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Polyketides are a diverse class of natural products that have varying 

therapeutic values.  Polyketide synthases (PKSs) use different domains within 

the larger enzyme to vary the amount of reduction seen at each ketide position.  

The ability to manipulate PKSs would make the synthesis of unnatural 

polyketides possible, potentially creating novel biologically active molecules. 

 Bacillus subtilis strains 39320 and 39374 produce the polyketide antibiotic 

difficidin, which has a subunit that can not be explained by well-understood 

polyketide synthesis.  Studies of the synthesis of difficidin may be useful for 

diversifying the synthesis of new unnatural polyketides.  Sfp, a 

phosphopantetheinyl transferase (PPTase) activates ACPs.  AcpK carries an 

acyl unit to react with PksG, an enzyme that synthesizes an intermediate that 

may lead to the unusual subunit.  An enzyme expressed during sporulation, 

MmgA, is homologous to acetyl coenzyme A acetyltransferases.   

 AcpK, PksG, and MmgA were successfully cloned, overexpressed, and 

purified from B. subtilis strain 168.  Sfp was successfully cloned, overexpressed, 

and purified from a donated overexpression vector.  PPT reactions with Sfp and 

AcpK were successfully performed.  Biochemical characterization of PksG was 

carried out and defined by other unrelated research.  MmgA was biochemically 

determined to be a β-keto acyl thiolase. 
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CHAPTER I 
 

INTRODUCTION 
 

I.A Polyketide Structures and Biosynthesis 
 

Polyketides are a diverse class of natural products that can be produced 

by certain bacteria, fungi, plants, and animals.  These products have a variety of 

pharmacological applications.  Figure I-1 shows examples of polyketides that 

have therapeutic value including naphthomycin A an antibiotic, dynemycin A an 

anticancer compound, tetronasin an antiparasitic agent, rapamycin an 

immunosuppressant, streptazolin an antifungal, and mevinolin a cholesterol 

lowering compound (Rawlings, 1997).   

Figure I-1 Examples of polyketides having medicinal value (Rawlings,1997).
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Polyketides are assembled by enzymes called polyketide synthases 

(PKSs).  There are three types of PKSs, type I-III, and each assembles the 

product in different routes, though the chemistry is very similar.  Type I PKSs are 

arranged in modules that contain multifunctional enzymes which produce 

nonaromatic polyketides.  Type II PKSs are made up of a single set of proteins 

that are iteratively used to synthesize aromatic polyketides (Shen, 2003). 

 PKSs are comparable to fatty acid synthases (FASs) because the function 

of enzymes present in each synthase catalyzes similar reactions.  Type I FASs 

are also single, multifunctional, proteins (Hopwood, et al., 1990).  FASs initiate 

fatty acid chain synthesis by a decarboxylative condensation between an acetyl 

unit (C2 starter unit) and a malonyl unit (C3 extender unit) yielding a C4 product.  

The acetyl starter unit is transferred from acetyl coenzyme A (CoA) to a domain 

found in the FAS called the acyl carrier protein (ACP) domain.  This transfer is 

catalyzed by another domain, the acyltransferase (AT) domain. 

Decarboxylation occurs after the starter unit moves to the ketosynthase 

(KS) domain and a extender unit is attached to a newly opened ACP domain.  

The KS domain catalyzes the decarboxylation step that forms the C4, β-ketone 

product.  This β-ketone undergoes further reductions by other enzymes.  These 

enzymes are a ketoreductase (KR), which yields an alcohol in the β position, a 

dehydratase (DH), which yields a double bond, and an enoylreductase (ER), 

which yields a fully saturated methylene group.  Elongation occurs when a new 

extender unit is loaded and another round of condensation and subsequent 
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reductions occur, extending the chain by two carbons.  This elongation and 

reduction cycle continues until a specific chain length is reached.  The chain-

length is specified by a final domain, the thioesterase (TE), which hydrolyzes the 

ACP-thioester, breaking the free fatty acid (Katz, et al., 1993).  The initial 

condensation and sequential reduction reactions catalyzed by the different 

domains in the FAS can be seen in Figure I-2. 

 

Figure I- 2 Reactions in fatty acid synthesis. 
 

Polyketides are produced by a similar mechanism with four exceptions, 

the diversity of starter units used, a variable extent of reduction of each β-ketone 

unit, the introduction of chiral centers by either the β-hydroxyl group or side 

chains present, and post synthetic modifications such as cyclization, 

lactonization, and glycosylation, among others (Katz, et al., 1993).  These 

differences are greatly responsible for the diversity seen in polyketide natural 

products. 
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One of the most studied PKSs is from the organism Saccharopolyspora 

erythraea, the producer of erythromycin A, an antibiotic useful against Gram-

positive bacteria.  By the year 1965 the structure and stereochemistry of 

erythromycin A had been determined (see Figure I-3).  Erythromycin A is 

synthesized in two phases.  The first phase involves the PKS portion of the 

molecule, and the second is post polyketide synthase “tailoring” (Staunton, et al.,

1997). 

 

Figure I- 3 Structure of erythromycin A (Staunton et al., 1997). 
 

The polyketide portion of erythromycin A is synthesized using propionate 

as a starter unit and methylmalonate as extender units.  This process forms a 

precursor to erythromycin A called 6-deoxyerythronolide B (6-DEB).  The 

proteins that synthesize this molecule are called 6-DEB synthase (DEBSI-III) for 

this reason.  DEBSI-III each contains two modules that are responsible for the 

extension of the polyketide chain by two carbon units until after module 6, when 
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the TE releases the fully formed chain.  Each module contains the necessary 

domains, the AT, the ACP, and the KS.  Other reducing domains may be present 

which can include, KR, DH, and ER.  Each module extends the polyketide chain 

and reduces the β-ketone until the module-encoded functional group is obtained 

(Staunton, et al., 1997).  The last step catalyzed by DEBS is release by 

macrolactonization by the TE domain.  These modules can be seen in Figure I-4 

and the resulting structure of 6-DEB. 

 

Figure I- 4 DEBS I-III and the structure of 6-deoxyerythronolide B 

(Staunton, et al., 1997). 
 

I.B Combinatorial Biosynthesis 

 Polyketide synthesis occurs through common routes, though the products 

can be diverse.  The structures of polyketides can be correlated directly to the 
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sequence of modules within their cognate modular PKS.  The number of 

modules, the choice of starter and extender unit, and the domains inside the 

modules are some of the ways this natural product diversity is explained 

(McDaniel, et al., 1999).   

 Research into the manipulation of the biosynthetic pathways of polyketide 

production has led to the engineered biosynthesis of “unnatural” natural products.  

With DEBS being one of the most well understood PKS, it has also been the 

subject of the first studies for this manipulation to yield these products.  One of 

these studies, conducted by McDaniel, et al., AT domains and different β-carbon 

processing domains from another organism were introduced into DEBS.  The 

combinations of these substitutions yielded polyketides that utilized different 

starter units and had variably reduced carbons at the ketide positions.  With the 

vast amount of experiments conducted a combinatorial library of over 60 analogs 

of 6-DEB were produced (McDaniel, et al., 1999). 

 Other experiments with DEBS involved movement of the TE domain to 

DEBS I or II, which lead to the expected shortened product, and hybridization of 

whole modules from other PKSs, leading to chimeric products (Staunton, et al.,

1997).  Strategies that either add or delete tailoring enzymes can also lead to 

increased diversity of polyketide products, and replacement of KR domains can 

change the stereochemistry of the alcohol (Staunton, et al., 1997). 
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I.C Difficidin 

Though the strain does not produce a polyketide, Bacillus subtilis strain 

168, a Gram-positive bacterium, contains a 15-gene operon that has six genes 

with sequence homology to PKSs.  The rest of the genes did not show any 

similarity to PKS genes (see Table I-1) (Kunst, et al., 1997). 

 

Table I-1 pksX cluster found in Bacillus subtilis strain 168. 
Gene Name Function Based on Homology 
pksA Transcriptional Regulator 

pksB Zn-dependant Hydrolase 

pksC-E Acyl Transferase (AT) 
acpK Acyl Carrier Protein (ACP) 

pksF Ketosynthase/ AT 
pksG Hydroxymethylglutaryl (HMG)-CoA Synthase 

pksH-I Enoyl CoA Dehydratases 

pksJ-R AT-Less Type I PKSs 
pksS Cytochrome P450 (hydroxylase) 

Bacillus subtilis strains 39320 and 39374 produce the broad spectrum 

antibiotic difficidin (Zweerink, et al., 1987).  Difficidin is of interest because it 

contains a subunit that cannot be explained by normal polyketide synthesis, 

being that the C3 position of difficidin has three carbons attached (see Figure I-

5). 
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Figure I- 5 Difficidin. 
 

Difficidin contains an external carbon-carbon double bond, instead of a 

usual polyketide subunit at the C3 position.  Usual polyketide subunits are a 

ketone, an alcohol, a double bond, or a methylene group all with two carbons 

bound to the central ketide carbon.  This branching subunit is an interesting 

system to study, and the results could potentially be used in combinatorial 

biosynthesis.  Our lab is interested in the formation of this branching ketide, and 

our hypothesis is that two possibilities could lead to this subunit.  The first 

hypothesis involves the attachment of a new type of precursor molecule that 

already contains the subunit.   

This would occur in the following steps.  PksC, an acyltransferase, 

charges AcpK with a malonyl group.  PksF decarboxylates the malonyl group to 

form acetyl-AcpK.  PksG then would condense acetyl-AcpK with acetoacetyl-

PksL, which would be contained on one of PksL’s thiolation domains, to produce 

an HMG-PksL intermediate.  PksH would then dehydrate the HMG intermediate, 

creating an unsaturated carbon-carbon double bond.  PksI would then 

decarboxylate this intermediate, leading to a nucleophilic attack on the nascent 
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polyketide chain contained on the second PksL thiolation domain.  This reaction 

would yield a difficidin precursor with an internal carbon-carbon double bond at 

the C2-C3 position.  To make difficidin, other PKSs within the operon would 

cyclize the open chain, and an isomerase would externalize the double bond at 

the C3 position.  This hypothesis can be seen in Figure I-6. 

 

Figure I- 6 First hypothesis for difficidin production. 
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The second hypothesis is that the polyketide chain is grown through 

typical polyketide chemistry, and the external carbon atom is added after the 

backbone is complete. This process would also begin by loading of a malonyl 

unit onto PksC, and decarboxylation by PksF.  In this hypothesis PksG would 

then condense acetyl-AcpK with a difficidin precursor molecule on PksL that 

contains a ketone at the C3 position.  This would then lead to an HMG-like 

intermediate.  PksH would then dehydrate the intermediate to produce an internal 

double bond at the C2-C3 position, and PksI would then decarboxylate.   

Two possibilities exist for how the branching double bond in difficidin 

would be formed from this point.  One possibility is that the enolate is protonated 

at the C2 position.  In this case the bond at the C3 position would maintain an 

external double bond, and PKSs can then cyclize the open chain to directly form 

difficidin.  The second possibility is after PksI decarboxylates, and the enolate is 

formed at the C1-C2 postion, the electron density goes into the branching double 

bond on the C3 position, causing a proton to be abstracted from a nearby acid.  

This leads to a fully formed difficidin chain with a carbon-carbon double bond at 

the C2-C3 position.  This difficidin precursor will then be cyclized by other PKSs 

and the double bond will be externalized by some isomerase.  The second 

hypothesis can be seen in Figure I-7. 
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Figure I-7 Second hypothesis for difficidin production. 
 

These two possibilities probably involve the proteins PksFGHI, and have 

been characterized by other workers (Calderone, et al., 2006).  The proteins 

PksFGHI found in B. subtilis 168 are not unique to this organism.  Other 

homologs of these proteins can be found in other species of bacteria that 

produce polyketides with branching subunits that contain three carbons instead 

of the usual two carbons.  Two specific examples of these polyketides are 
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curacin A, and myxovirescin (Simunovic, et al., 2006; Gu, et al., 2006).  The 

genome of Lyngbya majuscula, the producer of curacin A, and the genome of 

Myxococcus xanthus, the producer of myxovirescin, contains genes that are 

homologs of to PksFGHI from B. subtilis 168.  These polyketides can be seen in 

Figure I-8 and the branching subunits are circled.  Curacin A and myxovirescin 

also have subunits in their structure that include an extra carbon.  Research has 

shown that the homologous genes of PksFGHI, contained in the two organisms, 

are involved in the synthesis of these subunits (Simunovic, et al., 2006; Gu, et 

al., 2006). 

 

Figure I- 8 Structures of myxovirescin and curacin A with branching ketide 
 positions circled (Simunovic, et al.; Gu, et al.). 

 

Though reactions catalyzed by PksFGHI have been observed, the 

question of how the unusual subunit is installed in the full biosynthesis has not 

been completely elucidated.  Research is still needed to determine if an unusual 

subunit is first synthesized by PksFGHI and then added to the backbone, or if the 

backbone is synthesized and acted on by PksFGHI after backbone synthesis.  
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The genome of B. subtilis shows that either hypothesis could be correct because 

there is another protein in the genome of B. subtilis 168, PksL, containing two 

thiolation domains.(Calderone, et al., 2006).  The two thiolation domains support 

the hypothesis that an unusual precursor could be synthesized and then loaded 

onto PksL which would contain the growing polyketide backbone, and then 

added to the backbone by other enzymes. 

