
REDNOUR, STEPHANIE D., M.S. An Analysis of a Sparse Linearization Attack
on the Advanced Encryption Standard. (2006)
Directed by Dr. Shanmugathasan Suthaharan. 106 pp.

Since Rijndael was accepted as the new Advanced Encryption Standard

by the NIST, several techniques have been developed to attack it. One of the

more controversial techniques is a relatively new mathematically based attack

known as Extended Sparse Linearization, or XSL. Estimates for a successful

attack on AES using XSL are extremely large (best estimate is 2100 encryptions),

so no attempt to implement the attack has yet been made.

To show that the attack is viable, a reduced version of AES can be

implemented and a modification of the XSL attack can be used on the reduced

version. I have implemented the reduced version of AES, referred to as rAES, as

well as the attack. In this document it will be shown that the attack fails. Since

the attack failed on the reduced version, the result can be extended to show that

it cannot be made on the full version either.

AN ANALYSIS OF A SPARSE LINEARIZATION ATTACK

ON THE ADVANCED ENCRYPTION STANDARD

by

Stephanie D. Rednour

A Thesis Submitted to
the Faculty of the Graduate School at

The University of North Carolina at Greensboro
in Partial Fulfillment

of the Requirements for the Degree
Master of Science

Greensboro
2006

 Approved by

 Committee Chair

 ii

To my parents Tom and Bonnie Rednour

And

To Tavis Curry

 iii

APPROVAL PAGE

 This Thesis has been approved by the following committee of the Faculty

of the Graduate School at The University of North Carolina at Greensboro.

Committee Chair ___________________________________

Committee Members ___________________________________

Date of Acceptance by Committee

Date of Final Oral Examination

 iv

ACKNOWLEDGEMENTS

Thanks to my advisor Shanmugathasan Suthaharan and to my committee

members Lixin Fu and Fereidoon Sadri.

 v

TABLE OF CONTENTS

Page

LIST OF TABLES ...vi

LIST OF FIGURES ..vii

CHAPTER

 I. INTRODUCTION ... 1

 The Advanced Encryption Standard... 2
 The Linearization Techniques .. 10

 II. REDUCED AES... 13

 III. APPLIED ATTACK .. 20

 The Equations .. 20
 The Attack .. 23

 IV. RESULTS .. 29

 V. CONCLUSIONS .. 30

 General Conclusions .. 31
 Future Work.. 32

BIBLIOGRAPHY... 33

APPENDIX A. ADDITIONAL TABLES AND FIGURES 35

APPENDIX B. INPUT DATA ... 41

APPENDIX C OUTPUT DATA ... 69

 vi

LIST OF TABLES

 Page

TABLE

 1. The Round Constants .. 7

 2. Multiplication in GF(24)... 15

 3. The rAES Round Constants... 18

 4. Matrix Terms - First Half .. 39

 5. Matrix Terms - Second Half ... 40

 vii

LIST OF FIGURES

 Page

FIGURES

 1. The AES SBox... 3

 2. State matrix before and after ShiftRows .. 4

 3. MixColumns Matrix .. 5

 4. State matrix before and after InverseShiftRows... 8

 5. Inverse SBox ... 9

 6. InverseMixColumns Matrix... 9

 7. Matrix Representation of SBox Derivation ... 17

 8. 4-Bit SBox.. 17

 9. 4-Bit Inverse SBox ... 17

 10. Modified Gaussian Elimination Version 1... 24

 11. Modified Gaussian Elimination Version 2... 27

 12. All SBox Terms and Mappings... 35

 13. SBox Equations - Set One... 36

 14. Equations after the SBox ... 36

 15. SBox Equations – Set Two .. 37

 16. ExpandRoundKey Equations ... 38

 1

CHAPTER I

INTRODUCTION

 After investigating several cryptographic algorithms for possible research

topics, the Advanced Encryption Standard (AES) was chosen. The AES was

selected because it is relatively new and untested, providing the best opportunity

in finding a research topic. Once the AES was chosen, the algorithm was

examined in detail. The AES was implemented using Java so that the actual

running of the algorithm for the encryption and decryption could be observed.

 Then others’ work into attacking the AES was examined. Several attack

techniques have been proposed for the AES including Extended Linearization [4],

Extended Sparse Linearization [4], power attacks [2], and a modification of the

AES to improve the running time for Extended Sparse Linearization called the

Better Encryption Standard (BES) [9]. While investigating the details of these

approaches, several authors called for research into applying the XSL technique

on a real system [3, 8, 11, 12], to see if it worked in an applied fashion and not

just as theory. Therefore it was decided to pursue an attack that would be similar

to XSL on an encryption algorithm like the AES to see if the attack works.

 2

The Advanced Encryption Standard

In the late 1990’s it became apparent to the National Institute of Standards

and Technology (NIST) that the encryption standard, DES, was no longer

sufficiently secure. Therefore they issued a request for an algorithm to replace

DES. Once agreed upon the new standard would be referred to as the

Advanced Encryption Standard. Several algorithms were submitted to become

AES, and through a tiered process of elimination ultimately one was chosen.

This was the submission from Joan Daemen and Vincent Rijmen and they called

their algorithm Rijndael, a combination of both of their last names.

 Some modifications were made that restricted the original Rijndael so the

AES is not exactly the same as the original submission. For the purposes of this

paper we are concerned with the final version in the AES, released by the NIST

in November of 2001 [14]. The AES algorithm is a block cipher, which means

that the original plaintext message is broken down into blocks of a fixed size, and

then the algorithm processes the blocks individually. In the AES the block size is

128 bits. Each block is handled exactly the same way, so we need only concern

ourselves with how one block is processed. The AES encryption performs

several operations on the block, which are described as four steps. These steps

are called SubBytes (Substitute Bytes), ShiftRows, MixColumns, and

AddRoundKey. The steps are performed repeatedly on the block. Each

repetition is referred to as a round. There is one deviance in the pattern of steps.

In the last round the MixColumns step is not performed. Similarly, the AES

 3

decryption performs four steps, three of them are different, called

InverseSubBytes, InverseShiftRows, InverseMixColumns, and the last step is the

same as the encryption’s AddRoundKey.

 The first step of the encryption, SubBytes, breaks the 128-bit block into

bytes and performs a substitution on each byte. This substitution is made using

a look-up table called the SBox. For any byte, the first four bits represent the row

in the table and the last four bits represent the column. The intersection of the

row and column gives you the output byte. For example, the input byte

00101010 would be split into row 0010 and column 1010. For clarity the figure of

the SBox below uses hexadecimal entries so we have row 2 and column A. As

you can see in Figure 1, 2A maps to E5 so the output byte is 11100101.

