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Increasing use of herbal products in recent years demand further studies relating 

to their safety and efficacy. Since cytochrome P450 enzymes play a major role in drug 

metabolism, studying their interactions with herbal extracts would be an important step in 

this direction. In the current study, Echinacea purpurea root and Spilanthes acmella 

whole flowering plant extracts were tested against CYP2C9, CYP1A2, CYP2A6 and 

CYP2E1. Both Echinacea and Spilanthes showed moderate inhibition against CYP2C9 

while they both failed to show any inhibition towards CYP1A2. Echinacea showed 

moderate inhibition against both CYP2A6 and CYP2E1 but raw Spilanthes extract did 

not show any interaction with CYP2A6. It showed mild inhibition of CYP2E1 when used 

in high concentration. Isobutyl amides, known to be the only bioavailable components of 

Echinacea and Spilanthes were tested for their ability to inhibit CYP2E1. The four 

isobutyl amides present in major proportions in the ethanolic preparation of Echinacea 

purpurea root were isolated and shown to be potent inhibitors of CYP2E1. Spilanthol, the 

only major isobutyl amide found in the ethanolic preparation of Spilanthes acmella whole 

flowering plant was isolated and it showed strong inhibitory properties against CYP2E1. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Increasing popularity of natural products: benefits and concerns 

The use of herbal medicines for the treatment of human illness has existed in 

every culture throughout the world for thousands of years. They have eventually been 

replaced by scientific methodologies in most of the industrialized countries and 

conventional medicine has gained a position as a more effective method of health care. 

Interestingly recent years have seen a rapid growth in the use of the so-called alternative 

medicines, especially in the United States [1]. The nineteen nineties have witnessed a 

tremendous increase in the sale of herbal products, in fact between the years 1992 and 

1998 there was an annual increase of 25% in the sale of herbal medications and in 1999 

sales rose to over $3.3 billion [2,3]. 

Several factors may have contributed to the increasing popularity of herbal 

medicines. First, they are considered safe and without side effects by many people. In 

addition, lack of regulation allows producers to make unsubstantiated claims about the 

miraculous effects of their products. Finally, they can be purchased without a prescription, 

which may also contribute to their widespread use.  

All this recent interest in these natural products is not absolutely without reason. 

Apart from the existing traditional beliefs, there has been reported evidence suggesting 

the efficacy of certain herbal products. Garlic has been shown to reduce cholesterol [4]. 
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Gingko biloba, another popular herbal product has been reported for its effectiveness in 

delaying cognitive impairment [5,6]. Saw palmetto has proven helpful in the treatment of 

urinary tract symptom and flow rates [7] while St. John’s wort has been found to be 

effective with patients undergoing depression [8,9].  

An important point of difference between herbal products and conventional 

medicines is that these products are a complex mixture of several different compounds 

which may contain more than one biologically active reagent. While some of them may 

be useful, or at least safe, others may lead to dangerous side effects. These undesired 

effects may arise due to allergic reactions or due to contaminants sometimes added 

illegally to the herbs to produce desired effects. Another side effect, which is a matter of 

serious concern, is possible drug-herb interactions that occur when the herbal products 

are taken simultaneously with pharmaceutical drugs. The well-known example of women 

running the risk of pregnancy with concurrent use of St. John’s wort and contraceptive 

pills may be cited as an example here [10]. 

Toxic effects are another concern regarding potential side effects of certain herbal 

products. For example, the herb, Aristolochia fangchi, used for reducing obesity has been 

shown to be nephrotoxic and also a potent carcinogen [11].  

The term toxicity may also be linked with herbal products in a positive way. 

Some herbal products have been reported to have the potential of reducing the toxicity of 

other compounds in the body. For example Glycyrrhizae radix (licorice) has been shown 

to inhibit cell death caused by cadmium [12]. Further discussion regarding the possible 
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beneficial effects of herbal products with respect to reducing chemical toxicity will be 

presented later in the chapter. 

All these observations lead towards a common solution: regulation of herbal 

products so that people can reap the benefit of these herbal medications without the fear 

of adverse side effects. Unfortunately herbal products are not regulated to the same extent 

as conventional medicines. The Dietary Supplements Health and Education Act was 

formulated in 1994 for the regulation of herbal products that are to be considered as 

dietary supplements [13]. By this law, manufacturers are not required to prove the safety 

or efficacy of a product before marketing it. Although they are required to make sure that 

the product is safe, there are no specific regulations for establishment of safety. As a 

result of the lack of regulation, there is no way to determine the actual amount of herbal 

extract present in a preparation and what an effective dosage should be. Neither is it 

possible to identify the active ingredient. Unless and until more research has been done to 

characterize the herbal products, based on their efficacy and safety issues like possible 

toxic effects or drug-herb interactions, people will have to abstain from availing of the 

good results of herbal medications or run the risk of falling prey to the possible adverse 

side effects. As has been mentioned in UC Berkeley Wellness Letter, July 1998, “the pity 

of it all is that herbs might have real value as medicine if we understood them better, 

could buy them in standardized form, and knew how much of them to take”. 

 The current study deals with two very well known herbal products:  Echinacea 

purpurea and Spilanthes acmella.  
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1.2 Spilanthes 

Spilanthes spp. is generally found in the tropical regions of the world like India, 

Srilanka, Africa and South America.  It is a perennial herb belonging to the family of 

Compositae. Spilanthes acmella, the species involved in the current study is an herbal 

product marketed in the US as a dietary supplement in the form of a tincture or extract. 

The flowers of this herb when chewed produce a numb sensation in the mouth and thus 

have been effectively used for the remedy of toothaches, sore mouth, itching, psoriasis, 

stammering problem and also to regulate the flow of saliva [14, 15]. Some of the 

efficacies of this herbal product have been scientifically proven. For example, larvicidal 

activity has been demonstrated in Spilanthes acmella against Culex quinquefasciatus [16]. 

The flowers have also been shown to have diuretic activity in rats [17].  

 A few bioactive compounds have been isolated from Spilanthes acmella. 

Spilanthol has been isolated and is regarded as very highly bioactive [18] due to its 

insecticidal activity. Other isobutylamides have also been reported which includes 2E-N-

(2-methylbutyl)- 2-undecene-8,10-diynamide, 2E,7Z-N-isobutyl-2,7-tri- decadiene-

10,12-diynamide, 7Z-N-isobutyl-7-tride- cene-10,12-diynamide [19], undeca- 2E,7Z,9E-

trienoic acid isobutylamide and undeca-2E-en-8,10- diynoic acid isobutylamide [20]. 

Other than the N-isobutylamides, amino acids [21] and alkaloids [22] have also been 

reported in Spilanthes acmella. Figure 1.1. shows the structure of some of the N-

isobutylamides isolated from Spilanthes acmella.  
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Figure 1.1. Some of the isobutyl amides present in Spilanthes acmella 

 

Though some of the bioactive compounds present in Spilanthes acmella have been 

identified, research regarding the mechanisms involved in their biological effect or 

relative potency has been very limited.  The isobutylamides found in Spilanthes acmella 

are very similar to the ones isolated from Echinacea purpurea. Thus it is likely that both 

herbs could display similar therapeutic properties and interact with other xenobiotic 

compounds through related mechanisms. 

1.3 Echinacea  

Echinacea has been an old name in the history of herbal medicines. Echinacea 

products are very well known in many parts of the world and can be rated among the best 

selling herbal products in North America as well as Europe [23, 24] with an annual 

average of about $300 million in US and $25 million in Canada [25, 26].  
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Echinacea, also known as black sampson, purple coneflower, red sunflower and 

sampson root, belongs to the Asteraceae family. This perennial plant is native to America 

and is grown in the central and eastern parts of United States.  It is also cultivated in 

Europe. Nine kinds of Echinacea are known to grow in the United States, out of which 

three species have been identified to possess medicinal value. These are Echinacea 

angustifolia, Echinacea purpurea and Echinacea pallida. Herbal preparations are made 

separately from the roots or aerial parts of the plant. At times the whole plant are also 

used for such purposes. Though the German E Commission has approved of only the 

aerial part of E purpurea and underground part of E pallida to be used in the form of oral 

administration for treatment purposes [27], several combination of different parts of a 

single species or mixture of multiple ones of Echinacea are sold in US. Echinacea 

products are generally sold in the form of capsules, extracts, tinctures and tea. 

Current study involves the species Echinacea purpurea or purple coneflower 

which is among the most commonly known species of Echinacea spp. Echinacea have 

been commonly used as a medicine for treatment of the common cold, cough, bronchitis, 

respiratory tract infections, inflammation of mouth and pharynx [28-30] and cancer [31] 

for a long time. But the most important pharmacological usefulness of the product lies in 

its claim to be an immunostimulant. Several studies have been done to confirm the 

efficacies of Echinacea and often with conflicting results. German Commission has only 

approved it for the treatment of colds, infection of respiratory tract, infection of urinary 

tract, and healing of wounds [27]. A clinical study done to observe the effect of 

Echinacea purpurea extract on cold or respiratory tract infection was inconclusive [32]. 
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Another study found Echinacea purpurea to be ineffective for treatment of upper 

respiratory tract infection in children [33], whereas compounds isolated from Echinacea 

purpurea have been shown to stimulate alveolar microphage function in healthy rats [34]. 

Many bioactive compounds have been isolated from Echinacea purpurea extract 

and some of them have also been quantitated. The five main types of constituents 

identified in Echinacea are caffeic acid derivatives [35], polysaccharides [37], alkamides 

[36], polyacetylenes [36] and glycoproteins [38], though only the first three are known to 

possess the immunostimulatory property [39]. The caffeic acid derivatives are polar and 

are present in the hydrophilic portion of the extract. These phenolic acids have gained 

importance in recent times as they have been shown to enhance the antioxidant capacity 

of a cell as a defense against cancer, cardiovascular disease, arthritis and aging [40].  The 

main caffeic acid derivatives found in Echinacea purpurea are caftaric acid and cichoric 

acid [41]. Caffeic acid is also shown to be present in trace amounts [41]. It may be 

mentioned here that, out of all the caffeic acid derivates isolated from Echinacea 

purpurea, only cichoric acid is known to possess several properties of pharmacological 

interest like immunostimulation [42]. Figure 1.2. shows the caffeic acid derivatives 

present in Echinacea purpurea. 
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Cichoric acid 

                                

              Caftaric acid                                                      Caffeic acid 

             

Figure 1.2.  Main phenolic acid compounds in Echinacea purpurea 

   

Alkamides, another class of bioactive constituents isolated from Echinacea 

purpurea are hydrophobic in nature and contains aliphatic acid residues linked to amine 

groups. The aliphatic acids present are mostly unsaturated. In fact the olefinic isobutyl 

amides are most abundant and appear to be the most active [43]. The content of different 

alkamides have been shown to vary in different parts of the plant [44]. Figure 1.3. shows 

the eleven alkamides identified in the roots of Echinacea purpurea [36]. The numbering 

system corresponds to the one used by Bauer and Remiger [36]. The isomeric pair 

dodeca- 2E,4E,8Z,10E/Z-tetraenoic acid isobutylamide (8/9) have been identified as the 

primary alkamide in the root extract[45].  
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Figure 1.3. The alkamides isolated from the roots of Echinacea purpurea 
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Isobutylamides are a class of bioactive compounds found both in Echinacea and 

Spilanthes. A comparison of Figure 1.1. and Figure 1.3. shows similar structures of 

isobutylamides both in Echinacea purpurea root and Spilanthes acmella. For example 

Structure 4 in Figure 1.1. and structure 6 in Figure 1.3. are the same thus suggesting the 

possibility of similar interactions of the plant extracts with cytochrome P450.  

Though a significant number of in vivo and in vitro studies have been done to 

identify the bioactive compounds present in Echinacea purpurea and to formulate their 

role in the immunostimulating activity displayed by Echinacea, little attention has been 

given to other potential physiological effects that may accompany the intake of these 

products. Further discussion regarding this matter would require some knowledge about 

how herbal products like Echinacea and Spilanthes are metabolized in humans. A major 

pathway for metabolism of foreign compounds in humans is oxidation by the cytochrome 

P450 class of enzymes. This family of enzymes is also responsible for metabolism of the 

majority of commercial drugs and play a substantial role in controlling toxicity of 

chemicals in the body. Thus there is a high possibility of interactions between compounds 

in these herbal products and pharmaceuticals or other xenobiotics. On one hand these 

interactions may lead to unwanted drug-herb interactions but it may also result in 

beneficial effects like attenuation of toxicity associated with chemical exposure in the 

human body. 

1.4 Cytochrome P450 

Cytochrome P450 has been studied extensively in the field of pharmacology due 

to its involvement in drug metabolism, but more recently it has gained considerable 
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attention for its role in activating or deactivating chemical toxicants. This class of 

enzymes is known to be present in nearly every type of organism and is involved in the 

oxidation of a variety of different exogenous and endogenous compounds. They take part 

in the metabolism of many xenobiotic compounds, like drugs, food additives and 

environmental chemicals. The main working principle of cytochrome P450 involves 

oxidation of the more lipophilic chemicals so that they become more polar and can be 

more easily excreted from the body or further metabolized by conjugating enzymes like 

glutathione transferases or sulfotransferases. Some of the endogenous compounds 

metabolized by cytochrome P450 are cholesterol and steroids. 

