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Since Rijndael was accepted as the new Advanced Encryption Standard 

by the NIST, several techniques have been developed to attack it.  One of the 

more controversial techniques is a relatively new mathematically based attack 

known as Extended Sparse Linearization, or XSL.  Estimates for a successful 

attack on AES using XSL are extremely large (best estimate is 2100 encryptions), 

so no attempt to implement the attack has yet been made.   

To show that the attack is viable, a reduced version of AES can be 

implemented and a modification of the XSL attack can be used on the reduced 

version.  I have implemented the reduced version of AES, referred to as rAES, as 

well as the attack.  In this document it will be shown that the attack fails.  Since 

the attack failed on the reduced version, the result can be extended to show that 

it cannot be made on the full version either. 
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CHAPTER I 

INTRODUCTION 
 
 
 

 After investigating several cryptographic algorithms for possible research 

topics, the Advanced Encryption Standard (AES) was chosen.  The AES was 

selected because it is relatively new and untested, providing the best opportunity 

in finding a research topic.  Once the AES was chosen, the algorithm was 

examined in detail.  The AES was implemented using Java so that the actual 

running of the algorithm for the encryption and decryption could be observed. 

 Then others’ work into attacking the AES was examined.  Several attack 

techniques have been proposed for the AES including Extended Linearization [4], 

Extended Sparse Linearization [4], power attacks [2], and a modification of the 

AES to improve the running time for Extended Sparse Linearization called the 

Better Encryption Standard (BES) [9].  While investigating the details of these 

approaches, several authors called for research into applying the XSL technique 

on a real system [3, 8, 11, 12], to see if it worked in an applied fashion and not 

just as theory.  Therefore it was decided to pursue an attack that would be similar 

to XSL on an encryption algorithm like the AES to see if the attack works. 
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The Advanced Encryption Standard 

In the late 1990’s it became apparent to the National Institute of Standards 

and Technology (NIST) that the encryption standard, DES, was no longer 

sufficiently secure.  Therefore they issued a request for an algorithm to replace 

DES.  Once agreed upon the new standard would be referred to as the 

Advanced Encryption Standard.  Several algorithms were submitted to become 

AES, and through a tiered process of elimination ultimately one was chosen.  

This was the submission from Joan Daemen and Vincent Rijmen and they called 

their algorithm Rijndael, a combination of both of their last names. 

 Some modifications were made that restricted the original Rijndael so the 

AES is not exactly the same as the original submission.  For the purposes of this 

paper we are concerned with the final version in the AES, released by the NIST 

in November of 2001 [14].  The AES algorithm is a block cipher, which means 

that the original plaintext message is broken down into blocks of a fixed size, and 

then the algorithm processes the blocks individually.  In the AES the block size is 

128 bits.  Each block is handled exactly the same way, so we need only concern 

ourselves with how one block is processed.  The AES encryption performs 

several operations on the block, which are described as four steps.  These steps 

are called SubBytes (Substitute Bytes), ShiftRows, MixColumns, and 

AddRoundKey.  The steps are performed repeatedly on the block.  Each 

repetition is referred to as a round.  There is one deviance in the pattern of steps.  

In the last round the MixColumns step is not performed.  Similarly, the AES 
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decryption performs four steps, three of them are different, called 

InverseSubBytes, InverseShiftRows, InverseMixColumns, and the last step is the 

same as the encryption’s AddRoundKey. 

 The first step of the encryption, SubBytes, breaks the 128-bit block into 

bytes and performs a substitution on each byte.  This substitution is made using 

a look-up table called the SBox.  For any byte, the first four bits represent the row 

in the table and the last four bits represent the column.  The intersection of the 

row and column gives you the output byte.  For example, the input byte 

00101010 would be split into row 0010 and column 1010.  For clarity the figure of 

the SBox below uses hexadecimal entries so we have row 2 and column A.  As 

you can see in Figure 1, 2A maps to E5 so the output byte is 11100101. 

Figure 1: The AES SBox 
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 The second step, ShiftRows, takes the bytes in the block and mixes them 

within their own row.  For this step, and the MixColumns step, it is simpler to 

understand the process if you consider the 128 bits of the block as a matrix, with 

four bytes per row and four bytes per column.  As you can see in Figure 2, 

ShiftRows leaves the first row of the matrix alone, but the rest of the rows are 

shuffled.  Each entry in the figure represents one byte, so that the top row is 

composed of bits 0-31 of the block, row two is bits 32-63, row three is bits 64-95, 

and row four is bits 96-127. 

 The third step, MixColumns, performs mathematical operations on the 

columns of the result of the ShiftRows step.  This is essentially a matrix 

multiplication.  The input state matrix to MixColumns is multiplied by a given 

matrix and the result is the output of MixColumns.  You can see the matrix used 

for the multiplication in Figure 3.  For instance, the first entry in the output matrix 

would be calculated as follows: 

 

Figure 2: State matrix before and after 
ShiftRows. 
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where s0 is the first byte from the ShiftRows output, s4 is the fifth byte, and so on.  

The addition is done using a bit wise exclusive-or ( ).  The matrix multiplication is 

done in the Galois Field GF(28). 

 A field is a set with two binary operations, usually referred to as addition 

and multiplication, which operate on that set.  The two operations must not have 

results that are outside of the set and there must be a multiplicative inverse for 

each element in the set [13].  A Galois Field is a finite field, which means that the 

set of elements of the field is finite.  The set for GF(28) contains the integers from 

zero to 255. 

