit endothelial cell 

proliferation and angiogenesis in vivo.6  With this evidence, various 

structural analogues were explored for biological activity.  Curcumin has 

three distinct molecular regions: the two aromatic systems (R1 and R2) 

and the central hepta-1,6-dien-3,5-dione linker.  Several structural 

analogues of curcumin were designed and synthesized.  The 
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corresponding SVR assay was carried out with all the aromatic enones.  

There is a significant increase in potency observed with these 

compounds.  The inhibition potential ranged from 0 to 100 %.  These 

aromatic enones have a central linker, this linker is abridged to an enone 

system instead of having hepta-1,6-dien-3,5-dione linker found in 

curcumin.  This is followed by the substitution on the aromatic system 

with various substituent groups R1 and R2 or with heterocyclic aromatic 

systems.  The aromatic enones curcumin analogs were designed and 

synthesized in the Bowen research laboratory at the University of 

Georgia. Some of the compounds may have been obtained commercially, 

if available at that time. 
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                                         Fig 6.1.  Curcumin 
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Fig 6.2.  The three regions of curcumin A and C form the Aromatic 

systems and C the β - diketone linker.17     
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  Fig 6.3. Curcumin structure and the abridged aromatic enone parent 

Analog. X==X represent various cyclic linkers.17 R represent various 

substituents on the two aromatic systems A’ and C’ respectively. 

 

 

 

 39



          The in vitro SVR assays of the sixty three aromatic enone analogs 

were carried out at Emory University School of Medicine.  The assay is a 

cell based assay with 10,000 murine cells/well in a 24 well cell culture 

dish. Initially the cells were incubated with 10 % DMEM (1ml/well) 

under CO2 atmosphere.  During the 24 hrs incubation period, the cells 

adhere to the bottom of the surface.  After the 24 hrs period the media 

was replaced again with a 10 % DMEM media.  Simultaneously all the 

sixty three compounds were dissolved in the least amount of 

dimethylsulfoxide, DMSO, to prepare a stock solution of 10 µg/ml, with 

appropriate dilution concentrations of 1 µg/ml, 3 µg/ml, 6 µg/ml, or 9 

µg/ml.  The cultures were later incubated for 48 hrs, and the cells were 

washed. The number of cells per well was determined with Beckman 

Coulter Z1 cell and particle counter, and the percentage inhibition was 

calculated.  Finally this percentage inhibition was reported at three 

different concentrations of 1 µg/ml, 3µg/ml, and 6µg/ml for each 

compound. 
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CHAPTER VII 

MOLECULAR MODELING AND COMPUTATIONAL DETAILS 

 

           Many of the aromatic enone antiangiogenic agents used in the 

dataset have been published.18  The dataset consists of sixty three 

compounds and their corresponding biological activity.  The biological 

affinity as measured by percent inhibition ranges from 0 to 100% was 

experimentally determined for all the sixty three compounds at three 

different concentrations (1µg/ml, 3µg/ml and 6µg/ml).  These compounds 

were evaluated in the SVR cell growth assay as discussed in chapter 6.  

The SVR assay was termed after the cell lines used in the assay.  SVR is 

designated for Immortalized endothelial cell.  In the development of the 

QSAR model, the dataset was grouped into calibration or training sets 

consists of 46 compounds, and the prediction or test set or predictive set 

of 11 compounds. 

 

 Structure sketching and alignment 

          All the structures were sketched with the cleanup options available 

in Sybyl 7.2 of Tripos Inc.19  Gasteiger-Huckel partial charges were 

calculated for all the molecules.  Energy minimization was carried out 
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with the following minimization parameters to produces a local minima 

conformation of each molecule. 

Force field:  Tripos force field20 was used in the energy minimization of 

every molecule. 

Charge:  Gasteiger-Huckel partial charges are calculated for all the 

molecules in the dataset.  Distance dependent dielectric constant (1/r) = 1 

is used in calculating the interaction fields at various lattice points.  

Conjugated gradient method was used in energy minimization with 5000 

minimization iterations. Step size of  0.005 kcal/mole was set in the 

process. 

 

            The energy minimization was carried out with a 0.005 kcal/mole 

gradient step size with conjugated gradient as the termination method.  

The numbers of iterations used were 5000.  This energy minimization 

yielded the local minima for the molecules.  All the molecules were 

named as (Cur_1, Cur_2, Cur_3,…………….Cur_63).  A database 

named CurALIGN40.mdb was created with these compounds. 

 

 

 

Database alignment 
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            The next step is the alignment of molecules of the dataset: 

database. Alignment is achieved taking into criteria of the co-ordinates of 

the molecules that render the final common alignment with least root 

mean squares (RMS) deviation in the common groups or atoms used in 

aligning the cogeneric series.  Typically, the alignment of the compounds 

for QSAR studies is usually performed by three methods.21 

1) Bioactive conformation based alignment (BCBA) 

 This method is followed when a known bioactive conformation of a     

compound is available as co-crystallized with the target structure. 

2) Conformational search conformation based alignment (CCBA) 

 In this method conformational search is performed with to observe the 

global minima.  Alignment is carried out with the global minima of all the 

compounds in the dataset.  

3) Docked conformation based alignment (DCBA) 

In this method the compounds are docked into the interacting domain of 

the target structure. 

4) Local minima confirmation based alignment (LCBA) 

Here the compounds are sketched and energy minimized to yield a local 

minima. The local minima conformation of each molecule in the database 

is used in the alignment procedure. 
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Rigid atom fit or field fit alignment are the most common types of 

alignment rules followed.  Both these alignment are performed keeping in 

mind that there is a minimum RMS deviation in the common points or 

atoms chosen in aligning the database.  The RMS deviation observed in 

the initial trial alignment of the dataset of the first forty two compounds 

was acceptable, but beyond compound forty (Cur_40) there is an 

observed significant root mean squares (RMS) deviation in the alignment 

of the molecules.  The degree of predictive properties of a three-

dimensional QSAR studies based on CoMFA and CoMSIA analysis are 

highly depends on extent of closeness in the common points chosen in 

aligning the database.  During the execution of the energy minimization 

protocol of each molecule, the compounds attain local energy minima.  