Figure 1: The AES SBox

 4

 The second step, ShiftRows, takes the bytes in the block and mixes them

within their own row. For this step, and the MixColumns step, it is simpler to

understand the process if you consider the 128 bits of the block as a matrix, with

four bytes per row and four bytes per column. As you can see in Figure 2,

ShiftRows leaves the first row of the matrix alone, but the rest of the rows are

shuffled. Each entry in the figure represents one byte, so that the top row is

composed of bits 0-31 of the block, row two is bits 32-63, row three is bits 64-95,

and row four is bits 96-127.

 The third step, MixColumns, performs mathematical operations on the

columns of the result of the ShiftRows step. This is essentially a matrix

multiplication. The input state matrix to MixColumns is multiplied by a given

matrix and the result is the output of MixColumns. You can see the matrix used

for the multiplication in Figure 3. For instance, the first entry in the output matrix

would be calculated as follows:

Figure 2: State matrix before and after
ShiftRows.

 5

where s0 is the first byte from the ShiftRows output, s4 is the fifth byte, and so on.

The addition is done using a bit wise exclusive-or (). The matrix multiplication is

done in the Galois Field GF(28).

 A field is a set with two binary operations, usually referred to as addition

and multiplication, which operate on that set. The two operations must not have

results that are outside of the set and there must be a multiplicative inverse for

each element in the set [13]. A Galois Field is a finite field, which means that the

set of elements of the field is finite. The set for GF(28) contains the integers from

zero to 255.

One does not need to understand all the properties of a Galois Field in

order to perform the multiplication, there a just two rules to use. First, one finds

the results of multiplying the number by the powers of two. If the result is greater

than 255, then an additional operation must be performed. This operation is to

add the result to a given constant, and throw away the bits over eight.

Figure 3: MixColumns Matrix (in hexadecimal)

 6

For example,

, but

so we take that result and add it to the constant 100011011 as defined in the

AES. Then one has .

 To perform multiplications with numbers that aren’t powers of two, one just

use a bit-wise exclusive-or with the powers of two that make up that number. For

example,

which is what one would expect.

 The last step is the AddRoundKey, which takes the result of the

MixColumns step and performs an exclusive-or with a secret key. The secret key

is where all the security of the AES lies. Without the secret key anyone could

perform the above operations and get the same results. The secret key needs to

be chosen then so that no one can guess it. The use of one secret key in this

way makes the AES a private key system. This means that the key must be kept

private. In the AES, the secret key is initially either 128, 192, or 256 bits long.

An operation called ExpandRoundKey is performed on the key to generate

several round keys. One round key is used in each of the AddRoundKey steps

since the 4 steps are performed repeatedly. The number of times the four steps

are repeated is based on the size of the initial key. Each repetition is referred to

 7

as a round. For a 128-bit key there are 10 rounds, for a 192-bit key there are 12

rounds, and for a 256-bit key there are 14 rounds. There original key is added to

the plaintext before the first round, so there are actually 11, 13, and 15 keys

used, respectively. Keep in mind, all the round keys are derived mathematically

from the original key, so if you have either the round keys or the original key you

can calculate the others.

 The ExpandRoundKey operation is performed only once. The operation

works on a row of the original key at a time. A row is also referred to as a word,

which is 32-bits long in the 128-bit key case. Therefore the original key can be

expressed as four words, which we will call w0, w1, w2, and w3. We will index the

round keys starting from w4 for the first word of the first round key (so then the

second round key starts at w8.) The first three words in each round key are

calculated the same way as follows:

wi = wi - 4 wi - 1

where i ranges from 0 to 44 for a 128-bit key. The last word in each round key

uses a more complex calculation:

wi = wi - 4 SubWord(RotWord(wi - 1)) Rconi / 4

Table 1: The Round Constants for the 10-round version of AES (in hexadecimal)

 8

RotWord simply performs a one byte circular left shift on the word. SubWord

uses the SBox to substitute each of the bytes for a new byte in the same way as

described above. The Rconi / 4 is a constant. The constants for the 128-bit key

are given in Table 1.

 All of the above refers to the encryption of data using the AES, but that is

not very useful if you cannot perform a decryption that gives you back the original

data. The decryption is very similar to the encryption, but it is not exactly the

same. Essentially, all of the steps in the encryption must be performed

backwards to get the plaintext again. The input to the decryption is the

ciphertext. The last round key is added back to it since the inverse of exclusive-

or is just another exclusive-or. Since we are undoing the last round, we do not

need to perform the InverseMixColumns step yet, so we perform the

InverseShiftRows step. This step just performs the shifts in the opposite

direction as can be seen in Figure 4.

 The next step to perform is InverseSubBytes. This step works the same

way as SubBytes but it uses the Inverse SBox to do the substitution. The

Figure 4: State matrix before and after InverseShiftRows.

 9

Inverse SBox can be seen in Figure 5. If we take the example from before you

can see how the Inverse SBox reverses the SBox effect on the bits. So the input

byte 11100101 would be split into row 1110 and column 0101. In hexadecimal

this is row E column 5. As you can see in Figure 5, E5 maps to 2A, which is

what we had input to the SBox before.

 The third operation is to add the second to last round key to the output of

the Inverse SBox. Now we are in the second to last round, so we need to

perform the InverseMixColumns. InverseMixColumns works the same way as

Figure 5: Inverse SBox

 10

MixColumns, but a different matrix is used for the multiplication. This matrix,

shown in Figure 6, is the inverse of the MixColumns matrix.

 From the second round of the decryption on all of the steps are performed,

with an additional AddRoundKey done at the very end which will produce the

plaintext message.

The Linearization Techniques

Once Rijndael was submitted to NIST, others began examining it for

weaknesses. It was noted in [10] that Rijndael had an unusual structure that

allows it to be expressed as equations because it can be broken into distinct

parts. This observation led to a technique to attempt to break the encryption

using these equations. One of the techniques proposed for an attack on Rijndael

was Extended Linearization, or XL [4]. This technique was devised for other

encryption algorithms and was applied to the AES in [4].

XL converts the operations performed on the block into linear equations.

The derivation of the equations (which is the same for XL and XSL) is detailed in

Chapter III. The hope is that this large system of equations can be solved, which

Figure 6: InverseMixColumns Matrix (in hexadecimal)

 11

results in obtaining the key. The system of equations is represented as a matrix

since it is linear. A technique for diagonalizing the matrix, such as Gaussian

Elimination, is applied to see if the system is solvable. If the system is solved

then the key has been found and the encryption is cracked. If the system is not

solved, an attempt to change the system so that it is solvable is made. This is

done by solving the system for one term, then multiplying all of the equations by

all the possible second order terms. If any new equations result, they are added

to the system. Then the Gaussian Elimination is tried on the updated system. In

this fashion the process repeats until the system is solved.