While discussing cytochrome P450 it also needs to be kept in mind that the role 

played by cytochrome P450 is not always beneficial. They can produce highly 

carcinogenic compounds from benign ones via their oxidative action. 

These membrane bound proteins are found primarily in the liver and small 

intestine where most of the drug and toxin metabolism takes place, however extrahepatic 

P450 expression has been observed in nearly every human tissue type examined, albeit at 

much lower levels than the liver. They are present mainly in the endoplasmic reticulum 

but may also be seen in the mitochondria. 

1.4.1 Structure and spectral properties 

Proteins of the cytochrome P450 family have a mass in the range of 50 kDa. The 

active site contains an iron protoporphyrin IX prosthetic group, where oxygen activation 

and substrate oxidation occur. Figure 1.4. shows the structure of the heme prosthetic 

group. Here an iron atom is present in the center of a protoporphyrin ring bound to four 
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nitrogen atoms from the four pyrrole rings. It can also accomodate two axial ligands, one 

of which is a cysteine residue which serves as the link to the P450 protein. 

 

Fe
NN

N N

O OH OHO  

 

Figure 1.4. Active site of P450 showing the heme group 

 

The cytochromes P450s can be identified by the formation of a characteristic strong 

absorption peak at 450 nm when complexed with exogenous carbon monoxide in their 

reduced state. 

1.4.2 General reaction and catalytic cycle 

Cytochrome P450s are the terminal oxidase of a mixed function oxidase systems 

that bring about oxidation of the otherwise unreactive hydrocarbons. The reactions 

catalyzed by cytochrome P450s include hydroxylation, N- or O- dealkylation, 

epoxidation and heteroatom oxidation. The reaction requires NADPH and O2 where one 
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of the oxygen atoms may get incorporated into the hydrocarbon while the other one is 

released as water. The general reaction is as follows: 

 

RH + O2 + NADPH + H+  ROH + H2O +NADP+ 

 

The reaction takes place by initial activation of the oxygen molecule by the heme 

group of cytochrome P450. The first step in the process involves two electrons from 

NADPH being passed to the heme one at a time via a reductase. These electrons are used 

to activate oxygen, thus forming a molecule of water. The resulting highly activated 

oxygen is used to oxidize the substrate. Figure 1.5. shows the proposed catalytic cycle of 

cytochrome P450. 

 

 

Figure 1.5. Catalytic cycle of cytochrome P450 
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1.4.3 Nomenclature and isoforms 

Cytochrome P450 enzymes are generally designated by CYP followed by letters 

and numbers to signify different isoforms. Cytochrome P450 consists of a number of 

isoforms, an isoform being an enzyme variant derived from a particular gene. CYP 

isoforms are classified into families, subfamilies and individual genes based on their 

amino acid sequences. Numbers like CYP1, CYP2, represents families. About seventeen 

CYP families are known in man. Subfamilies are identified by a letter, giving rise to 

CYP2E, CYP 1A. Individual genes are also represented by numbers, for example 

CYP2E1. Each of these isoforms has their own specific substrates. Some of these are well 

known names in oxidative metabolism like CYP1A1/2, CYP3A4, CYP2D6, CYP2C9 

and CYP2E1. 

Before considering how the activities of some of these isoforms have the possibility 

of getting suppressed or enhanced with the herbal products discussed at the beginning of 

the chapter and see how that may be of importance to pharmacology and toxicology it 

will be beneficial to discuss the fundamentals of enzyme kinetics, induction and 

inhibition.  

1.5 Enzyme kinetics and inhibition 

Enzymes are biological catalysts that help a reaction to proceed at a faster rate. 

The working principle of enzymes involve the lowering of activation energy, generally 

by binding to the substrate, and making the reaction more kinetically favorable. These 

biocatalyzed reactions generally involve two steps which are represented by Equation 1. 

In the first step, the substrate S interacts reversibly with the enzyme to form an enzyme-
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substrate complex, ES. In the figure, k1 and k-1 are the rate constants for the forward and 

backward reaction respectively. In the second step, ES forms the product P and releases 

the enzyme. This step is irreversible and here the rate constant is represented by k2.  

 

                                        (Equation 1) 

With the steady-state assumption for the enzyme-substrate concentration, [ES] and the 

initial velocity assumption where possibility of backward reaction leading to the 

formation of ES from E + P is ignored for initial velocity, we get Equation 2.  

 

                              [ET]  [S]     
              [ES]  =                                                        
                             KM  +  [S] 
  
                                                                                                         (Equation 2) 

Here [ET] is the total enzyme concentration and KM is the Michaelis constant given by    

k1 + k-1 / k2.  

Finally the rate of product formation is given as shown in Equation 3. This expression is 

called the Michaelis-Menten equation. 

 

                             Vmax  [S]     
              V   =                                              
                             KM  +  [S] 
 
                                                                                                         (Equation 3) 
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Here Vmax is the maximum velocity reached when the substrate concentration, [S] is high 

enough to saturate total enzyme, [ET] and is equal to k2 [ET].   

Michaelis-Menten equation when plotted using V/ [S] gives a rectangular 

hyperbola as shown in Figure 1.6.  

 

  

Figure 1.6. Michaelis –Menten plot showing the Vmax and Km values 

 

 It can be derived from Equation 4, that when KM is equal to the substrate 

concentration [S], the velocity of product formation V, can be given as Vmax / 2. Thus 

from the plot in Figure 1.6., the approximate value of Vmax can be calculated at saturating 

substrate concentration and KM can be calculated using that value. 

The value of Vmax and KM in a reaction can be calculated more easily using 

Lineweaver-Burk plot which is a modification of the Michaelis-Menten plot. Here the 

reciprocal of the Michaelis-Menten equation is taken which gives Equation 4. 
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   ( Equation 4) 

In the Lineweaver-Burk plot, 1/V is plotted against 1/[S] resulting in a linear graph with a 

slope equal to KM / Vmax. Therefore the x-intercept is equal to –1/ KM and the y-intercept 

is equal to 1/ Vmax. This plot is used very commonly in kinetic studies. Figure 1.7. shows 

the Lineweaver-Burk plot. 

 

 

Figure 1.7. Lineweaver-Burk plot showing Km and Vmax 

 

At times, the activity of the enzyme gets inhibited due to interaction with other 

compounds.  When the enzyme is inhibited, the velocity of the reaction decreases. 

Kinetic studies related to inhibition are generally done by using several fixed 



 18

concentration of the inhibitor and varying the concentration of the substrate. The chief 

parameters studied are Vmax and Km values obtained from the Lineweaver-Burk plot thus 

generated. Inhibitors may be primarily classified as reversible and irreversible. 

Irreversible inhibitors typically associate with the enzyme through covalent 

interaction. Here the inhibiting reagent permanently modifies the enzyme, usually by 

changing a side chain crucial for the enzyme activity.  Reversible inhibitors on the other 

hand, interact with the enzyme noncovalently. This class of inhibitors can be divided into 

four categories. They are competitive inhibitors, uncompetitive inhibitors, 

noncompetitive inhibitors and mixed inhibitors. Lineweaver-Burk plots can be used to 

show how the Km and Vmax values differ with the different types of reversible inhibitors. 

 Figure 1.8. shows the Lineweaver-Burk plot for competitive inhibition. Here all the lines 

representing plots both with and without inhibitors are seen to intersect each other at the 

y-axis. Since y-intercept gives the Vmax value for that plot, it can be concluded that for 

competitive inhibition, the Vmax value remains the same for all the lines. But the Km 

values determined from the x-intercept are seen to differ and it increases with the addition 

of inhibitor. The Lineweaver-Burk plot for uncompetitive inhibition is shown in Figure 

1.9. Here the lines are not seen to intersect with each other. The lines with inhibitor are 

seen to have lower Vmax, as well as lower Km than the line without inhibitor. In fact, both 

the values decrease at a similar rate, giving rise to parallel lines. In mixed inhibition, the 

Lineweaver-Burk plot, which is shown in Figure 1.10., indicates a decrease in Vmax 

values with the addition of inhibitor, whereas the Km values increase. And lastly in 

noncompetitive inhibition all the lines are seen to meet each other at the x-intercept 
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showing the same Km values, while the Vmax values decrease with the addition of inhibitor. 

The Lineweaver-Burk plot for noncompetitive inhibition is shown in Figure 1.11. 

 

 

Figure 1.8. Lineweaver-Burk plot showing competitive inhibition  
 

 

 

Figure 1.9. Lineweaver-Burk plot showing uncompetitive inhibition 
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Figure 1.10. Lineweaver-Burk plot showing mixed inhibition 
 

 

Figure 1.11. Lineweaver-Burk plot showing noncompetitive inhibition 

 

Further understanding of the reasons behind the difference in the nature of the 

Lineweaver-Burk plots seen above requires an evaluation of the kinetic models 

associated with the different types of reversible inhibition. In competitive inhibition, the 

substrate and the inhibitor usually resemble each other structurally and they both compete 

for the same binding site in an enzyme, so they cannot bind to the enzyme 



 21

simultaneously. Figure 1.12. shows the model for competitive inhibition. Here the 

enzyme binds reversibly with the inhibitor to form the enzyme-inhibitor complex. The 

dissociation constant for this reaction, known as the enzyme-inhibitor dissociation 

constant is given by KI.  

 

 

Figure 1.12. Mechanism for Competitive inhibition 

 

Due to the reversibility of the reaction, when the substrate concentration is very 

high, the equilibrium shifts toward ES, and the inhibition can be overcome. Therefore the 

Vmax in this type of inhibition remain unchanged with the addition of inhibitor. But due to 

simultaneous binding of the enzyme with the inhibitor, the dissociation constant for the 

enzyme substrate complex KM decreases. Change in the velocity of product formation in 

the presence of inhibitor can be given as shown in Equation 5. 

                           (Equation 5) 
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Therefore the apparent enzyme-substrate dissociation constant, KM
app is equal to KM(1 + 

I/KI), which is reflected in the Lineweaver-Burk plot associated with this inhibition as has 

been shown in Figure 1.8. 

 In uncompetitive inhibition, the inhibitor binds only to the enzyme-substrate 

complex and not to the free enzyme. This may be due to a change in conformation in the 

enzyme, which takes place when the enzyme binds to the substrate. The mechanism of 

this reaction is shown in Figure 1.13. Here the inhibitor I, binds reversibly with the 

enzyme-substrate complex ES, to form the enzyme-substrate-inhibitor complex, EIS. The 

EIS cannot form product. The dissociation constant for this reaction is known as the 

enzyme substrate complex-inhibitor dissociation constant, KI’. 

 

 

Figure 1.13. Mechanism for Uncompetitive inhibition 

 

In uncompetitive inhibition, due to the presence of ESI, even when the substrate 

concentration is increased the whole of E is not converted to ES. Some of it goes in the 

formation of ESI. Therefore the Vmax value with inhibitor will be less. In case of KM, 

since I binds to ES, the equilibrium of the reaction shifts toward ES thus effectively 
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reducing the value of KM, which is related to k-1/ k1.  The rate of product formation in 

uncompetitive inhibition is given as shown in Equation 6.  

                                      (Equation 6) 

Thus in uncompetitive inhibition the KM
app = Km/ (1 + I/KI’) and Vmax

app = Vmax/(1 + I/ 

KI’) which is what is expected from the Lineweaver-Burk plot.  

 In mixed and noncompetitive inhibition, the inhibitor binds to both enzyme and 

enzyme substrate complex. Thus I bind both with E and ES reversibly to form EI and EIS 

respectively. EI may also react with the substrate to form EIS, but EIS cannot form 

product. The dissociation constants are same as discussed in the previous two cases of 

inhibition. The only difference between mixed and noncompetitive inhibition is that in 

the later one the value of KI and KI’ are the same. Figure 1.14. shows the mechanism for 

mixed and noncompetitive inhibition.  

 

 

Figure 1.14. Mechanism for Mixed and Noncompetitive inhibition 
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It is apparent from Figure 1.9. that even at higher substrate concentrations there will be 

some ESI present and that E will not be totally converted to ES. Therefore Vmax for both 

mixed and noncompetitive inhibition will be lowered. The value of KM in noncompetitive 

inhibition will remain unchanged as I binds with both E and ES at the same rate. In the 

case of mixed inhibition, the value of KM will change and the change will be governed by 

whether the value of KI is greater or less than KI’. The velocity of product formation for 

mixed inhibition is given in Equation 7.  

 

            

                                                                                                                       (Equation 7) 

Thus both for mixed and noncompetitive inhibition, Vmax
app = Vmax/(1 + I/KI’). For 

noncompetitive inhibition, the KM
app will remain be the same as without inhibitor and for 

mixed inhibition it will be KM
app = KM (1 + I/KI) / (1 + I/KI’). 