I.B.1 Roles of AcpK and Sfp in polyketide biosynthesis 

 Type I PKSs are organized in modules that contain a minimum of a β-

ketoacyl synthase (KS), an acyltransferase (AT), and an acyl carrier protein 

(ACP).  ACPs are synthesized in an apo, inactive, form.  In order for the ACP to 

become active, its holo form, a phosphopantetheinyl prosthetic group from CoA 

is attached to a conserved serine residue in a post translational modification.  

This reaction is catalyzed by enzymes called phosphopantetheinyl transferases 

(PPTases) (Mootz, et al., 2001).  This reaction can be seen in Figure I-9. 

Figure I- 9 Phosphopantetheinylation reaction. 
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To initiate polyketide biosynthesis, an activated monomer is loaded onto 

the first holo-ACP.  During chain elongation, the chain is docked at an upstream 

ACP and undergoes nucleophilic attack initiated by the downstream KS domain 

on the downstream module.  This ensures the direction of chain transfer from the 

upstream ACP to the next downstream KS (Stein, 2005).  According to the 

auxiliary domains present in the module the chain is passed from active site to 

active site until the full module has been utilized.  The finished chain is then 

extended and processed by the next downstream module.  The genome of 

Bacillus subtilis strain 168 contains the pksX cluster (refer to Table I-1).  The 

gene acpK is part of this operon, and codes for a freestanding ACP (Kunst, et al.,

1997).  In B. subtilis the PPTase enzyme is called Sfp.  However, in strain 168 of 

this bacterium, Sfp is synthesized in an inactive form due to a frame shift 

mutation (Stein, 2005).   

In work by Nakano, et al., a sfp gene was cloned from Bacillus subtilis that 

codes for an active protein and in research done by Mootz, et al., Sfp was found 

to catalyze the phosphopantetheinylation reaction on AcpK (Nakano, et al., 1992; 

Mootz et al., 2001).  This research showed that Sfp will use CoA to 

phosphopantethinylate AcpK; however, it has been shown that Sfp can also 

catalyze the same reaction using different acyl CoAs.  This ability to make holo-

AcpK directly charged with acyl chains will be important to our studies of the 

synthesis of difficidin and bacillaene.  The products that are of interest are acetyl-

holo-AcpK, acetoacetyl-holo-AcpK, malonyl-holo-AcpK, and holo-AcpK.  Acetyl-
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AcpK will be important for functional studies using PksG, which will be discussed 

in more detail in the following section.  For this study overexpression and 

purification of AcpK, cloned from B. subtilis strain 168, and Sfp, from a plasmid 

donated to the lab from the Zuber group, will be necessary (Nakano, et al.,

1992).  Finally, the different phosphopantetheinylation reaction conditions will 

need to be optimized.  The information obtained from these reactions will be 

useful in later studies concerning the enzymology of polyketide biosynthesis in B. 

subtilis.

I.B.2 Function of PksG in difficidin production 

 Another research goal outlined in this thesis is the determination of the 

chemical function of PksG in difficidin synthesis.  There are two hypotheses 

concerning PksG, The first involves an acetoacetyl group, which is attached to 

one ACP domain on PksL, is reacted with acetyl-AcpK in the presence of PksG.  

This reaction produces an HMG-PksL precursor that would later be introduced 

into a previously synthesized difficidin chain (see Figure I-10).  Then through 

subsequent reactions difficidin will be synthesized with the exocyclic double 

bond. 
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Figure I- 10 PksG function in first hypothesis. 
 

The second hypothesis involves PksG acting on a fully formed difficidin 

chain on one ACP domain of PksL.  PksG would then condense the β-keto group 

with acetyl-AcpK to form an HMG-like intermediate on the longer polyketide chain 

(see Figure I-11).  Enzymes (PksHI) would then decarboxylate and dehydrate 

this intermediate to yield a mature difficidin molecule with the exocyclic double 

bond. 

 

Figure I- 11 PksG function in second hypothesis. 
 

This project aims to determine the activity of PksG from B. subtilis 168. In 

order to successfully carry out this study we will require data obtained from the 

above section concerning the optimized PPTase reactions with AcpK.  In studies 

performed by Calderone, et al. the characterization of PksCFGHI had been 
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successfully completed prior to this thesis.  This research conclusively showed 

that PksG can act as an HMG-PksL synthase (Calderone, et al., 2006).  This 

result, however, does rule out the second mechanism in Figure I-7. 

 

I.B.3 Functionality of MmgA 

 Bacillus subtilis has long been known to have the ability to sporulate.  This 

is a response to environmental stresses like starvation.  The end result is that 

one cell makes a daughter cell that eventually becomes an endospore, while the 

mother cell commits most of its resources to the sporulation process and at the 

end finally lyses releasing the spore.  This process can be divided into five 

phases, with four being under the control of specific sigma factors (Errington, et 

al., 1993).  One of these sigma factors, σE, is used in the intermediate stages of 

the sporulation process.  Bryan, et al. have uncovered an operon that is under 

control of a σE promoter which they called mother cell metabolic genes, the mmg 

operon (Bryan, et al., 1996).  This group reported that there were five genes in 

this operon, mmgABCDE, however the full genome sequence later showed that 

the operon contains one additional gene under the same control, called yqiQ,

which could potentially be renamed mmgF (Subtilist Web Server, accessed 

March 12, 2007). 

 The gene mmgA shows acetyl CoA acetyltransferase homology (Bryan, et 

al., 1996).  This type of enzyme catalyzes the condensation of two acetyl CoA 

units to produce one acetoacetyl CoA unit and a CoA unit.  Conversely these 
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enzymes have been able to catalyze the reverse reaction; the thiolysis of one 

acetoacetyl CoA, by CoA, to yield two equivalents of acetyl CoA (see Figure I-

12). 

 

Figure I- 12 Proposed MmgA reaction. 
 

Having an enzyme that has this functionality would be helpful for 

experiments concerning the specific substrate for PksG in polyketide 

biosynthesis.  There have been two hypotheses proposed, and since there is no 

direct way to determine which hypothesis of difficidin production is correct, 

another study will be used.  This study requires a PksG- mutant of B. subtilis 

strain 39374, the producer of difficidin (Zweerink, et al., 1987).  PksG, a 3-

hydroxy-3-methylglutaryl (HMG) synthase, acts on either the acetoacetyl group 

attached to one ACP domain on PksL, or on the long chain difficidin precursor 

molecule.  PksG is an important step in the synthesis of difficidin and by 

removing this enzyme from the in vivo difficidin synthesis process it is possible to 

reveal its role in polyketide biosynthesis by showing new metabolism or 

demonstrate natural requirements caused by the mutation.  Because a PksG-

mutant would not be able to create the HMG intermediate, a labeled replacement 
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substrate, 13C labeled 3-hydroxy-3-methylglutaryl-N-acetylcysteamine (HMG-

SNAC), will be introduced to a culture of PksG- B. subtilis 39374.   

MmgA could be used in a synthesis process to make 13C labeled 3-

hydroxy-3-methylglutaryl-N-acetylcysteamine (HMG-SNAC), as this compound is 

not available commercially.  The synthesis of HMG-SNAC would occur in the 

following steps.  First, labeled pyruvate will be reacted with CoA and NAD+ to 

produce labeled acetyl CoA, in a reaction catalyzed by commercially available 

pyruvate dehydrogenase.  MmgA would then be used with two labeled acetyl 

CoA units to produce labeled acetoacetyl CoA.  Labeled HMG-CoA will be 

produced by a HMG-CoA synthase from Staphylococcus aureus using labeled 

acetoacetyl CoA and labeled acetyl CoA (Campobasso, et al., 2004).  Finally, 

HMG-CoA will be reacted with SNAC to make labeled HMG-SNAC (see Figure I-

13). 

 

Figure I- 13 Synthesis of labeled 3-hydroxy-3-methylglutaryl-N-acetylcysteamine. 
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If the first hypothesis is correct, the culture will then directly use the  

labeled HMG-SNAC, and produce a labeled difficidin product, which can be 

detected using mass spectral analysis.  If the second hypothesis is correct, the 

culture will not be able to use this labeled substrate and we can instead expect a 

new difficidin derivative having a ketone group at the C3 position.  This project 

has two goals, the first aims to clone, overexpress, purify, and biochemically 

characterize the enzyme MmgA, and the second is to use MmgA in reactions for 

the synthesis of labeled substrates.
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CHAPTER II 

OVEREXPRESSION, PURIFICATION, AND REACTIONS INVOLVING ACPK, 
SFP, AND PKSG 

 

II.A Introduction to AcpK and Sfp 

In polyketide biosynthesis, acyl carrier proteins (ACPs) carry carboxylic 

acid building blocks and incomplete polyketide chains that, through Claisen 

condensations, result in the synthesis of a ketide chain.  These acyl chains are 

attached to the ACPs on the terminal thiol of a phosphopantetheine prosthetic 

group which is attached to a conserved serine residue.  ACPs are not 

synthesized with the phosphopantetheinyl (PPT) moiety attached, so post 

translational modification is necessary to convert the ACP from its inactive apo 

form to the active holo form.  A second enzyme is needed to carry this 

conversion out.  Phosphopantetheinyltransferases (PPTases) catalyze the 

transfer of PPT from Coenzyme A to a specific serine residue of the ACP (Lai,et 

al., 2006).  This general reaction can be seen in Figure II-1.   
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Figure II- 1 Phosphopantetheinyltransferase Reaction. 
 

The protein AcpK (acyl carrier protein K) is encoded by the genome of B. 

subtilis strain 168 and is part of the pksX cluster.  Like all ACPs, AcpK also 

requires a post translational modification to make an active (holo) protein.  In 

studies by Mootz, et al., AcpK had been reacted with Coenzyme A (CoA) in the 

presence of a known PPTase, Sfp (Mootz, et al., 2001).  Sfp is found in the 

genome of B. subtilis, and is necessary for the production of the antibiotic 

surfactin.  Sfp stands for surfactin production, which was a genotypic designation 

given to the B. subtilis strains that were known to produce surfactin and a sfpo

genotype was given to surfactin non-producing strains.  The gene sfp was known 

to be important to the production of surfactin when it was originally studied by 

Nakano, et al., though the function was not yet determined (Nakano, et al. 1992).  

Later, when this function was elucidated, the gene kept its original designation.  

The function of Sfp is to phosphopantetheinylate seven PCP (peptidyl carrier 

protein) domains in three subunits of the surfactin synthase (SrfABC).  This 

protein is also of particular interest because it is able to phosphopantetheinylate 

PCPs and ACPs domains from other organisms, including Saccharomyces 
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cerevisiae and Escherichia coli, making it a broadly specific protein (Quadri, et 

al., 1998). 

In the studies by Mootz, et al., Sfp was found to be able to charge the 

phosphopantetheinyl moiety from CoA to AcpK in the presence of Mg2+. (Mootz, 

et al., 2001)  The literature indicates that Sfp is not only capable of putting the 

usual phosphopantetheinyl chain from CoA on ACPs, but also has broad 

substrate specificity and can charge ACPs with the phosphopantetheinyl moiety 

of CoAs that have different acyl groups attached to the terminal thiol.  This ability 

to directly synthesize R-holo-AcpK proteins from apo-AcpK and R-CoAs will be 

helpful in the studies of understanding the biosynthesis of difficidin.   

 Difficidin is produced by B. subtilis strains 39320 and 39374. (Zweerink, et 

al., 1987) In normal polyketide chemistry the ketide chain is extended two 

carbons at a time.  Difficidin has an unusual subunit at C3, an exocyclic double 

bond that can not be explained by normal polyketide chemistry (see Figure II-2).  

The synthesis of this subunit likely involves homologs of the enzymes PksFGHI, 

though the sequence in which this happens is still unknown.  

 

Figure II- 2 Difficidin. 
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Two hypotheses have been proposed about the synthesis of this subunit 

in difficidin.  The first (Figure II-3) involves the synthesis of an unusual precursor 

that is incorporated in the difficidin molecule by the polyketide synthases.  The 

other hypothesis (Figure II-4) uses standard polyketide chemistry that generates 

a difficidin precursor containing a ketone at the C3 position.  Other enzymes 

(PksFGHI) would then act on this precursor, using acetyl-AcpK as the source of 

the third carbon to form difficidin. 

 

Figure II- 3 First hypothesis of difficidin production. 
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Figure II- 4 Second hypothesis for difficidin production. 
 

PksC, an acyltranferase, uses malonyl-CoA to produce malonyl-AcpK.  

This is then decarboxylated by PksF to make acetyl-AcpK.  PksG uses acetyl-

AcpK and PksL with either an acetoacetyl group on one of its thiolation domains, 

or the ketone with the difficidin precursor to produce a HMG subunit.  This then 
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undergoes a dehydration and decarboxylation by PksH and PksI, respectively. 