During this process the molecules assume a structure with the local 

minima energy conformation.  This local energy minimum varies from 

one molecule to the other in the dataset:  It depends on different atom 

types and varying substituents of the molecule. In three-dimensional 

QSAR studies, the alignment is the most important aspect to be 

considered to yield a better crossvalidated q2 (average r2) and eventually 

the predictions of the computational model. 
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          Thus, several methods and optimizations were carried out with the 

molecules to yield a best possible alignment.  Dihydral angles were 

modified for the analogs to achieve the desired configuration for the 

compounds that were not aligned properly when superimposed.  Two 

centroids (C1 and C2) were defined for the two aromatic substituents R1 

and R2.  The centroids C1 and C2 and all the atoms labeled 1, 2, 3, 4, 5 

and 6 of the central enone linker were chosen as common points in 

aligning the database.  The below figure shows the points chosen for 

alignment of the structures. 

                              X
X X

X

O

C1 C2

1

2

3
4

5

6

 

Fig 7.1  C1 and C2 centroids of the aromatic rings were done with the 

entire labeled atoms 1 trough 6 in the central chalcone bridge.  X 

represents various heteroatoms in the aromatic systems. 
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Fig 7.2 Initially developed trial alignment:  poorly aligned regions are 

seen in the central enone linker. 
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Fig 7.3  Rectified alignment: This alignment was achieved by atom fit of 

the central enone linker and the centroids C1 and C2 defined for Aromatic 

systems R1 and R2.  

 

Statistical analysis of the model: PLS (Partial Least Squares)  
 
          PLS (partial least squares) analysis in a statistical correlation 

analysis.29      PLS analysis is used with this dataset.  The natural logarithm 

of percentage inhibition, ln (% inhibition) is used as a dependent variable.  

The range of the dependent variable for the dataset is observed to be in a 

range of 5 log units. Steric and electrostatic field descriptors are used as 

the independent variable in three-dimensional QSAR CoMFA model 

development.  Similarly, five indices; electrostatic, steric, hydrogen bond 

donor, hydrogen bond acceptor and hydrophobicity indices are used as 

dependent variable in three-dimensional QSAR model development 

based on CoMSIA. 

 

PLS analysis with CoMFA descriptors 

        The dataset of sixty three compounds (Cur_1, Cur_2, up to Cur_63) 

was used in the analysis. Six compounds were not taken in the model 

development.  
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        The percentage inhibition for the compounds was observed to be 

zero at 3µg/ml. They are for compounds Cur_25, Cur_29, Cur_34, 

Cur_43, Cur_49, and Cur_56. The remaining compounds are fifty seven. 

This dataset was divided into,  training set of forty six compounds  ( 

Cur_1, Cur_2, Cur_3, Cur_4, Cur_5, Cur_6, Cur_8, Cur_9, Cur_10, 

Cur_12, Cur_13, Cur_14, Cur_15, Cur_16, Cur_17, Cur_18, Cur_19, 

Cur_20, Cur_22, Cur_23, Cur_24, Cur_26, Cur_28, Cur_30, Cur_32, 

Cur_33, Cur_35, Cur_36, Cur_37, Cur_39, Cur_40, Cur_41, Cur_42, 

Cur_44, Cur_45, Cur_47, Cur_48, Cur_51, Cur_53, Cur_54, Cur_55, 

Cur_57, Cur_58, Cur_60, Cur_62, Cur_63 ) and the remaining eleven 

compounds as the test set  

(Cur_7, Cur_11, Cur_21, Cur_27, Cur_31, Cur_38, Cur_46, Cur_50, 

Cur_52, Cur_59 and Cur_61) 

 

Table 7.1.  Training set - forty six compounds 

Cur_2 

 

Cur_3 

 

Cur_1 

 
Cur_4 

 

Cur_5

 

Cur_6 
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Cur_8 

 

Cur_9 

 

Cur_10 
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Cur_12 

 

Cur_13 

 

Cur_14

 

Cur_16 Cur_15

  

Cur_17 

 
Cur_18 

 

Cur_19 

 

Cur_2

 
Cur_23 

 

Cur_24 

 

Cur_22 

 

Cur_26 Cur_27 

 

Cur_28

 
Cur_30 

 

Cur_31 

 

Cur_32 

 

 50



 
Cur_33 

 

Cur_35

 

Cur_36 

 
Cur_37 

 

Cur_38 

 

Cur_39 

 

Cur_40 Cur_41 

  

Cur_42 

 
 

Cur_44

 

Cur_45 

 

Cur_46 

 

Cur_47 Cur_48 

 

Cur_50 

 
Cur_51 

 

Cur_52 

 

Cur_53 
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Cur_54 

 

Cur_55 

 

Cur_57 

 

Cur_58 

 

Cur_59 

 

Cur_60 

 

Cur_61 

 

Cur_62 

 

Cur_63 
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Table 7.2. Test set - Eleven compounds 

 

Cur_11 Cur_7 

 
 

Cur_21 

 
  

Cur_31 

 
 

Cur_38 

 

Cur_27 

 
Cur_46 

 

Cur_50 

 

Cur_52 

 
Cur_59 

 

Cur_61 
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Table 7.3.  Data set compounds not included in the QSAR study 

 

Cur_25 

 

Cur_29 

 

Cur_34 

 

Cur_43 

 

Cur_49 

 

Cur_56 

 

 

  