One does not need to understand all the properties of a Galois Field in 

order to perform the multiplication, there a just two rules to use.  First, one finds 

the results of multiplying the number by the powers of two.  If the result is greater 

than 255, then an additional operation must be performed.  This operation is to 

add the result to a given constant, and throw away the bits over eight. 

 

 

Figure 3: MixColumns Matrix (in hexadecimal) 
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For example, 

, but 

 

so we take that result and add it to the constant 100011011 as defined in the 

AES.  Then one has . 

 To perform multiplications with numbers that aren’t powers of two, one just 

use a bit-wise exclusive-or with the powers of two that make up that number.  For 

example, 

 

 

which is what one would expect. 

 The last step is the AddRoundKey, which takes the result of the 

MixColumns step and performs an exclusive-or with a secret key.  The secret key 

is where all the security of the AES lies.  Without the secret key anyone could 

perform the above operations and get the same results.  The secret key needs to 

be chosen then so that no one can guess it.  The use of one secret key in this 

way makes the AES a private key system.  This means that the key must be kept 

private.  In the AES, the secret key is initially either 128, 192, or 256 bits long.  

An operation called ExpandRoundKey is performed on the key to generate 

several round keys.  One round key is used in each of the AddRoundKey steps 

since the 4 steps are performed repeatedly.  The number of times the four steps 

are repeated is based on the size of the initial key.  Each repetition is referred to 
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as a round.  For a 128-bit key there are 10 rounds, for a 192-bit key there are 12 

rounds, and for a 256-bit key there are 14 rounds.  There original key is added to 

the plaintext before the first round, so there are actually 11, 13, and 15 keys 

used, respectively.  Keep in mind, all the round keys are derived mathematically 

from the original key, so if you have either the round keys or the original key you 

can calculate the others. 

 The ExpandRoundKey operation is performed only once.  The operation 

works on a row of the original key at a time.  A row is also referred to as a word, 

which is 32-bits long in the 128-bit key case.  Therefore the original key can be 

expressed as four words, which we will call w0, w1, w2, and w3.  We will index the 

round keys starting from w4 for the first word of the first round key (so then the 

second round key starts at w8.)  The first three words in each round key are 

calculated the same way as follows: 

wi = wi - 4  wi - 1 

where i ranges from 0 to 44 for a 128-bit key.  The last word in each round key 

uses a more complex calculation: 

wi = wi - 4  SubWord(RotWord(wi - 1))  Rconi / 4 

Table 1: The Round Constants for the 10-round version of AES (in hexadecimal)
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RotWord simply performs a one byte circular left shift on the word.  SubWord 

uses the SBox to substitute each of the bytes for a new byte in the same way as 

described above.  The Rconi / 4 is a constant.  The constants for the 128-bit key 

are given in Table 1. 

 All of the above refers to the encryption of data using the AES, but that is 

not very useful if you cannot perform a decryption that gives you back the original 

data.  The decryption is very similar to the encryption, but it is not exactly the 

same.  Essentially, all of the steps in the encryption must be performed 

backwards to get the plaintext again.  The input to the decryption is the 

ciphertext.  The last round key is added back to it since the inverse of exclusive-

or is just another exclusive-or.  Since we are undoing the last round, we do not 

need to perform the InverseMixColumns step yet, so we perform the 

InverseShiftRows step.  This step just performs the shifts in the opposite 

direction as can be seen in Figure 4.  

 The next step to perform is InverseSubBytes.  This step works the same 

way as SubBytes but it uses the Inverse SBox to do the substitution.  The 

Figure 4: State matrix before and after InverseShiftRows. 
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Inverse SBox can be seen in Figure 5.  If we take the example from before you 

can see how the Inverse SBox reverses the SBox effect on the bits.  So the input 

byte 11100101 would be split into row 1110 and column 0101.  In hexadecimal 

this is row E column 5.  As you can see in Figure 5, E5 maps to 2A, which is 

what we had input to the SBox before.  

 The third operation is to add the second to last round key to the output of 

the Inverse SBox.  Now we are in the second to last round, so we need to 

perform the InverseMixColumns.  InverseMixColumns works the same way as 

Figure 5: Inverse SBox 
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MixColumns, but a different matrix is used for the multiplication.  This matrix, 

shown in Figure 6, is the inverse of the MixColumns matrix. 

 From the second round of the decryption on all of the steps are performed, 

with an additional AddRoundKey done at the very end which will produce the 

plaintext message. 

The Linearization Techniques 

Once Rijndael was submitted to NIST, others began examining it for 

weaknesses.  It was noted in [10] that Rijndael had an unusual structure that 

allows it to be expressed as equations because it can be broken into distinct 

parts.  This observation led to a technique to attempt to break the encryption 

using these equations.  One of the techniques proposed for an attack on Rijndael 

was Extended Linearization, or XL [4].  This technique was devised for other 

encryption algorithms and was applied to the AES in [4].   

XL converts the operations performed on the block into linear equations.  

The derivation of the equations (which is the same for XL and XSL) is detailed in 

Chapter III.  The hope is that this large system of equations can be solved, which 

Figure 6: InverseMixColumns Matrix (in hexadecimal) 
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results in obtaining the key.  The system of equations is represented as a matrix 

since it is linear.  A technique for diagonalizing the matrix, such as Gaussian 

Elimination, is applied to see if the system is solvable.  If the system is solved 

then the key has been found and the encryption is cracked.  If the system is not 

solved, an attempt to change the system so that it is solvable is made.  This is 

done by solving the system for one term, then multiplying all of the equations by 

all the possible second order terms.  If any new equations result, they are added 

to the system.  Then the Gaussian Elimination is tried on the updated system.  In 

this fashion the process repeats until the system is solved. 