Finally, standard polyketide chemistry is used to produce the difficidin product. 

 

II.B Introduction to PksG 

 PksG from B. subtilis strain 168 has been studied by Calderone, et al. and 

has found that it catalyzes a reaction similar to HMG-CoA synthases. (Calderone, 

et al., 2006)  PksFGHI are responsible for synthesizing the unusual subunit found 

in bacillaene (see Figure- 5) (Butcher, et al., 2007).  Homologs of PksFGHI in B. 

subtilis 39374 and 39320 may be responsible for the branching subunit found in 

difficidin.  These genes are also contained in the genome for B. 

amyloliquefaciens this species has been known to synthesize difficidin (Chen, et 

al., 2006).  These genes, PksFGHI, are not unique to the genome of B. subtilis 

since homologs are found in the genomes of other organisms such as 

Myxococcus xanthus and Lyngbya majuscula. Myxococcus xanthus and 

Lyngbya majuscula produce myxovirescin and curacin A, respectively (see 

Figure II-6) (Simunovic, et al., 2006; Gu, et al., 2006).  These polyketides have 

branching polyketides similar to the one at C3 in difficidin.  In the research done 

on the synthesis of myxovirescin, the PksFGHI homologs TaKC/FXY from M. 

xanthus, are likely responsible for synthesizing the unusual subunits found in the 

final polyketide in a similar pathway proposed for the B. subtilis pksX enzymes 

(Simunovic, et al., 2006).  M. xanthus has two locations that have a third carbon 

on the ketide position, and the genome also has two homologs of PksG, called 
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TaC and TaF, that lead to an HMG intermediate.  L. majuscula also has 

homologs to PksFGHI called CurCDEF that leads to the synthesis of the 

cyclopropane substituent (Gu, et al., 2006).   

 

Figure II- 5 Bacillaene, with branching subunit circled. 
 

Figure II-6 Structure of myxovirescin and curacin A  
(Simunovic, et al., 2006; Gu, et al., 2006). 

 

Though the enzymatic activity of PksG from B. subtilis 168 has been 

measured, the timing of its involvement in the overall polyketide biosynthesis is 

still in question.  Studies on the substrate specificity of PksG can help elucidate 

the order of steps in this biosynthesis.  In the two hypotheses, PksG is proposed 

to react with substrates of vastly different length; a 4 carbon acetoacetyl chain in 
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hypothesis 1, or a 27 carbon chain in hypothesis 2.  In order to study the 

substrate specificity of PksG, β-keto acyl chains of varying length can be 

synthesized and loaded onto PksL by Sfp.  PksG in the presence of acetyl-AcpK 

can then react with these different length chains to form the HMG-PksL product 

(see Figure II-7 for reaction scheme). 

Figure II- 7 Reaction of PksG with β-keto acyl PksL Chains in the Presence of  
Acetyl-AcpK. 

 

Both the rates of the reactions with different substrates and mass spectral 

analysis of the products can help elucidate the substrate specificity of PksG.  The 

rates of reaction for each β-keto acyl-PksL can be compared.  Higher reaction 

rates with shorter β-keto acyl chains would show that PksG has a preference for 

smaller substrates, thereby supporting hypothesis 1.  Hypothesis 2 would be 

supported if PksG had a preference for longer chained substrates.  In order to 

conduct these studies, we require purified PksG, PksL, and AcpK.  Longer β-keto 

acyl chains would have to be synthesized, since they are not commercially 
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available, and these chains would have to be loaded onto the PksL protein.  

Acetyl-AcpK would also have to be produced using acetyl-CoA and Sfp as 

outlined in the studies of AcpK found in II.D.4.a.   

 Other studies involving PksG would still use the standard reaction seen in 

Figure II-7, but another enzyme will be used to produce 13C-labeled long β-keto 

acyl chains.  An acetyl-CoA acetyltranferase can be used to react labeled acetyl-

CoA derivatives to make the desired product.  These labeled chains would then 

be loaded onto PksL and, of a mixture containing all the different chain length 

reactants, reacted with PksG in the presence of excess labeled acetyl-AcpK.  

The product abundance can be determined my mass spectral analysis.  

Hypothesis 1 would be supported if the most abundant products formed were 

from the shorter β-keto acyl chains to produce a shorter chain HMG product.  

Conversely, hypothesis 2 would be supported if the most abundant products 

were formed from the longer β-keto acyl chains to form a longer chain HMG 

product. 

 

II.C Production and Characterization of AcpK, Sfp, and PksG 

II.C.1 Goals for the Production and Purification of AcpK 

 In order to test any hypothesis for difficidin production, we require pure 

holo-AcpK from B. subtilis 168, and also pure Sfp.  AcpK had successfully been 

cloned into pQE-60 by Mootz, et al. Since this research showed the pQE system 

yielded a pure protein in high amounts, our goal was to also clone into this same 
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system using pQE-60 (Mootz, et al., 2001).  Overexpression using pQE plasmids 

involves the strong T5 promoter on the plasmid and T5 RNA polymerase in the 

host.  The plasmid pQE-60 contains a T5 promoter sequence and two lac 

operator sequences for increased lac repressor binding.  The LacI repressor 

protein is encoded by a trans plasmid, pREP4, which controls the overexpression 

of the target protein.  Induction of the protein is started by disengaging the LacI 

protein from the lac repressor by addition of isopropyl-β-D-thiogalactopyranoside 

(IPTG), an artificial inducer of the lac operon.  Once IPTG is added, the cell 

commits nearly all of its resources to produce the gene under control of the T5 

promoter (The Qiaexpressionist, 5th ed.).  This is referred to as “overexpressing” 

the protein.  Here the gene under the control of the T5 promoter is acpK. This 

gene would be cloned into pQE-60 using a restriction digest of both pQE-60 and 

PCR-purified acpK, and a ligation would be performed using T4 DNA ligase.  

This cloned plasmid, pQE-60/acpK, would then be transformed into competent E. 

coli cells that contain the plasmid pREP4.  Overexpression would then be 

achieved by growing a culture of cells to mid-log phase and adding the inducer, 

IPTG.   

The second goal would be purification of the overexpressed protein.  

Because pQE-60 offers the option of including a C-terminal 6x histidine tag, 

affinity chromatography will be used to purify recombinant His-tagged AcpK.  For 

affinity chromatography we will use nitrilotriacetic acid (NTA) as a Ni2+ chelating 

adsorbent.  When a Ni-NTA column is used there are two vacant sites on the Ni2+ 
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that can bind the imidazole nitrogens present in the His6-tagged protein (see 

Figure II-8).  Low concentrations of imidazole will remove proteins that have 

histidine residues, but not a His6-tag, from the column.  A final, optimal 

concentration of imidazole would be used to elute the pure AcpK from the 

column.  The final step would be the enzymatic modification of AcpK by a 

phosphopantetheinylation reaction with CoA substrates containing different acyl 

chains.  These reactions will be analyzed by Electrospray Ionization Mass 

Spectroscopy (ESI-MS) and Matrix Assisted Laser Desorption/ Ionization Time-

of-Flight Mass Spectroscopy (MALDI-TOF-MS). 

 

Figure II- 8  Nitrilotriacetic acid chelated to nickel and associated with two   
histadine sidechains of a protein (The Qiaexpressionist, 5th ed.). 

 

II.C.2 Goals for the Production and Purification of Sfp 

 In order to perform the phosphopantetheine transfer reaction, large 

amounts of pure Sfp would be needed.  During the development of the work for 

this thesis, two methods were used to obtain purified Sfp.  Sfp had been 
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previously cloned into the overexpression vector pUC8 by Nakano, et al., and 

this vector was obtained as a gift from the Zuber group. (Nakano, et al., 1992)  In 

our first procedure we used this pUC8 system for this enzyme by modifications of 

the method of Nakano, et al. (Nakano, et al., 1992).  This method involved 

introducing the pUC8-sfp vector into competent E. coli MV1190 cells, a system 

which automatically overexpressed Sfp without the need for chemical induction.  

After the cells had grown overnight, ammonium sulfate precipitation was used to 

purify Sfp.   

 Because the first method of purification of Sfp did not yield a highly pure 

product, a second method was used.  To improve the efficiency and yield of Sfp 

we decided to clone Sfp into a His-tag system.  The vector chosen was pET-28a, 

a vector that places the gene of interest under the control of the T7 promoter.  

This promoter is under control of the lacI gene, which produces the LacI 

repressor protein (pET System Manual, 11th ed.).  After addition of the inducer 

IPTG, the cell then overexpresses the target Sfp protein. 

 To clone the sfp gene into pET-28a, a PCR of the pUC8/sfp plasmid would 

have to be performed, and a restriction digest is required of the pET-28a vector, 

and the similarly digested sfp PCR product.  This product is then ligated into the 

plasmid by T4 DNA ligase, and transformed into competent E. coli cells.  

Overexpression is performed by growing a culture of cells to mid-log phase, and 

induction with IPTG.  Purification would then be performed by Ni-NTA affinity 
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chromatography.  Sfp would then be used with purified AcpK in 

phosphopantetheinylation reactions.   

 

II.C.3 Goals for the Production and Purification of pBAD/pksG 

 To test our hypotheses for PksG activity it was necessary to have a large 

amount of pure PksG.  To accomplish this, PksG will need to be cloned into an 

overexpression vector, overexpressed in culture, and finally purified.  In prior 

work done by another graduate student, Kevin Williams, attempts at cloning 

PksG into the pET-28a overexpression system were not successful.  For this 

reason it was thought that PksG is toxic to E. coli. Because of this hypothesis, it 

was determined pksG needed to be placed under a more tightly regulated 

expression system, so the pBAD system was chosen for this reason.  

The pBAD system uses the araBAD promoter, which more tightly 

regulates the expression of the target protein.  The protein AraC creates a DNA 

loop that prevents transcription.  Arabinose binds to the AraC protein and 

releases the DNA loop that stopped the transcription from occurring, thus making 

arabinose the “inducer” for overexpression of the target PksG protein (Guzman, 

et al., 1995).  The pBAD system was used, though in later studies done by 

Calderon, et al. PksG was cloned and overexpressed using the pET system, 

showing that PksG is not a toxic protein (Calderone, et al., 2006). 

Once pksG is in an overexpression vector, it is possible to obtain large 

amounts of the protein.  To do this a culture of cells will be grown to mid-log 
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phase and induced using arabinose.  To purify PksG, a Ni-NTA column will be 

used because the protein was cloned in frame with a C-terminal His6-Tag coded 

by the plasmid.  The purified protein will then be used for activity assays with the 

enzyme’s suspected substrates.   

 

II.D Results 

II.D.1.a Cloning of pQE-60/acpK 

To clone acpK into pQE-60, primers were designed for polymerase chain 

reaction (PCR).  Using B. subtilis strain 168 as the template DNA and Vent 

polymerase, a PCR reaction was performed with 60 oC as the annealing 

temperature.  The gene length of acpK is 246 base pairs (bp).  The PCR reaction 

was determined to be successful because a band appeared on an agarose gel 

between 200-300 bp.  Once acpK had been successfully amplified, a restriction 

digest was performed on both the PCR product and the pQE-60 plasmid.  The 

restriction enzymes used for the digest of the PCR product was NcoI and BglII,

while the plasmid was digested with BamHI and NcoI. BglII and BamHI leave the 

same overhang when it cleaves DNA, which made it possible to still ligate the 

two fragments together using T4 DNA ligase.  Multiple ligation mixtures were 

used that contained different ratios of insert to vector, and the ligation reaction 

mixtures were transformed into competent DH5α cells.  The cells were then 

plated on ampicillin plates and incubated overnight at 37oC.  The following day 

ten transformants were chosen to inoculate ten starter cultures that were grown 
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overnight in 5mL of Luria Bertani (LB) media containing 25µg/mL of ampicillin.  

The cultures were shaken overnight at 37oC, and all plasmids were purified the 

following morning except for one culture which did not grow. 

 

II.D.1.b Gel Electrophoresis 

 To test for insert acceptance into all nine purified plasmids, nine PCR 

reactions.  The primers used were from the PCR amplification of acpK from B. 

subtilis strain 168.  The appearance of a band with the same number of base 

pairs as acpK, ~250 base pairs (bp), on an agarose gel would indicate a 

successful ligation.  A gel showed five out of nine plasmids contained the desired 

gene in the pQE-60 vector. 

 

II.D.1.c  Retransformation and Re-purification of pQE-60/acpK 

Once the cloning step was completed successfully, one cloned vector was 

chosen to be transformed into competent E. coli strain M15[pREP4] cells.  The 

cells were then grown at 37oC containing kanamycin and ampicillin.  Kanamycin 

and ampicillin selection was used because the pQE-60 plasmid confers ampicillin 

resistance, while the pREP4 vector confers kanamycin resistance, so it is 

possible to have a culture of cells replicating the two plasmids. 
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II.D.1.d  Overexpression and Purification of pQE-60/acpK 

 The target gene, acpK, had been successfully cloned in frame with a C-

terminal His-tag coded by the plasmid pQE-60.  The next step was to 

overexpress the protein using the cloned plasmid.  The strain pQE-60/acpK was 

grown in LB media containing 25µg/mL of ampicillin and 30µg/mL of kanamycin 

in a 37 oC shaker until mid-log phase was reached.  The culture was then 

induced and allowed to overexpress for three hours and the cells were 

harvested.  Once harvested the cells were resuspended and lysed to extract the 

protein from inside the cell and put it in solution. 