1.6 Drug metabolism, cytochrome P450 and Echinacea 

As already mentioned cytochrome P450 is involved in the metabolism of most of 

the drugs in market today. Though the isoforms are substrate specific, with so many 

drugs and other xenobiotic components to be metabolized by the same enzyme, 

interactions seem inevitable. Interactions of drug or herbal products including Echinacea 

and Spilanthes with drug metabolism by cytochrome P450 can be manifested through 
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either inhibition or induction. In many substances inhibition of drug metabolism is 

competitive in nature, where both the drug and the chemical from the herbal product 

compete for the same binding site, thus slowing the metabolism of the drug. With 

induction the metabolizing capacity of the enzyme in increased when the product is 

administered as a result of an increase in functional P450. As we have seen, each isoform 

of cytochrome P450 has a long list of drugs and other compounds that it will act on and 

there are certain known inhibitors and inducers of each activity as well. Table 1.1. shows 

the list of some of the known drug substrates, inhibitors and inducers specific to 

individual isoforms that are relevant to the current study [46, 47]. 

 

Table 1.1. Some drugs, inducers and inhibitors affecting P450 isoforms of interest 

Isoform Substrate Inhibitor Inducer 

1A2 Propanolol, theophylline, 

F-Warfarin 

Amiodarone, 

cimetidine 

Omeprazole, 

Phenobarbital 

2E1 Enfluren, chlorzoxazone, 

theophyline 

Diethyldithiocarba

mate, disulfiram 

Ethanol, isoniazid 

2C9 Diclofenac, ibuprofen, 

tolbutamide. 

Fluconazole, 

lovastatin 

Rifampin, 

secobarbital 

2A6 Aflatoxin B1, clozapine, 

dexamethasone 

Amiodarone 

hydrochloride, 

ketokonazole 

Phenobarbital 

sodium 
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Echinacea has been the focus of many studies, however the primary emphasis of most 

of these studies has been the immunostimulatory activity and identification of compounds 

in Echinacea that may contribute to it. The possibility of unwanted drug-herb interaction 

with the intake of Echinacea is a field which still needs to be explored. In a recent study, 

the effects of Echinacea purpurea root extract on select cytochrome P450 activities were 

studied in vivo [48]. Echinacea was shown to inhibit the activity of CYP1A2 to a 

considerable extent whereas it failed to cause a significant effect on CYP2C9 and 

CYP2D6. The effect on Echinacea extract was found to be selective on intestinal and 

hepatic CYP3A4 which means that it was predicted to induce the activity of hepatic 

CYP3A but inhibit the activity of intestinal CYP3A. Echinacea purpurea root extracts 

were also shown to inhibit the activity of c-DNA-expressed CYP3A4 in another study 

[49]. The first part of our study deals with the study of interaction of Echinacea with the 

CYP1A2, CYP2A6, CYP2C9, CYP2D6, CYP2E1 and CYP3A4 isoforms of cytochrome 

P450. After obtaining a general picture, the activity of 2E1 has been studied with a 

greater detail. The reason for choosing CYP2E1 lies in the significant role played by this 

isoform in controlling toxicity in the body and evidence that a variety of natural products 

appear to modulate its activity. 

1.7 Toxicology, CYP2E1 and Echinacea purpurea 

Although the main function of cytochrome P450 seems to be to help the body get 

rid of xenobiotic substances, many times it actually causes xenobiotic bioactivation 

instead. This often leads to severe toxicologic effects like cellular dysfunction and 

destruction.  CYP2E1 is considered to be very important in this regard. This is primarily 
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due to its ability to activate many xenobiotics into toxic compounds.  For example, 

CYP2E1 leads to the production of a highly toxic metabolite from the drug 

acetaminophen [50]. It is known to be involved in the bioactivation of a number of 

procarcinogens into either or both cytotoxic and carcinogenic compounds [51, 52].  

CYP2E1 does perform some physiological functions like protecting the body 

against toxic xenobiotics, especially airborne ones, by detoxifying them [50]. It also takes 

part in fatty acid and acetone metabolism [50]. However, the harm it is capable of doing 

to the human body seems to be of much more significance. Moreover these effects are 

magnified in presence of ethanol which is both a substrate and inducer for CYP2E1. The 

process of ethanol metabolism itself leads to production of oxygen radicals which when 

accumulated beyond a certain level cause oxidative stress and finally lipid peroxidation 

and membrane damage [50]. Also acetaldehyde produced in the process is highly toxic 

[50]. CYP 2E1 may also be linked with breast cancer due to its involvement in the 

conversion of N-nitrosamines, derived from tobacco smoke, into breast carcinogens as a 

part of their metabolizing procedure [53]. Apart from N-nitrosamines, CYP2E1 also 

activates other procarcinigens like benzene known to promote leukemia [54], urethane 

and styrene [55, 56]. It is also known to metabolize solvents, out of which compounds 

like carbon tetrachloride and halothen generally produce cytotoxicity, whereas 

chloroform, vinyl chloride and others are carcinogenic. As mentioned above alcohol 

being an active inducer of CYP2E1, increases  the level of the active isoform and thereby 

effectively facilitates harmful bioactivations. For example, females who comsume 

alcohols have a higher risk of breast cancer. Thus it may be observed that a compound 
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which can inhibit the activity of CYP2E1 so that its level can be controlled, may prove to 

be beneficial to mankind. Therefore in the final part of our study we have tried to 

characterize the 2E1 reaction based on its interactions with Echinacea purpurea and 

specific components isolated from Echinacea extract. 

1.8 Proposal  

In our research we are making an attempt to evaluate the effects of Echinacea 

purpurea and Spilanthes acmella on the catalytic activity of a variety of drug 

metabolizing cytochrome P450 enzymes present in human and rabbit liver. The objective 

of this study is to identify potential interactions between Echinacea purpurea/ Spilanthes 

acmella extracts and cytochrome P450 enzymes in the endoplasmic reticulum of rabbit 

and human liver microsomes to address the potential mechanisms involved in the process. 

This may be carried out using isoform specific substrates as probes and determining the 

effect of the plant extracts on the catalytic activity of P450. Further, isolated components 

from the whole plant extracts may be used so that a comparative study may be carried out 

to determine which constituents are responsible for the observed inhibitory effects on the 

2E1 isoform of cytochrome P450. 
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CHAPTER II 

EXPERIMENTAL 

 

2.1  Materials 

Rabbit livers, human livers and supersomes were purchased from Pel-Freez (Rogers, 

Arkansas), Moltox and BD Gentest respectively. Echinacea and Spilanthes was obtained 

from Horizon Herbs (Williams, OR). NADPH, p-nitrophenol, p-nitrocatechol, 7-

ethoxycoumarin, 7-hydroxycoumarin, diclofenac and potassium phosphate were all 

obtained from Sigma Chemical Co. Sodium borate, methanol, sodium hydroxide and 

acetonitrile were obtained from Fisher Scientific. Perchloric acid and hydrochloric acid 

were obtained from Acros Organic Chemicals and chloroform was obtained from Lab 

Guard. All other reagents were of highest quality and were from common commercial 

sources.  

Liver microsomes were prepared by members of Dr. Raner’s lab following a 

previously published procedure and the amount of microsomal protein was determined to 

be 29mg/mL using the biuret method devised by Lowery et al. [57]. The protein content 

of the human liver was 33mg/mL according to the literature provided with the samples. 

2.2  Preparation of Echinacea and Spilanthes extract 

The Echinacea and Spilanthes extracts were prepared by a research group under 

Dr. Nadja Cech. Fresh Echinacea purpurea plants were separated into roots or aerial 

portions and each part was washed with deionized water. After that it was weighed.  
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Extracts were made using a ratio of 2mL menstruum (solvent)/1 g plant material.  The 

extracts studied in this project were made of 33% ethanol for the hydrophilic interactions 

and 100% ethanol for hydrophobic interactions. 

The first step in the preparation of the extract involved blending of the plant material 

thoroughly with menstruum and storing it for two weeks. The aqueous extracts were 

stored at 0°C while the ethanolic extracts were stored at room temperature. During this 

period, the extracts were shaken from time to time. After that the extract was removed 

from the plant material. A hydraulic press was used for this purpose. It was then filtered, 

and stored in clean jars at -20 °C for future analysis.   

2.3  Detection of Caffeic acid derivatives 

Caffeic acid derivatives were also detected, isolated and quantitated by Dr. Nadja 

Cech’s research group. The instrument used for analysis was HPLC/ESI-MS. In the 

sample preparation procedure, 1 ml aliquot of each extract was used. It was first 

centrifuged to remove particulate matter. After that it was filtered using a 0.2µM filter.  

The analysis involved separation of the extracts using an HPLC (HP1100, Agilent) with a 

C18 column (50 x 2.1mM, 3.0 µM particle size). Any particulate caused was filtered 

using a 4µM precolumn filter (MacMod Analytical) prior to the column. An injection 

volume of 10 µL was used and the flow rate was set to 0.2 mL/min.   

For detection purpose an ion trap mass spectrometer with electrospray ionization 

source (LCQ Advantage, Thermo Finnigan) was used to which the HPLC was interfaced. 

The samples were analyzed in the negative ion mode. The scan range used was 150 to 



 31

1500 m/z.  The spray voltage was set at  -4.5 kV and the tube lens offset was -50V. The 

capillary temperature and voltage were 275 °C and -10V respectively.  

Next step involved preparation of Calibration curves. Here a mixture of standard 

compounds prepared in ethanol having a concentration of 1 × 10-3 M (Chromadex, Santa 

Ana, CA) was used which consisted of caftaric acid, chlorogenic acid, cichoric acid, and 

cynarin.  This mixture was diluted to a concentration of 1× 10-4 M and run using the same 

conditions as the extracts. Calibration curves were then plotted, the parameters used 

being peak area of the selected ion chromatogram for caftaric acid and chlorogenic acid 

versus concentration, caftaric acid and chlorogenic acid being the compounds of interest 

in the current study.  

 2.4  Detection of Isobutylamides 

The isolation and quantitation of isobutylamides from Echinacea and Spilanthes 

involved three steps. The raw extracts were first subjected to large scale purification as 

described in the following section. 

2.4.1 Large scale purification 

The large scale purification was done by Ashey Mortenson and Dr. Gregory 

Raner in the lab headed by Dr. Gregory Raner. In this process the extract was separated 

into several fractions based on the solubility of the components in ethanol. The apparatus 

used consisted of a Waters Sep-Pak Vac 35cc C18 -10g tube attached to a Spectra/ 

Chrom MP-1 Pump. For this purpose the raw extract was first diluted with water to a 1:1 

ratio. Next the C18 column being used was wetted with 100% ethanol and flushed several 

times with 50% ethanol and 50% water. After that the C18 tube was loaded with the 
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diluted extract prepared earlier. Solvent mixtures with varying concentration of ethanol 

and water ranging from 50%-50% to 90%-10% combination were then fed to the tube 

using the pump and fractions coming out of the column through the exit tube were 

collected.  

The fractions thus collected were then analyzed using HPLC where 250µL of the 

fractions were injected into a HAISIL 100 C18 column (5 micron, 150 x 4.6mM) from 

Higgins Analytical Inc. The flow rate was 1.5mL per minute and the mobile phase for 

this analysis consisted of 50% of acetonitrile with 0.1% trifluoroacetic acid and 50% of 

water with 0.1% of trifluoroacetic acid. The HPLC system consisted of an SCL-10A VP 

Shimadzu system controller, a SIL-10AD VP Shimadzu autoinjector, a LC-10AT VP 

Shimadzu liquid chromatogram, a FCV-10AL VP quarternary mixing chamber, a DGU-

14A degasser and a SPD-10AV VP Shimadzu UV-VIS detector. Let this system be 

named as HPLC 1 for future references. The system was interfaced to a personal 

computer operating with a CLASS-VP automated software system. The lamp used was a 

deuterium lamp. 

2.4.2 Isolation of isobutylamides 

The first fraction collected using a solvent combination of 50% ethanol and 50% 

water and the same using 60%-40% combination were relevant to the study and were 

used as a raw material for further isolation of compounds. The fractions were first diluted 

with water to a 1:1 ratio. These fractions were then injected into the HAISIL 100 C18 

column mentioned earlier and fractions were collected which had significant absorbance 

at a particular wavelength. A deuterium lamp was used for the purpose. The injection 
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volume was 4mL and the flow rate was 3mL per minute. The mobile phase was 50% 

acetonitrile with 0.1% trifluoroacetic acid and 50% water with 0.1% trifluoroacetic acid. 

The HPLC system consisted of a LC-10AT VP Shimadzu liquid chromatogram, a SCL-

10A VP Shimadzu system controller, a FCV-10AL quarternary mixing chamber, a DGU-

14A in-line degassing unit, a SPD-M10A VP Shimadzu diode array detector and a SIL-

10A Shimadzu autoinjector. The system was interfaced to an AST Bravo LC 5166M 

computer operating with a CLASS-VP automated software system. Let this HPLC system 

be named as HPLC 2 for future references. 