Developing a CoMFA region file 

          Since the model yielded a low cross validated q2, rotation of the 

training set alignment was carried out in an effort to see if this might 

increase the predictive property of the model.  The software creates the 

lattice and the lattice points based only on the initial alignment before the 

PLS run.  This is termed as the CoMFA region file.  The CoMFA region 

file has the dimensions in the x, y and z co-ordinates, the total number of 

lattice points, and the probe atom used to calculate the steric and 

electrostatic fields at the grid points.  This CoMFA region file with lattice 
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points is only a few angstroms from the most distant atom from the center 

of the common alignment.  As rotation of the alignment was carried out 

in the lattice, there is a possibility that the alignment shift beyond the PLS 

sampling lattice point, of the CoMFA region file.  To avoid an error of 

not sampling fields, a customized lattice (new region file) was created 

which is large enough in all the three-dimensions. To create this CoMFA 

region file, a few molecules from the original database were rotated 

orthogonal (perpendicular) to the common alignment. These new 

molecules have new co-ordinates, and the molecules were renamed and 

were put in the database.  The database has molecules with two different 

coordinates orthogonal to each other.  A new molecular spread sheet was 

created with the above database.  CoMFA columns were filled in the 

molecular spread sheet.  The newly created CoMFA region file was 

saved.   This saved CoMFA region file was used in the QSAR model 

after executing rotation and translation of the alignment of the training 

set. 
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          Dimension of the original CoMFA region file, the region file is 

created automatically while creating the CoMFA columns in the 

molecular spread sheet 

 

 Newly created CoMFA region file and its respective parameter 

 

 

In both the CoMFA region files, points indicate the number of lattice 

points. The lowest and higher corner indicate the total spacing in their 

respective dimensions (x, y and z coordinate axis) and the number of 

steps are the total steps in each co - ordinate.  Probe atom C. 3 is the sp3 
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hybridized carbon used in calculating the fields at the grid points. Charge 

1 indicates that the sp3 hybridized carbon has a charge of +1 

 

Table 7.4.  PLS statistical results for CoMFA and CoMSIA 3D-QSAR 

model 

        PLS details CoMFA COMSIA 

r2 0.213 0.183 

q2 0.239 0.146 

no validation r2 0.965 0.946 

S value 
0.190 0.236 

F value 
127.682 81.055 

Box Step size 
2 Å 2 Å 
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Column filter of 2.0 kcal/mole was used during the PLS analysis in both 

the CoMFA and CoMSIA QSAR model development.  Attenuation factor 

of  0.3 kcals/mole was used in the CoMSIA analysis.                                                       

                                                                  

 

Fig 7.4 CoMFA region file with the loaded alignment, the blue dots 

indicate the lattice points of the region file. 
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Table 7.5.  Results of the predictions of CoMFA and CoMSIA models 

Compounds Experimental 
CoMFA 

prediction 
CoMSIA 

Prediction 
CoMFA 

Residuals 
CoMSIA 
Residuals 

Cur_20 3.68 3.66 3.41 0.02 0.27 

Cur_1 4.53 4.09 4.15 0.44 0.38 

Cur_10 2.46 2.98 2.81 -0.52 -0.35 

Cur_11 4.47 3.45 4.61 1.02 -0.14 

Cur_12 3.2 3.25 2.93 -0.05 0.27 

Cur_13 4.32 4.28 4.10 0.04 0.22 

Cur_14 3.64 3.75 3.64 -0.11 0.00 

Cur_15 4.19 4.15 4.23 0.04 -0.04 

Cur_16 4.11 4.13 4.36 -0.02 -0.25 

Cur_17 3.93 3.99 3.92 -0.06 0.01 

Cur_18 3.78 3.77 3.94 0.01 -0.16 

Cur_19 4.03 4.03 4.00 0.00 0.03 

Cur_2 3.69 3.27 3.42 0.42 0.27 

Cur_21 3.90 3.34 3.62 0.55 0.28 

Cur_22 4.49 4.61 4.58 -0.12 -0.09 

Cur_23 3.46 3.52 3.45 -0.06 0.01 

Cur_24 3.98 4.14 4.17 -0.16 -0.19 

Cur_26 1.34 1.31 1.30 0.02 0.03 

Cur_27 4.48 4.26 3.03 0.22 1.45 

Cur_28 4.25 4.12 4.18 0.14 0.08 

Cur_3 4.59 4.17 4.11 0.42 0.47 

Cur_30 4.02 4.03 4.04 -0.01 -0.02 

Cur_31 4.37 0.79 2.17 3.56 2.20 

Cur_32 4.32 4.14 4.31 0.19 0.02 
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Cur_33 3.55 3.65 3.56 -0.10 -0.01 

Cur_35 2.56 2.54 2.50 0.013 0.06 

Cur_36 3.56 3.81 3.46 -0.25 0.11 

Cur_37 1.48 1.35 1.38 0.13 0.11 

Cur_38 1.63 1.56 1.50 0.07 0.13 

Cur_39 3.38 3.87 3.92 -0.49 -0.53 

Cur_4 2.34 2.51 2.55 -0.16 -0.22 

Cur_40 3.98 3.94 4.21 0.04 -0.23 

Cur_41 4.05 3.91 4.18 0.14 -0.13 

Cur_42 3.50 3.61 3.400 -0.11 0.10 

Cur_44 3.22 3.03 3.23 0.19 -0.02 

Cur_45 3.11 3.15 2.90 -0.04 0.21 

Cur_46 4.02 3.47 3.56 0.55 0.45 

Cur_47 3.19 3.09 3.30 0.09 -0.11 

Cur_48 0.37 0.37 0.41 -0.02 -0.04 

Cur_5 2.65 2.86 3.16 -0.21 -0.51 

Cur_50 2.67 1.11 1.92 1.56 0.75 

Cur_51 2.54 2.52 2.62 0.02 -0.08 

Cur_52 3.54 1.48 1.63 2.06 1.91 

Cur_53 3.48 3.39 3.67 0.07 -0.18 

Cur_54 3.79 3.97 3.91 -0.18 -0.12 

Cur_55 2.09 2.07 1.90 0.02 0.19 

Cur_57 4.05 4.11 4.18 -0.05 -0.12 

Cur_58 2.43 2.40 2.44 0.03 -0.01 

Cur_59 3.07 4.41 3.93 -1.34 -0.86 

Cur_6 4.06 4.20 3.96 -0.14 0.10 
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Cur_69 2.43 2.26 2.50 0.18 -0.07 