When analyzing the XL technique, the authors estimated that it would be

better than brute force, but still outside the realm of feasibility. A second

technique was designed by Courtois and Pieprzyk [4] to improve upon XL, which

was termed XSL or Extended Sparse Linearization. This technique also attempts

to solve a large system of linear equations to obtain the key, but it improves upon

the method of increasing the number of equations to speed up the process. In

both techniques the system of linear equations is considered sparse. This

means that for any given equation in the system only a relatively small number of

terms are present. Such a system is shown in Appendix A and you can see it is

composed largely of zeroes, meaning those terms have a zero coefficient.

In XSL, once a certain number of linearly independent equations are

determined for the system, the two alternating steps are used to solve the

system. First, the same as XL, an algorithm to attempt to solve the matrix

 12

representing the equations is used, such as Gaussian Elimination. If the system

is unsolvable, because there aren’t enough equations compared to the number of

terms, the T′ Method is used to increase the number of equations to enough to

solve all of the terms in the system. The T′ Method is where XSL differs from XL.

In this method the equations are all solved relative to two terms. This gives two

equivalent systems. Next, the terms from the second system, instead of all

possible terms, are used to increase the number of equations by multiplying the

terms in the second system by the equations in the second system (see [16] for

an example of this method). By repeating the Gaussian Elimination and T′

Method steps the hope is that eventually a solvable system will be created. For

the AES the estimate given by Murphy and Robshaw for creating a solvable

system is 2100 [9].

 13

CHAPTER II

REDUCED AES

 As was stated in the previous chapter, the estimate for the number of

executions needed to find the key for the 10-round AES is 2100. This is

significantly less than a brute force attack, but it would still require too long to be

feasible. To show whether or not there is an attack against the AES that works

when applied, the running time of the attack needed to be reduced.

 To decrease the running time to something that was feasible there are two

choices, to modify the attack or to modify the algorithm the attack is on. For XSL

the running time is tied to the size of the system of equations and the number of

terms in those equations. Therefore if the number of equations and terms can be

reduce then XSL should run more quickly. In order to reduce the number of

equations and therefore the running time of XSL, I created a reduced version of

AES, that we will call rAES. This version has all the same operations as the full

version, but it manipulates four bits in place of bytes. Therefore all of the bit

measurements are halved. The block size is 64 bits and the smallest key is 64

bits. The program was implemented to allow the number of rounds to be

changed as well. For the 64 bit key anywhere from one to ten rounds can be

executed. The hope was that the combination of reducing the block size and the

 14

number of rounds would allow the equations to be solved in a feasible amount of

time.

 In order to convert AES to four bits, several parts of the algorithm had to

be modified. Of course all of the manipulations had to be altered to take four bits

instead of a byte, but more complex changes had to be made to the SBox, the

Galois Field had to be changed, and the round constants had to be recalculated.

The authors of Rijndael were thorough and included their rationale for the choice

of SBox and round constants, so the 4-bit version was created to also meet those

criteria [13, 14]. Both the encryption and decryption steps for rAES were created.

The reduced algorithm was kept as close to the full version at every opportunity

in order to ensure it’s behavior would be as close to equivalent as possible.

 For the AES [14], the SBox was derived following three steps. The first

step is to fill the SBox with the values from 00000000 through 11111111 going

across the columns and then down the rows, so the first row in hexadecimal is

00, 01, 02, 03, …, 0F and the second row is 10, 11, 12, 13, ..., 1F. Next, all of

the entries are changed to their multiplicative inverse over the Galois Field.

Finally an equation is used to manipulate the bits of each byte. The equation

exclusive-ors specific bits in each byte and adds them to a constant as follows:

yi = xi x(i+4) mod 8 x(i+5) mod 8 x(i+6) mod 8 x(i+7) mod 8 ci

where xi represents the input bits, numbered so that the byte 10010000 would

have x7 = 1 and x4 = 1 with the other xi equal to zero. The value yi is the output bit

that is used as part of the SBox entry for that byte and ci is a constant, given as

 15

the hexadecimal number 63. The rationale given for this choice was so that the

correlation between the input byte and the output byte could not be easily

expressed as a mathematical function [13, 14]. The specific choice of which bits

to use and what constant to use were chosen to prevent the SBox from having

any mappings where SubBytes(x) = x and no mappings where SubBytes(x) =

(means the 1’s in x become 0’s in and the 0’s in x become 1’s in .) Finally, the

SBox was designed so that the inverse SBox, used for decryption, would not

have a case where ISBox(x) = SBox(x).

Table 2: Multiplication in GF(24)

 16

 Several different rAES SBoxes were tried, and through trial and error one

was found that meet all of the above criteria. It was found by creating an SBox

with a 2-bit index to the row and column and each entry is four bits. This created

an SBox with 16 entries instead of 256. The entries were initialized to 0000

through 1111 with the first row being 0000, 0001, 0010, 0011 in binary and the

second row being 0100, 0101, 0110, 0111. All of the multiplicative inverses were

found using the Galois Field GF(24) instead of GF(28). For this Galois Field the

constant 10011 was chosen to be used if the value exceeded four bits. For

example, . All of the multiplications in GF(24)

can be seen in Table 2.

 The GF(24) containing the set from zero to 16 with the addition and

multiplication operations as defined above does create a Galois Field. Since the

addition is done as an exclusive-or the addition is automatically in the field. By

examining Table 2 it is easy to see that all of the values are in the set. Also, all

of the values in the set have a multiplicative inverse (the entries in the table that

are equal to one). Therefore this is a Galois Field.

 Finally the following equation was applied to get the resulting SBox:

yi = xi x(i+1) mod 4 x(i+3) mod 4 ci

where in this case ci is five. This equation and constant value were found to be a

combination that allowed an SBox that met all the necessary criteria. For

instance, the entry at (0, 2) was calculated as follows:

 17

The value was initialized to 0010. The inverse of 0010 (as can be

found in Table 2) is 1001. This value is then input to the equation

so we have:

y0 = 1 0 1 1 = 1

y1 = 0 0 1 0 = 1

y2 = 0 1 0 1 = 0

y3 = 1 1 0 0 = 0

which gives us the result of 0011 = 3.