2.4.3 Determination of the concentrations of the isobutylamides 

The samples collected using the previous procedure were tested for concentration 

using a HPLC (HP1100, Agilent) with a C18 column (50 x 2.1mM, 3.0µM particle size). 

An ion trap mass spectrometer with electrospray ionization source (LCQ Advantage, 

Thermo Finnigan) detector was interfaced with the HPLC system for detection purpose. 

Detection was done using the same conditions as was used for the quantitation of caffeic 

acid derivatives mentioned in section 2.3. Finally, concentration was calculated by 

running a standard sample under same conditions and comparing the concentration of the 

standard with that of the samples. 

 2.5   Oxidation of p-nitrophenol ( 2E1 activity) by herbal extracts 

Initially the microsomes (rabbit liver/ human liver/ supersomes) and the NADPH 

were taken out of refrigeration and thawed. Next, a series of reaction mixtures were 

prepared. To each of these mixtures 10µL of microsomes were first added followed by 

50µL of 1M potassium phosphate buffer having a pH of 7.4. Next various amounts of p-
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nitrophenol was added to make concentrations ranging from (10µM- 100µM). Finally 

deionized water was added to the reaction mixture to make up a final volume of 500µL. 

The reaction was started with the addition of 25µL of 20mM NADPH. The samples were 

incubated for 30 minutes in a water bath at a temperature of 30°C. The reaction was 

quenched with the addition of 200µL of 6% (v/v) perchloric acid and after that placed on 

ice for 15 minutes. The samples were then centrifuged for 10 minutes at 8000 RPM and 

analyzed using a Shimadzu high performance liquid chromatograph (HPLC 1). The 

mobile phase for the analysis was 30% acetonitrile (with 0.1% trifluoroacetic acid) and 

70% of deionized water (with 0.1% trifluoroacetic acid) having a flow rate of 1.0 

mL/min. The HPLC column used in the analysis was a Higgins Analytical Inc, HAISIL 

100 C18 (150 x 4.6mM, 5micron) column. The product had an absorbance at 350nM. 

  The peak areas were integrated and then plotted against concentrations using the 

SlideWrite software and the Vmax and KM values were determined. 

Table 2.1. shows the pNP assay used for 2E1 activity. Total volume of the reaction 

mixture is 500µL. 
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Table 2.1. Reaction mixture for p-nitrophenol hydroxylation assay  

Microsomes Phosphate buffer (pH 7.4) 

1M 

PNP 

1mM 

H2O NADPH 

20mM 

10µL 50µL 5µL 410µL 25µL 

10µL 50µL 5µL 435µL -- 

10µL 50µL 10µL 405µL 25µL 

10µL 50µL 10µL 425µL -- 

10µL 50µL 20µL 395µL 25µL 

10µL 50µL 20µL 420µL -- 

10µL 50µL 30µL 385µL 25µL 

10µL 50µL 30µL 410µL -- 

10µL 50µL 40µL 375µL 25µL 

10µL 50µL 40µL 400µL -- 

10µL 50µL 50µL 365µL 25µL 

10µL 50µL 50µL 390µL -- 

 

 

Inhibition of 2E1 activity by Echinacea purpurea and Spilanthes acmella was 

studied by repeating the assay as described in the previous section with addition of 

Echinacea and Spilanthes extract. The extracts were first added to the test tubes. Then the 

contents of the test tubes were evaporated using a centravap concentrator (Labconco) 
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attached to a Duoseal vacuum pump (Welch) to get rid of the ethanol. Next, microsomes, 

buffers, p-nitrophenol and water were added as mentioned before and the samples were 

analyzed again with the HPLC system. Similar assays were performed with different 

fractions of the extracts and also with the individual compounds.  

2.6   Inhibition of hydroxylation of diclofenac ( 2C9 activity) by herbal extracts 

Here the experimental procedure involved preparation of a 0.50mL reaction 

mixture containing 20pmole CYP2C9 supersome, 50µL of 100mM phosphate buffer (pH 

7.4), different concentrations of diclofenac solution ranging between (0.01mM and 

0.2mM) and water to make up the final volume. The reaction was initiated using 25µL of 

20mM NADPH. The reaction mixture was incubated at 37° C for 20 minutes. The 

reaction was stopped by the addition of 100µL of 94% acetonitrile and 6% glacial acetic 

acid and centrifuged at (10,000 x g) for 3 minutes. Next 100µL of the supernatant was 

injected into a Higgins HAISIL C18 (250 x 4.6mM, 5 micron) column with a mobile 

phase initially of 20% acetonitrile, 30% methanol with 1mM perchloric acid in water 

changing to 100% methanol over 20 minutes and at a flow rate of 1.0mL/min. The 

product had an absorbance at 254nM. The HPLC system used was HPLC 1. 

Inhibition of 2C9 activity by the herbal extracts were studied by repeating the 

assay described above with addition of the plant extracts into the test tubes. The test tubes 

were first placed in a centravap concentrator (Labconco) attached to a Duoseal vacuum 

pump (Welch) to evaporate the ethanol before adding the rest of the contents. The 

samples were treated in the same way as mentioned in the previous section and subjected 

to HPLC analysis using HPLC 1 system. The peak area corresponding to the product in 
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chromatogram thus obtained were integrated and then plotted against the substrate 

concentration to give Michaelis-Menten plots. The reciprocals gave Lineweaver-Burk 

plots from which the Vmax and KM values were determined. 

2.7   Inhibition of hydroxylation of coumarin ( 2A6 activity) by herbal extracts 

Similar procedure as mentioned in the previous sections was followed in the study 

of 2A6 activity for the preparation of the reaction mixtures. Coumarin solution having 

concentrations ranging between (0.001mM and 0.04mM) was added to the reaction 

mixtures containing 3µL of 2A6 supersomes and 50µL of 100mM phosphate buffer (pH 

7.4). The reaction was started using 25µL of 20mM NADPH and the reaction mixture 

was incubated at 37° C for 20 minutes. After incubation, the reaction was stopped by the 

addition of 0.1 ml 20% trichloroacetic acid and centrifuged at (10,000 x g) for 10 minutes. 

Next, 100µL of the supernatant is added to 1.9mL of 100mM Tris buffer having a pH of 

9. Finally the samples were analyzed using a spectrofluorometer (FluoroMax2) with a 

150W continuous ozone free xenon lamp ( Isa Jobin Yvon, Spex Horiba Group) where 

the fluorescence was determined with excitation at 368nM and emission at 456nM. The 

peaks were integrated and the activity was quantitated by subtracting the fluorescence of 

the blank. 

Inhibition of 2A6 activity by the herbal extracts was studied by repeating the 

assay with addition of Echinacea and Spilanthes extract. The extracts were first added to 

the test tubes and the ethanol was evaporated using a centravap attached to a pump. The 

rest of the procedure was same as above and the samples were finally analyzed with the 
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FluoroMax2 and quantitated by subtracting the integrated value of the fluorescent peak 

generated by the blank. 

2.8   Inhibition of 7-Ethoxycoumarin O-deethylation  (1A1/1A2 activity) by herbal 

extracts 

 For the analysis of 7-ethoxycoumarin O-deethylation, all procedures were carried 

out in dim light, due to the fluorescent property of the product. For these analyses 5µL of 

microsomes were placed in test tubes with 1M phosphate buffer of pH 7.4 and different 

concentrations of 7-ethoxycoumarin, ranging from 0.01µM to 0.7µM. Deionized water 

was then added to bring the volume 500µL. Incubations were initiated with 25µL of 

20mM NADPH and incubated for 20 minutes at a temperature of 37°C. The reaction was 

quenched with 100µL of 2.0N HCl.  Next, 2.0mL of chloroform was added to the test 

tubes. The reaction mixtures were then vortexed for 30 seconds and centrifuged for 5 

minutes. After that the lower phase was taken in another test tube and 3.0mL of sodium 

borate buffer was added to it. Next the tubes were centrifuged and the upper phase 

containing the product was transferred to a cuvette and fluorescence was measured with 

excitation wavelength set at 338nM and emission wavelength set at 450nM. The 

instrument used was a FluoroMax-2 with DataMax having a 150W continuous ozone free 

xenon lamp (Isa Jobin Yvon, Spex Horiba Group). 

The peaks thus obtained were integrated and the area was determined by 

subtracting the area of the peak in the blank from that in the samples. 

Inhibition of 1A1/1A2 activity by Echinacea purpurea and Spilanthes acmella 

was studied by repeating the assay with addition of Echinacea and Spilanthes extract. 
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Here like the previous methods the extracts after being added to the test tubes were first 

subjected to a centravap condenser to evaporate the alcohol and the rest of the procedure 

was carried out in the same way as the mentioned above. 
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CHAPTER III 

RESULTS 

 

As has been discussed earlier drug-herb interactions are a widely studied 

phenomenon and more so these days as the increasing demand for herbal products in the 

market has made it essential to learn how these products interact when concurrently taken 

with conventional drugs. Most known drug-herb interactions involve the activity of 

cytochrome P450, an important drug-metabolizing enzyme. Hence in the first part of the 

current study an attempt has been made to investigate the interactions of two popular 

herbal products, Echinacea and Spilanthes with different isoforms of cytochrome P450. 

The method employed for this purpose has been to observe how raw Echinacea and 

Spilanthes extracts inhibit the activity of various isoforms of cytochrome P450. Reactions 

have been carried out using known substrates for a specific isoform and inhibitory 

activity of the herbal products has been studied by adding the herbal product into the 

reaction medium to observe a change in the amount of product formed. The extracts used 

in this part of the study were Ehinacea purpurea root in 100% ethanol and Spilanthes 

acmella whole flowering plant in 100% ethanol. The nature of inhibition has been 

determined by plotting Michaelis-Menten graph followed by a Lineweaver-Burk 

modification. 
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3.1 Inhibition of 2C9 activity by Echinacea and Spilanthes 

The first activity studied for this purpose was the 2C9 activity. This isoform 

catalyzes the hydroxylation of diclofenac to form 4-hydroxydiclofenac, diclofenac being 

a well-known substrate for CYP2C9. The general reaction is as follows: 

 

 

Reaction in presence and absence of the herbal extracts were carried out as 

described in the previous chapter and the resulting chromatogram showed clear peaks of 

the substrate and the product based on their absorbances. The CYP2C9 supersomes were 

used in the reactions. The HPLC analysis was monitored at 254 nm. Diclofenac had a 

retention time of 11.7 minutes whereas 4-hydroxydiclofenac had a retention time of 9.6 

minutes. Initially inhibition was observed as a decrease in product peak area in the 

presence of inhibitor using a single substrate concentration. Inhibition was noticed with 

the addition of only 5µL of extract in the case of both the herbal products. The percentage 

of inhibition at 0.1mM substrate concentration was found to be 36.2% for Echinacea 

extract and 51.7% for Spilanthes extract. Reactions were then carried out using different 

concentrations of the substrate both in presence and in absence of the herbal extracts and 
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the peak areas of the product were plotted against concentration of the substrate used. 

The resulting Michaelis-Menten plot is shown in Figure 3.1. for inhibition by Echinacea. 

The reciprocal of the data set from the Michaelis-Menten plot gave the Lineweaver-Burk 

plot, which is shown in Figure 3.2.  

0 .00 0 .10 0 .20 0 .30 0 .40 0 .50 0 .60 0 .70 0 .80 0 .90 1 .00
0

30

60

90

120

150

W i t hout  I nhi bi t or W i t h I nhi bi t or

 

Figure 3.1. Michaelis-Menten plot showing inhibition of CYP2C9 with Echinacea 

purpurea root extract 
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Figure 3.2. Lineweaver-Burk plot showing inhibition of CYP2C9 with Echinacea 

purpurea root extract  

 

The nature of the inhibition was determined from the Lineweaver-Burk plot to be 

reversible and mixed. 

The same procedure has been followed with Spilanthes which is represented by 

the Michaelis-Menten plot in given in Figure 3.3. Figure 3.4. shows the corresponding 

Lineweaver-Burk plot. 
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Figure 3.3. Michaelis-Menten plot showing inhibition of CYP2C9 with Spilanthes 

acmella root extract 
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Figure 3.4. Lineweaver-Burk plot showing inhibition of CYP2C9 with Spilanthes 

acmella root extract 

 

It may be concluded from the nature of the graph in figure 3.4. that the inhibition is 

mixed, although the range of [S] should be shifted to slightly lower values for a more 

reliable interpretation. It may be noted that the activity of the enzyme is nearly saturated 

at the lowest [S] concentration. It also needs to be determined whether this inhibition is 

reversible or irreversible.  
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3.2 Inhibition of 2A6 activity by Echinacea and Spilanthes 

The 7-hydroxylation of coumarin to produce 7-hydroxycoumarin is catalyzed by 

CYP2A6 and this reaction has been used in the project to study the inhibitory activity of 

the herbal extracts of interest on the 2A6 isoform of the P450 enzymes. The general 

reaction is as follows: 

 

 

 

 This reaction is light sensitive and the product formed is fluorescent in nature.  