When analyzing the XL technique, the authors estimated that it would be 

better than brute force, but still outside the realm of feasibility.  A second 

technique was designed by Courtois and Pieprzyk [4] to improve upon XL, which 

was termed XSL or Extended Sparse Linearization.  This technique also attempts 

to solve a large system of linear equations to obtain the key, but it improves upon 

the method of increasing the number of equations to speed up the process.  In 

both techniques the system of linear equations is considered sparse.  This 

means that for any given equation in the system only a relatively small number of 

terms are present.  Such a system is shown in Appendix A and you can see it is 

composed largely of zeroes, meaning those terms have a zero coefficient. 

In XSL, once a certain number of linearly independent equations are 

determined for the system, the two alternating steps are used to solve the 

system.  First, the same as XL, an algorithm to attempt to solve the matrix 
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representing the equations is used, such as Gaussian Elimination.  If the system 

is unsolvable, because there aren’t enough equations compared to the number of 

terms, the T′ Method is used to increase the number of equations to enough to 

solve all of the terms in the system.  The T′ Method is where XSL differs from XL.  

In this method the equations are all solved relative to two terms.  This gives two 

equivalent systems.  Next, the terms from the second system, instead of all 

possible terms, are used to increase the number of equations by multiplying the 

terms in the second system by the equations in the second system (see [16] for 

an example of this method).  By repeating the Gaussian Elimination and T′ 

Method steps the hope is that eventually a solvable system will be created.  For 

the AES the estimate given by Murphy and Robshaw for creating a solvable 

system is 2100 [9]. 
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CHAPTER II 

REDUCED AES 
 
 
 

 As was stated in the previous chapter, the estimate for the number of 

executions needed to find the key for the 10-round AES is 2100.  This is 

significantly less than a brute force attack, but it would still require too long to be 

feasible.  To show whether or not there is an attack against the AES that works 

when applied, the running time of the attack needed to be reduced. 

 To decrease the running time to something that was feasible there are two 

choices, to modify the attack or to modify the algorithm the attack is on.  For XSL 

the running time is tied to the size of the system of equations and the number of 

terms in those equations.  Therefore if the number of equations and terms can be 

reduce then XSL should run more quickly.  In order to reduce the number of 

equations and therefore the running time of XSL, I created a reduced version of 

AES, that we will call rAES.  This version has all the same operations as the full 

version, but it manipulates four bits in place of bytes.  Therefore all of the bit 

measurements are halved.  The block size is 64 bits and the smallest key is 64 

bits.  The program was implemented to allow the number of rounds to be 

changed as well.  For the 64 bit key anywhere from one to ten rounds can be 

executed.  The hope was that the combination of reducing the block size and the 
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number of rounds would allow the equations to be solved in a feasible amount of 

time. 

 In order to convert AES to four bits, several parts of the algorithm had to 

be modified.  Of course all of the manipulations had to be altered to take four bits 

instead of a byte, but more complex changes had to be made to the SBox, the 

Galois Field had to be changed, and the round constants had to be recalculated.  

The authors of Rijndael were thorough and included their rationale for the choice 

of SBox and round constants, so the 4-bit version was created to also meet those 

criteria [13, 14].  Both the encryption and decryption steps for rAES were created.  

The reduced algorithm was kept as close to the full version at every opportunity 

in order to ensure it’s behavior would be as close to equivalent as possible. 

 For the AES [14], the SBox was derived following three steps.  The first 

step is to fill the SBox with the values from 00000000 through 11111111 going 

across the columns and then down the rows, so the first row in hexadecimal is 

00, 01, 02, 03, …, 0F and the second row is 10, 11, 12, 13, ..., 1F.  Next, all of 

the entries are changed to their multiplicative inverse over the Galois Field.  

Finally an equation is used to manipulate the bits of each byte.  The equation 

exclusive-ors specific bits in each byte and adds them to a constant as follows: 

yi = xi  x(i+4) mod 8  x(i+5) mod 8  x(i+6) mod 8  x(i+7) mod 8  ci 

where xi represents the input bits, numbered so that the byte 10010000 would 

have x7 = 1 and x4 = 1 with the other xi equal to zero.  The value yi is the output bit 

that is used as part of the SBox entry for that byte and ci is a constant, given as 
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the hexadecimal number 63.  The rationale given for this choice was so that the 

correlation between the input byte and the output byte could not be easily 

expressed as a mathematical function [13, 14].  The specific choice of which bits 

to use and what constant to use were chosen to prevent the SBox from having 

any mappings where SubBytes(x) = x and no mappings where SubBytes(x) =  

(means the 1’s in x become 0’s in  and the 0’s in x become 1’s in .)  Finally, the 

SBox was designed so that the inverse SBox, used for decryption, would not 

have a case where ISBox(x) = SBox(x). 

Table 2: Multiplication in GF(24) 
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 Several different rAES SBoxes were tried, and through trial and error one 

was found that meet all of the above criteria.  It was found by creating an SBox 

with a 2-bit index to the row and column and each entry is four bits.  This created 

an SBox with 16 entries instead of 256.  The entries were initialized to 0000 

through 1111 with the first row being 0000, 0001, 0010, 0011 in binary and the 

second row being 0100, 0101, 0110, 0111.  All of the multiplicative inverses were 

found using the Galois Field GF(24) instead of GF(28).  For this Galois Field the 

constant 10011 was chosen to be used if the value exceeded four bits.  For 

example, .  All of the multiplications in GF(24) 

can be seen in Table 2. 