 Once the protein was in solution, the crude extract was applied to a Ni-

NTA affinity column and various concentrations of imidazole were used to wash 

proteins lacking His-tags from the column, and an optimal concentration was 

used to elute AcpK.  The eluted protein was then dialyzed overnight to remove 

excess imidazole and salt.  The following day the dialyzed protein was 

concentrated by centrifugation using a Vivaspin 5000 Molecular Weight Cut Off 

(MWCO) concentrator.  The protein was stored at -80oC with 10% glycerol.  An 

SDS-PAGE (Sodium Dodecyl Sulfate PolyAcrilamide Gel Electrophoresis) was 

performed on the crude AcpK extract, eluents from the various imidazole 

washes, the eluted protein, and the concentrated protein.  This SDS-PAGE can 

be seen in Figure II-9 which shows a bright band below the 14.4 kilodalton (kDa) 

molecular weight marker.  The expected mass of AcpK is 10561 Daltons and 

would be expected to migrate below the lowest molecular weight marker. 
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Figure II-9 SDS-PAGE of AcpK column chromatography purification. 
 

II.D.1.d  Protein Concentration Determination 

 The concentration of AcpK was determined by the Bradford method using 

Bovine Serum Albumin (BSA) as the standard.  BSA is available commercially at 

a concentration of 2.0mg/mL, and a standard curve was generated by varying the 

concentrations of albumin.  The average amount of AcpK obtained from a 1L 

culture was ~900µg. 

 

II.D.2.a  Overexpression and Purification of Sfp by a Previously Published  
 Method 

 In previously published work, the overexpression and purification 

procedures for Sfp had been studied and optimized by Nakano, et al. (Nakano, et 

al., 1992). Their procedure was followed to overexpress and purify the Sfp 

enzyme with the one exception of not using a DEAE column chromatography 

step after ammonium sulfate precipitation.  An overexpression vector that already 

contained the sfp gene, pUC8/sfp, was donated to the lab.  This vector was 
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transformed into competent MV1190 E. coli cells, and were grown overnight on 

plates that contained 25µg/mL of ampicillin.  To overexpress Sfp, a culture of 

cells was grown overnight and harvested the next day.  After a sonication step 

the protein was ready to be purified. 

To purify the Sfp enzyme, ammonium sulfate precipitation was used.  Four 

different percent concentrations of ammonium sulfate were used: 35%, 50%, 

65%, and 80%.  The final ammonium sulfate concentration precipitated the Sfp 

protein.  After centrifuging the 80% solution, the supernatant was discarded, and 

the pellet was retained.  This pellet was resuspended in buffer (20 mM Tris.HCl, 

pH 8.0) and dialyzed overnight in the same buffer the pellet was resuspended in.  

The enzyme was concentrated the next day, and glycerol was added to the 

concentrated protein at 10% concentration for -80 oC storage. 

 

II.D.2.b  Cloning of pET-28a/ sfp 

 To clone the sfp gene into pET-28a, a PCR was performed using the 

pUC8/sfp plasmid as the template.  Primers incorporated restriction sites for NcoI 

and XhoI, upsteam and downstream of the insert, respectively.  The PCR 

analyzed by agarose gel electrophoresis showed two bands on the gel, one at 

the correct size for sfp and one having a smaller size.  The correctly sized PCR 

product was purified by low melting agarose gel electrophoresis with the 

extraction of the band having the correct size.  To clone the amplified gene into 

pET-28a, a restriction digest was performed using NcoI and XhoI on both the 
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correctly sized PCR product and the pET-28a plasmid.  DNA ligase was used to 

ligate the restriction digested plasmid and PCR product together.  Multiple 

ligation reactions were performed that contained different insert to plasmid ratios. 

 The ligation reactions were transformed into competent E. coli DH5α cells 

and plated.  After incubation overnight, only two transformants had grown.  

These transformants were inoculated into a starter culture of LB containing 

30µg/mL of kanamycin.  The cultures were allowed to shake overnight at 37 oC.  

The following day the plasmids were purified.  To test for insert acceptance into 

the pET-28a plasmid, a second PCR was performed using Vent polymerase and 

the purified plasmids as the template DNA.  Agarose gel electrophoresis 

confirmed both plasmids contained the sfp gene.  Once the cloning of sfp into 

pET-28a was successful, one vector was chosen to be transformed into 

competent E. coli BL21(DE3) cells.   

 

II.D.2.c Overexpression and Purification of pET-28a/sfp 

The gene, sfp, had been successfully cloned in frame with a C-terminal 

His-tag coded for by the plasmid pET-28a.  The next step was overexpression of 

the protein.  Using the pET-28a/sfp overexpression strain, a culture of cells was 

grown in LB media containing 30µg of kanamycin per mL of culture.  The culture 

was shaken at 37 oC until mid-log phase was reached, at which time the culture 

was induced and grown for three hours.  The cells were then harvested, 
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resuspended, and sonicated.  After a final centrifugation step, the protein was 

purified by Ni-NTA chromatography. 

 To purify the enzyme the crude extract was applied to an Ni-NTA column.  

Various concentrations of imidazole were used to was nonHis-tagged proteins 

from the column, and an optimal concentration was used to elute Sfp.  The eluted 

protein was then dialyzed overnight.  The following day the dialyzed protein was 

concentrated by centrifugation.  The concentration was then determined using 

the Bradford method.  The average amount of Sfp obtained was ~1125µg per 1L 

of culture.  To be sure the correct protein was overexpressed, the various 

washes from the Ni-NTA column, and the concentrated, dialyzed eluent were 

analyzed by SDS-PAGE.  The gel showed a band at the expected mass of Sfp 

(~28 kDa), so it was determined the overexpression/purification was successful.  

Sfp was then ready to undergo reactions with AcpK and different acyl CoAs. 

 

II.D.3 Cloning, Overexpression and Purification of PksG 

 The gene pksG from B. subtilis strain 168 had been cloned and inserted 

into the pBAD overexpression plasmid by a former lab colleague, Kevin Williams.  

This plasmid was retransformed into the E. coli TOP10 strain and were plated 

and incubated for 37oC overnight.  To overexpress PksG, a culture was started 

which contained 25µg/mL ampicillin, and was allowed to grow until mid-log 

phase.  The culture was then induced with 0.01 M arabinose.  Growth was 

continued for three hours after which the cells were harvested by centrifugation. 



41

The pellet was resuspended and 200µL of protease inhibitor was added, 

and the suspension was then sonicated to lyse the cells.  The protocols for the 

cloning, overexpression, and resuspention of PksG were provided by Kevin 

Williams.  After sonication and centrifugation the supernatant was then applied to 

an Ni-NTA column to purify the PksG protein.  Different concentrations of 

imidazole were used to elute nonHis-tagged proteins from the column, and a final 

concentration of imidazole was used to elute PksG from the column.  The eluate 

was dialyzed in buffer overnight and the following morning the diasylate was 

concentrated until the volume was between 500µL-750µL.  Bradford reagent was 

used to determine the concentration of the concentrated PksG.  To the 

concentrated PksG enough glycerol was added for a final 10% concentration, 

and the protein was stored at -80 oC. 

 

II.D.4.a Testing AcpK and Sfp Activity 

 AcpK is synthesized in the apo, inactive, form.  The protein Sfp is a 4’-

phosphopantetheine transferase (PPTase).  In order to be functional, the holo 

form requires a phosphopantetheine appendage on a conserved serine residue.  

The function of Sfp is to transfer the 4’-phosphopantetheine moiety of coenzyme 

A (CoA) to the serine residue of ACPs and PCPs making the holo, active, forms 

of these proteins.  The literature also indicates that Sfp can also transfer 

phosphopantetheine thioesters from a wide range of acyl CoAs as well. 
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In order to study the pks proteins, we were interested in exploiting this 

broad CoA and acyl CoA substance tolerance.  The specific CoAs tested were; 

CoA, acetyl CoA, acetoacetyl CoA, and malonyl CoA.  These expected AcpK 

modifications were analyzed by Electrospray Ionization Mass Spectral (ESI-MS) 

analysis and Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass 

Spectrometry (MALDI/TOF-MS).  These methods were also used to confirm the 

molecular weight of apo-AcpK from the overexpression previously performed.  

The expected masses of all the CoA’s can be seen in Table II-1. 

 
Table II- 1Theoretical mass of whole AcpK proteins. 

Before the phosphopantetheinyl reactions were carried out the mass of 

the apo-AcpK protein was analyzed by ESI-MS.  The spectrum obtained from this 

experiment can be seen in Figure II-10.  The molecular weight obtained, 10577 

Da, is consistent with the mass of apo-AcpK+16 Da.  Multiple experiments have 

also shown the correct mass of apo-AcpK, and also other variations observed 

during experimental assays.   
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The phosphopantetheinyl reactions were prepared that contained Sfp, 

AcpK, acyl CoAs, and enough buffer (50 mM Tris.HCl, 12.5 mM MgCl2, pH 8.0) to 

make a 500 µL reaction volume.  The reactions were incubated at 37oC and were 

analyzed by ESI-MS and MALDI/TOF-MS.  The mass data obtained showed 

optimal reaction times for all of the different phosphopantetheinylation reactions 

to occur (Table II-2).  The optimal reaction time found for acetoacetyl-CoA was 

used in the following PksG activity assays. 

 

Figure II-10  Mass spectrum showing mass of apo-AcpK+16 Daltons. 
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Table II- 2  Optimal incubation times for AcpK phosphopantetheinylation  
 reactions. 

II.D.4.b  Testing PksG Activity 

 Because the function of PksG was unknown, the correct combination of 

thioester pairs, CoA, AcpK, or PksL, which would yield the HMG product was 

unclear.  For this reason, the two simplest substrates were reacted first, 

acetoacetyl CoA and acetyl CoA.  According to results obtained we planned on 

progressively studying more difficult systems.  The products and substrates of 

acetoacetyl CoA and acetyl CoA PksG reactions were analyzed by High 

Pressure Liquid Chromatography (HPLC) analysis.  Results from these 

experiments showed PksG did not synthesize the expected HMG-CoA from 

these substrates.  It was then decided to check acetoacetyl-AcpK and acetyl CoA 

as substrates for PksG to determine if the enzyme could synthesize HMG-AcpK.  

These reactions were carried out by spectrophotometric analysis.   

For the spectrophotometric analysis the absorbance of the reaction was 

measured at 300 nm, because the acetoacetyl group on acetoacetyl-AcpK has a 

characteristic absorbance at that wavelength in the presence of Mg+2. A loss of 

absorbance was expected due to acetoacetyl-AcpK being depleted during a 
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synthesis of the HMG-AcpK product.  Reactions were carried out discontinuously 

every ten minutes for 1.5 hours.  The reaction showed no enzymatic activity by 

the spectrophotometric method when acetoacetyl-AcpK and acetyl-CoA were 

used as substrates.  In our next approach we were going to also monitor 

reactions using MADLI/TOF-MS; however, during these PksG studies another 

group determined the functionality of PksG.  Calderone, et al. found PksG 

synthesizes HMG-PksL from the substrates acetoacetyl-PksL and acetyl-AcpK 

(Calderone, et al., 2006).  PksL is a protein found in the genome of B. subtilis 

and contains two tandem ACPs.  Reactions involving variations of the published 

reaction were to be attempted; however, Calderone, et al. were able to determine 

PksG function before these reactions could be carried out.  A figure showing the 

reactions attempted and the one found to work by the other researchers can be 

seen in Figure II-11. 

 

Figure II- 11 Tested reactions involving PksG and published function of PksG  
 (Calderone, et al., 2006). 
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II.E Conclusions 

II.E.1  AcpK and Sfp Conclusions 

Purified His-Tagged AcpK from B. subtilis strain 168 was successfully 

produced with the use of pQE-60 overexpression vector and M15[pREP4] E. coli 

cells.  Purified His-Tagged Sfp, which was amplified from the pUC8/sfp 

overexpression vector, could also be produced using the pET-28a plasmid.  For 

both of these genes, ligation was efficient with T4 DNA ligase, and regulation of 

overexpression was performed using IPTG induction.  Ni-NTA chromatography 

was used to purify the AcpK and Sfp proteins due to the C-terminal His-Tag 

coded for by the pQE-60 plasmid for AcpK and the pET-28a plasmid for Sfp.  We 

were able to obtain large amounts of pure AcpK and Sfp from these systems. 

ESI-MS studies confirmed that Sfp has a wide range of ACP-substrate 

specificity, and conclusively determined the synthesis of apo-AcpK made by the 

overexpression strain pQE-60/acpK. We were able to use ESI-MS to determine 

the optimal reaction times for CoA and the various acyl CoAs. 