The product formation was analyzed with a spectrofluorometer, Fluoromax 2. Initially a 

calibration curve was generated using different known concentration of the product. The 

product formation was monitored by generating a peak at an excitation wavelength of 

338 nm and emission wavelength range of 410-500nM. Reactions were then carried out 

using several substrate concentrations ranging from 0.005mM to 0.05mM. The peak areas 

were integrated and plotted against substrate concentration. Considerable background 

was generated in the assay specially with the addition of herbal extracts. Care was taken 

to filter the substrate and the buffer solutions before use. Background produced with the 
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addition of herbal products could be due to many unknown fluorescent compounds which 

may have been present there. The background was quite high in presence of Echinacea. 

This factor was handled by running blank reaction and subtracting the peak area of the 

background from the rest. With the addition of 10µL of Echinacea extract, inhibition in 

product formation at 0.04mM substrate concentration was calculated to be 80%. With 

Spilanthes inhibition of about 75% was observed when 10µL of the extract was added at 

0.04mM substrate concentration. The Michaelis-Menten plot and the Lineweaver-Burk 

plot demonstrating the inhibition of 2A6 activity caused by Echinacea and Spilanthes 

extract is shown in the Figures 3.5., 3.6., 3.7. and 3.8. respectively.  
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Figure 3.5. Michaelis-Menten plot showing inhibition of CYP2A6 activity with the 

addition of 10µL of raw Echinacea purpurea root extract in 100% ethanol 
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Figure 3.6. Lineweaver-Burk plot showing the nature of inhibition of CYP2A6 with 

the addition of 10µL of raw Echinacea purpurea root extract in 100% ethanol 
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Figure 3.7. Michaelis-Menten plot showing inhibition of CYP2A6 activity with the 

addition of 10µL of raw Spilanthes acmella flowering plant extract in 100% ethanol  
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Figure 3.8. Lineweaver-Burk plot showing the nature of inhibition of CYP2A6 with 

the addition of 10µL of raw Spilanthes acmella flowering plant extract in 100% 

ethanol 

 

The Lineweaver-Burk plots corresponding to Echinacea shows the nature of 

inhibition to be uncompetitive whereas the nature of inhibition with Spilanthes extract as 

determined from the Lineweaver-burk plot appears to be mixed.  

3.3  Inhibition of 1A2 activity by Echinacea and Spilanthes 

The deethylation of 7-ethoxycoumarin to produce 7-hydroxycoumarin is catalyzed 

by CYP1A2. The general reaction is given below: 

1/V 

1/[S
]
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The product formation in this reaction was also monitored using the spectroflourimeter, 

Flouromax 2, due to the fluorescent nature of the product. The study of inhibition of this 

activity by the herbal extracts was however rendered difficult due to high background 

produced by other fluorescent compounds present in both the extracts and also the 

solutions used for extraction procedure. Addition of up to 10µL of Echinacea extract and 

40µL of Spilanthes extract failed to show any inhibition of CYP1A2 with a substrate 

concentration of 1mM.  

3.4 Inhibition of 2E1 activity by Echinacea and Spilanthes 

Para-nitrophenol is hydroxylated in the presence of CYP2E1 to form para-

nitrocatechol. This reaction is unique to CYP2E1 at low substrate concentration and has 

been used here to study the interaction of herbal products with CYP2E1. The general 

reaction is given as follows: 
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Initially, inhibition of 2E1 activity by Echinacea was determined to be reversible. Next,  

further analysis of the product formed in the reaction was carried out using HPLC 1 

system. Inhibition with Echinacea was observed with the addition of even 2µL of raw 

extract whereas 40µL of raw Spilanthes extract was required to produce significant 

inhibition of CYP2E1 activity. For this activity the KM and Vmax values have also been 

calculated for use in the second part of the project. The experiments regarding inhibition 

were performed using both human liver microsomes and human CYP2E1 containing 

supersomes. 

  3.4.1 Inhibition on 2E1 by Echinacea using liver microsomes 

The Michaelis-Menten plot that shows inhibition of 2E1 with the addition of 

2µL(0.4%) and 5uL(1%) of raw Echinacea purpurea root extract in human liver 

microsome is shown in Figure 3.9. and the corresponding Lineweaver-Burk plot is shown 

in Figure 3.10. The percentage of inhibition at 0.02mM substrate concentration for 0.4% 

Echinacea extract is 27.0% while that using 1% Echinacea extract is 42.3%.  
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Figure 3.9. Michaelis-Menten plot showing inhibition of CYP2E1 with 2µL and 5µL 

raw Echinacea purpurea root extract using human liver microsomes 



 54

-0.05 -0.01 0.03 0.07 0.1 1 0.1 5
0.00

0.04

0.08

0.1 2

0.1 6

0.2 0

 

Figure 3.10. Lineweaver-Burk plot showing inhibition of CYP2E1 with 2µL and 

5µL raw Echinacea purpurea root extract using human liver microsomes 

 

The nature of inhibition as observed from the Lineweaver-Burk plot appears to be 

competitive with some mixed element as well. The Vmax value is nearly the same for both 

the inhibited and noninhibited conditions and the values were determined to be 

71µM/min, 75µM/min and 69µM/min for the control, addition of 0.4% Echinacea extract 

and 1% Echinacea extract respectively. The KM value in absence of the inhibitor was 

found to be 36µM which increased to 57.8µM with the addition of 0.4% inhibitor. There 
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was further increase in the KM value to 60.3µM when 1% Echinacea extract was added to 

the reaction. 

3.4.2 Inhibition on 2E1 by Echinacea using human 2E1 containing supersomes 

The Michaelis–Menten plot generated with the addition of 2µL and 5µL of raw 

Echinacea extract using CYP2E1 supersomes and the corresponding Lineweaver-burk 

plot is given in Figures 3.11. and 3.12. respectively. Here the percentage of inhibition at 

0.02mM substrate concentration with 0.4% and 1% extract is 29.4% and 50% 

respectively. 
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Figure 3.11. Michaelis-Menten plot showing inhibition of CYP2E1 with 2µL raw 

Echinacea purpurea root extract using CYP2E1 supersomes 
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Figure 3.12. Lineweaver-Burk plot showing inhibition of CYP2E1 with 2µL raw 

Echinacea purpurea root extract using CYP2E1 supersomes 

 

The nature of inhibition here appears mixed as seen in Figure 3.12. The Vmax 

value is nearly the same both in presence and in absence of inhibitor and is 38µM/min in 

presence of extract at both concentrations and 35µM/min without inhibitor. The KM value 

in absence of inhibitor is 21µM while that in presence of 0.4% inhibitor is 50µM. 

Addition of 1% extract caused increase in the KM value to 51µM. 

3.4.3 Inhibition on 2E1 by Spilanthes using liver microsomes  

With spilanthes, 40µL of the raw extract was used to determine inhibition. 

Figures 3.13. and 3.14. displays the Michaelis-Menten plot and the corresponding 

Lineweaver-Burk plots showing inhibition of CYP2E1 using human liver microsomes. At 
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0.02mM substrate concentration, 29.1% inhibition was observed with 8% raw Spilanthes 

extract.  
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Figure 3.13. Michaelis-Menten plot showing inhibition of CYP2E1 with 40µL raw 

Spilanthes acmella flowering plant extract using human liver microsomes 
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Figure 3.14. Lineweaver-Burk plot showing inhibition of CYP2E1 with 40µL raw 

Spilanthes acmella flowering plant extract using human liver microsomes 

 

The nature of the inhibition of the 2E1 acitivity of cytochrome P450 with the 

addition of the Spilanthes extract appears to be competitive with some mixed 

characteristics from the Lineweaver-Burk plot in Figure 3.14. The Vmax value in absence 

of inhibitor is 30µM/min while that in presence of inhibitor is 24µM/min. The KM value 

in absence of inhibitor is 18µM while that in presence of inhibitor is 34µM.  
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3.4.4 Inhibition on 2E1 by Spilanthes using human 2E1 containing supersomes 

Michaelis-Menten plot generated using CYP2E1 supersomes and raw Spilanthes 

extract is shown in Figure 3.15. and Figure 3.16. shows the corresponding Lineweaver-

Burk plot. 
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Figure 3.15. Michaelis-Menten plot showing inhibition of CYP2E1 with 40µL raw 

Spilanthes acmella flowering plant extract using CYP2E1 supersomes 
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Figure 3.16. Lineweaver-Burk plot showing inhibition of CYP2E1 with 40µL raw 

Spilanthes acmella flowering plant extract using CYP2E1 supersomes 

 

The Lineweaver-Burk plot in Figure 3.16. shows the nature of the inhibition to be 

mixed. Ideally the Vmax value should be same both in presence and in absence of the 

inhibitor. Here an assumption has been made as the Vmax value in both cases appears to 

be similar. The Vmax value here without inhibitor is 35µM while that with inhibitor is 

60µM. The KM value in without and with the inhibitor are 16µM/min and 91µM/min 

respectively.  

 

 

 



 61

3.5 Summary of inhibition of cytochrome p450 activities by raw Echinacea and 

Spilanthes extracts 

Table 3.1. shows the nature and percentage of inhibition by raw Echinacea extract 

observed in the study for different isoforms used. 

 

Table 3.1. Inhibition of different activities of cytochrome P450 with supersomes by 

raw Echinacea purpurea root extract showing amount of extract added, substrate 

concentration used, percentage of inhibition at that concentration and nature of 

inhibition. 

Activity Amount 

of Raw 

extract 

added      

(µL) 

Substrate 

conc. 

(mM) 

Percentage inhibition 

at that concentration 

Nature of inhibition 

2C9            5 0.1 36.2% Reversible(mixed) 

2A6          10 0.04 80% (uncompetitive) 

1A2            5 Undetermi

ned 

Undetermined Undetermined 

2E1 1. 2 

2. 5 

0.02 

0.02 

29.4% 

50% 

Reversible(mixed) 

Reversible(mixed) 
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Table 3.2. shows the nature and percentage of inhibition by raw Spilanthes extract 

observed in the study for different isoforms used. 

 

Table 3.2. Inhibition of different activities of cytochrome P450 with supersomes by 

raw Spilanthes acmella flowering plant extract showing amount of extract added, 

substrate concentration used, percentage of inhibition at that concentration and 

nature of inhibition. 

Activity Amount of 

Raw extract 

added        

(µL) 

Substrate 

concentration 

(mM) 

Percentage 

inhibition at that 

concentration 

Nature of inhibition 

2C9 5 0.1 51.7% Reversible(mixed) 

2A6 10 0.04 20%     (mixed) 

1A2 5 Undetermined Undetermined Undetermined 

2E1 40 0.02 15.4% Reversible(competitive)  

 

 

3.6 Inhibitory properties of individual constituents of Echinacea and Spilanthes 

In the second part of the project several active compounds have been isolated 

from the raw Echinacea and Spilanthes extracts and studies have been performed to see 

how significant each of those are in inhibiting the activity of CYP2E1. The KM and Vmax 
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values have been determined for this purpose and KI values have been calculated using 

that data.  

3.6.1 Caffeic acid derivatives  

The hydrophilic compounds like the caffeic acid derivatives present in Echinacea 

purpurea were first studied for inhibitory activity of CYP2E1. The concentration of 

caffeic acid derivatives were found to be the highest in the raw Echinacea purpurea 

extract with 33%-77% ethanol/water solvent composition and was thus used for the 

analysis of the hydrophilic compounds. Also the extract of the aerial portion of the plant 

was seen to have a higher concentration of the phenolic acid compounds than the root 

extract, the concentrations being about 1.2E-03M and 2.0E-04M respectively. The two 

main caffeic acid derivatives found in Echinacea purpurea are caftaric acid and cichoric 

acid. The concentration of caftaric acid and cichoric acid in the extracts were determined 

to be 4.3E-04M and 3.74E-04 M in the aerial extract and 9.4E-05M and 8.95E-05M in 

the root extracts respectively.  

Initially the raw aerial and root extracts were separately tested for inhibition of 

CYP2E1 with a single substrate concentration. The root extract was seen to inhibit the 

activity of CYP2E1 more than the aerial extract though the latter had a higher 

concentration of the caffeic acid derivatives. This showed that these phenolic acids may 

not play an important role in CYP2E1 inhibition. Further caftaric acid and cichoric acid 

separated from Echinacea purpurea was tested for inhibition of CYP2E1 using the same 

concentration of the compounds as found in the extract. Both the compounds failed to 

show any inhibition of the 2E1 activity of cytochrome P450.  
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3.6.2 Fractionation of Echinacea extracts 

The study of the interactions of the hydrophobic compounds like isobutylamides 

present in Echinacea and Spilanthes was done next. Initially the large scale purification 

was done with raw Echinacea and Spilanthes extracts based on the solubility of the 

alkylamides present in the extracts with ethanol. Figure 3.17. shows the chromatogram of 

the raw Echinacea purpurea extract. 
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Figure 3.17. Chromatogram of raw Echinacea purpurea root extract showing the 

different alkylamide peaks 
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The peaks have been identified and their molecular weights determined by comparing the 

peaks with the standard chromatogram published by Hudaib et al [58]. 