This example can also be done by representing the equation given above as a

matrix, and representing the value as a column as seen in Figure 7. The

resulting SBox and Inverse SBox can be seen in Figures 8 and 9.

Figure 8: 4-Bit SBox Figure 9: 4-Bit Inverse SBox

Figure 7: Matrix Representation of SBox Derivation

 18

 The round constants for rAES were calculated using the same method as

those for the AES, but reduced to output four bits. In the AES the round constant

Rconj = (RCj, 0, 0, 0) where1 ≤ j ≤ 10 with each member of the list representing a

byte. The value RCj = 2 · RCj – 1 and RC1 = 1. All of the math is performed over the

Galois Field GF(28). For rAES the round constant Rconj = (RCj, 0, 0, 0) where

each member represents four bits. The value RCj = 2 · RCj – 1 and RC1 = 1. All of

the math is performed over the Galois Field GF(24). For example, the calculation

for RC2 = 2 · 1 = 2 so Rcon2 = 0010000000000000. The round constants for rAES

can be seen in Table 3.

 The ShiftRows and InverseShiftRows for rAES work exactly the same as

in the AES except each entry in the matrix shown in Figures 2 and 4 represent

four bits instead of a byte (b0 represents bits 0-3, the top row represents bits 0-

15, row two is bits 16-31, row three is bits 32-47, and row four is bits 48-63).

 The MixColums step works the same way in rAES as it does in the AES,

but each hex value in the matrix is represented as a 4-bit number instead of as a

byte. All of the values in the MixColumns matrix are less than 16 so they can

directly be written in four bits. The InverseMixColumns matrix is also just

changed to represent all of the values as 4-bits instead of bytes. The

Table 3: The rAES Round Constants for the 10-round version (in decimal)

 19

mathematics was checked and the same values work for the InverseMixColumns

even though they have been represented as only four bits.

 The number of rounds was allowed to be variable in rAES. The minimum

allowed is one round and the maximum is 10 for a 64-bit key, 12 for a 96-bit key,

and 14 for a 128-bit key. For the one round option, the MixColumns is not

performed, but for all other number of rounds the algorithm operates as normal,

with the last round not having MixColumns but all the other rounds perform all of

the steps. The decryption is done using the inverse steps as described above.

 The rAES was designed to improve the running time of a possible attack.

The design of rAES was made to follow the AES as closely as possible as can be

seen in the description given above. Now an attempt to attack rAES could be

made to see if there are any weaknesses. The rAES is inherently weaker than

the AES, so if an attack for rAES cannot be found then a similar attack on AES

would be even less effective. With the reduced version complete, the equations

representing it can be found. The equations used in the attack on rAES are

described in Chapter III.

 20

CHAPTER III

APPLIED ATTACK

The Equations

 In order to use an XSL-style attack on rAES, the equations that represent

the steps of the algorithm had to be derived for the 4-bit version. This derivation

was similar to that described in [4]. The equations from the encryption and not

the decryption were found since the equations that result from the MixColumns

step are simpler than those that result from the InverseMixColumns. This is

because performing the multiplication in GF(24) on the values in the MixColumns

matrix requires fewer calculations than performing them with the

InverseMixColumns matrix. The manipulations performed on the bits of the

plaintext can be grouped into two types, the diffusion done by the AddRoundKey,

ShiftRows, and MixColumns steps, and the nonlinear step done by SubBytes.

The equations for the diffusion steps are fairly straight forward to derive, but the

SubBytes step was designed to try to prevent a simple representation of the

manipulations on the bits being described as linear equations [13, 14].

 Due to the criteria used in the design of the SBox for the AES, it was

found in [4, 9, 10] that equations that are true for all the different mappings of the

SBox can be found. It was found that using first order and second order terms

from the SBox mappings were sufficient to describe the SBox [4]. The terms

 21

came from the input and output bits of the SBox. Similarly, such equations were

found to exist for rAES. Once the SBox for rAES was created (see Fig. 7 on

page 17) an algorithm to find all of the true equations for this SBox was devised.

The terms for the rAES SBox are just the bits of the four bits input and four bits

output, and all the possible second order combinations of the input and output

bits. This creates 24 terms. Since there are 16 entries in the SBox, there are 16

possible true values for all of the terms. The terms and all possible values for the

mappings can be seen in Figure 12 in Appendix A. The algorithm to find the true

equations used a nested loop structure to sum under GF(2) all combinations of

the terms and returned the combinations where the result was 0 or 1 for all

equations. This means that no matter what the input to the SBox was, the

equations would have the same result. A total of 2039 such equations were

found to be true for the rAES SBox, with the equations varying in length from only

five terms all the way up to 20 terms. Since there are only 24 SBox terms, we

decided to use 24 of the 2039 SBox equations in the implementation. The

specific equations chosen can be seen in Figure 13 in Appendix A.

 Since the SBox is performed on four bits at a time and there are 64 bits in

a block, it was necessary to have a different set of 24 SBox equations for each of

the 16 times the SBox gets used in a single round. This gives a total of 384

SBox equations and 384 terms. Of these 384 terms, 128 are first order and the

remaining 256 are second order terms.

 22

 The equations from the other three steps were more directly determined

since they are already linear in nature. The equations for the first AddRoundKey

step were from the bits of the input plaintext, the bits of the key, and the bits that

result from using the exclusive-or operation on them. There are 64 such

equations with 128 terms (the plaintext bits are known, the key and result bits are

unknown). The equations are as follows:

ri ki = pi

where ri is a bit of the result of the AddRoundKey operation, ki is a bit of the key,

and pi is a bit of the plaintext, with 0 ≤ i < 64.

 The operations on the bits done by the ShiftRows, MixColumns, and

second AddRoundKey steps were all combined into a single set of equations.

These terms in these equations were from the bits of the output of the SBox, the

bits of the second round key, and the resulting bits from after the round key was

added. The locations of the SBox output bits were tracked through the

ShiftRows and MixColumns steps so that the bit from the SBox that was added to

a specific bit of the round key was known. This resulted in the 64 equations. To

see if the technique would work even without the MixColumns step, which is what

occurs if only one round is used, the equations ignoring the MixColumns

manipulations on the bits were also devised. These can be seen in Figure 14 in

Appendix A. In the one round case there are 64 equations with 128 unknown

terms since the resulting bits from the final AddRoundKey step are the known

ciphertext bits.