 The GF(24) containing the set from zero to 16 with the addition and 

multiplication operations as defined above does create a Galois Field.  Since the 

addition is done as an exclusive-or the addition is automatically in the field.  By 

examining Table 2 it is easy to see that all of the values are in the set.  Also, all 

of the values in the set have a multiplicative inverse (the entries in the table that 

are equal to one).  Therefore this is a Galois Field. 

 Finally the following equation was applied to get the resulting SBox: 

yi = xi  x(i+1) mod 4  x(i+3) mod 4  ci 

where in this case ci is five.  This equation and constant value were found to be a 

combination that allowed an SBox that met all the necessary criteria.  For 

instance, the entry at (0, 2) was calculated as follows: 
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The value was initialized to 0010.  The inverse of 0010 (as can be 

found in Table 2) is 1001.  This value is then input to the equation 

so we have:  

y0 = 1  0  1  1 = 1 

y1 = 0  0  1  0 = 1 

y2 = 0  1  0  1 = 0 

y3 = 1  1  0  0 = 0 

which gives us the result of 0011 = 3. 

This example can also be done by representing the equation given above as a 

matrix, and representing the value as a column as seen in Figure 7.  The 

resulting SBox and Inverse SBox can be seen in Figures 8 and 9. 

Figure 8: 4-Bit SBox   Figure 9: 4-Bit Inverse SBox 

Figure 7:  Matrix Representation of SBox Derivation 
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 The round constants for rAES were calculated using the same method as 

those for the AES, but reduced to output four bits.  In the AES the round constant 

Rconj = (RCj, 0, 0, 0) where1 ≤ j ≤ 10 with each member of the list representing a 

byte.  The value RCj = 2 · RCj – 1 and RC1 = 1.  All of the math is performed over the 

Galois Field GF(28).  For rAES the round constant Rconj = (RCj, 0, 0, 0) where 

each member represents four bits.  The value RCj = 2 · RCj – 1 and RC1 = 1.  All of 

the math is performed over the Galois Field GF(24).  For example, the calculation 

for RC2 = 2 · 1 = 2 so Rcon2 = 0010000000000000.  The round constants for rAES 

can be seen in Table 3. 

 The ShiftRows and InverseShiftRows for rAES work exactly the same as 

in the AES except each entry in the matrix shown in Figures 2 and 4 represent 

four bits instead of a byte (b0 represents bits 0-3, the top row represents bits 0-

15, row two is bits 16-31, row three is bits 32-47, and row four is bits 48-63). 

 The MixColums step works the same way in rAES as it does in the AES, 

but each hex value in the matrix is represented as a 4-bit number instead of as a 

byte.  All of the values in the MixColumns matrix are less than 16 so they can 

directly be written in four bits.  The InverseMixColumns matrix is also just 

changed to represent all of the values as 4-bits instead of bytes.  The 

Table 3: The rAES Round Constants for the 10-round version (in decimal) 
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mathematics was checked and the same values work for the InverseMixColumns 

even though they have been represented as only four bits. 

 The number of rounds was allowed to be variable in rAES.  The minimum 

allowed is one round and the maximum is 10 for a 64-bit key, 12 for a 96-bit key, 

and 14 for a 128-bit key.  For the one round option, the MixColumns is not 

performed, but for all other number of rounds the algorithm operates as normal, 

with the last round not having MixColumns but all the other rounds perform all of 

the steps.  The decryption is done using the inverse steps as described above. 

 The rAES was designed to improve the running time of a possible attack.  

The design of rAES was made to follow the AES as closely as possible as can be 

seen in the description given above.  Now an attempt to attack rAES could be 

made to see if there are any weaknesses.  The rAES is inherently weaker than 

the AES, so if an attack for rAES cannot be found then a similar attack on AES 

would be even less effective.  With the reduced version complete, the equations 

representing it can be found.  The equations used in the attack on rAES are 

described in Chapter III.



 20

CHAPTER III 

APPLIED ATTACK 
 
 
 

The Equations 

 In order to use an XSL-style attack on rAES, the equations that represent 

the steps of the algorithm had to be derived for the 4-bit version.  This derivation 

was similar to that described in [4].  The equations from the encryption and not 

the decryption were found since the equations that result from the MixColumns 

step are simpler than those that result from the InverseMixColumns.  This is 

because performing the multiplication in GF(24) on the values in the MixColumns 

matrix requires fewer calculations than performing them with the 

InverseMixColumns matrix.  The manipulations performed on the bits of the 

plaintext can be grouped into two types, the diffusion done by the AddRoundKey, 

ShiftRows, and MixColumns steps, and the nonlinear step done by SubBytes.  

The equations for the diffusion steps are fairly straight forward to derive, but the 

SubBytes step was designed to try to prevent a simple representation of the 

manipulations on the bits being described as linear equations [13, 14]. 

 Due to the criteria used in the design of the SBox for the AES, it was 

found in [4, 9, 10] that equations that are true for all the different mappings of the 

SBox can be found.  It was found that using first order and second order terms 

from the SBox mappings were sufficient to describe the SBox [4].  The terms 
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came from the input and output bits of the SBox.  Similarly, such equations were 

found to exist for rAES.  Once the SBox for rAES was created (see Fig. 7 on 

page 17) an algorithm to find all of the true equations for this SBox was devised.  