3.6.2.1 Isolation of peaks 9 and 10 

The fractions were tested for inhibition of CYP2E1 using a single substrate 

concentration. Two of the collected fractions showed about 50% inhibition while the rest 

did not show any significant inhibition. One of the fractions had 50% ethanol and 50% 

water while the second one had a 60%-40% combination. The chromatogram showing 

the first fraction that inhibited CYP2E1 is shown in Figure 3.18. 
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Figure 3.18. Chromatogram showing the fraction collected with 60%-40% ethanol 

and water solvent combination 
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The fraction displayed in Figure 3.18. shows mainly the two isomeric isobutylamide 

peaks (9, 10) of mass 248 having retention times of 32.228 and 33.147 respectively. The 

peaks 9 and 10 have been identified as Dodeca- 2E, 4e, 8Z, 10E- tetraenoic acid 

isobutylamide and Dodeca- 2E, 4e, 8Z, 10Z- tetraenoic acid isobutylamide respectively 

by comparing with Hudaib et al’s work [58].  Further attempt to separate the two isomers 

were not successful. The approximate concentration of the pair of isomers present in the 

fraction was calculated using an LC- MS analysis based on a one-point calibration. The 

concentration was found to be 6.25E-03M. Figure 3.19. and figure 3.20. show the 

chromatogram used for the concentration determination and mass spectrometric analysis 

of this fraction.  
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Figure 3.19. LC chromatogram showing the fraction containing the peaks with a 

molecular weight of 248. 
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Figure 3.20. Mass spectrum showing the fraction containing the peaks with a 

molecular weight of 248 

 

3.6.2.2 Isolation of peaks 1and 2 

The chromatogram of the second fraction that inhibited CYP2E1 is shown in 

Figure 3.21. 
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Figure 3.21. Chromatogram showing the fraction collected with 50%-50% ethanol 

and water solvent combination 

 

The chromatogram in Figure 3.21. shows the presence of the two isomeric peaks with a 

mass of 230. These peaks had a retention time of 14.4 and 17.4 min respectively. The 

compounds were identified as Undeca- 2E, 4Z- diene- 8, 10- diynoic acid- isobutylamide 

and Undeca- 2Z, 4E- diene- 8, 10- diynoic acid- isobutylamide respectively from Hudaib 

et al’s analysis [58]. This fraction was then injected into a C18 column as mentioned in 

the previous chapter and the two isomers could be separated. Figure 3.22. A and B shows 

the chromatogram with the isolated 230 peaks. 
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Figure 3.22.  A: Chromatogram of the separated peak (1) having a mass of 230, 

                      B: Chromatogram of the separated peak (2) having a mass of 230 

 

The approximate concentrations of the peaks were 6.72E-04M and 5.45E-04M, as 

calculated using a one-point calibration with LC-MS analysis. Figure 3.23. and 3.24. 

show the Chromatogram used for determination of concentration and the MS analysis for 

the 230 peak. 
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Figure 3.23. LC Chromatogram showing the 1st fraction containing the alkylamide 

with a molecular weight of 230 
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Figure 3.24. Mass spectrum showing the fraction containing the second alkylamide 

with a molecular weight of 230 

 

3.6.3 Fractionation of Spilanthes extracts 

A similar procedure was performed with the Spilanthes acmella extract. The 

chromatogram showing the raw extract is given in Figure 3.25. 
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Figure 3.25. Chromatogram of raw Spilanthes acmella flowering plant extracts 

showing the different alkylamide peaks 

 

Fractionation of the whole extract based on the solubility of the isobutylamides in ethanol 

led to a number of fractions.  

3.6.3.1 Isolation of Spilanthol 

The fraction with the highest concentration of Spilanthol, the most abundant and 

bioactive isobutylamide present in Spilanthes was used for further testing. The 

chromatogram of the fraction having the highest concentration of Spilanthol is given in 

Figure 3.26. 
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Figure 3.26. Chromatogram showing the fraction of raw Spilanthes acmella 

flowering plant extract with highest concentration of Spilanthol 

 

Spilanthol had a retention time of 4.588. The fraction did not have a comparable amount 

of any other isobutylamide as is evident from the chromatogram shown in Figure 3.26. 

and was further confirmed in the mass spectral analysis. Thus further separations were 

not attempted. This fraction was analyzed using an LC-MS for the concentration of 

Spilanthol in the fraction. Figures 3.27. and 3.28. show the chromatogram used for the 

determination of concentration and the mass spectrometric analysis, respectively. The 

concentration of Spilanthol was calculated in a similar fashion as Echinacea using a one 

point calibration and the approximate concentration of Spilanthol in the fraction was 

found to be 1.66E-03M. 
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Figure 3.27. LC Chromatogram showing the fraction of Spilanthes acmella 

flowering plant extract containing Spilanthol 
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Figure 3.28. Mass spectrum showing the fraction of Spilanthes acmella flowering 

plant extract containing Spilanthol 

 

3.6.4  Inhibition of 2E1 activity by individual components of Echinacea and 

Spilanthes 

Next, inhibition by these isolated compounds was studied with respect to CYP2E1 

and the KI values for each compound or pair of compounds were calculated. Reactions 

were carried out with both human liver microsomes and CYP2E1 supersomes for each of 

the samples.  
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3.6.4.1 Inhibition of 2E1 activity by peaks 9 and 10 using human liver microsome  

The fraction corresponding to the isomeric compounds with mass of 248 was 

shown to inhibit CYP2E1 with the addition of 10µL of the fraction. The Michaelis-

Menten plot showing inhibition by using human liver microsomes is shown in Figure 

3.29. and the corresponding Lineweaver-Burk plot is shown in Figure 3.30. 
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Figure 3.29. Michaelis-Menten plot showing inhibition of CYP2E1 using human 

liver microsomes with the addition of 10µL of fraction containing peaks 9 and 10 

isolated from Echinacea purpurea  
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Figure 3.30.  Lineweaver-Burk plot showing inhibition of CYP2E1 using human 

liver microsomes with the addition of 10µL of fraction containing peaks 9 and 10 

isolated from Echinacea purpurea  

 

The nature of inhibition is reversible and appears to be mixed here as can be 

determined from Figure 3.30. Vmax and KM values have been calculated from the plot. 

The Vmax values both in absence and in presence of inhibitor are similar and are given as 

72µM/min and 81µM/min respectively. The KM value in absence of inhibitor is 36µM 

and that in presence of inhibitor is 87.7µM. The KI value was calculated using this data 

and has been found to be 43.3µM . 
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3.6.4.2 Inhibition of 2E1 activity by peaks 9 and 10 using CYP2E1 supersomes 

The same procedure was followed using CYP2E1 supersomes. The Michaelis-

Menten plot and the corresponding Lineweaver-Burk plot are given in Figures 3.31. and 

3.32. respectively. 
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Figure 3.31. Michaelis-Menten plot showing inhibition of CYP2E1 using CYP2E1 

supersomes with the addition of 10µL of fraction containing peaks 9 and 10 isolated 

from Echinacea purpurea 
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Figure 3.32. Michaelis-Menten plot showing inhibition of CYP2E1 using CYP2E1 

supersomes with the addition of 10µL of fraction containing peaks 9 and 10 isolated 

from Echinacea purpurea 

 

The nature of inhibition appears to be mixed. The Vmax value is found to be 

similar both in presence and in absence of inhibitor, the value being 48µM/min and 

35µM/min respectively. The KM values are 93µM with the extract and 21µM without it. 

Using the Vmax and KM, the KI value was determined to be 18.2µM . 

3.6.4.3  Inhibition of 2E1 activity by peak 1 using human liver microsome 

The addition of 20µL of the isolated fractions both in case of peak 1 and peak 2 

caused significant inhibition of CYP2E1. Figure 3.33. gives the Michaelis-Menten plot 
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generated using 20µL of the fraction containing the isolated peak 1. The corresponding 

Lineweaver-Burk plot is given in Figure 3.34. which shows the inhibition to be 

competitive. 
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Figure 3.33. Michaelis-Menten plot showing inhibition of CYP2E1 using human 

liver microsomes with the addition of 20µL of fraction containing peaks 1 isolated 

from Echinacea purpurea 
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Figure 3.34.  Lineweaver-Burk plot showing inhibition of CYP2E1 using human 

liver microsomes with the addition of 20µL of fraction containing peak 1 isolated 

from Echinacea purpurea 

 

 The Vmax value was similar both in presence and in absence of inhibitor and it is 

calculated to be 53µM/min in presence and 71µM/min in absence of the extract. The KM 

value is observed to be 36µM and 51µM for the plots without and with the inhibitor 

respectively. The KI value is calculated with this data and has been found to be 31.1µM. 

3.6.4.4 Inhibition of 2E1 activity by peak 1 using CYP2E1 supersomes 

 The same experiment was carried out using supersomes instead of human liver 

microsomes and the resulting Michaelis-Menten and Lineweaver-Burk plots are given in 

Figures 3.35. and 3.36. respectively.  
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Figure 3.35.  Michaelis-Menten plot showing inhibition of CYP2E1 using CYP2E1 

supersomes with the addition of 20µL of fraction containing peak 1 isolated from 

Echinacea purpurea 
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Figure 3.36.  Lineweaver-Burk plot showing inhibition of CYP2E1 using CYP2E1 

supersomes with the addition of 20µL of fraction containing peak 1 isolated from 

Echinacea purpurea 

 

The nature of inhibition appears to be mixed here, the Vmax value being very 

similar. The Vmax value was 35µM/min in absence of inhibitor and 32µM/min in presence 

of it. The KM values without and with the inhibitor are observed to be 21µM and 58µM 

respectively. The calculated KI value is found to be 7.4µM.  
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3.6.4.5  Inhibition of 2E1 activity by peak 2 using human liver microsome 

Next the same procedure was followed with the fraction containing peak 2. The 

Michaelis-Menten and the Lineweaver-Burk plot generated using human liver 

microsomes are shown in Figures 3.37. and 3.38. respectively.  
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Figure 3.37.  Michaelis-Menten plot showing inhibition of CYP2E1 using human 

liver microsomes with the addition of 20µL of fraction containing peak 2 isolated 

from Echinacea purpurea 
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Figure 3.38.  Lineweaver-Burk plot showing inhibition of CYP2E1 using human 

liver microsomes with the addition of 20µL of fraction containing peak 2 isolated 

from Echinacea purpurea 

 

This inhibition as observed from the Lineweaver-Burk plot is mixed in nature the 

Vmax value for both the plots in Figure 3.37. are 71µM/min without inhibitor and 

79µM/min in its presence. The KM values are calculated in absence and in presence of the 

inhibitor and are found to be 36µM in absence and 104µM in presence of inhibitor. The 

KI value as calculated from this data is found to be 5.8µM. 
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3.6.4.6 Inhibition of 2E1 activity by peak 2 using CYP2E1 supersomes 

 The same experiment was done using CYP2E1supersomes. The Michaelis-

Menten and Lineweaver-Burk plot generated are given in Figures 3.39. and 3.40. 

respectively. 
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Figure 3.39.  Michaelis-Menten plot showing inhibition of CYP2E1 using CYP2E1 

supersomes with the addition of 20µL of fraction containing peak 2 isolated from 

Echinacea purpurea 
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Figure 3.40.  Lineweaver-Burk plot showing inhibition of CYP2E1 using CYP2E1 

supersomes with the addition of 20µL of fraction containing peak 2 isolated from 

Echinacea purpurea 

 

Here the Vmax values are very similar for plots with and without inhibitor and are 

observed to be is 38µM/min and 35µM/min respectively. The KM value without inhibitor 

is 21µM and that with inhibitor is 101µM. The KI value has been calculated to be 2.9µM.  

3.6.4.7  Inhibition of 2E1 activity by Spilanthol using human liver microsome 

The fraction with the highest concentration of Spilanthol separated from raw 

Spilanthes extract was also tested for inhibition of CYP2E1 activity. The addition of 

20µL of the sample showed considerable inhibition. The Michaelis-Menten plot using 



 88

human liver microsomes is shown in Figure 3.41. The corresponding Lineweaver-Burk 

plot is given in Figure 3.42. 

0 1 0 0 2 0 0
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

W i th o u t In h i b i to r Wi th Inhib i tor

[S]

V

 

Figure 3.41.  Michaelis-Menten plot showing inhibition of CYP2E1 using human 

liver microsomes with the addition of 20µL of fraction containing Spilanthol isolated 

from Spilanthes acmella 
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Figure 3.42.  Lineweaver-Burk plot showing inhibition of CYP2E1 using human 

liver microsomes with the addition of 20µL of fraction containing Spilanthol isolated 

from Spilanthes acmella 

 

The inhibition appears to be competitive with some mixed characteristics from the 

nature of the graph. The Vmax value is calculated to be 74µM/min in absence and 

66µM/min in presence of the inhibitor. The KM value in absence of the inhibitor is 34µM 

while that in presence of inhibitor is 40µM. The KI value is calculated to be 70.1µM.  