 23

 This gives us a total of 512 equations and 512 terms. All of the equations

found above are unique, but the terms for the output bits of the first

AddRoundKey are the same as the input bits to the SBox, and the output bits

from the SBox are the same as the input bits to the second AddRoundKey. It

was considered to attempt to solve subsets of these equations as separate

systems, but the ratio of the number of terms to the number of equations for any

subset is not large enough. For instance, if only the equations from the first

AddRoundKey are considered we have 128 terms but only 64 equations. When

solving linear systems of equations at least an equal number of equations to

terms is necessary in order to uniquely solve the system using conventional

methods such as Gaussian Elimination. Once the equations were determined it

remained to attempt to solve the system of equations found.

The Attack

 The system of equations described above was input to a modified version

of Gaussian Elimination with Backwards Substitution. The algorithm was

modified as shown in Figure 10, to optimize it for operations in GF(2). The

normal version solves systems with decimal coefficients and solutions; here all

the coefficients and solutions will be binary.

 The modification to the Gaussian Elimination algorithm occurred to the

steps shown in bold in Figure 10. Originally the multiplication, subtraction, and

replacement of row j was performed in every execution of the loops over i and j.

When m is zero, these steps just end up replacing row j with the same values it

 24

already had. Therefore, if m is zero, all three of these steps can be skipped. The

value m can only be zero or one, and if it is one then the steps are executed.

Modified Gaussian Elimination
Input: Matrix representation of the system of equations
Output: Array containing the solutions for each term
m ← matrix column count – 2
solutions[m+1]
for (i ← 0; i < m; i++)
 p ← n
 for (k ← 0; k < m; k++)
 if matrix location (k,i) is one
 p ← k
 end loop over k
 if p ≥ m
 return false

if p ≠ i
 switch row i of the matrix with row p of the matrix
 for (j ← i+1; j ≤ m; j++)
 m ← 0 // m is the matrix location (j,i) divided by location (i,i)
 if matrix location (j,i) is one and matrix location (i,i) is one
 m ← 1
 multiply row i of the matrix with m
 subtract the above from row j of the matrix
 replace row j of the matrix with the above
if matrix location (m,m) = 0
 return false
if matrix location (m-1,m) is one and matrix location (m-1,m-1) is one
 solutions[m] ← 1
else solutions[m] ← 0
for (i ← m-1; i ≥ 0; i--)
 sum ← 0
 for (j ← i+1; j ≤ m; j++)
 sum ← sum + matrix location (i,j) + solutions[j]
 sum ← sum mod 2 // math is over GF(2)
 sum ← matrix location (i, m+1) – sum
 sum ← sum / matrix location (i,i)
 if sum = -1
 sum ← 1 // math in GF(2)
 solutions[i] ← sum
return true

Figure 10: Modified Gaussian Elimination Version 1

 25

The value m is a result of dividing two entries in the matrix, so m is only one if

both entries are one. Therefore on average m is only one 25% of the time. This

means that the three steps are skipped 75% of the time with this modification.

Therefore the running time of the Gaussian Elimination has been optimized,

though the asymptotic running time is the same. Additional modifications were

made to the italicized steps because all of the math needs to be done in binary.

 It turned out that the system I found to represent rAES did not work well

with the T′ Method. The T′ Method relies upon each term appearing a relatively

large number of times in the entire system. For our system of 512 terms, any

given term was found to appear in less than 4% of the equations. This can be

verified using Appendix A. This means the number of executions of the T′

Method for the rAES equations is beyond the realm of feasibility. Even though I

had a system with an equal number of terms and equations, it was found that the

system was not solvable in its initial state. In the light of this observation, a

different approach was taken to attempt to solve the system of equations.

 For only one round of rAES, the number of equations that could be

determined was much larger than the number of terms needed to solve the

system, since typically an equal number of terms and equations are required.

Therefore, the number of equations was increased to over 512.

 The Gaussian Elimination algorithm was modified to allow for a non-

square matrix as can be seen in Figure 11. The constant n was added to the

algorithm to represent the number of equations in the system. Before, the

 26

number was the same as the number of terms so only one constant, m, was

required. In the situations where the number of equations and not the number of

terms was needed, n has been substituted for m. Essentially this means that all

of the equations will be checked to try to find a subset of them that will allow all

512 terms to be solved.

 This technique essentially has the same end effect as the T′ Method, but

achieves it in a different manner. In the T′ Method the number of total equations

is increased each time the T′ Method is executed, using our technique the

number of equations starts out larger than the number of terms. Then all that

was required was to run the second modified version of Gaussian Elimination on

the matrix.

 The additional equations came from two sources, the SBox Equations

found previously, and new equations from the ExpandRoundKey. There were

2039 SBox equations found and so far only 24 of them have been used in the

attack. That leaves 2015 left to try. Initially, the shortest 24 equations were

used, now the longest 24 equations will be added to increase the total to 48

SBox equations over 24 SBox terms. The second set of SBox equations can be

seen in Figure 15 in Appendix A. The ExpandRoundKey step, as described on

page 7, uses exclusive-or, circular shifts, and the SBox to manipulate the bits.

The first set of equations used for the SubBytes step was used for the SBox part

of the ExpandRoundKey equations. Only one out of every four words is passed

through the SBox, the other three words per round key just use the exclusive-or

 27

operation. The equations for the ExpandRoundKey are combinations of the

SBox equations using the ExpandRoundKey terms, and the equations shown in

Figure 16 in Appendix A.

Modified Gaussian Elimination
Input: Matrix representation of the system of equations
Output: Array containing the solutions for each term
n ← matrix row count – 1
m ← matrix column count – 2
solutions[m+1]
for (i ← 0; i < m; i++)
 p ← n
 for (k ← 0; k < n; k++)
 if matrix location (k,i) is one
 p ← k
 end loop over k
 if p ≥ n
 return false

if p ≠ i
 switch row i of the matrix with row p of the matrix
 for (j ← i+1; j ≤ n; j++)
 m ← 0 // m is the matrix location (j,i) divided by location (i,i)
 if matrix location (j,i) is one and matrix location (i,i) is one
 m ← 1
 multiply row i of the matrix with m
 subtract the above from row j of the matrix
 replace row j of the matrix with the above
if matrix location (m,m) = 0
 return false
if matrix location (m-1,m) is one and matrix location (m-1,m-1) is one
 solutions[m] ← 1
else solutions[m] ← 0
for (i ← m-1; i ≥ 0; i--)
 sum ← 0
 for (j ← i+1; j ≤ n; j++)
 sum ← sum + matrix location (i,j) + solutions[j]
 sum ← sum mod 2 // math is over GF(2)
 sum ← matrix location (i, m+1) – sum
 sum ← sum / matrix location (i,i)
 if sum = -1
 sum ← 1 // math in GF(2)
 solutions[i] ← sum
return true

Figure 11: Modified Gaussian Elimination Version 2

 28

 The additional 24 SBox equations were added per each four bits. This

resulted in an addition of another 384 equations, bringing the total to 896

equations with the terms remaining at 512. There are 64 equations from the

creation of the 64-bit round key. There are 96 additional SBox equations from

the round key expansion. This gives a total of 1056 equations. The RotWord

and SubBytes parts of the ExpandRoundKey step produce some additional

terms, 16 to be exact. This increases the number of terms to 528. There are

also a separate set of second order SBox terms for the ExpandRoundKey which

increases the total number of terms to 592. Therefore the system used in the

attack had 1056 equations describing 592 terms.