 

II.E.2  PksG Conclusions 

 Purified His-Tagged PksG from B. subtilis strain 168 can be produced with 

the use of pBAD overexpression vector.  Regulation of overexpression of 

pBAD/pksG was performed using arabinose.  Overexpressed PksG was purified 

using a Ni-NTA column since PksG was synthesized with a C-terminal His-Tag 

encoded by the pBAD plasmid.  To elute pure PksG from the column, 200 mM 
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imidazole was used.  Reactions performed that involved the PksG enzyme 

showed no activity.  The activity that was reported by Calderone, et al. showed 

PksG reacting with acetyl-AcpK with acetoacetyl-PksL to form HMG-PksL.  PksG 

apparently requires very specific protein-based substrates.  The work performed 

by Calderone, et al. proved the activity of PksG being that of a HMG-PKS 

synthase (Calderone, et al., 2006).  Though the chemical activity and protein 

scaffold specificity of PksG has been determined, the acyl substrate specificity 

has not yet been determined.  While chemical activity has already been shown, 

there is still question about its timing in polyketide synthesis, so we still require 

PksG for experiments that explore our hypotheses. 

 

II.F Experimental 

II.F.1.a Cloning and Overexpression of AcpK 

 The PCR to amplify AcpK used B. subtilis strain 168 genomic DNA as the 

template and 5’ TAT CCA TGG ATA AAC AGA GAA TCT TTG 3’ (inserts a NcoI 

site at the start) and 5’ TAT AGA TCT GGC AGA TTG CAC TTT GTC 3’ (inserts 

a BglII site downstream) as the primer pair. (Mootz, et al., 2001)  Vent 

polymerase was used to conduct the PCR with the following conditions: 94 oC for 

2 minutes; 30 cycles of 94 oC for 30 seconds, 60 oC for 30 seconds, and 65 oC

for 1.5 minutes.  The resulting PCR product and pQE-60 plasmid were digested 

separately using the restriction enzymes NcoI and BglII for the PCR product, and 

Bam HI and NcoI for the pQE-60 plasmid.  The digestion was carried out for 3.5 
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hours after which a 1.0% low melting agarose gel electrophoresis was performed 

to separate the digest fragments by size and visualized with UV light.  Plasmid 

and PCR product fragments were removed from the gel and melted in a 75 oC.  

These gel/DNA melts were used directly in ligation reactions using T4 DNA 

ligase and T4 DNA ligase buffer.  Multiple ligation reactions were performed 

using different insert to plasmid ratios.  These reactions were then transformed 

into competent E. coli DH5α cells and plated on LB plates containing 25µg/mL of 

ampicillin.   

The following day 10 transformants were selected and were used to 

inoculate 10x5 mL cultures with ampicillin (25µg/mL) grown overnight in a 37oC

shaker.  Nine cultures were purified (one did not grow) by the Qiagen Miniprep 

kit.  Each plasmid was screened for insert acceptance by a second PCR reaction 

using the respective purified plasmids as the template, and Vent polymerase with 

the same program seen above.  A 1.0% agarose gel electrophoresis was used to 

screen for the inserts in the vector.  One successful clone was chosen to be 

transformed into competent E. coli M15(pREP4) cells.   

 One colony was then used to make a starter culture, 5 mL of LB 

containing 30µg/mL of kanamycin and 25µg/mL of ampicillin.  One liter of LB 

containing 30µg/mL of kanamycin and 25µg/mL of ampicillin was inoculated with 

this starter culture and grown in a 37 oC shaker.  Growth was continued until an 

OD595 of 0.600-0.700 was reached.  IPTG was added to a final concentration of 

0.25 mM to induce the culture and growth was continued for three hours.  After 
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the three hours the cells were harvested by centrifugation (7500g for 30 minutes) 

and the resulting pellet was stored at -80oC.   

 

II.F.1.b Purification of AcpK 

 Cells from 1 L of LB culture were resuspended in 20 mL of binding buffer 

(5 mM imidazole, 500 mM NaCl, 20 mM Tris.HCl, pH 7.9) and were lysed by 

sonication on ice for three minutes.  The lysate was cleared by centrifugation 

(11000g for 30 minutes) and then applied to a Ni-NTA column containing 2mL of 

column bed, and the chromatography was conducted at 4oC.  After the loading of 

the crude extract the column was washed with 20mL of binding buffer.  Wash 

buffer (12mL) (60 mM imidazole, 500 mM NaCl, 20 mM Tris.HCl, pH 7.9) was 

used to remove nonHis-tagged proteins from the column.  The eluent buffer 

(12mL) which contained 200 mM imidazole, 500 mM NaCl, and 20 mM Tris.HCl, 

pH 7.9, was used to elute AcpK from the column.  Snakeskin® pleated dialysis 

tubing, having a 7000 Molecular Weight Cut Off (MWCO), was used for overnight 

dialysis of the eluted protein in 4L of buffer (50 mM Tris.HCl, pH 7.5) kept at 4oC.   

The dialyzed protein was concentrated by centrifuging using a Vivaspin 

5000 MWCO concentrator until the volume was between 500µL-750µL.  The 

concentration of AcpK was measured spectrophotometrically using the Bradford 

method.  Samples of Bovine Serum Albumin (BSA) were used for a standard 

curve having a range of concentrations between 0mg/mL to 1mg/mL and the 

OD595 was recorded at the different concentrations.  Concentrated AcpK was 
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then added to the Bradford reagent and the absorbance was measured to 

determine the protein concentration. 

 

II.F.2.a  Overexpression, and Purification of Wild-Type Sfp 

 Sfp had previously been cloned into the pUC8 plasmid by Nakano, et al. 

(Nakano, et al., 1992).  This plasmid was donated by Prof. Zuber (Oregon Health 

and Science University) and the overexpression and purification techniques 

outlined by his group were used.  First pUC8/sfp was transformed into competent 

E. coli MV1190 cells and plated on LB plates that contained 25µg/mL of 

ampicillin.  The next day a colony was used to inoculate a starter culture (5mL LB 

with 25µg/mL of ampicillin).  The following day, 1 L of 2xYT media was inoculated 

with the starter culture and the culture was shaken overnight at 37oC.  The cells 

were then harvested by centrifugation (7500g for 30 minutes).  The pellet was 

then resuspended in buffer (20 mM HEPES, 100 mM KCl, 1 mM EDTA, and 10% 

glycerol, pH 8.0) and sonicated on ice for three minutes.  To clear the lysate a 

second centrifuge step was used (11000g for 30 minutes).   

The supernatant was then fractioned by successive ammonium sulfate 

precipitations.  The first three ammonium sulfate concentrations, 35%, 50%, and 

65%, were used to precipitate nonspecific proteins from the crude extract.  For 

each step, the appropriate amount of ammonium sulfate was added to raise the 

percent concentration to the desired concentration all while incubation on ice for 

two hours.  After each precipitation the solution was then centrifuged for 10 
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minutes at 10000g. In the first three steps the supernatant was retained, while 

the pellet formed after centrifugation was discarded.  After addition of ammonium 

sulfate to 80% and incubation for two hours as before and being centrifuged, the 

pellet was retained and resuspended in buffer (20 mM Tris.HCl, pH 8.0).  Once 

the pellet was resuspended, it was dialyzed and concentrated by the same 

method used in the AcpK procedure seen previously, with the exception of the 

dialysis buffer being 20 mM Tris.HCl, pH 8.0. 

 

II.F.2.b  Cloning, Overexpression, and Purification of Sfp 

 The PCR to amplify Sfp from the pUC8/sfp plasmid as the template DNA 

was carried out using 5’ TCT ACC ATG GAG ATT TAC GCA ATT TAT ATG GAC 

CG 3’ (inserts a NcoI restriction site at the start) and 5’ GAG CCT CGA GTA AAA 

GCT CTT CGT ACG AGA CC 3’ (inserts a XhoI restriction site down stream) as 

the primer pair.  Phusion polymerase was used along with the following 

conditions: 30 seconds at 98oC; 30 cycles of 10 seconds at 98oC, 30 seconds at 

63oC, and 15 seconds at 72oC; and finally a hold of 5 minutes at 72oC.  The 

product from this PCR reaction, and the pET-28a plasmid were digested with 

NcoI and XhoI for 3.5 hours in separate reactions.  A 0.7% low melting agarose 

gel was used to separate the digested fragments and to visualize with UV light.  

The desired fragments were excised and placed in a hot water bath to melt the 

gel.  The solution containing the digested PCR fragment and digested plasmid 
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were used in ligation reactions with T4 DNA ligase and T4 DNA ligase buffer.  

The ligation reactions were performed using varied insert:plasmid ratios. 

 The ligation reactions were transformed into competent E. coli DH5α cells 

and plated on LB-agar plates containing 30µg/mL kanamycin.  Two cultures were 

made from the two colonies that grew on one plate, 5mL LB containing 30µg/mL 

of kanamycin and shaken at 37oC.  Once the starter cultures had grown 

overnight, the plasmids were purified from the cultures using the Qiagen Miniprep 

Kit following the procedure outlined in the manufacturer’s instruction manual.  To 

screen for insert acceptance, a second PCR reaction was performed.  The 

parameters for the reaction were the same used in the first PCR reaction, with 

the only exception being the template DNA used was the purified plasmids.  A 

1.0% agarose gel electrophoresis was performed to visualize the PCR reaction 

mixtures.  A successful clone was transformed into competent E. coli BL21(DE3) 

cells.   

 One colony from this retransformation was grown overnight in a starter 

culture of LB and a concentration of 30µg/mL of kanamycin, and the following 

day 2 mL was added to 1L of LB containing 30µg/mL of kanamycin.  This was 

shaken at 37oC until the OD595 reached 0.500-0.600.  Once this absorbance was 

reached 1.0 mM of IPTG was added to the culture and was shaken overnight.  

The following morning the cells were harvested by centrifugation (7500g for 30 

minutes).  The pellet was then stored at -80oC until it was used for purification.  

To purify Sfp the same procedure outlined in II.F.1.b for the purification of AcpK 
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was used, with the only exception being the dialysis buffer was 50mM Tris.HCl, 

pH 7.5. 

 

II.F.2.c  Assays involving AcpK and Sfp 

 Reactions involving AcpK, Sfp, and acyl CoAs were conducted and the 

determination of phosphopantetheinyl reaction products was characterized by 

ESI-MS and MALDI/TOF-MS.  The reactions were conducted using various 

amounts of AcpK, Sfp, and acyl CoAs in buffer (50 mM Tris.HCl, 12.5 mM MgCl2,

pH 8.0) in a total reaction volume of 500µL.  After different incubation times, see 

Table II-2, the samples were prepared for analysis by ESI-MS.  First the reaction 

was filtered through a Fisherbrand nylon 0.45 µm syringe filter to remove any 

particulates from the reaction solution.  The filtered reaction was then mixed with 

methanol to a 1:1 ratio of methanol:reaction.  Finally, enough glacial acetic acid 

was added to give a 0.1% solution.  ESI-MS was carried out by a direct infusion 

method and analyzed in positive ion mode.  The peaks obtained were then 

deconvoluted to determine the molecular weight of the proteins in the different 

reactions. 

 For analysis by MALDI/TOF-MS, the reactions were prepared in the same 

manner as in the ESI-MS experiments.  To prepare the reactions for analysis, 

1µL of each reaction was added to 24µL of Matrix A (8mg of α-cyano-4-

hydroxycinnamic acid 99% dissolved in 1 mL of 0.3% aq. trifluoroacetic acid in 

50% acetonitrile).  Matrix A was prepared by vortexing for 20 seconds, followed 
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by centrifuging, and using the supernatant.  Each sample was spotted (0.5µL) on 

a MALDI sample loading plate and analyzed on an Applied Biosystem 4700 

Proteomics Analyzer.  Positive-ion mass spectra were recorded in the linear 

mode. 

 

II.F.3.a Overexpression and Purification of PksG 

 PksG had been previously cloned into the pBAD vector by Kevin Williams.  

The pBAD/pksG plasmid was transformed into competent E. coli TOP10 cells by 

the method outlined in the manufacturer’s manual and plated on LB-agar plates 

(25µg/mL ampicillin).  One colony from this plate was chosen and grown 

overnight in a starter culture, 5mL LB containing 25µg/mL ampicillin.  All 5mL of 

the starter culture was added to 1L of LB containing 25µg/mL ampicillin, and was 

shaken at 37oC until the OD595 reached 0.500-0.600 (mid-log phase).  At this 

point arabinose (0.01 M final concentration) was added to the culture and shaken 

for three hours at 37oC. The culture was harvested by centrifugation (7500g for 

30 minutes), and was stored at -80oC until purification was performed.  To 

perform the purification, the same method outlined in II.F.1.b for the purification 

of AcpK was used, with the only exceptions being the addition of 200µL of 

protease inhibitor (HALT™ Protease Inhibitor Cocktail) added prior to sonication 

and the dialysis buffer was 25mM Tris.HCl, pH 7.5. 
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II.F.3.b  Activity Assays with PksG 

 HPLC analysis was performed on a Varian Prostar HPLC and a Varian 

Microsorb C8 column (250mm in length and a 4.6mm inner diameter).  The two 

different solvents used were methanol and 100mM potassium phosphate, pH 7.0, 

containing 2 mM tetrabutylammonium phosphate (TBAP).  The gradient used for 

the HPLC analysis was 0% methanol increasing to 90% methanol over 20 

minutes.  This was held at 90% methanol 10 minutes and the methanol was 

decreased to 0% over 5 minutes.  The column was equilibrated in the phosphate 

buffer for 5 minutes.  A flow rate of 1 mL/minute was used, and the wavelength 

monitored was 219nm.  Acetoacetyl CoA, acetyl CoA, and HMG CoA were 

analyzed by this method to determine a standard elution time for each molecule.  