3.6.4.8 Inhibition of 2E1 activity by Spilanthol using CYP2E1 supersomes 

The same analysis was done using CYP2E1supersomes. The Michaelis-Menten 

plot and the corresponding Lineweaver-Burk plot are shown in Figures 3.43. and 3.44. 

respectively. 
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Figure 3.43.  Michaelis-Menten plot showing inhibition of CYP2E1 using CYP2E1 

supersomes with the addition of 20µL of fraction containing Spilanthol isolated 

from Spilanthes acmella 
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Figure 3.44.  Lineweaver-Burk plot showing inhibition of CYP2E1 using CYP2E1 

supersomes with the addition of 20µL of fraction containing Spilanthol isolated 

from Spilanthes acmella 

 

The nature of inhibition appears to be mixed. Here the Vmax value in presence and 

absence of inhibitor is very similar and is observed to be 36µM/min and 35µM/min 

respectively. The KM value in absence of inhibitor is 15µM and that in presence of 

Spilanthol is 91µM. The KI value is calculated to be 6.5µM.  
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3.6.4.9 Summary of inhibition of 2E1 activity by individual components of 

Echinacea and Spilanthes extract using human liver microsomes 

Table 3.3. shows the KM, Vmax and KI values of the inhibition by the compounds 

separated from Echinacea purpurea and Spilanthes acmella with human liver 

microsomes. 

 

Table 3.3. Concentration, KM, Vmax and KI values of the inhibition of 2E1 activity by 

the compounds separated from Echinacea purpurea and Spilanthes acmella with 

human liver microsomes 

Name of the compound Amount 

Added 

µL 

Concentration       KM  

(µM) 

Vmax 

(µM/min)

KI 

µM 

Raw Echinacea extract 2 

5 

500mg/mL* 

500mg/mL* 

58 

60 

75 

69 

- 

- 

Caftaric acid - 

- 

4.3E-04M(Aerial) 

9.4E-05M(Root) 

- 

- 

- 

- 

- 

- 

Cichoric acid - 

- 

3.74E-04M(Aerial) 

8.95E-05M(Root) 

- 

- 

- 

- 

- 

- 
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Name of the compound Amount 

Added 

µL 

Concentration       KM  

(µM) 

Vmax 

(µM/min)

KI 

nM 

Dodeca- 2E, 4e, 8Z, 

10E- tetraenoic acid 

isobutylamide and 

Dodeca- 2E, 4e, 8Z, 

10Z- tetraenoic acid 

isobutylamide 

10 6.25E-03M 88 82 43.3

Undeca- 2E, 4Z- diene- 

8, 10- diynoic acid- 

isobutylamide   

20 6.72E-04M 51 53 31.1

Undeca- 2Z, 4E- diene- 

8, 10- diynoic acid- 

isobutylamide 

20 5.45E-04M 104 79 5.8 

Raw Spilanthes extract 40 500mg/mL* 34 24 - 

Spilanthol 20 1.66E-03M 34 74 70.1

 

 

 

 

* Note: Calculation based on the fact that 1g of 
plant material was dissolved in 2mL ethanol  
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3.6.4.10 Summary of inhibition of 2E1 activity by individual components of 

Echinacea and Spilanthes extract using CYP2E1 supersomes 

Table 3.4. shows the KM, Vmax and KI values of the inhibition by the compounds 

separated from Echinacea purpurea and Spilanthes acmella with CYP2E1 supersomes. 

 

Table 3.4. Concentration, KM, Vmax and KI values of the inhibition by the 

compounds separated from Echinacea purpurea and Spilanthes acmella with 

CYP2E1 supersomes 

Name of the compound Amount 

Added 

µL 

Concentration in 

the reaction mixture 

             (M) 

KM 

(µM) 

Vmax 

(µM/

min) 

KI 

µM 

Raw Echinacea extract 2 

5 

500mg/mL* 

500mg/mL* 

50 

51 

38 

38 

- 

- 

Caftaric acid - 

- 

4.3E-04M(Aerial) 

9.4E-05M(Root) 

- 

- 

- 

- 

- 

- 

Cichoric acid - 

- 

3.74E-04M(Aerial) 

8.95E-05M(Root) 

- 

- 

- 

- 

 

 

 

 

 

- 

- 
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Name of the compound Amount 

Added 

µL 

Concentration in 

the reaction mixture 

             (M) 

KM 

(µM) 

Vmax 

(µM/

min) 

KI 

nM 

Dodeca- 2E, 4e, 8Z, 

10E- tetraenoic acid 

isobutylamide and 

Dodeca- 2E, 4e, 8Z, 

10Z- tetraenoic acid 

isobutylamide 

10 6.25E-03M 93 49 18.2 

Undeca- 2E, 4Z- diene- 

8, 10- diynoic acid- 

isobutylamide   

20 6.72E-04M 58 32 7.4 

Undeca- 2Z, 4E- diene- 

8, 10- diynoic acid- 

isobutylamide 

20 5.45E-04M 101 38 2.9 

Raw Spilanthes extract 40 500mg/mL* 91 60 - 

Spilanthol 20 1.66E-03M 91 36 6.5 

* Note: Calculation based on the fact that 1g of 
plant material was dissolved in 2mL ethanol  



 96

 

CHAPTER IV 

DISCUSSION 

 

Plants are a complex mixture of different compounds which when administered in 

human body may individually and in combination affect human physiology in a variety 

of ways. Compounds discovered from herbs have always been a source of many valuable 

medicines and even today herbs still continue to be a great source of compounds having 

therapeutic importance. Various studies have been conducted so far on Echinacea 

purpurea often with conflicting results(48, 56). One of the factors contributing towards 

this could be the fact that herbal medicines are not regulated and much variation occurs 

between two preparations of the same herbal product including amount of active 

ingredients or inclusion of additional substances(57). Several Echinacea purpurea 

products have been found to lack adequate levels of one or more clinically effective 

compounds (57). Moreover, often an herb has been found to possess multiple ways by 

which it modulates human physiology. Thus studies are required to fully understand the 

efficacy of this herb. Many studies have reported Echinacea to be effective for immune 

system stimulation (58). The proposed mechanism of action being increase in the number 

of granulocytes, enhanced phagocytic activity by macrophages and T lymphocytes, 

release of immunomodulators such as tumor necrosis factors and interferon, inhibition of 

virus proliferation and cytokine activation (58, 59). In most of the studies, efficacy of 

Echinacea has been demonstrated at a dose equivalent to 900mg of dried herb (59). In a 
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study conducted by Randolph et al, in vitro exposure of THP-1 cells to 250µg/mL of 

Echinacea species extract induced 10 fold expression of tumor necrosis factor-α and 

interleukin-1α, 1β, 8, 10 genes (59). The overall gene expression pattern after 

consumption of a commercial blended Echinacea product 1518mg/day for 2 days and one 

additional dose of 506mg on day 3 was consistent with an anti inflammatory response 

(59). In the current study the Echinacea purpurea root preparations have been made 

using 1g of plant material in 2mL of solvent.  

Spilanthes acmella has been shown to possess strong diuretic potential in rats (17). 

A cold-water extract of 1500mg/kg oral administration in hydrated rats exhibited strong 

diuretic action (17). It has also been shown to possess larvicidal effect against Culex 

quinquefasciatus (60). Not much is known about this plant native to South America and 

there is scope for considerable research to achieve a comprehensive idea about the true 

potential of this herb in therapeutics. 

 The bioavailability of the components of Echinacea is not fully known. In fact out 

of the many compounds identified from Echinacea species so far, only alkylamides have 

been shown to be bioavailable in both in vitro and in vivo experiments (61). In a study 

conducted using roots of Echinacea angustifolia on humans, plasma samples of 11 

healthy individuals were analyzed following oral administration of 60% ethanolic extract 

from the roots of Echinacea angustafolia (62). The maximum concentration of dodeca-

2E,4E,8Z,10E/Z-tetraenoic acid isobutylamides, the main alkamides in the roots of E. 

angustifolia, appeared already after 30 minutes and was 10.88ng/mL for the 2.5mL dose 

(62). In another study using ethanolic extract of fresh blooming aerial parts of Echinacea 
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purpurea, oral intake of 65mL extract containing 4.3mg of dodeca-2E,4E,8Z,10E/Z-

tetraenoic acid isobutylamides resulted in identification of the compound in blood, the 

amount being 44ng/mL of blood (63). Matthias et al conducted a study where a 

combination of 2700mg of Echinacea purpurea root and 600mg of Echinacea 

angustifolia was orally administered to volunteers, the total alkylamine content being 

about 54.6 mg where the total amount of Undeca- 2E, 4Z/E- diene- 8, 10- diynoic acid- 

isobutylamide was 1mg and the total amount of Dodeca- 2E, 4e, 8Z, 10E- tetraenoic acid 

isobutylamide and Dodeca- 2E, 4e, 8Z, 10Z- tetraenoic acid isobutylamide combined was 

4.2 mg (64). The average of the sum of alkyamides in human plasma was 336 + 131 ng 

eq/ml plasma (64). 

A matter of concern with these herbal products is related to their safety. Drug 

interactions are responsible for more than 100,000 deaths per year in the United States 

and some of these may be linked to the use of herbs (58). When an herb is taken in 

combination with drug, many aspects including absorption, distribution, metabolism and 

excretion may be affected. Herbal products may interact with drugs in several ways 

changing the rate of elimination or amount of drug absorbed. Most known drug 

interactions are due to altered expression or functionality of cytochrome P450 enzymes. 

Elevated CYP activity may result in a rapid metabolic rate and thus cause decrease in 

plasma concentrations and in loss of therapeutic effect whereas inhibition of CYP activity 

may cause a rise in plasma concentrations and lead to toxicity related to overdose. 

 Finally, herbal medicines are not regulated and much variation can occur in the 

composition of the preparation. The safety and efficacy of these substances have not been 
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proved beyond doubt. Thus bioactive components need to be isolated and studied. 

Recently presence of similar bioactive alkylamides in both Echinacea and Spilanthes has 

raised interest in minds of researchers regarding their ability to modulate human 

physiology. .  

4.1  Inhibition of CYP2C9 by Echinacea and Spilanthes 

In the current study, 5µL of Echinacea purpurea root extract, equivalent to 2.5mg 

of the herb, showed about 33.2% inhibition of CYP2C9. The nature of inhibition was 

observed to be mixed thus suggesting a complex mechanism. In an in vivo study 

conducted by Gorski et al on the effect of Echinacea purpurea root on CYP2C9, it 

significantly reduced the oral clearence and increased the systemic exposure of 

tolbutamide, the probe for CYP2C9, indicating inhibition of hepatic CYP2C9 activity 

(48). He used 400mg of Echinacea purpurea root from Nature’s Bounty, 4 times a day 

for 8 days (48). This result, though statistically significant was not considered clinically 

important based on the guidelines established by Food and Drug Administration (48). It 

was mentioned in the study however that the degree of inhibition varied between 

individuals, some of them showing moderate inhibition (48).  

It is known that commercially available brands of Echinacea differ widely in their 

phytochemical content. Thus coadministration of an Echinacea product other than the one 

used by Gorski et al with CYP2C9 substrates having a narrow therapeutic index such as 

phenytoin may need careful monitoring (48). In this context, it may also be stated that in 

case of drug known to undergo biotransformation by multiple cytochrome P450 pathways, 

this result may acquire clinical relevance. Several studies have established the mixed 
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effect of Echinacea on CYP3A activity. Echinacea has been shown to inhibit intestinal 

CYP3A and induce hepatic CYP3A activity. Thus in case of drugs like warfarin which is 

a substrate for both CYP3A and CYP2C9, offsetting changes may be observed due to 

reduction in efficacy due to CYP3A induction and toxicity due to inhibition of CYP2C9 

(48).  

Spilanthes acmella seems to be an even more potent inhibitor of CYP2C9. Here 

5µL of the extract, equivalent to 2.5mg of the herb showed an inhibition of 51.7%. The 

nature of inhibition was observed to be mixed. Contribution from both competitive and 

uncompetitive inhibition may thus be possible resulting in a complex mechanism. There 

have not been any studies on in vivo administration of this herb on humans. Care needs to 

be taken not to take this herb concurrently with drugs metabolized by CYP2C9. 

4.2  Inhibition of CYP1A2 by Echinacea and Spilanthes 

The in vivo study conducted by Gorsky et al showed that short-term 

administration of Echinacea reduced the oral clearance of caffeine, a probe for CYP1A2, 

to a significant extent (48). Gurley et al however did not see an effective inhibition (56). 