 29

CHAPTER IV

RESULTS

 Initially, the code was run on the 512 term, 512 equation system. It was

found that this system was not sufficient to get solutions for all the terms. When

run using the first modified version of the Gaussian Elimination algorithm it was

able to diagonalize the matrix down to term 133 as shown in Appendix A. The

code was run on several keys using the same plaintext (the word “plaintext” was

used since it completely filled one block). For any key the matrix could only be

diagonalized to the same term. Term 133, as can be seen in Table 4 of

Appendix A, is j2 which is the third bit of the round key. Since it was apparent

that more equations related to the round keys were needed, those equations

were added to the code next.

 With the round key equations added in, the system was then 592 terms

and 672 equations. When the code was run with these changes, using the

second modified version of the Gaussian Elimination algorithm, the matrix was

diagonalized down to term 267, r2y3, the second order term of the third bit of the

input to the SBox and the fourth bit of the output from the SBox. Again, this

situation occurred for any key used. The point where the diagonalization stops is

shown in an example execution of the attack on page 81.

 30

 Now, it seemed that more SBox equations were needed to create a

solvable system, so the second set of SBox equations was added. This

increased the number of equations to 1056, leaving the number of terms at 592.

Unexpectedly, doubling the number of SBox equations had no effect on the

results of the Gaussian Elimination. It was still only able to diagonalize the matrix

to term 267. Despite having nearly twice as many equations as terms, the

system was found to be unsolvable. Increasing the number of equations from

672 to 1056 had no effect on the solvability of the system. Considering these

results it was decided that attempting to include more of the SBox equations

would not help the situation.

 In order to see if there was a pattern in the terms that could not be

diagonalized by the Gaussian Elimination, the code was modified to not break

when a term was found that could not be diagonalized. Instead that term was

added to the matrix in the correct location and just set to zero. A statement

noting that a term could not be diagonalized was output each time this occurred.

When this was done it was found that the same terms in the SBox equations

were not diagonalizable. These terms were x2 y3, x3 y0, x3 y1, x3 y2, and x3 y3

through term 319, then in the next set of SBox equations it increased to be x2 y1,

x2 y2, x2 y3, x3 y0, x3 y1, x3 y2, and x3 y3 and continued in that pattern until term 383.

From term 384 on the pattern was x2 y0, x2 y1, x2 y2, x2 y3, x3 y0, x3 y1, x3 y2, and x3 y3.

There were also later terms that were found to be undiagonalizable.

 31

CHAPTER V

CONCLUSIONS

General Conclusions

 The attack on rAES failed. Despite having a sparse system of linear

equations with nearly twice as many equations as terms the system was

unsolvable, so the key could not be retrieved. This result is good news for the

AES. As noted previously, if the attack on rAES fails, an attack on the AES

would be even less likely to be successful.

 In the process of attempting to attack rAES, some interesting side results

were found. Based on the experimental results, the solution of the linear system

of equations representing the steps in rAES is not dependent on the plaintext

choice or the key choice. Logically, this makes sense, because the solution for

an equation equal to one gives you no more information about the terms than an

equation equal to zero. This is important because it means that the security of

rAES is the same no matter how cleverly the plaintext is chosen. It follows that

the strength of AES against this type of attack is also independent of the plaintext

choice or key choice.

 The improvements to the Gaussian Elimination to optimize it for equations

in GF(2) improve the running time, but do not reduce the number of executions of

 32

any of the loops. Therefore it would not affect the general execution estimates

given by others in [4, 9].

Future Work

 The fact that specific terms in the SBox equations were the ones that were

unsolvable indicates that some rules for selecting the SBox equations could be

devised. If such a rule or set of rules could be found, then the entire system of

equations could be solvable.

 Using the all available equations instead of the T′ Method reduces the

running time to only one execution of the Gaussian Elimination algorithm instead

of approximately 2100 or more. Since the key and plaintext appear to have no

effect on the solvability of the system, if a set of equations could be found that

was solvable, then only one execution of the Gaussian Elimination would be

needed. The running time would then be O(n2), where n is the number of

equations in the system. The results indicate that finding a set of equations to

solve even one round was not possible. The advantage is if a system could be

found that was solvable, it would only need to be found once. Then the only

work required is to set the specific plaintext and ciphertext bits and run the

Gaussian Elimination on the matrix using the predetermined equations.

 33

BIBLIOGRAPHY

1. Cheon, Jung Hee and Dong Hoon Lee. “Resistance of S-boxes
against Algebraic Attacks.” 2004. Online. Internet. 6 Oct. 2005.
Available
http://www.math.snu.ac.kr/~jhcheon/Published/2004_FSE/FSE04_
CL.pdf

2. Courtois, Nicolas T. and Louis Goubin. “An Algebraic Masking Method

to Protect AES Against Power Attacks.” 2005. Online. Internet. 6
Oct. 2005. Available http://eprint.iacr.org/2005/204.pdf

3. Courtois, Nicolas T. and Louis Goubin. “Open Problems in Multivariate

Cryptanalysis –Stork Submission--.” Online. Internet. 6 Oct. 2005.
Available http://eprint.iacr.org/2002/044.pdf

4. Courtois, Nicolas T. and Josef Pieprzyk. “Cryptanalysis of Block

Ciphers with Overdefined Systems of Equations.” Mar. 2002.
Online. Internet. 3 Jan. 2006. Available
http://eprint.iacr.org/2002/044.pdf

5. Daemen, Joan and Vincent Rijmen. “Answer to “New Observations on

Rijndael.” 11 Aug. 2000. Online. Internet. Aug. 2005. Available
http://www.iaik.tugraz.at/research/krypto/AES/old/~rijmen/rijndael/a
nswer.pdf

6. Ferguson, Niels, et al. “Improved Cryptanalysis of Rijndael.” 2000.

Online. Internet. 6 Oct. 2005. Available
http://www.schneier.com/paper-rijndael.pdf