The terms for the rAES SBox are just the bits of the four bits input and four bits 

output, and all the possible second order combinations of the input and output 

bits.  This creates 24 terms.  Since there are 16 entries in the SBox, there are 16 

possible true values for all of the terms.  The terms and all possible values for the 

mappings can be seen in Figure 12 in Appendix A.  The algorithm to find the true 

equations used a nested loop structure to sum under GF(2) all combinations of 

the terms and returned the combinations where the result was 0 or 1 for all 

equations.  This means that no matter what the input to the SBox was, the 

equations would have the same result.  A total of 2039 such equations were 

found to be true for the rAES SBox, with the equations varying in length from only 

five terms all the way up to 20 terms.  Since there are only 24 SBox terms, we 

decided to use 24 of the 2039 SBox equations in the implementation.  The 

specific equations chosen can be seen in Figure 13 in Appendix A. 

 Since the SBox is performed on four bits at a time and there are 64 bits in 

a block, it was necessary to have a different set of 24 SBox equations for each of 

the 16 times the SBox gets used in a single round.  This gives a total of 384 

SBox equations and 384 terms.  Of these 384 terms, 128 are first order and the 

remaining 256 are second order terms. 
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 The equations from the other three steps were more directly determined 

since they are already linear in nature.  The equations for the first AddRoundKey 

step were from the bits of the input plaintext, the bits of the key, and the bits that 

result from using the exclusive-or operation on them.  There are 64 such 

equations with 128 terms (the plaintext bits are known, the key and result bits are 

unknown).  The equations are as follows: 

ri  ki = pi 

where ri is a bit of the result of the AddRoundKey operation, ki is a bit of the key, 

and pi is a bit of the plaintext, with 0 ≤ i < 64. 

 The operations on the bits done by the ShiftRows, MixColumns, and 

second AddRoundKey steps were all combined into a single set of equations.  

These terms in these equations were from the bits of the output of the SBox, the 

bits of the second round key, and the resulting bits from after the round key was 

added.  The locations of the SBox output bits were tracked through the 

ShiftRows and MixColumns steps so that the bit from the SBox that was added to 

a specific bit of the round key was known.  This resulted in the 64 equations.  To 

see if the technique would work even without the MixColumns step, which is what 

occurs if only one round is used, the equations ignoring the MixColumns 

manipulations on the bits were also devised.  These can be seen in Figure 14 in 

Appendix A.  In the one round case there are 64 equations with 128 unknown 

terms since the resulting bits from the final AddRoundKey step are the known 

ciphertext bits. 
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 This gives us a total of 512 equations and 512 terms.  All of the equations 

found above are unique, but the terms for the output bits of the first 

AddRoundKey are the same as the input bits to the SBox, and the output bits 

from the SBox are the same as the input bits to the second AddRoundKey.  It 

was considered to attempt to solve subsets of these equations as separate 

systems, but the ratio of the number of terms to the number of equations for any 

subset is not large enough.  For instance, if only the equations from the first 

AddRoundKey are considered we have 128 terms but only 64 equations.  When 

solving linear systems of equations at least an equal number of equations to 

terms is necessary in order to uniquely solve the system using conventional 

methods such as Gaussian Elimination.  Once the equations were determined it 

remained to attempt to solve the system of equations found. 

The Attack 

 The system of equations described above was input to a modified version 

of Gaussian Elimination with Backwards Substitution.  The algorithm was 

modified as shown in Figure 10, to optimize it for operations in GF(2).  The 

normal version solves systems with decimal coefficients and solutions; here all 

the coefficients and solutions will be binary. 

 The modification to the Gaussian Elimination algorithm occurred to the 

steps shown in bold in Figure 10.  Originally the multiplication, subtraction, and 

replacement of row j was performed in every execution of the loops over i and j.  

When m is zero, these steps just end up replacing row j with the same values it 
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already had.  Therefore, if m is zero, all three of these steps can be skipped.  The 

value m can only be zero or one, and if it is one then the steps are executed.  

Modified Gaussian Elimination 
Input: Matrix representation of the system of equations 
Output: Array containing the solutions for each term 
m ← matrix column count – 2 
solutions[m+1] 
for (i ← 0; i < m; i++) 
 p ← n 
 for (k ← 0; k < m; k++) 
  if matrix location (k,i) is one 
   p ← k 
   end loop over k 
 if p ≥ m 
  return false   

if p ≠ i 
  switch row i of the matrix with row p of the matrix 
 for (j ← i+1; j ≤ m; j++) 
  m ← 0 // m is the matrix location (j,i) divided by location (i,i) 
  if matrix location (j,i) is one and matrix location (i,i) is one 
   m ← 1 
   multiply row i of the matrix with m 
   subtract the above from row j of the matrix 
   replace row j of the matrix with the above 
if matrix location (m,m) = 0 
 return false 
if matrix location (m-1,m) is one and matrix location (m-1,m-1) is one 
 solutions[m] ← 1 
else solutions[m] ← 0 
for (i ← m-1; i ≥ 0; i--) 
 sum ← 0 
 for (j ← i+1; j ≤ m; j++) 
  sum ← sum + matrix location (i,j) + solutions[j] 
 sum ← sum mod 2 // math is over GF(2) 
 sum ← matrix location (i, m+1) – sum 
 sum ← sum / matrix location (i,i) 
 if sum = -1 
  sum ← 1 // math in GF(2) 
 solutions[i] ← sum 
return true 

Figure 10:  Modified Gaussian Elimination Version 1 
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The value m is a result of dividing two entries in the matrix, so m is only one if 

both entries are one.  Therefore on average m is only one 25% of the time.  This 

means that the three steps are skipped 75% of the time with this modification.  