None of the studies however used 7-ethoxycoumarin as substrates. In the current studies 

neither raw Echinacea purpurea root extract, nor raw Spilanthes extract showed any 

inhibition of CYP1A2 using 7-ethoxycoumarin as a substrate. CYP1A2 is involved in the 

metabolism of a number of prescribed drugs, a few of them being theophyllin, 

cyclobenzaprine, tacrine and clozapine (48). According to the current study, 

coadministration of Echinacea or Spilanthes with drugs metabolized by CYP1A2 may be 

considered safe. 
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4.3  Inhibition of CYP2A6 by Echinacea and Spilanthes 

CYP2A6 is the main enzyme that metabolizes nicotine into an inactive metabolite, 

cotinine (65). It is well established that tobacco derived nitrosamines are potent 

carcinogens in animal models. The 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone 

(NNK) is one of the most abundant pulmonary carcinogen present in tobacco and it 

requires metabolic activation by CYP2A family to activate its tumorigenic potential (65). 

CYP2A6 is partially responsible for its bioactivaton (64). The ability of CYP2A6 to 

bioactivate NNK by its methylene hydroxylation coupled with the fact that it catalyzes 

nitotine to cotinine makes it an anti cancer therapeutic target (65). In fact, pretreatment of 

female mice with 8-methoxypsoralen has been shown to strongly inhibit lung 

tumorigenesis induced by NNK (65). The ability of CYP2A6 to catalyze metabolic 

activation of nitrosamine derivatives have also been linked to gastric cancer (66). Studies 

suggest that CYP2A6 deletion is associated with gastric adenocarcinoma in Japanese 

population (66). No studies have been conducted so far to observe the effect of Echinacea 

or Spilanthes on CYP2A6. In the current study addition of 10µL or 10µg/mL of 

Echinacea extract inhibited CYP2A6 activity by 80% whereas 10µg/mL of Spilanthes 

extract inhibited liver microsome to about 75%. The nature of inhibition in case of 

Echinacea was found to be uncompetitive while that in case of Spilanthes was found to 

be mixed. More research needs to be carried out in this direction to better understand the 

reason for this kind of inhibition. According to the results by Matthias et al, the amount 

of bioactive alkylamides in Echinacea is about 1.7% of the total extract (64). Calculating 

the possible amount of bioavailable alkylamides in the raw Echinacea extract used in the 
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current study based on the results of Matthias et al, it seems10µg of extract should have 

about 170ng/mL of bioavailable alkylamides. According to this result Echinacea might be 

considered as a potent inhibitor of CYP2A6. More experiments need to be carried out in 

this direction considering the fact that potency of Echinacea as inhibitors of CYP2A 

makes it a probable candidate in the field of anticancer therapeutics. In case of Spilanthes, 

considerable inhibition was observed. Thus it may be said that Spilanthes acmella is also 

an effective inhibitor of CYP2A6.  

4.4  Inhibition of CYP2E1 by Echinacea and Spilanthes 

 Cytochrome P450 2E1 is one of the enzymes that metabolizes ethanol in the liver, 

the other one being alcohol dehydrogenase (67). Ethanol is a systemic toxin responsible 

for severe form of hepatic apoptosis. CYP2E1 is induced by alcohol and this phenomena 

has been directly linked with alcoholic liver injury (67). When induced, CYP2E1 

produces a highly toxic derivative of the reactive oxygen species known as alpha-

hydroxy ethyl radical (67). The increase of this species seems to play an important role in 

ethanol-induced hepatocellular damage (67). Thus inhibition of CYP2E1 can be 

considered as a protective measure against ethanol-induced hepatotoxicity.  

 In the current study, both Echinacea and Spilanthes whole plant extracts were 

initially tested for their ability to inhibit CYP2E1 activity. Addition of 5µL or 5µg/mL of 

Echinacea showed about 42.3% inhibition. Spilanthes failed to show any significant 

inhibition. Addition of 40µL of Spilanthes extract caused inhibition of CYP2E1 of about 

29.1%. The nature of inhibition in both the cases was determined to be reversible and 

they appeared competitive in nature with the possibility of some mixed elements. There 
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have not been many studies on the effect of Echinacea or Spilanthes on CYP2E1. The 

only study on the inhibition of CYP2E1 by Echinacea in vivo was done by Gurley et al 

where only cichoric acid was present out of the phenolic compounds and the content of 

alkylamides have not been mentioned (56). He did not observe any significant inhibition 

of CYP2E1 by Echinacea. According to the results by Matthias et al and considerations 

as mentioned in the previous section of this chapter, 85ng/mL Echinacea extract managed 

to cause 42.3% inhibition of CYP2E1 (64).  

4.5  Inhibition of CYP2E1 by Alkylamides in Echinacea and Spilanthes  

 In the current study, it was observed that aerial portions of Echinacea purpurea 

failed to show any significant inhibition of CYP2E1. The ethanolic extract of roots of 

Echinacea purpurea however showed considerable inhibition.  Next owing to the 

therapeutic importance linked with CYP2E1 major components of Echinacea and 

Spilanthes are isolated and tested for their ability to inhibit CYP2E1. None of the 

phenolic extracts showed any inhibition of CYP2E1. In a recent in vitro study conducted 

to examine the enzyme-mediated metabolism of alkylamides present in Echinacea no 

degradation of alkylamides was noticed in cystolic fractions while NADPH-dependent 

degradation of alkylamides was observed in microsomal fractions suggesting cytochrome 

p450 mediated metabolism in liver (61). A couple of interesting observations were made 

in this study. Firstly, the extent of metabolism of 2-ene that is, the (2E)-N-

isobutylundeca-2-ene-8, 10-diynamide was one tenth of the 2,4-diene, the 

(2E,4E,8Z,10Z)-N-isobutyldodeca-2,4,8,10-tetraenamide (61). Also remarkably less 

degradation of the 2,4-diene was seen in the mixture of alkylamides in ethanolic extract 
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of Echinacea than when used alone suggesting contribution of both chemistry and 

combinaton of alkylamides in their metabolism by cytochrome P450 in human liver (61). 

 In the current study, all of the alkylamides tested both for Echinacea and 

Spilanthes proved to be moderate inhibitors of CYP2E1, particularly Undeca- 2Z, 4E- 

diene- 8, 10- diynoic acid- isobutylamide. The inhibition seen while using the CYP2E1 

was greater than in liver microsomes. The combination of Dodeca- 2E, 4E, 8Z, 10E- 

tetraenoic acid isobutylamide and Dodeca- 2E, 4e, 8Z, 10Z- tetraenoic acid isobutylamide 

inhibited CYP2E1 at a concentration of 31ng/mL. The KI was determined to be 6.5µM 

when CYP2E1 supersomes were used, while the KI for inhibition of CYP2E1 using 

human liver microsomes by Echinacea purpurea root extract was 31.1µM. In case of 

Undeca- 2E, 4Z- diene- 8, 10- diynoic acid- isobutylamide 6.2 ng/mL was needed to 

show considerable inhibition. Here KI with CYP2E1 supersome was 7.4 µM while that 

using human liver microsome was 31.1µM. Undeca- 2Z, 4E- diene- 8, 10- diynoic acid- 

isobutylamide inhibited CYP2E1 at a concentration of 5ng/mL. The KI determined for 

CYP2E1 supersomes was 2.9µM and that for inhibition of CYP2E1 in human liver 

microsome was 5.8µM. These results look very promising considering the bioavailability 

of these alkylamides as shown in different studies. In the study carried out by Gorski et al, 

1600mg was used for 8days and considerable inhibition was noticed (48). In a study 

using Echinacea purpurea root, administration of 4.3mg alkylamides resulted in plasma 

concentration of 44ng/mL (63). Matthias et al used 3300mg Echinacea with an 

alkylamide content of 54.6mg, the contribution from our alkylamides being about 6mg, 

and observed 44ng/mL concentration (64). Spilanthol, a bioavailable alkylamide 
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component of Spilanthes was also very effective in inhibiting CYP2E1. In this case 

14.6ng/mL showed considerable inihibition of CYP2E1 in human liver microsomes. The 

KI value observed in this case was 6.5µM when CYCP2E1 supersomes were used and 

was 70.1µM when inhibition of CYP2E1 was tested using human liver microsomes. This 

was a bit surprising considering the fact that raw Spilanthes was not a potent inhibitor of 

CYP2E1. This could be owing to the concentration of Spilanthol in Spilanthes or 

interactions by other components of Spilanthes which suppresses the activity of 

Spilanthol in raw Spilanthes extract. 

 Thus it may be said that the current study revealed two more possible ways by 

which we can be benefited by Echinacea purpurea root. Its ability to inhibit CYP2A6 

makes it a possible therapeutic target as anticancer agent and the effective way by which 

Echinacea and the isolated alkylamides inhibit CYP2E1 make them potential agents to 

combat liver injury. Spilanthol isolated from Spilanthes acmella whole flowering plant 

also has a promising future as a therapeutic agent against alcohol induced liver injury. 

4.6  Future Direction 

 In the current research in vitro analysis showed two possible benefits of 

Echinacea purpurea root extract due to its interaction with CYP2A6 and CYP2E1. To the 

best of my knowledge, until now no studies have investigated the interaction between 

Echinacea and CYP2A6. Thus in vivo studies need to be carried out to confirm the 

potency of this inhibition. Also, different components of Echinacea needs to be tested for 

their ability to inhibit CYP2A6 to understand which component of Echinacea is 

contributing towards this activity. The bioavailabilty of the components need to be tested 
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as well. In case of CYP2E1, in vivo studies are required with the individual components 

of Echinacea to confirm the potency of these compounds against CYP2E1. The root 

extract of Echinacea purpurea was shown to inhibit CYP2C9 in the current study. 

Further, the bioavailable components of Echinacea needs to be tested individually and 

also in vivo to get a clearer picture.  

 Very few in vivo studies could be found which have tested the potency of 

Spilanthes acmella and none of them with humans. The interactions of this herb with 

cytochrome P450 have not been studied before. Studies are thus require to investigate the 

interaction of this herb with the CYP isoforms which have not been under the scope of 

current research, like CYP3A or CYP2D to get a comprehensive idea about how this herb 

interacts with different CYP isoforms. Next, the bioavailable components need to be 

investigated for their contribution towards these interactions if any. In vivo analysis of the 

interaction of Spilanthol with CYP2E1 would be another future direction for this research.  

4.7  Conclusion 

 Echinacea is one of the most commonly used alternative medicines in the world 

mainly used for the treatment of cold and flu. Recently the potential of this herb to as an 

immunostimulant is being widely studied. At the same time, the safety of this herb related 

to drug-herb interactions is also being investigated. In the current study in vitro analysis 

of the interaction of Echinacea purpurea root with different isoforms of cytochrome 

P450 (CYP1A2, CYP2C9, CYP2A6 and CYP2E1) have been investigated to throw more 

light on the efficacy and safety of this herb. This study has led to some interesting 

observations as regards to the possible benefits from this herb. Echinacea was found to 
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inhibit CYP2A6 and CYP 2E1 to considerable extent, thus making it a potential 

therapeutic target in the field of anticancer therapy and alcohol induced liver injury. At 

the same time analysis of the interaction of Echinacea with 2C9 has revealed that this 

herb poses risk of adverse drug-herb interactions when taken concurrently with drugs 

metabolized by CYP2C9. On the other hand, coadministration of this herb with drugs 

metabolized by CYP1A2 seems safe. Further, it was observed that neither the 

components of the aerial portions of Echinacea purpurea nor the phenolic components of 

this herb are responsible for the inhibition of CYP2E1. The four isobutyl amides 

(Dodeca- 2E, 4E, 8Z, 10E- tetraenoic acid isobutylamide, Dodeca- 2E, 4e, 8Z, 10Z- 

tetraenoic acid isobutylamide, Undeca- 2E, 4Z- diene- 8, 10- diynoic acid- isobutylamide 

and Undeca- 2Z, 4E- diene- 8, 10- diynoic acid- isobutylamide) present in major 

proportions in the ethanolic preparation of Echinacea purpurea root are potent inhibitors 

of CYP2E1. In fact, Undeca- 2Z, 4E- diene- 8, 10- diynoic acid- isobutylamide inhibited 

CYP2E1 at a concentration of 5ng/mL, the KI being 5.8nM with human liver microsomes.  

 Spilanthes acmella is known for its antidiuretic and larvicidal activities[16, 17]. 

Recently Spilanthol, an isobutylamide in Spilanthes has been isolated and shown to be 

bioavailable which has similarity in structure with the isobutylamides found in Echinacea. 

In the current research, Spilanthes acmella raw flowering plant extract was not found to 

be a significant inhibitor of CYP2A6 or CYP2E1. However, Spilanthol, the major 

alkylamide component of Spilanthes was found to be a potent inhibitor of CYP2E1. This 

observation further suggests functional similarity between the isobutylamides in 

Echinacea and Spilanthes. When tested with CYP2C9 and CYP1A2, Spilanthes failed to 
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show inhibition against CYP1A2 but showed considerable inhibition against CYP2C9, 

thus making it unsafe with drugs metabolized by CYP2C9. 
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