To test for PksG activity using the HPLC, one reaction containing all reactants 

and enzyme was prepared, and four control reactions were also mixed.  The full 

reaction contained 4mM acetoacetyl CoA, 4mM acetyl CoA, 16.5µg of PksG, and 

enough buffer (50mM Tris.HCl, 12.5mM MgCl2, pH 8.0) to yeild a 50µL reaction 

volume.  The controls were prepared the same way, but different components 

were omitted. 

 To spectrophotometrically monitor the PksG reactions using 

acetoacetyl-AcpK or acetoacetyl CoA and acetyl CoA, a Genesys10 

spectrophotometer was used.  To synthesize acetoacetyl-AcpK, apo-AcpK was 

mixed with acetoacetyl CoA and Sfp in reaction buffer, and was incubated for 30 

minutes at 37oC, according to the reaction protocol determined in section 
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II.D.4.a.  Three reactions were then prepared.  The first reaction contained 1mM 

acetoacetyl-AcpK, 1mM acetyl-CoA, and 3.3µg of PksG.  As a control for the first 

reaction 1mM acetoacetyl-AcpK was mixed with 1mM acetyl CoA, but no PksG 

was added.  The last reaction involved mixing 1mM acetoacetyl CoA, 1mM acetyl 

CoA, 3.3µg PksG in buffer (100mM HEPES, 0.1mM EDTA, 20mM MgCl2, pH 

8.0).  These reactions were incubated at 37oC and every ten minutes 25µL of the 

reaction was removed and dissolved in 475µL of buffer (100mM HEPES, 0.1mM 

EDTA, 20mM MgCl2, pH 8.0) to make the final acetoacetyl CoA and acetyl CoA 

concentration equal to 0.05mM.  Each of these samples was placed in a quartz 

cuvette with a 10.00mm pathlength, and the absorbance was recorded at 300nm. 
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CHAPTER III 

 
OVEREXPRESSION, PURIFICATION, AND CHARACTERIZATION OF MMGA 

FROM BACILLUS SUBTILIS STRAIN 168 
 

III. A Introduction to MmgA 

III. A.1  MmgA and Proposed Activity 

 Certain bacteria, including Bacillus subtilis, when experiencing nutrient 

starvation, have the ability to sporulate.  Sporulation is considered a “last ditch” 

response when other survival strategies are not effective.  Such strategies can 

include activating flagellar motility to seek out nutrient sources, secretion of 

antibiotics to decrease competition by other organisms, and the secretion of 

hydrolytic enzymes to seek extracellular proteins and polysaccharides, among 

others.  The signal to begin sporulation is the phosphorylation of a protein called 

Spo0A.  Once Spo0A is phosphorylated, the expression of genes used in the 

sporulation process is initiated (Stephens, et al., 1988). 

An operon used in sporulation from Bacillus subtilis strain 168 was 

discovered in 1996.  This operon was called the mother cell metabolic genes 

(mmg) and is under the control of the σE factor, which is used to express genes 

at the intermediate stages of sporulation.  The operon includes mmgA-E and the 

gene yqiQ, with mmgA-C having sequence homology to genes used in fatty acid 
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metabolism (Bryan, et al., 1996; Subtilist Web Server, accessed March 12, 

2007).  The genes mmgDE and yqiQ show homology the genes used in 

propionate metabolism in E. coli with the products of these reactions yielding 

citric acid cycle substrates.  The gene mmgA, specifically, is an acetyl coenzyme 

A (CoA) acetyltranferase homolog (Bryan, et al., 1996).  Acetyl-CoA 

acetyltransferases catalyze the synthesis of acetoacetyl CoA by the 

condensation of two molecules of acetyl CoA.  These types of enzymes have 

also been shown to catalyze the reverse reaction, called a thiolysis reaction, 

which uses one CoA to cleave an acetoacetyl CoA unit into two acetyl CoA 

molecules.  These reactions are shown in Figure III-1.   

 

Figure III- 1 Reaction of acetyl coenzyme A acetyltransferases. 
 

Because MmgA has not been biochemically proven to be an acetyl-CoA 

acetyltransferase, it is an interesting enzyme to study.  Along with the 

determination of the proposed functionality of the enzyme an investigation of its 

substrate specificity will also be investigated.  Other enzymes of the same class 

as MmgA have been able to synthesize β-keto acyl CoAs longer then acetoacetyl 

CoA (Antonenkov, et al., 1997).  Also, we intend to investigate whether MmgA 
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can thiolyze long chain β-keto bonds. (see Figure III-2).  MmgA may cleave 

longer β-keto acyl bonds due to the presence of branched or odd chain fatty acid 

bonds produced by the organism.  However, in order to study these reactions, 

the synthesis of long chain β-ketos will have to be performed, since these 

compounds are not available commercially. 

 

Figure III- 2 Thiolysis of different length β-keto acyl coenzyme A bonds using  
 MmgA. 

 

III.A.2  MmgA and the Synthesis of Difficidin 

Once the functionality of MmgA has been determined, the protein can be 

used as a synthetic tool to aid our investigation of the biosynthesis of difficidin.  

Two different hypothesis have been proposed for the synthesis of difficidin.  The 

first hypothesis involves PksG synthesizing an HMG precursor molecule that can 

then be reacted with other enzymes and finally added to the nascent difficidin 

chain by polyketide synthases (see Figure III-3).  The second hypothesis involves 

a full-length difficidin intermediate that is synthesized by standard polyketide 
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chemistry.  This intermediate would contain a ketone at the C3 position which is 

modified by other enzymes (PksFGHI) and a unit of acetyl-AcpK to form difficidin.  

These two hypotheses can be seen in the following figures (Figure III-3, Figure 

III-4). 

 

Figure III- 3 First hypothesis for difficidin production. 



61

Figure III- 4 Second hypothesis for difficidin production. 
 

Since PKSs have extremely large masses, from 100 to 10,000 kiloDaltons, 

it is very difficult to determine which hypothesis is valid (Khosla, et al., 1999).  

One approach can utilize a PksG- mutant of B. subtilis strain 39374, the producer 

of difficidin (Zweerink, et al., 1987).  PksG, a 3-hydroxy-3-methylglutaryl (HMG) 

synthase, acts on either the acetoacetyl group attached to one thiolation domain 

on PksL, or on a long-chain difficidin precursor molecule.  PksG is an important 
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step in the synthesis of difficidin and by removing this enzyme from the difficidin 

synthesis process it is possible to reveal the biochemical role of this enzyme.  A 

PksG- mutant would not be able to synthesize the HMG intermediate, so a 

labeled replacement substrate, 13C labeled 3-hydroxy-3-methylglutaryl- N-

acetylcysteamine (HMG-SNAC), will be introduced to a culture of the PksG- B. 

subtilis 39374 mutant.  If the first hypothesis is correct, the culture will then 

directly use the labeled HMG-SNAC, and produce a labeled 3-keto difficidin 

precursor product, which can be detected using mass spectral analysis.  If the 

second hypothesis is correct, the culture will not be able to use this labeled 

substrate and we can instead expect a new difficidin derivative having a ketone 

group at the C3 position. 

Labeled HMG-SNAC is not commercially available, so a synthesis in our 

lab is necessary.  The synthesis of HMG-SNAC would occur in the following 

steps (Figure III-5).  First, labeled pyruvate will be reacted with CoA and NAD+ to 

produce labeled acetyl CoA, in a reaction catalyzed by a commercially available 

pyruvate dehydrogenase.  MmgA would then be used with two labeled acetyl 

CoA units to produce labeled acetoacetyl CoA.  Labeled HMG-CoA will be 

produced by a HMG-CoA synthase from Staphylococcus aureus using labeled 

acetoacetyl CoA and labeled acetyl CoA (Campobasso, et al., 2004).  Finally, 

HMG-CoA will be reacted with SNAC to make labeled HMG-SNAC. 
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Figure III- 5 Synthesis of labeled 3-hydroxy-3-methylglutaryl-N-acetylcysteamine. 
 

III.B Production and Characterization of pET-28a/mmgA 

III.B.1 Goals 

 In order to test our hypothesis for the activity of MmgA, pure MmgA would 

be needed from B. subtilis strain 168.  The first step was to clone and 

overexpress mmgA using the pET-28a plasmid.  Overexpressions with pET 

plasmids involve the bacteriophage T7 promoter and T7 RNA polymerase.  For 

pET-28a the LacI repressor protein controls the T7 promoter, making the pET 

system able to be externally controlled (pET System Manual, 5th ed.).  Once 

induction occurs, the cell begins to use most of its resources to transcribe the 

gene under control of the T7 promoter, known as “overexpressing” the gene.  

The amount of production can in principle be controlled by changing the amount 

of inducer added.  MmgA in this case would be the gene of interest, and would 
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be cloned into the pET-28a plasmid by restriction digesting the pET-28a vector 

and PCR-amplified mmgA. This will be followed by performing a subsequent 

ligation using T4 DNA ligase.  Overexpression of the protein involves growing a 

culture of cells to mid-log phase and then inducing the growth by adding an 

inducer.  A LacI repression system, like the pET vector, can use isopropyl-beta-

D-thiogalactopyranoside (IPTG) as an inducer.  IPTG is an artificial inducer of the 

lac operon and addition of this inducer leads to the production of large amounts 

of the protein of interest.  Once mmgA is successfully cloned into pET-28a, the 

next goal would be to purify the overexpressed MmgA.   

Nickel-affinity purification would be used because the protein would be 

cloned with a C-terminal histidine-tag encoded by the plasmid.  His6-tagged 

proteins can be purified by affinity chromatography using a nickel-nitrilotriacetic 

acid (Ni-NTA) column.  NTA is a Ni+2-chelating adsorbant which leaves two 

empty sites on the nickel for binding nitrogens of the His6-tag.  Washes with low 

imidazole concentrations remove nonHis-tagged proteins from the column, while 

the His6-tag of the protein associates strongly with the Ni2+ on the column.  A 

buffer with high imidazole concentration is used to elute the purified protein from 

the column. 

 The last goal would be to characterize the enzymatic activity of MmgA in 

both the condensation and thiolysis directions.  We expect that MmgA can 

catalyze the condensation of two acetyl-CoA molecules to form acetoacetyl-CoA, 

or thiolyze the β-keto bond of acetoacetyl-CoA in the presence of CoA to form 
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acetyl-CoA.  UV-Vis spectrophotometric analysis will be used to test the kinetics 

of the reactions, and High Performance Liquid Chromatography (HPLC) analysis 

will be used to conclusively identify the substrates and products.  UV-Vis 

spectrophotmetric analysis has been used to test for acetyl-CoA acetyltranferase 

activity in the past.  The β-keto group of acetoacetyl coenzyme A, in the 

presence of Mg2+, absorbs around 300 nm.   

 

III.C Results 

III. C.1 Cloning of mmgA 

 Primers for the polymerase chain reaction (PCR) were designed and used 

to amplify mmgA from the B. subtilis 168 genome.  The gene fragment produced 

had sequence coding on each end that inserts an NcoI site at one end and an 

XhoI site on the opposite end.  MmgA has a gene length of 1179 base pairs (bp).  

A band at ~1200 bp appeared on an agarose gel, indicating the PCR was 

successful.   

 Insertion into the pET-28a vector was attempted using NcoI and XhoI on 

both the plasmid and mmgA PCR product.  T4 DNA ligase was used to ligate the 

restriction digested products together.  Different ratios of insert:plasmid were 

used in six separate reactions.  Once the ligation/cloning step was complete the 

ligation mixture was transformed into competent E. coli DH5α cells.  The 

transformed cells were then plated on six agar plates containing kanamycin 

(30µg/mL) and were incubated overnight at 37oC.  The following morning each 
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plate had several transformants.  Colonies from one plate were selected and six 

starter cultures were grown overnight.  The plasmids were then purified from the 

cultures the next day and another restriction digest was performed to test for 

insert acceptance into the plasmid.  An agarose gel showed that all of the 

plasmids contained an insert and the first plasmid was chosen to be transformed 

into competent E. coli BL21(DE3) cells. 