Therefore the running time of the Gaussian Elimination has been optimized, 

though the asymptotic running time is the same.  Additional modifications were 

made to the italicized steps because all of the math needs to be done in binary. 

 It turned out that the system I found to represent rAES did not work well 

with the T′ Method.  The T′ Method relies upon each term appearing a relatively 

large number of times in the entire system.  For our system of 512 terms, any 

given term was found to appear in less than 4% of the equations.  This can be 

verified using Appendix A.  This means the number of executions of the T′ 

Method for the rAES equations is beyond the realm of feasibility.  Even though I 

had a system with an equal number of terms and equations, it was found that the 

system was not solvable in its initial state.  In the light of this observation, a 

different approach was taken to attempt to solve the system of equations. 

 For only one round of rAES, the number of equations that could be 

determined was much larger than the number of terms needed to solve the 

system, since typically an equal number of terms and equations are required.  

Therefore, the number of equations was increased to over 512. 

 The Gaussian Elimination algorithm was modified to allow for a non-

square matrix as can be seen in Figure 11.  The constant n was added to the 

algorithm to represent the number of equations in the system.  Before, the 
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number was the same as the number of terms so only one constant, m, was 

required.  In the situations where the number of equations and not the number of 

terms was needed, n has been substituted for m.  Essentially this means that all 

of the equations will be checked to try to find a subset of them that will allow all 

512 terms to be solved. 

 This technique essentially has the same end effect as the T′ Method, but 

achieves it in a different manner.  In the T′ Method the number of total equations 

is increased each time the T′ Method is executed, using our technique the 

number of equations starts out larger than the number of terms.  Then all that 

was required was to run the second modified version of Gaussian Elimination on 

the matrix. 

 The additional equations came from two sources, the SBox Equations 

found previously, and new equations from the ExpandRoundKey.  There were 

2039 SBox equations found and so far only 24 of them have been used in the 

attack.  That leaves 2015 left to try.  Initially, the shortest 24 equations were 

used, now the longest 24 equations will be added to increase the total to 48 

SBox equations over 24 SBox terms.  The second set of SBox equations can be 

seen in Figure 15 in Appendix A.  The ExpandRoundKey step, as described on 

page 7, uses exclusive-or, circular shifts, and the SBox to manipulate the bits.  

The first set of equations used for the SubBytes step was used for the SBox part 

of the ExpandRoundKey equations.  Only one out of every four words is passed 

through the SBox, the other three words per round key just use the exclusive-or 
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operation.  The equations for the ExpandRoundKey are combinations of the 

SBox equations using the ExpandRoundKey terms, and the equations shown in 

Figure 16 in Appendix A. 

Modified Gaussian Elimination 
Input: Matrix representation of the system of equations 
Output: Array containing the solutions for each term 
n ← matrix row count – 1 
m ← matrix column count – 2 
solutions[m+1] 
for (i ← 0; i < m; i++) 
 p ← n 
 for (k ← 0; k < n; k++) 
  if matrix location (k,i) is one 
   p ← k 
   end loop over k 
 if p ≥ n 
  return false   

if p ≠ i 
  switch row i of the matrix with row p of the matrix 
 for (j ← i+1; j ≤ n; j++) 
  m ← 0 // m is the matrix location (j,i) divided by location (i,i) 
  if matrix location (j,i) is one and matrix location (i,i) is one 
   m ← 1 
   multiply row i of the matrix with m 
   subtract the above from row j of the matrix 
   replace row j of the matrix with the above 
if matrix location (m,m) = 0 
 return false 
if matrix location (m-1,m) is one and matrix location (m-1,m-1) is one 
 solutions[m] ← 1 
else solutions[m] ← 0 
for (i ← m-1; i ≥ 0; i--) 
 sum ← 0 
 for (j ← i+1; j ≤ n; j++) 
  sum ← sum + matrix location (i,j) + solutions[j] 
 sum ← sum mod 2 // math is over GF(2) 
 sum ← matrix location (i, m+1) – sum 
 sum ← sum / matrix location (i,i) 
 if sum = -1 
  sum ← 1 // math in GF(2) 
 solutions[i] ← sum 
return true 

Figure 11:  Modified Gaussian Elimination Version 2 
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 The additional 24 SBox equations were added per each four bits.  This 

resulted in an addition of another 384 equations, bringing the total to 896 

equations with the terms remaining at 512.  There are 64 equations from the 

creation of the 64-bit round key.  There are 96 additional SBox equations from 

the round key expansion.  This gives a total of 1056 equations.  The RotWord 

and SubBytes parts of the ExpandRoundKey step produce some additional 

terms, 16 to be exact.  This increases the number of terms to 528.  There are 

also a separate set of second order SBox terms for the ExpandRoundKey which 

increases the total number of terms to 592.  Therefore the system used in the 

attack had 1056 equations describing 592 terms. 
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CHAPTER IV 

RESULTS 
 
 
 

 Initially, the code was run on the 512 term, 512 equation system.  It was 

found that this system was not sufficient to get solutions for all the terms.  When 

run using the first modified version of the Gaussian Elimination algorithm it was 

able to diagonalize the matrix down to term 133 as shown in Appendix A.  The 

code was run on several keys using the same plaintext (the word “plaintext” was 

used since it completely filled one block).  For any key the matrix could only be 

diagonalized to the same term.  Term 133, as can be seen in Table 4 of 

Appendix A, is j2 which is the third bit of the round key.  Since it was apparent 

that more equations related to the round keys were needed, those equations 

were added to the code next. 