Cur_61 4.44 3.07 3.22 1.37 1.23 

Cur_62 3.61 3.84 3.92 -0.23 -0.31 

Cur_63 4.34 4.28 3.93 0.06 0.41 

Cur_7 4.21 3.43 3.54 0.78 0.67 

Cur_8 4.39 4.43 3.97 -0.04 0.42 

Cur_9 3.23 3.21 3.59 0.02 -0.36 

 

 

Fig 7.5  Scatter plot of CoMFA and CoMSIA analysis, predicted activity 

vs actual or experimental activity. The distribution of biological activity 

was observed to be in a range of five Log units. The points on the graph 

which are far away from the diagonal margin are considered to be 

outliers. 
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Affect of alignment on cross validated q2   for the derived QSAR 

model - Rotation of alignment in the lattice 

          To observe how the cross validated q2 is affected by the movement 

of the alignment of the training set compounds in the defined lattice; 

rotation of the alignment in the lattice was carried out.  Rotation of the 

alignment with the x-axis as the center of rotation was performed.  The 

STATIC ROTATE GLOBAL command was used via the Sybyl 

command line to execute this function in Sybyl.  The rotation was carried 

out in increments of 20 degrees from 0 to 180 degrees in a clockwise 

direction.  Since the lattice points of the CoMFA region file are 

orthogonal beyond 180 degrees, it is not necessary to carry additional 

rotation beyond 180 degrees because the PLS output will repeatedly be 

similar.  The PLS results indicate there is a significant affect of the 

molecular alignment in the Cartesian grid on the cross validated q2.   Such 

alignment affect in significantly low in CoMSIA as evident from the 

graph plotted, q2  vs angle of rotation; see Table 7.6 and Figure 7.6. 
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Angle of Rotation CoMFA q2 CoMSIA q2 

0 0.289 0.14 

20 0.197 0.13 

40 0.169 0.16 

60 0.128 0.101 

80 0.224 0.103 

100 0.212 0.115 

120 0.174 0.134 

140 0.234 0.094 

160 0.239 0.062 

180 0.106 0.148 

 

Table 7.6. Cross validated q2 observed in CoMFA and CoMSIA analysis 

with an incremental rotation in alignment. 

 

 

 

 

 

 

 

Fig 7.6 Cross validated q2 vs angle of rotation, it is evident here q2 value 

changes are minimum in CoMSIA analysis, where as in CoMFA analysis 

it is high. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100 120 140 160 180 200

CoMFA q2

CoMSIA q2

 63



 

CHAPTER VIII 

DEPENDENT VARIABLE TRANSFORMATION 

 

              Most QSAR studies are carried out using a standard biological 

response (Ki, IC50, LD50, or ED50).  These biological responses are 

produced with a varied concentration of the compounds in their 

respective biological affinity assay (experimental activity). Here in the 

curcumin analogs dataset the case is different, a varied biological 

response (percentage inhibition) produces for a defined concentrations 

(1µg/ml, 3µg/ml and 6µg/ml).  In a effort to transform the dependent 

variable i.e percentage inhibition (ranging from 0 to 100 %) to inverse 

Log10 ED50  (Log 1/ED50), this function is also termed as pED50 . The 

below is the method used to determine the pED50 of the dataset. The 

derived three different pED50 calculated for the three different 

concentrations were used as dependent variables in the QSAR model with 

the dataset, even with their transformed variable. The predictions of the 

model were not acceptable; the observed crossvalidated q2 observed was 

relatively low. 
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Essential of molecular pharmacology - The Saturation 

function23

Determination of  pED50: Negative Log10 ED50

   The determined pED50 values were used as dependent 

variables in CoMFA and COMSIA studies for the curcumin 

analog dataset.  

General form of the equation 

bx
x

a
y

+
=                                                                                             8.1 

x - concentration of a drug, ligand or substrate. 

y is a dependent variable, like amount of ligand bound, 

biological effect (IC50, LD50 or ED50 ) or velocity in enzyme 

kinetics:  Ki 

a - maximum value that corresponds to y 

When y is half maximal value then  

bx
x

a
y

+
== 5.0 , so x = b                                                           8.2 

For Receptor – Ligand Binding  

[ ]
[ ]

[ ]
[ ]DT KD

D
R
RD

B
b

+
==

max
                                                                                  8.3 

KD   - dissociation constant; ED50 

[RD] - receptor drug complex. 
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[R]T   - Total number of receptors. 

When KD = [D]  

max

0.5b
B

=                                                                                              8.4  

Fractional biological response (effect)   = % of maximal response
100

   8.5 

 (In our dataset, f = % Inhibition
100

)                                                        

max

Ef
E

= ; E is percent inhibition and E max is 100 %,                       8.6 

max

E
E

 is proportional to fraction of receptors occupied,  

[ ]
[ ]max T

RDb
B R

=                                                                                             8.7 

max

Ef
E

=  is proportional to α 
max

b
B

  (α is a proportionality constant). 

If C = Drug conc. 

max

b
B  =  

DKC
C
+

       In this study C = Molarity (M)                 8.8 

Molarity was calculated by converting the micrograms per 

milliliter of the drug solution to their respective Molar 

strength (Molarity - M) 

DKC
Cf
+

=α                                                                                              8.9   

 f KD = α C – f C                                                                 8.10 
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f  = C  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

DK
fα  

KD = C ( )
f

f−α  

Here α is a proportionality constant, if α = 1 

KD  = C ( )
f
f−1          8.11 

KD is the ED50
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Table 8.1. concentration c1, c2, and c3 are the concentration expressed in 

Molar strength: Molarity calculated for 1 µg/ml, 3 µg/ml and 6 µg/ml. 

percentage inhibitions are indicated as P1, P2 and P3 respectively. 