 

III.C.2  Overexpression and Purification of pET-28a/mmgA 

 The gene of interest, mmgA, had been successfully cloned into pET-28a 

which codes for a C-terminal His-tag.  Our next step was to overexpress the 

protein from the clone.  The overexpression strain pET-28a/mmgA was grown in 

Luria Bertani (LB) medium containing 30µg of kanamycin per mL at 37 oC in a 

shaker until the optical density reached between 0.400 and 0.450 at 595nm.  The 

culture was then moved to an 18oC shaker until it reached an absorbance 

between 0.500 and 0.600 at 595nm.  Once this absorbance was reached the 

culture was induced with 1.0mM IPTG.  The culture was then shaken overnight, 

and the cells were harvested the next day by centrifugation (9950g for 30 

minutes).  The cells were then resuspended in 20mL of Binding buffer (5mM 

imidazole, 500mM NaCl, 20mM Tris, pH 7.9) and lysed by sonication.  The lysate 

was cleared by centrifugation (11000g for 30 minutes). 

 Because inclusion bodies were found to be a problem, a low incubation 

temperature was determined to be necessary since whole cell SDS-PAGE 
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(Sodium Dodecyl Sulfate PolyAcrylamide Gel Electrophorisis) samples of 

cultures grown at 37oC showed a band with high expression with a molecular 

weight consistent with MmgA, but none of this material was found in the postlysis 

supernatant.   

 The centrifuged lysate was then applied to a Ni-NTA (Nickel- nitrilotriacetic 

acid) column and was kept at 4oC.  Different concentrations of imidazole, 5mM 

and 60mM was used to wash nonHis-tagged proteins from the column.  A final 

buffer containing 200mM imidazole was used to elute the protein.  An SDS-

PAGE was taken of samples taken from various stages of the chromatography.  

The expected mass of MmgA is 42.1 kDa.  The SDS-PAGE gel shown in Lane 6 

of Figure III-6 shows a large band below the 45.0 kDa molecular weight marker.  

The eluted protein from the column was dialyzed overnight in buffer containing 

25 mM Tris HCl, pH 7.5.  The protein was then concentrated the next morning by 

centrifugation using a Vivaspin 5000 Molecular Weight Cut Off (MWCO) 

concentrator.  Sterile glycerol was then added to the protein to a final 

concentration of 10% for -80oC storage.  The concentration of the protein was 

then determined spectrophotomectrically using the Bradford method.  The 

average concentration of MmgA was ~ 675µg per 1L of culture. 
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Figure III-6 Sodium dodecyl sulfate polyacrylamide gel electrophorisis of  
column chromatography of MmgA purification. 

 

III.C.3 Testing MmgA Activity 

III.C.3.a Spectrophotometric Analysis of MmgA Reaction Kinetics 

 Our hypothesis is that MmgA catalyzes the synthesis of an acetoacetyl 

coenzyme A, or the CoA-dependant thiolysis of acetoacetyl CoA with the 

production of two acetyl CoAs.  To test for this activity, and to also measure the 

kinetics, a spectrophotometric method was used.  The reaction is able to be 

monitored spectrophotometrically due to Mg+2 being present in the buffer used for 

the reactions.  The enolate form of the β-keto group on acetoacetyl CoA absorbs 

at 300 nm, and this form is stabilized by Mg+2 (Pantazaki, et al., 2005). 

The simplest case of rate kinetics for enzymes is single substrate rate 

kinetics where the substrate in the presence of the enzyme is converted to 

product, PESESE +↔•↔+ . The Michaelis-Menten equation for a single 

substrate reaction is 
][

][max

SK
SVv

M +
= where Vmax is the maximum rate an enzyme 
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can catalyze a reaction at a specific enzyme concentration, and KM is the 

substrate concentration the results in a reaction rate at 1/2Vmax. Acetyl CoA 

acetyltranferases catalyze a multi-substrate reaction, and are known for having a 

“ping-pong” mechanism, which leads to a more complicated rate equation, 

]][[][][
]][[max

BAAKBK
BAVv B

M
A

M ++
= , where A is substrate1 and B is substrate2.  Rate data 

from this type of reaction would be laborious to obtain; however, it is possible to 

create a pseudo-single substrate reaction if one substrate is held at a high, 

saturating concentration such as if acetoacetyl CoA were held at saturating 

conditions then the rate of the reaction would depend on the concentration of 

CoA.  The rate equation in this case would simplify to, 
][

][max,
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v
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m
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+
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single substrate kinetics can be used to determine an apparent Vmax for the 

reaction and an apparent KM for both substrates, acetoacetyl CoA and CoA. 

To accomplish this, the concentration of acetoacetyl CoA was held 

constant at 60µM, while the concentration of CoA was varied, and the rate of 

reaction was recorded for each varied concentration.  The reactions were carried 

out for 0.3 minutes at a constant temperature of 30oC.  The KM,app for CoA was 

52µM, and the Vmax,app was found to be 2.2µM/sec from a double reciprocal plot 

of 1/substrate concentration versus 1/ average rate of reaction (see Figure III-7). 

The kinetic parameters for acetoacetyl CoA were obtained in a similar 

manner. The concentration of CoA was held constant at 70µM, and the 

concentration of acetoacetyl CoA was varied.  The amount of enzyme used in 
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each 1mL total reaction volume was 1.0µg of MmgA.  Concentrations above 

70µM CoA showed substrate inhibition since the rate of the reaction decreased 

with concentrations of CoA above 70µM. 

 Figure III-7 shows the graph of the acetoacetyl CoA rate data obtained.  

Though there are six points on the graph, only four were used because they are 

in the linear range of the graph.  The kinetic parameters found for acetoacetyl 

CoA were a KM,app of 770µM and a Vmax,app of 10µM/sec.  The trend that is seen in 

Figure III-7 shows that as the points approach the reciprocal velocity axis the line 

began to level out.  This shape shows a classic plot shape for substrate 

inhibition.  In another study, done by Middleton, an acetoacetyl CoA thiolase from 

rat liver showed substrate inhibition by CoA (Middleton, 1974).  In this report a 

double reciprocal plot of 1/velocity versus 1/concentration of CoA was given.  

The plot obtained started to curve up as the line approached the 1/velocity axis 

(see Figure III-8).  This led Middleton to conclude that CoA does inhibit the 

thiolase enzyme (Middleton, 1974).  A similar shape can be seen in the graph in 

the acetoacetyl CoA plot in Figure III-7, which suggests acetoacetyl CoA is 

inhibiting the reaction as well as CoA for the protein MmgA.  Once the kinetic 

constants had been estimated for the reaction the identification of the products of 

the thiolysis reaction would be carried out using High Performance Liquid 

Chromatography (HPLC) analysis.   
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Figure III- 7 Double reciprocal plot of coenzyme A and acetoacetyl coenzyme  
A thiolysis rate data. 

 

Figure III-8 Inhibition of rat liver acetoacetyl coenzyme A thiolase by   
coenzyme A (Middleton, 1974). 

 

The condensation reaction was carried out in the spectrophotometer using 

the same buffer and temperature as the thiolysis reaction.  The condensation 

reaction uses acetyl CoA as the substrate.  Reactions containing 60 µM acetyl 

CoA were carried out over a 30 minute time period, which showed no acetoacetyl 

CoA being formed.  To see if MmgA had a broader substrate specificity, 

reactions containing butyryl CoA and acetyl CoA were performed.  Varying 

concentrations of acetyl and butyryl CoA were used.  Enzyme (1.0µg.mL) was 
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added, and the reaction was monitored over 30 minutes to see if MmgA could 

synthesize a longer chain β-keto acyl CoA.  The spectrophotometric assays did 

not show any activity for this reaction, and it was decided HPLC analysis would 

be used to conclusively determine whether MmgA was able to successfully 

perform a condensation reaction. 

 

III.C.3.b High Performance Liquid Chromatography (HPLC) of MmgA Reaction  
 Products 

 Once the spectrophotometric measurements had been taken, the next 

step was to use HPLC to confirm the products of the MmgA reactions.  CoA, 

acetoacetyl CoA, acetyl CoA, and butyryl CoA were used to determine the elution 

times for each substrate.  Reactions in both the thiolysis direction and the 

condensation direction were conducted, with samples being run on the HPLC at 

different times during the reaction.  The standard elution times can be seen in 

Table III-1. 

 
Table III- 1 Standards of MmgA substrates and elution times. 

In the thiolysis reaction, the peak associated with acetoacetyl CoA, after 

three hours of reaction time, completely disappeared, and a peak with the same 
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retention time as acetyl CoA appeared gradually over the same three hour 

period.  This process can be seen in the following figure. 

 

Figure III- 9 Thiolysis reaction showing loss of acetoacetyl coenzyme A peak  
 and appearance of acetyl coenzyme A peak over three hours. 
 

For the condensation reaction, the acetyl CoA peak did not decrease; 

however, a peak associated with CoA did begin to appear after an hour of 

reaction time.  When left to react overnight the CoA peak increased and the 

acetyl CoA peak did decrease, but a peak associated with acetoacetyl CoA was 

never detected.  This would not be an unexpected result with an enzyme that 

shows a ping-pong type mechanism, a mechanism other acetyl CoA 

acetyltransferases have been reported to undergo (Pantazaki et al., 2005).  

Acetyl CoA would enter the active site of the enzyme and an active site cysteine 

would then initiate a nucleophilic attack on the carbonyl carbon, releasing CoA.  
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This would also form an enzyme-acetyl intermediate.  If the enzyme was able to 

form acetoacetyl CoA then another unit of acetyl CoA would enter the active site 

and through a Claisen like condensation releasing acetoacetyl CoA.  Figure II-

10A shows acetyl-CoA in reaction buffer before addition of MmgA and Figure III-

10B shows the condensation reaction after being incubated at 37oC overnight.  

Reactions involving butyryl CoA also showed the development of a peak 

associated with CoA, but a condensation product was never detected. 

 

Figure III-10 Condensation reaction (A) before MmgA is added and (B)  
after MmgA is added and incubated overnight. 
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III.D Conclusion 

Purified His-Tagged MmgA from B. subtilis strain 168 was successfully 

produced with the use of pET-28a overexpression plasmid vector.  IPTG 

induction was used to regulate the overexpression of MmgA-pET-28a, and a 

lower incubation temperature was at least partially effective in reducing inclusion 

bodies.  A Ni-NTA column was used to purify MmgA since it was cloned with a C-

terminal His-Tag encoded by the pET-28a plasmid. 

 MmgA activity was studied in two ways; spectrophotometrically, and by 

HPLC.  The spectrophotometric measurements also gave the kinetic constants 

for the enzyme reactions.  The loss of absorbance at 300nm was proportional to 

the loss of acetoacetyl CoA.  This loss of substrate correlated with the proposed 

function of the enzyme.  These rate studies also showed that both acetoacetyl 

CoA and CoA exhibit substrate inhibition at high concentrations. 

For HPLC analysis, an isocratic method was used and standards of CoA, 

acetyl CoA, and acetoacetyl CoA were analyzed.  The retention times of these 

standards were used to compare to determine the identity of the components of 

MmgA reactions catalyzed.  The HPLC analysis showed a loss of acetoacetyl 

CoA, and the production of acetyl CoA, with the reaction going to completion 

after three hours.  Both the spectrophotometric analysis and HPLC confirmation 

demonstrated that MmgA is a thiolase.  MmgA was shown not to produce 

acetoacetyl CoA in the condensation reaction, or a longer chain β-keto from 

reactions with butyryl CoA, though the production of CoA was noted over time. 
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Though MmgA does not show condensation activity it does show activity 

in the thiolation direction.  This makes MmgA ineffective for the proposed 

synthesis of labeled HMG-SNAC (see Figure III-5).  Though MmgA will not be 

used for this synthesis, other enzymes that show this activity from other 

organisms can easily be obtained and utilized for the synthesis studies.  Because 

the activity of MmgA had not been determined, the results from this thesis are of 

scientific value. 

The researchers who discovered this operon proposed the physiological 

function of the mmg operon was to gain energy from fatty acid metabolism.  The 

importance of MmgA in this energy harvesting processes can be hypothesized 

from the results presented in this work.  The operon containing mmgA can be 

seen in Figure III-11.  One gene, yqiQ, has not been officially designated an mmg 

gene; however, the location of transcription termination sequence indicates that it 

is likely part of the mmg operon.  Based on this signal and the expected functions 

described below we suggest that yqiQ be renamed mmgF and yqiQ will be 

referred to as mmgF for all further discussions. 
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Figure III-11 Portion of Bacillus subtilis genome containing mmg operon 
(Subtilist Web Server, accessed March 12, 2007). 