 With the round key equations added in, the system was then 592 terms 

and 672 equations.  When the code was run with these changes, using the 

second modified version of the Gaussian Elimination algorithm, the matrix was 

diagonalized down to term 267, r2y3, the second order term of the third bit of the 

input to the SBox and the fourth bit of the output from the SBox.  Again, this 

situation occurred for any key used.  The point where the diagonalization stops is 

shown in an example execution of the attack on page 81.
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 Now, it seemed that more SBox equations were needed to create a 

solvable system, so the second set of SBox equations was added.  This 

increased the number of equations to 1056, leaving the number of terms at 592.  

Unexpectedly, doubling the number of SBox equations had no effect on the 

results of the Gaussian Elimination.  It was still only able to diagonalize the matrix 

to term 267.  Despite having nearly twice as many equations as terms, the 

system was found to be unsolvable.  Increasing the number of equations from 

672 to 1056 had no effect on the solvability of the system.  Considering these 

results it was decided that attempting to include more of the SBox equations 

would not help the situation. 

 In order to see if there was a pattern in the terms that could not be 

diagonalized by the Gaussian Elimination, the code was modified to not break 

when a term was found that could not be diagonalized.  Instead that term was 

added to the matrix in the correct location and just set to zero.  A statement 

noting that a term could not be diagonalized was output each time this occurred.  

When this was done it was found that the same terms in the SBox equations 

were not diagonalizable.  These terms were x2 y3, x3 y0,  x3 y1,  x3 y2, and x3 y3 

through term 319, then in the next set of SBox equations it increased to be x2 y1,  

x2 y2, x2 y3, x3 y0,  x3 y1,  x3 y2, and x3 y3 and continued in that pattern until term 383.  

From term 384 on the pattern was x2 y0, x2 y1, x2 y2, x2 y3, x3 y0, x3 y1, x3 y2, and x3 y3.  

There were also later terms that were found to be undiagonalizable.



 31

CHAPTER V 

CONCLUSIONS 
 
 
 

General Conclusions 

 The attack on rAES failed.  Despite having a sparse system of linear 

equations with nearly twice as many equations as terms the system was 

unsolvable, so the key could not be retrieved.  This result is good news for the 

AES.  As noted previously, if the attack on rAES fails, an attack on the AES 

would be even less likely to be successful. 

 In the process of attempting to attack rAES, some interesting side results 

were found.  Based on the experimental results, the solution of the linear system 

of equations representing the steps in rAES is not dependent on the plaintext 

choice or the key choice.  Logically, this makes sense, because the solution for 

an equation equal to one gives you no more information about the terms than an 

equation equal to zero.  This is important because it means that the security of 

rAES is the same no matter how cleverly the plaintext is chosen.  It follows that 

the strength of AES against this type of attack is also independent of the plaintext 

choice or key choice. 

 The improvements to the Gaussian Elimination to optimize it for equations 

in GF(2) improve the running time, but do not reduce the number of executions of 
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any of the loops.  Therefore it would not affect the general execution estimates 

given by others in [4, 9]. 

Future Work 

 The fact that specific terms in the SBox equations were the ones that were 

unsolvable indicates that some rules for selecting the SBox equations could be 

devised.  If such a rule or set of rules could be found, then the entire system of 

equations could be solvable. 

 Using the all available equations instead of the T′ Method reduces the 

running time to only one execution of the Gaussian Elimination algorithm instead 

of approximately 2100 or more.  Since the key and plaintext appear to have no 

effect on the solvability of the system, if a set of equations could be found that 

was solvable, then only one execution of the Gaussian Elimination would be 

needed.  The running time would then be O(n2), where n is the number of 

equations in the system.  The results indicate that finding a set of equations to 

solve even one round was not possible.  The advantage is if a system could be 

found that was solvable, it would only need to be found once.  Then the only 

work required is to set the specific plaintext and ciphertext bits and run the 

Gaussian Elimination on the matrix using the predetermined equations. 
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APPENDIX A 
 

ADDITIONAL TABLES AND FIGURES 
 
 
 

 
 
 
 

Figure 12:  All SBox Terms and Mappings 
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x0 + x3 + y1 + x0y1 + x0y2 + x1y0 = 0 