7. “Gaussian Elimination.” Wikipedia. 7 Feb. 2006. Online. Internet. 15

Feb. 2006. Available
http://en.wikipedia.org/wiki/Gaussian_elimination

8. Murphy, Sean and Matt Robshaw. “Comments on the Security of the

AES and the XSL Technique.” 20 Sep. 2002. Online. Internet.
Dec. 2005. Available
http://www.cosic.esat.kuleuven.ac.be/nessie/reports/phase2/Xslbes
8_Ness.pdf

 34

9. Murphy, Sean and Matt Robshaw. “Essential Algebraic Structure
Within the AES.” Aug. 2002. Online. Internet. Aug. 2005.
Available http://www.isg.rhul.ac.uk/~sean/crypto.pdf

10. Murphy, Sean and Matt Robshaw. “New Observations on Rijndael.” 7

Aug. 2000. Online. Internet. Aug 2005. Available
http://www.isg.rhul.ac.uk/~sean/rijn_newobs.pdf

11. Schneier, Bruce. “AES News.” Crypto-Gram Newsletter. 15 Sep.

2002. Online. Internet. 12 Oct. 2005. Available
http://www.schneier.com/crypto-gram-209.html#1

12. Schneier, Bruce. “More on AES Cryptanalysis.” Crypto-Gram

Newsletter. 15 Oct. 2002. Online. Internet. 6 Oct. 2005.
Available http://www.schneier.com/crypto-gram-210.html#2

13. Stallings, William. Cryptography and Network Security: Principles and

Practices. 3rd ed. Upper Saddle River, New Jersey: Prentice Hall,
2003.

14. United States. National Institute of Standards and Technology.

Announcing the Advanced Encryption Standard (AES). Federal
Information Processing Standards Publication 197. 26 Nov. 2001.
Online. Internet. 7 Dec. 2005. Available
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

15. Wilson, J.C. “Principal Ideal Domain.” Wikipedia. 10 Jan. 2006.

Online. Internet. 15 Feb. 2006. Available
http://en.wikipedia.org/wiki/Principal_ideal_domain

16. Yacoumis, Paul. On the Security of the Advanced Encryption

Standard. Nov. 2005. Online. Internet. Dec. 2005. Available
http://ntcourtois.free.fr/yacoumis_aes.pdf

 35

APPENDIX A

ADDITIONAL TABLES AND FIGURES

Figure 12: All SBox Terms and Mappings

 36

x0 + x3 + y1 + x0y1 + x0y2 + x1y0 = 0

x1 + x3 + x0y1 + x0y3 + x1y0 + x3y3 = 0

x0 + x1 + x2 + x0y1 + x1y1 + x1y3 + x2y0 = 0

x0 + x2 + x3 + y3 + x0y0 + x1y2 + x3y0 = 0

x0 + y0 + y1 + x0y1 + x1y0 + x3y0 = 1

x1 + y2 + x1y2 + x3y1 + x3y2 = 1

x1 + y2 + y3 + x0y1 + x1y2 + x2y3 = 1

x3 + y0 + x0y2 + x3y0 = 1

x3 + y0 + x0y3 + x2y1 + x2y2 + x2y3 = 1

x3 + y2 + x0y0 + x1y1 + x2y1 = 1

x3 + y2 + x1y0 + x2y1 + x3y0 + x3y2 = 1

x2 + x3 + y0 + y3 + x2y0 + x2y3 + x3y3 = 1

x0y0 + x1y0 + x1y1 + x3y0 + x3y2 = 0

x0y2 + x0y3 + x1y3 + x2y0 + x2y2 = 0

x1y3 + x2y0 + x2y1 + x2y3 + x3y0 = 0

y1 + x0y0 + x0y3 + x1y0 + x1y3 + x3y1 = 0

y3 + x0y1 + x2y3 + x3y1 + x3y2 = 0

y3 + x0y2 + x1y2 + x2y2 + x3y2 + x3y3 = 0

y0 + y2 + x0y2 + x1y0 + x2y1 + x3y2 = 0

x2 + x1y2 + x1y3 + x2y1 + x2y2 + x3y2 = 0

x2 + y1 + x0y1 + x1y1 + x2y2 + x3y3 = 0

x2 + y3 + x0y2 + x1y3 + x2y1 + x3y3 = 0

x0 + x1 + y1 + x0y2 + x0y3 + x3y3 = 0

x0 + x3 + x0y0 + x0y1 + x2y0 + x2y2 + x3y1 = 0

Figure 13: SBox Equations - Set One

yi ji = ci for 0 ≤ i < 16
ym ji = ci for 16 ≤ i < 28, and 20 ≤ m < 31
ym ji = ci for 28 ≤ i < 32, and 16 ≤ m < 20
ym ji = ci for 32 ≤ i < 40, and 40 ≤ m < 48
ym ji = ci for 40 ≤ i < 48, and 32 ≤ m < 40
ym ji = ci for 48 ≤ i < 52, and 60 ≤ m < 64
ym ji = ci for 52 ≤ i < 64, and 48 ≤ m < 60

Figure 14: Equations after the SBox
Where yi and ym are the bits output from the SBox adjusted for the ShiftRows,

ji are the bits of the second round key, and ci are the bits of the ciphertext.

 37

x0 + x1 + y0 + y2 + y3 + x0y1 + x0y2 + x0y3 + x1y0 +
x1y1 + x2y0 + x2y1 + x2y2 + x2y3 + x3y0 + x3y2 +
x3y3 = 0