 

The genes mmgB and mmgC are homologs of 3-hydroxybutyryl-CoA 

dehydrogenases and acyl-CoA dehydrogenases, respectively.  These enzymes 

are expected to oxidize a fatty acyl-CoA to a β-keto fatty acyl CoA.  MmgA can 

then cleave the β-keto bond yielding acetyl CoA.  MmgD shares homology with 

citrate synthase III which catalyzes the condensation of acetyl-CoA and 

oxaloacetate in the presence of water to yield citrate and CoA.  This citrate is a 

substrate for the citric acid cycle, therefore this is an apparent path fatty acids 

can be harvested for energy metabolism.  In the case of even chain fatty acids, 

this pathway may be used; however, B. subtilis is known to synthesize branched 

chain and odd chained fatty acids and would be available to the organism for 

energy (Oku, et al., 1988; Kaneda, et al., 1967).  In this case the first two steps 

involving MmgABC would remain the same with the exception being the product 

of the MmgA reaction would be a propionyl-CoA unit instead of acetyl-CoA (see 

Figure III-12).   
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The next enzyme, MmgD, would then synthesize a methylcitrate from 

propionyl-CoA and oxaloacetate.  MmgE shares strong sequence homology to 

prpD from E. coli as shown by a Basic Local Alignment Search Tool (BLAST) 

search of the protein sequence of mmgE on the Colibri web server (Colibri Web 

Server, accessed March 12, 2007).  The prpD gene is located in a propionate 

catabolism operon and catalyzes the reaction of methylcitrate to methylaconitate 

which in a subsequent step is rehydrated synthesizing methylisocitrate (Brock, et 

al., 2002).  Finally, mmgF shows strong homology to the gene prpB of E. coli also 

located in the propionate metabolism operon.  The enzyme PrpB is a 

methylisocitrate lyase which breaks methylisocitrate into pyruvate and succinate 

(Brock, et al., 2002).  Succinate is a well known citric acid cycle intermediate.  

Whether or not MmgA is able to cleave a longer chain β-keto acyl CoA is still to 

be determined.  The rest of the operon would also need to be characterized in 

order to determine how B. subtilis uses this operon in sporulation.  The 

hypothetical pathways that lead to the citric acid cycle from fatty acid metabolism 

using this operon can be seen in Figure III-12. 
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Figure III-12 Hypotheses for fatty acid catalysis pathway in the mmg operon. 
 

III.E Experimental 

III.E.1  Cloning and Overexpression of MmgA 

 MmgA was PCR amplified using the primers 5’ AAA CCA TGG GGA AAA 

CAG TCA TTG TAA GTG CTG 3’ (contains a NcoI restriction site) and 5’ CAT 

CTC GAG ATG AAC CTG CAC TAA GAC G 3’ (contains an XhoI restriction site).  

Phusion polymerase was used along with the following conditions: 30 seconds at 

98 oC; 30 cycles of 10 seconds at 98 oC, 30 seconds at 61 oC, and 30 seconds at 

72 oC; and finally a hold of 5 minutes at 72 oC.  The product from the PCR 

reaction and the pET-28a plasmid were digested with NcoI and XhoI for 3.5 
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hours in separate reactions.  A 0.7% low melting agarose gel was used to 

separate the digested fragments and to visualize with UV light.  The desired 

fragments were then removed from the gel and placed in a hot water bath to melt 

the gel.  This solution containing the digested PCR fragment and the digested 

plasmid were used in ligation reactions with T4 DNA ligase and T4 DNA ligase 

buffer. Six ligation reactions were performed, three with the insert plasmid ratio of 

5 µL:1µL, and the second three with the ratio of 5µL:2µL.   

 The ligation reactions were transformed into competent E. coli DH5α cells 

and plated on LB-agar plates containing 30µg/mL of kanamycin.  Six starter 

cultures, 5mL LB containing 30µg/mL of kanamycin shaken at 37oC, were made 

from colonies grown on various plates from the ligation.  After the starter culture 

had grown overnight, the plasmids were purified from the cultures using the 

Qiagen Miniprep kit following the procedure outlined in the manufacturer’s 

instruction manual.  To screen for insert acceptance, a second restriction digest 

was performed with the same restriction enzymes used in the first digest 

reaction.  After the plasmids had digested for 3.5 hours, 1.0% agarose gel 

electrophoresis was performed to visualize the plasmids with the accepted insert.  

A successful clone was transformed into competent E. coli BL21(DE3) cells.  

 One colony from this retransformation was grown overnight in a starter 

culture of LB and a concentration 30µg/mL of kanamycin.  Two mL of the starter 

culture was then added to 1 liter of LB containing 30µg/mL of kanamycin, and 

was shaken at 37oC until the OD595 reached 0.400-0.450.  Once this OD was 
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reached the culture was shaken at 18oC until an OD595 of 0.500-0.600 is 

observed.  1.0 mM of IPTG was then added and the culture was then allowed to 

grow overnight.  The following morning the cells were harvested by centrifugation 

(9950g for 30 minutes).  The pellet was then stored at _80oC until it was used for 

purification. 

 

III.E.2 Purification of MmgA 

 The pelleted cells obtained from the overexpression were resuspended in 

20 mL of binding buffer (5mM Imidazole, 500mM NaCl, 20mM Tris.HCl, pH 7.9) 

and lysed by sonication on ice for 3 minutes.  The lysate was then removed by 

centrifugation (11000g for 30 minutes) and applied to a Ni-NTA chromatography 

column containing 2mL of column bed.  The chromatography was conducted at 

4oC.  The crude extract was loaded first, followed by a wash of 20mL of binding 

buffer.  Wash buffer, 12mL, (60mM Imidazole, 500mM NaCl, 20mM Tris.HCl, pH 

7.9) was added to remove nonHis-tagged proteins from the column.  The Eluent 

buffer, 12mL, (200mM Imidazole, 500mM NaCl, 20mM Tris.HCl, pH 7.9) eluted 

MmgA from the column.  Snakeskin® pleated dialysis tubing with a 7000 MWCO 

was used to dialyze the eluent overnight in 4L of buffer containing 25mM 

Tris.HCl, pH 7.5.  The dialyzed protein was then concentrated by using a 

Vivaspin 5000 MWCO concentrator until the volume read 500µL to 750µL.  An 

SDS-PAGE was used to determine the purity of MmgA.  The concentration of the 

protein was then measured spectrophotometrically using the Bradford method.  
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The absorbance of the reagent plus the enzyme at 595nm was recorded.  Using 

a standard curve of absorbance versus protein concentration, the concentration 

of MmgA obtained from the overexpression/purification was determined.   

 

III.E.3  Spectrophotometric Analysis of MmgA Activity 

 Using the Cary BIO 100 UV.Vis spectrophotometer reaction mixtures 

containing CoA, acetoacetyl CoA, and MmgA were analyzed.  To determine the 

reaction constants for coenzyme A a constant concentration of acetoacetyl CoA 

was used in each reaction(60µM), and varying concentrations of CoA (5µM, 

10µM, 15µM and 20µM), MmgA was added to give a final concentration of 

1.0µg/mL.  In a quartz cuvette with a 10.00mm pathlength the acetoacetyl CoA 

and MmgA were added into enough buffer (100mM Tris, 25mM MgCl2, pH 8.1) 

so that the total reaction volume equaled 1.0mL.  The cuvette was then placed in 

the spectrophotometer with a constant temperature of 30 oC.  To begin the 

reaction the appropriate amount of CoA was added to the reaction.  The reaction 

was then monitored at 300 nm for 0.3 minutes using the program Win UV 

Kinetics Application.   

Once the program had finished recording the absorbance versus time, the 

data was then exported into a Microsoft Excel spread sheet.  A linear curve fit 

was used to obtain an equation from each reaction.  All reactions were done in 

triplicate to obtain an average rate.  The absorbance of acetoacetyl CoA, when 

placed in the spectrophotometer in buffer without CoA of MmgA, decreased over 
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time.  To account for this in the rates of each reaction, acetoacetyl CoA in buffer 

was placed in the spectrophotometer, at the same reaction concentration, and 

the rate of decay obtained from an average of three readings was subtracted 

from each rate obtained for all the reactions before the reaction rates were 

averaged.  A reported ε300 of 3600 M-1cm-1 for acetoacetyl CoA was used to 

calibrate the absorbance data. (Kornblatt, et al., 1971)  A double reciprocal plot 

of the rate of reaction versus the concentration of CoA was used to determine the 

kinetic constants KM and Vmax.

Once the constants for CoA had been determined, the kinetic parameters 

for acetoacetyl CoA were measured.  For these reactions, the concentration of 

CoA was held constant (70µM) and the acetoacetyl CoA concentration was 

varied (5µM, 10µM, 20µM, 30µM, 40µM, and 50µM).  The same 

spectrophotometric parameters were used as in the previous reactions: 10.00mm 

quartz cuvette, 30oC, absorbance monitored at 300nm.  Acetoacetyl CoA was 

added to buffer (100mM Tris, 25mM MgCl2, pH 8.1) and 1.0µg of MmgA.  The 

reaction was started with the addition of CoA and the reaction was monitored for 

0.3 minutes.  After the data was imported into a Microsoft Excel spread sheet 

and a linear curve fit was applied, the rate was recorded.  All concentrations were 

repeated at least three times, and the rate obtained for the specific 

concentrations was an average of the values.  To account for any decay in 

absorbance signal, acetoacetyl CoA was added to the cuvette at the different 

concentrations in the reactions without CoA or MmgA and the change in 
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absorbance was recorded a minimum of three times.  These values were then 

averaged.  The rate of decay associated with the different concentrations of 

acetoacetyl CoA was subtracted from the reaction rates before the individual 

reaction rates were averaged.  After averaging, a reported ε300 of 3600M-1cm-1 for 

acetoacetyl CoA was used to obtain concentration versus time for the reaction 

(Kornblatt, et al., 1971). 

The condensation reaction using acetyl CoA (60µM) and MmgA (1.0µg) in 

enough buffer (100mM Tris, 25mM MgCl2, pH 8.1) to make 1mL total reaction 

volume was measured.  A 10.00mm quartz cuvette was used in the reactions 

and each reaction was held at 30oC.  The reaction was started with the addition 

of MmgA, and the absorbance was monitored at 300nm for 30 minutes.  After 30 

minutes there was no increase in absorbance.  We therefore analyzed the same 

reaction by HPLC as described below. 

The synthesis of a long chain β-keto acyl CoA was carried out by reacting 

acetyl CoA with butyryl CoA in the presence of MmgA.  The reaction was started 

with the addition of MmgA, and the absorbance was monitored at 300nm for 30 

minutes.  After 30 minutes there was no increase in absorbance.  We therefore 

analyzed the same reaction by HPLC as described below 

 

III.E.4  HPLC Analysis of MmgA Reaction Products 

 MmgA reaction products and standards were analyzed using a 

Varian Prostar HPLC.  For all reactions and standards a buffer (95% 200mM 
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Ammonium acetate, pH 6.0; %5 acetonitrile) was conducted at 1mL/min for 15 

minutes with absorbance being monitored at 261nm.  The column used was a 

Waters NovaPak C18 reverse phase column of 4µm particle size, 150mm in 

length, and a 3.9 mm inner diameter (Burns, et al.).  Standards of CoA, acetyl 

CoA, acetoacetyl CoA, and butyryl CoA were used to determine the elution time 

of the compounds.  The thiolysis reaction was conducted in an HPLC sample vial 

and contained 70µM CoA, 50µM acetoacetyl CoA, and 0.25 µg of MmgA in 

enough buffer (100mM Tris, 25mM MgCl2, pH 8.1) to make 1 mL total reaction 

volume.  Samples were run through the HPLC were before addition of MmgA, 30 

minutes after addition of MmgA, 2 hours, 3 hours, and 4 hours after addition of 

MmgA.  The reaction was incubated at 37oC between HPLC runs.  Formation of 

reaction products was determined by comparison of chromatographic peaks from 

the reaction and the standards. 

The condensation reaction was carried out in an HPLC sample vial 

containing 60µM acetyl CoA, 1.0µg of MmgA, and enough buffer (100mM Tris, 

25mM MgCl2, pH 8.1) to give a total of 1mL reaction volume.  Before MmgA was 

added to the reaction, acetyl CoA in buffer was applied to the column.  Once the 

reaction had been started with the addition of the enzyme, a sample was 

analyzed every hour for 2 hours, and an overnight sample was analyzed the next 

day.  The reaction was incubated at 37oC between all timed runs on the HPLC.  

Reaction products were determined by comparing the obtained chromatographic 

peaks to those of the standard peaks. 
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For HPLC analysis of the condensation reaction involving butyryl CoA, 

60µM acetyl CoA, and 50µM butyryl CoA were used.  MmgA (1.0µg) was used in 

the reaction with enough buffer (100mM Tris, 25mM MgCl2, pH 8.1) to make 1 

mL total reaction volume.  The mixture of butyryl CoA and acetyl CoA was added 

to the column before addition of MmgA using the program of 15 minutes at 95% 

200mM ammonium acetate, 5% acetonitrile followed by an increase of 

acetonitrile to 60% over five minutes and was held constant at this percentage for 

another five minutes.  The acetonitrile was then increased to 80% over five 

minutes and was again held constant for another five minutes.  The flow rate 

used was 1 mL per minute.  The butyryl CoA reaction was run before addition of 

MmgA, and every hour up to three hours after addition of MmgA, and an 

overnight sample was applied to the column.  Between all HPLC trials the 

reaction was incubated at 37oC.  Signals from the chromatogram were assigned 

by comparison to authentic standards. 
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