Molecule  
name 

Molecular 
weight C2 C1 C3 P1 P2 P3

Cur_7 236.31 12.70 4.24 25.39 36.3 67.3 89.5

Cur_61 284.36 10.55 3.52 21.10 84.7 84.9 78.8

Cur_3 291.18 10.30 3.43 20.61 73.7 98.2 98.1

Cur_1 208.26 14.40 4.80 28.81 71.6 92.8 94.4

Cur_40 308.38 9.73 3.24 19.46 54.6 53.5 71.3

Cur_41 358.44 8.37 2.79 16.74 52.5 57.3 48.1

Cur_13 346.04 8.67 2.89 17.34 48.3 75.3 93.7

Cur_6 236.31 12.69 4.23 25.39 47.7 57.9 89.6

Cur_28 253.26 11.85 3.95 23.69 47.6 70.3 84.5

Cur_14 238.29 12.59 4.20 25.18 43.5 38.1 69.1

Cur_11 276.26 10.86 3.62 21.72 42.3 87.4 96.9

Cur_8 236.31 12.69 4.23 25.39 41.7 80.4 87.3

Cur_22 209.25 14.34 4.78 28.67 40.7 89.1 96.9

Cur_51 268.27 11.18 3.73 22.37 36.5 12.7 24.5

Cur_21 328.36 9.14 3.04 18.27 36.2 49.2 39.2

Cur_53 253.26 11.85 3.95 23.69 33 32.5 68.9

Cur_62 303.19 9.89 3.30 19.79 32.8 37 53.7

Cur_19 268.31 11.18 3.73 22.36 31.8 56.4 60.8

Cur_27 388.16 7.73 2.58 15.46 31.1 88.6 88.6

Cur_52 252.27 11.89 3.96 23.78 31 34.3 80.8
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Cur_23 209.25 14.34 4.78 28.67 30.3 31.7 83.2

Cur_2 256.73 11.68 3.89 23.37 29.9 40.2 58.5

Cur_9 270.76 11.08 3.69 22.16 29.6 25.3 73.4

Cur_15 268.31 11.18 3.73 22.36 29.1 63.4 85.2

Cur_54 253.26 11.85 3.95 23.69 28.3 44.1 78.4

Cur_57 198.22 15.13 5.04 30.27 28.2 57.7 90.2

Cur_20 268.31 11.18 3.73 22.36 25.8 39.8 63.5

Cur_37 348.83 8.60 2.87 17.20 25.6 4.4 62.9

Cur_39 308.38 9.73 3.24 19.46 25.5 46.4 69

Cur_35 284.36 10.55 3.52 21.10 24.9 12.9 41.4

Cur_18 337.20 8.90 2.97 17.79 23.2 43.7 52.3

Cur_12 256.73 11.68 3.89 23.37 22.3 24.5 46.5

Cur_49 266.30 11.27 3.75 22.53 21.3 0.1 0.1

Cur_4 291.18 10.30 3.43 20.61 19.9 10.4 84.7

Cur_5 264.37 11.35 3.78 22.70 19.5 14.2 59.2

Cur_34 360.46 8.32 2.77 16.65 19.2 0.1 0.1

Cur_59 197.24 15.21 5.07 30.42 19 21.5 0.4

Cur_38 328.41 9.14 3.04 18.27 18.4 5.1 17

Cur_10 277.15 10.82 3.61 21.65 13.8 11.7 31.1

Cur_26 266.30 11.27 3.75 22.53 13.7 3.8 29.7

Cur_25 278.39 10.78 3.59 21.55 12.6 0.1 5.3

Cur_36 327.21 9.17 3.06 18.34 12.2 35.3 96.8

Cur_46 308.38 9.73 3.24 19.46 12 55.5 60.3

Cur_42 258.32 11.61 3.87 23.23 10.9 33.2 68.2

Cur_33 284.36 10.55 3.52 21.10 10.4 34.7 0.1

Cur_56 198.22 15.13 5.04 30.27 9.8 1.0 0.1
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Cur_58 197.24 15.21 5.07 30.42 8.3 11.4 19.4

Cur_55 188.18 15.94 5.314 31.88 7.7 8.1 12

Cur_30 298.21 10.060 3.35 20.12 6.6 55.6 88.7

Cur_48 302.33 9.92 3.31 19.85 5.7 1.4 11.9

Cur_60 234.30 12.80 4.27 25.61 5.7 11.4 40.8

Cur_16 277.15 10.82 3.61 21.65 4.6 61 94

Cur_17 277.15 10.82 3.61 21.65 2.2 51.1 88.7

Cur_47 312.32 9.61 3.202 19.211 1.9 24.2 48.1

Cur_24 210.24 14.27 4.76 28.54 0.1 53.4 85.2

Cur_29 298.21 10.06 3.35 20.12 0.1 0.1 0.1

Cur_31 258.32 11.61 3.87 23.23 0.1 78.7 88.6

Cur_32 258.32 11.613 3.87 23.23 0.1 75.4 66.2

Cur_43 408.5 7.344 2.45 14.69 0.1 0.1 4.7

Cur_44 308.38 9.73 3.24 19.46 0.1 24.9 50.3

Cur_45 308.38 9.73 3.24 19.46 0.1 22.4 52

Cur_50 282.29 10.63 3.54 21.25 1 14.4 45.5

Cur_63 284.36 10.55 3.52 21.10 1 76.4 52.1
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Table 8.1. f1, f2 and f3 and the derived pED50 for the three different 

concentrations. 