x0 + x1 + y0 + y1 + y2 + y3 + x0y0 + x0y1 + x0y2 +

x1y1 + x1y3 + x2y0 + x2y1 + x2y2 + x2y3 + x3y0 +
x3y1 + x3y2 + x3y3 = 0

x0 + x2 + y1 + y2 + y3 + x0y0 + x0y1 + x0y2 + x0y3 +

x1y0 + x1y1 + x1y3 + x2y1 + x2y2 + x2y3 + x3y0 +
x3y3 = 1

x0 + x3 + y0 + y1 + y2 + y3 + x0y0 + x0y1 + x0y2 +

x1y0 + x1y1 + x1y2 + x1y3 + x2y0 + x2y2 + x2y3 +
x3y2 + x3y3 = 0

x0 + x3 + y0 + y1 + y2 + y3 + x0y0 + x0y1 + x0y3 +

x1y0 + x1y1 + x1y2 + x1y3 + x2y0 + x2y1 + x3y0 +
x3y2 + x3y3 = 0

x0 + x3 + y0 + y1 + y2 + y3 + x0y0 + x0y2 + x0y3 +

x1y0 + x1y1 + x1y3 + x2y0 + x2y1 + x2y2 + x2y3 +
x3y0 + x3y1 + x3y2 = 0

x1 + x3 + y0 + y2 + y3 + x0y0 + x1y0 + x1y1 + x1y3 +

x2y0 + x2y1 + x2y2 + x2y3 + x3y0 + x3y1 + x3y2 +
x3y3 = 0

x0 + x1 + x2 + y1 + y3 + x0y0 + x0y1 + x0y2 + x0y3 +

x1y0 + x1y1 + x1y2 + x2y0 + x2y2 + x3y1 + x3y2 +
x3y3 = 0

x0 + x1 + x2 + y1 + y3 + x0y0 + x0y1 + x1y0 + x1y1 +

x1y2 + x2y0 + x2y1 + x2y3 + x3y0 + x3y1 + x3y2 +
x3y3 = 0

x0 + x1 + x2 + y1 + y3 + x0y0 + x0y1 + x0y2 + x0y3 +

x1y0 + x1y1 + x1y2 + x1y3 + x2y1 + x2y2 + x2y3 +
x3y0 + x3y1 + x3y2 + x3y3 = 0

x0 + x1 + x2 + y0 + y1 + y2 + y3 + x0y0 + x0y1 + x0y3

+ x1y1 + x1y2 + x1y3 + x2y2 + x2y3 + x3y0 + x3y1
+ x3y3 = 0

x0 + x1 + x2 + y0 + y1 + y2 + y3 + x0y1 + x0y3 + x1y0

+ x1y2 + x2y0 + x2y1 + x2y2 + x3y0 + x3y1 + x3y2
+ x3y3 = 0

x0 + x1 + x3 + y0 + y1 + x0y0 + x0y1 + x0y2 + x0y3 +
x1y0 + x1y1 + x1y2 + x1y3 + x2y0 + x2y1 + x2y2 +
x3y0 + x3y1 + x3y2 = 1

x0 + x1 + x3 + y0 + y1 + y3 + x0y0 + x0y2 + x0y3 +

x1y0 + x1y1 + x1y2 + x1y3 + x2y0 + x2y1 + x2y2 +
x2y3 + x3y0 = 1

x0 + x2 + x3 + y0 + y2 + y3 + x0y0 + x0y1 + x0y2 +

x0y3 + x1y0 + x1y3 + x2y0 + x2y1 + x2y3 + x3y0 +
x3y1 + x3y2 + x3y3 = 0

x0 + x2 + x3 + y0 + y1 + y2 + y3 + x0y0 + x0y2 + x0y3

+ x1y0 + x1y1 + x1y2 + x2y0 + x2y3 + x3y0 + x3y1
= 0

x1 + x2 + x3 + y0 + y2 + x0y0 + x0y1 + x0y2 + x0y3 +

x1y0 + x1y1 + x1y2 + x2y0 + x2y1 + x2y2 + x2y3 +
x3y2 + x3y3 = 0

x1 + x2 + x3 + y0 + y1 + y2 + x0y1 + x0y2 + x1y1 +

x1y2 + x1y3 + x2y0 + x2y1 + x2y2 + x2y3 + x3y1 +
x3y2 + x3y3 = 0

x1 + x2 + x3 + y0 + y1 + y2 + x0y0 + x0y1 + x0y2 +

x1y0 + x1y2 + x1y3 + x2y0 + x2y1 + x2y2 + x2y3 +
x3y0 + x3y1 + x3y3 = 0

x1 + x2 + x3 + y0 + y2 + y3 + x0y0 + x0y2 + x0y3 +

x1y0 + x1y1 + x1y2 + x1y3 + x2y2 + x2y3 + x3y0 +
x3y1 + x3y3 = 0

x1 + x2 + x3 + y0 + y1 + y2 + y3 + x0y0 + x0y1 + x0y2

+ x0y3 + x1y0 + x2y1 + x2y2 + x2y3 + x3y0 + x3y1
+ x3y2 = 0

x1 + x2 + x3 + y0 + y1 + y2 + y3 + x0y0 + x0y2 + x1y0

+ x1y2 + x1y3 + x2y0 + x2y1 + x2y2 + x3y0 + x3y2
+ x3y3 = 0

x0 + x1 + x2 + x3 + y0 + x0y0 + x0y2 + x0y3 + x1y0 +

x1y2 + x1y3 + x2y0 + x2y1 + x3y0 + x3y1 + x3y2 +
x3y3 = 1

x0 + x1 + x2 + x3 + y2 + x0y2 + x1y0 + x1y1 + x1y2 +

x1y3 + x2y0 + x2y1 + x2y2 + x2y3 + x3y0 + x3y1 +
x3y2 + x3y3 = 1

Figure 15: SBox Equations – Set Two

 38

0 = k0 + z0 + j0
0 = k1 + z1 + j1
0 = k2 + z2 + j2
1 = k3 + z3 + j3
0 = kt + zt + jt for 4 ≤ t < 15
0 = ju + ku + jv for 16 ≤ u < 64 and 0 ≤ v < 48

Figure 16: ExpandRoundKey Equations
Where ji with 0 ≤ i < 64 are the bits of the first round key and zm with 0 ≤ m < 16

are the bits of the output of the SubBytes operation

 39

Table 4: Matrix Terms - First Half
Above are the terms used in the system of equations, they are numbered

in the order they are stored in the matrix shown in the sample data.

 40

Table 5: Matrix Terms - Second Half
Above are the terms used in the system of equations, they are numbered in the

order they are stored in the matrix shown in the sample data.

 41

APPENDIX B

INPUT DATA

 The following 27 pages contain an example of the matrix input to the

Gaussian Elimination. There are ten bits per each column of the table. If all the

bits in a cell were zero, only one zero is shown instead of ten.

 This example had the following data from the execution of rAES:

The plaintext is:

0111000001101100011000010110100101101110011101000110010101111000

The ciphertext is:

1011100010110111110110000111100011100101100101011011100110100010

The key is:

1000111110100100011111110000101100110100100101011110100011000001

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

APPENDIX C

OUTPUT DATA

 The following 28 pages contain an example of the matrix output from the

Gaussian Elimination. There are ten bits per each column of the table. If all the

bits in a cell were zero, only one zero is shown instead of ten.

 This example had the following data from the execution of rAES:

The plaintext is:

0111000001101100011000010110100101101110011101000110010101111000

The ciphertext is:

1011100010110111110110000111100011100101100101011011100110100010

The key is:

1000111110100100011111110000101100110100100101011110100011000001

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