pED50 – 1: pED50   determined for 1µg/ml  

 pED50 – 2: pED50 determined for 3µg/ml 

pED50 – 3: pED50   determined for 6µg/ml 

STD: standard deviation 

Average pED50: Mean of pED50 - 1, pED50 - 2 and pED50  - 3 

 

  f1     f2     f3 pED50 -1 pED50 - 2 pED50 - 3     STD 
Average 

pED50

0.36 0.67 0.89 5.13 5.21 5.530 0.21 5.29

0.85 0.85 0.79 6.20 5.73 5.25 0.48 5.72

0.74 0.98 0.98 5.91 6.72 6.40 0.42 6.34

0.72 0.93 0.94 5.72 5.95 5.77 0.12 5.81

0.56 0.53 0.71 5.570 5.07 5.11 0.28 5.25

0.52 0.57 0.48 5.60 5.20 4.74 0.43 5.18

0.48 0.75 0.94 5.51 5.55 5.93 0.23 5.66

0.48 0.58 0.90 5.33 5.03 5.53 0.25 5.30

0.48 0.70 0.84 5.36 5.30 5.36 0.03 5.34

0.43 0.38 0.69 5.26 4.69 4.95 0.29 4.97

0.42 0.87 0.97 5.31 5.80 6.19 0.43 5.76

0.42 0.80 0.87 5.23 5.51 5.43 0.15 5.39

0.41 0.89 0.97 5.16 5.76 6.04 0.45 5.65

0.36 0.13 0.24 5.19 4.11 4.16 0.61 4.49

0.36 0.49 0.39 5.27 5.025 4.55 0.37 4.95

0.33 0.32 0.69 5.10 4.61 4.97 0.25 4.89

0.328 0.37 0.54 5.17 4.77 4.77 0.23 4.90
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0.32 0.56 0.61 5.10 5.06 4.84 0.14 5.00

0.31 0.89 0.89 5.24 6.00 5.70 0.38 5.65

0.31 0.34 0.81 5.05 4.64 5.25 0.31 4.98

0.30 0.32 0.83 4.96 4.51 5.24 0.37 4.90

0.299 0.40 0.58 5.04 4.76 4.78 0.16 4.86

0.30 0.25 0.73 5.06 4.48 5.09 0.34 4.88

0.29 0.63 0.85 5.04 5.19 5.41 0.19 5.21

0.28 0.44 0.78 4.00 4.82 5.18 0.18 5.00

0.28 0.58 0.90 4.89 4.95 5.48 0.32 5.11

0.26 0.40 0.63 4.97 4.77 4.89 0.10 4.88

0.26 0.04 0.63 5.08 3.73 4.99 0.76 4.60

0.25 0.46 0.70 5.02 4.95 5.06 0.06 5.01

0.25 0.13 0.41 4.97 4.15 4.52 0.41 4.55

0.23 0.44 0.52 5.01 4.94 4.79 0.11 4.91

0.22 0.24 0.46 4.87 4.44 4.57 0.22 4.63

0.21 0.00 0.00 4.86 1.95 1.65 1.77 2.82

0.20 0.10 0.85 4.86 4.05 5.43 0.69 4.78

0.19 0.14 0.59 4.81 4.16 4.82 0.37 4.59

0.19 0.00 0.00 4.93 2.08 1.78 1.74 2.93

0.19 0.21 0.00 4.66 4.25 2.12 1.37 3.68

0.18 0.05 0.17 4.87 3.77 4.05 0.57 4.23

0.14 0.12 0.31 4.65 4.09 4.32 0.28 4.35

0.14 0.04 0.30 4.63 3.54 4.27 0.55 4.15

0.13 0.00 0.05 4.60 1.97 3.41 1.32 3.33

0.12 0.35 0.97 4.66 4.77 6.22 0.87 5.22

0.12 0.55 0.60 4.62 5.11 4.89 0.24 4.87
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0.11 0.33 0.68 4.50 4.63 4.96 0.24 4.70

0.10 0.35 0.00 4.52 4.70 1.68 1.70 3.63

0.10 0.0 0.00 4.33 2.82 1.52 1.41 2.89

0.08 0.11 0.19 4.25 3.93 3.90 0.20 4.03

0.08 0.08 0.12 4.20 3.74 3.63 0.30 3.86

0.07 0.57 0.89 4.32        5.09 5.59 0.64 5.00

0.06 0.014 0.12 4.26 3.16 3.83 0.56 3.75

0.06 0.11 0.41 4.15 4.00 4.43 0.22 4.19

0.05 0.61 0.94 4.13 5.16 5.86 0.87 5.05

0.02 0.51 0.89 3.79 4.98 5.56 0.90 4.78

0.02 0.24 0.48 3.78 4.52 4.68 0.48 4.33

0.00 0.53 0.85 2.32 4.90 5.30 1.62 4.19

0.00 0.00 0.00 2.47 2.00 1.70 0.39 2.06

0.00 0.79 0.89 2.41 5.50 5.52 1.79 4.48

0.00 0.75 0.66 2.41 5.42 4.93 1.61 4.25

0.00 0.00 0.05 2.61 2.13 3.53 0.71 2.76

0.00 0.25 0.50 2.49 4.53 4.72 1.24 3.91

0.00 0.22 0.52 2.49 4.47 4.75 1.23 3.90

0.01 0.14 0.45 3.45 4.20 4.59 0.58 4.08

0.01 0.76 0.52 3.46 5.49 4.71 1.02 4.55
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CHAPTER IX 

RESULTS AND DISCUSSIONS 

 

          Curcumin and several of its structural analogs have a diverse range 

of activity towards various mediators of cancer progression.  Selectivity 

is an important factor. Initial pharmacophore perception in MOE 

(Molecular Operating Environment) results in the identification of the 

interaction pharmacophore elements: IPEs.  There are two aromatic 

systems: F3-Ar1 and F4-Ar2 as well as a hydrogen bond donor - F1 and a 

hydrogen bond acceptor - F2, see figure 9.1. The pharmacophore model 

developed is a four point pharmacophore model.  These interacting 

pharmacophore elements (F1, F2, F3 and F4) are imperative for biological 

activity. The spacing of the pharmacophore elements was indicated in the 

Figure 9.1. This pharmacophore was used as a search query in the 

screening of the National Cancer Institute (NCI) database of 21607 

compounds.  After successfully screening the NCI database, 1471 

compounds were identified as hits.  These hits can be further filtered with 

Lipinski’s Rule of Five.24 The rule determines the essential features for a 

drug-like molecule, even though a molecule might be highly potent if it 

violates the Lipinski’s Rule of Five, it is unlikely, but not absolutely 

 74



guaranteed, that the molecule cannot be developed to a future clinical 

candidate. 

 

 

 

 

 Fig 9.1.  Four point pharmacophore hypothesis of aromatic enones with 

spacing between the pharmacophore elements. F3 and F4 are the aromatic 

systems, F2 is the Hydrogen bond donor and F1 is the hydrogen bond 

acceptor. 
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         Information related to biological target specific binding of curcumin 

analogs is lacking.  Thus, ligand based modeling is the best available 

option.  Three-dimensional QSAR analysis is one of the most reliable 

methods in ligand based computational model development.  

 

Initially when all the sixty-three structures were taken collectively 

in model building, the statistical results of the PLS runs were not good. 

The convergent r2 was approximately in a range of 0.08 magnitude of the 

fifty seven compound dataset.  When grouping the dataset into the 

training and test sets, no correlation was identified in the training set 

between the molecular field descriptors and the dependent variable 

(natural log function of percentage inhibition at 3µg/ml concentration).  

           

Usually three-dimensional QSAR studies are carried out with 

standard biological response (IC50, LD50, ED50, Ki - which is converted to 

an inverse Log function) observed at a defined concentration of each 

compound in the cell based assay study.  In the present biological assay it 

is different, a varied biological response (percentage growth inhibition) at 

a defined concentration (three different concentrations). So a 

pharmacodynamic conversion was derived with the available two 

variables (percentage inhibition and concentration of the drug solution) 
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into ED50 and the negative log function (pED50) is taken as the dependent 

variable in the QSAR model development. Even with effort an acceptable 

correlation was achieved with the model. When six compounds Cur_25, 

Cur_29, Cur_34, Cur_43, Cur_49, and Cur_56 were eliminated from the 

training set, there is a correlation observed in the model. The 

crossvalidated q2 for CoMFA was 0.289 and 0.146 in CoMSIA analysis.  

The results and the outcomes of this final QSAR model are acceptable, 

which is evident in the final validation of the model with the prediction 

set compounds and the contour maps.  The feature present in the 

molecule complements the QSAR contour maps of the model. Standard 

deviation method is used in deriving the contour maps. 

 

           A few compounds with good prediction in the training set and the 

test were placed in the contour maps.  The predictions of the derived 

three- dimensional QSAR model were acceptable. When few compounds 

of the training set and the test set were chosen to validate the model, the 

molecular features were observed.  By visualizing them in the QSAR 

contour maps, there is a compatibility observed in the predictions. 

Therefore, with structural modification with different functional groups 

and their respective orientation in three-dimensional space might result in 

increased activity of the molecules as evident with the contour maps. 
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Fig 9.2.  CoMFA stereo view contour coefficient maps, Cur_26, is placed 

in the three dimension contour map. 

 

                              CoMFA contour maps color codes 

Interaction fields Green Yellow 

Steric Favors interaction Disfavors interaction 

Electrostatic Blue favors positively 

charged group 

interaction 

Red favors negatively 

charged group 

interaction 
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Figure 9.3.  CoMSIA stereo view, the upper right corner has the scatter 

plot of the training set compounds Cur_11, a test set compound placed in 

the CoMSIA contour map. 

 

CoMSIA contour coefficient map color codes 

Interaction Fields Favor interaction Disfavor interaction 

Steric Green Yellow 

Electrostatic Blue Red 

Hydrophobicity Yellow White 

Hydrogen bond 

acceptor 

Magenta Red 

Hydrogen bond donor Cyan Purple 
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           The contour maps shown below indicate the individual CoMSIA 

field contributions and their corresponding stereo view. Some of the 

training set and test set compounds were placed in the contour coefficient 

maps for qualitative inspection for identification of various groups that 

favor and disfavor interaction and their contribution towards activity. 

 

 

 

 Fig 9.4.  CoMSIA steric and electrostatic contour map with the total 

dataset alignment. 
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           Green indicates steric interactions are favorable in the regions and 

yellow indicates it is disfavored.  For electrostatic interactions, blue 

indicates positively charged groups are favored in the region and red 

indicates negatively charged groups are favored. 

     

 

Contour details 

Steric green – 92.00 and yellow – 20.00 

Electrostatic blue – 91.00 and red – 18.00 

Fig 9.5.  Steric and Electrostatic contour maps. Training set compound 

cur_11 
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Steric: Green indicates steric interactions are favored in the region and 

yellow indicates it is disfavored.  

Electrostatic: Blue indicates positively charged electrostatic interactions 

are favored in that region and red indicates it is disfavored.   In the map 

there is a triflouro group present on R2 aromatic system, which is a strong 

prediction of the model. 
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Contour details 

Magenta - 80 

Red - 15 

Fig 9.6. Training set compound cur_9 

 

HYDROGEN BOND ACCEPTOR SYSTEM  

Magenta indicates H-bond acceptor groups are favored in the region of 

the molecule.  Magenta - 80 

Red indicates H-bond acceptor groups are disfavored in that region. 
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Contour details 

Yellow – 87.00 

White – 10.00 

 

Figure 9.7. Test set compound Cur_11 

Hydrophobicity: yellow indicates hydrophobic group are favored in the 

region and white indicates it is disfavored. 
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Contour details 

Cyan – 95.00 

Purple – 56.00 

Fig 9.8. Training set compound cur_59 

Hydrogen bond donor system 

 Cyan indicates hydrogen bond donor groups are favored in that region 

and purple indicates hydrogen bond donor groups are disfavored in the 

region.  
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CHAPTER X 

FUTURE RESEARCH 

 

          Curcumin is considered as an important lead candidate in 

biochemical research as evident from various sources.  As its activity 

profile is not unique to only a specific target or to a class of closely 

related biological targets, future research should be focused to identify all 

the targets to which curcumin exhibits its affinity/inhibition potential. In 

silico and computational research methods can be feasible if the structural 

data of the targets are reported.  These are usually reported as a co-crystal 

structure of the biological target with the ligand bound to the active 

domain or a NMR data of the putative target.  The ligand can be 

curcumin or compounds that have some degree of structural resemblance 

with curcumin.  Solubility is a major hurdle for the development of 

curcumin or its structural analogs. These factors need to be taken into 

account in future research that focus on the design and synthesize of 

compounds that have greater water solubility. 

 87



 

BIBLIOGRAPHY 

 

1) Furness, M. S.; Robinson, T. P.; Ehlers, T.; Hubbard, R. B., IV; 

Arbiser, J. L.; Goldsmith, D. J.; Bowen, J. P. Current 

Pharmaceutical Design 2005, 11(3), 357. 

2) Pharmacological basis of therapeutics Goodman Gilman. 

3) Text book of pharmaceutical and medicinal chemistry., Wilson 

and Gisvold. 

4) Carmeliet, P.; Rakesh, K.J. Angiogenesis in cancer and other 

diseases. Nature, 2000, 407, 249-257. 

5) Folkman, J. Tumor angiogenesis-therapeutic implications. New 

England Journal of Medicine, 1971, 285, 1182-1186. 

6) Arbiser, J. L.; Klauber, N.; Rohan, R.; van Leeuwen, R.; Huang, 

M. T.; Fisher, C.; Flynn, E.; Byers, H. R. Molecular Medicine 

1998, 4, 376. 

7) Salimath, B. P. Molecular mechanisms of anti-angiogenic effects 

of curcumin. Biochemical and Biophysical Research 

communications 2002, 297, 934-942. 

8) Leu T.H.; Maa M. C.; The molecular mechanisms for the 

antitumorigenic effects of curcumin. Current medicinal chemistry 

anticancer agents 2002.;2(3):357-70. 

9) Arbiser, J. L.; Moses, M. A.; Fernandez, C. A.; Ghiso, N.; Cao, 

Y. H.; Klauber, N.;Frank, D.; Brownlee, M.; Flynn, E.; Parangi, 

S.; Byers, H. R.; Folkman, J. Proc.Natl. Acad. Sci. 1997, 94, 861-

866. 

 88



10) Robinson, T. P.; Ehlers, T.; Hubbard, R. B.; Bai, X. H.; Arbiser, 

J. L.; Goldsmith, D. J.; Bowen, J. P. Bioorg. Med. Chem. Lett. 

2003, 13(1): 115. 

11) Fujita, T.; Iwasa, J.; Hansch, C. J. Am. Chem. Soc. 1964, 86 5175. 

12) Cramer, R. D., III; Patterson, D. E.; Bunce, J. D. Comparative 

molecular field analysis (CoMFA). 1. Effect of shape on binding 

of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110, 5959-

596. 

13) G. Klebe, U. Abraham, and T. Mietzner, J. Med. Chem., 1994,37, 

4130 4146. 

14) M. E. Wolff, (ed.), ‘Burger’s Medicinal Chemistry’, Vol. I: 

Principles and Practice, Wiley, New York, 5th edn., 1995. 

15) Paul Geladi., Bruce R Kowalski., Analytica Chimica Acta.1986, 

186, l-1 

16) Arbiser, J. L.; Moses, M. A.; Fernandez, C. A.; Ghiso, N.; Cao, 

Y.; Klauber, N.; Frank, D.; Brownlee, M.; Flynn, E.; Parangi, S.; 

Byers, H. R.; Folkman, J. Proc. Natl. Acad. Sci. U.S.A. 1997,  

94(3),  861. 

17) H. Kubinyi, (ed.), ‘3D QSAR in Drug Design. Theory, Methods 

and  Applications’, ESCOM, Leiden, 1993. 

18) Desertation.; Tedman J. Ehlers Development of antiangiogenic 

compounds: computational studies of curcumin based drugs and 

methaminopeptidase type II inhibitors. 

19) Thomas Philip Robinson, Richard B. Hubbard, IV, Tedman J. 

Ehlers, Jack L. Arbiser, David J. Goldsmith and J. Phillip Bowen, 

Bioorganic  & Medicinal Chemistry, 2005, 13 4007–4013. 

 89



20) Tripos Inc. SYBYL molecular modeling software; Tripos Inc., 

1699 South Hanley Rd, Suite 303, St. Louis, MO 63144. 

21) Tripos force Fields., vinter J. G.; Davis, A.; Saunder, M. R. J. 

Comp-Aided Mol. Design, 1987, 1, 31. 

22) Gyanendra Pandey, Anil K. Saxena J. Chem. Inf. Model. 2006, 

46, 2579-2590. 

23) Receptors in a Quantitative approach, Alexander levitziski. 

24) Christopher A Lipinski, Franco Lombado, Beryl W. Dominy, 

Paul J. Feeney, Advanced Drug Delivery Reviews, 2001, 46, 3 - 

26. 

 90


	Paila Abstract.pdf
	Paila Prelim Pages.pdf
	Paila Text.pdf