x1 + x3 + x0y1 + x0y3 + x1y0 + x3y3 = 0 

x0 + x1 + x2 + x0y1 + x1y1 + x1y3 + x2y0 = 0 

x0 + x2 + x3 + y3 + x0y0 + x1y2 + x3y0 = 0 

x0 + y0 + y1 + x0y1 + x1y0 + x3y0 = 1 

x1 + y2 + x1y2 + x3y1 + x3y2 = 1 

x1 + y2 + y3 + x0y1 + x1y2 + x2y3 = 1 

x3 + y0 + x0y2 + x3y0 = 1 

x3 + y0 + x0y3 + x2y1 + x2y2 + x2y3 = 1 

x3 + y2 + x0y0 + x1y1 + x2y1 = 1 

x3 + y2 + x1y0 + x2y1 + x3y0 + x3y2 = 1 

x2 + x3 + y0 + y3 + x2y0 + x2y3 + x3y3 = 1 

x0y0 + x1y0 + x1y1 + x3y0 + x3y2 = 0 

x0y2 + x0y3 + x1y3 + x2y0 + x2y2 = 0 

x1y3 + x2y0 + x2y1 + x2y3 + x3y0 = 0 

y1 + x0y0 + x0y3 + x1y0 + x1y3 + x3y1 = 0 

y3 + x0y1 + x2y3 + x3y1 + x3y2 = 0 

y3 + x0y2 + x1y2 + x2y2 + x3y2 + x3y3 = 0 

y0 + y2 + x0y2 + x1y0 + x2y1 + x3y2 = 0 

x2 + x1y2 + x1y3 + x2y1 + x2y2 + x3y2 = 0 

x2 + y1 + x0y1 + x1y1 + x2y2 + x3y3 = 0 

x2 + y3 + x0y2 + x1y3 + x2y1 + x3y3 = 0 

x0 + x1 + y1 + x0y2 + x0y3 + x3y3 = 0 

x0 + x3 + x0y0 + x0y1 + x2y0 + x2y2 + x3y1 = 0 

Figure 13:  SBox Equations - Set One 

yi  ji = ci for 0 ≤ i < 16 
ym  ji = ci for 16 ≤ i < 28, and 20 ≤ m < 31 
ym  ji = ci for 28 ≤ i < 32, and 16 ≤ m < 20 
ym  ji = ci for 32 ≤ i < 40, and 40 ≤ m < 48 
ym  ji = ci for 40 ≤ i < 48, and 32 ≤ m < 40 
ym  ji = ci for 48 ≤ i < 52, and 60 ≤ m < 64 
ym  ji = ci for 52 ≤ i < 64, and 48 ≤ m < 60 

Figure 14:  Equations after the SBox 
Where yi and ym are the bits output from the SBox adjusted for the ShiftRows, 

ji are the bits of the second round key, and ci are the bits of the ciphertext. 



 37

 

x0 + x1 + y0 + y2 + y3 + x0y1 + x0y2 + x0y3 + x1y0 + 
x1y1 + x2y0 + x2y1 + x2y2 + x2y3 + x3y0 + x3y2 + 
x3y3 = 0 

 
x0 + x1 + y0 + y1 + y2 + y3 + x0y0 + x0y1 + x0y2 + 

x1y1 + x1y3 + x2y0 + x2y1 + x2y2 + x2y3 + x3y0 + 
x3y1 + x3y2 + x3y3 = 0 

 
x0 + x2 + y1 + y2 + y3 + x0y0 + x0y1 + x0y2 + x0y3 + 

x1y0 + x1y1 + x1y3 + x2y1 + x2y2 + x2y3 + x3y0 + 
x3y3 = 1 

 
x0 + x3 + y0 + y1 + y2 + y3 + x0y0 + x0y1 + x0y2 + 

x1y0 + x1y1 + x1y2 + x1y3 + x2y0 + x2y2 + x2y3 + 
x3y2 + x3y3 = 0 

 
x0 + x3 + y0 + y1 + y2 + y3 + x0y0 + x0y1 + x0y3 + 

x1y0 + x1y1 + x1y2 + x1y3 + x2y0 + x2y1 + x3y0 + 
x3y2 + x3y3 = 0 

 
x0 + x3 + y0 + y1 + y2 + y3 + x0y0 + x0y2 + x0y3 + 

x1y0 + x1y1 + x1y3 + x2y0 + x2y1 + x2y2 + x2y3 + 
x3y0 + x3y1 + x3y2 = 0 

 
x1 + x3 + y0 + y2 + y3 + x0y0 + x1y0 + x1y1 + x1y3 + 

x2y0 + x2y1 + x2y2 + x2y3 + x3y0 + x3y1 + x3y2 + 
x3y3 = 0 

 
x0 + x1 + x2 + y1 + y3 + x0y0 + x0y1 + x0y2 + x0y3 + 

x1y0 + x1y1 + x1y2 + x2y0 + x2y2 + x3y1 + x3y2 + 
x3y3 = 0 

 
x0 + x1 + x2 + y1 + y3 + x0y0 + x0y1 + x1y0 + x1y1 + 

x1y2 + x2y0 + x2y1 + x2y3 + x3y0 + x3y1 + x3y2 + 
x3y3 = 0 

 
x0 + x1 + x2 + y1 + y3 + x0y0 + x0y1 + x0y2 + x0y3 + 

x1y0 + x1y1 + x1y2 + x1y3 + x2y1 + x2y2 + x2y3 + 
x3y0 + x3y1 + x3y2 + x3y3 = 0 

 
x0 + x1 + x2 + y0 + y1 + y2 + y3 + x0y0 + x0y1 + x0y3 

+ x1y1 + x1y2 + x1y3 + x2y2 + x2y3 + x3y0 + x3y1 
+ x3y3 = 0 

 
x0 + x1 + x2 + y0 + y1 + y2 + y3 + x0y1 + x0y3 + x1y0 

+ x1y2 + x2y0 + x2y1 + x2y2 + x3y0 + x3y1 + x3y2 
+ x3y3 = 0 

x0 + x1 + x3 + y0 + y1 + x0y0 + x0y1 + x0y2 + x0y3 + 
x1y0 + x1y1 + x1y2 + x1y3 + x2y0 + x2y1 + x2y2 + 
x3y0 + x3y1 + x3y2 = 1 

 
x0 + x1 + x3 + y0 + y1 + y3 + x0y0 + x0y2 + x0y3 + 

x1y0 + x1y1 + x1y2 + x1y3 + x2y0 + x2y1 + x2y2 + 
x2y3 + x3y0 = 1 

 
x0 + x2 + x3 + y0 + y2 + y3 + x0y0 + x0y1 + x0y2 + 

x0y3 + x1y0 + x1y3 + x2y0 + x2y1 + x2y3 + x3y0 + 
x3y1 + x3y2 + x3y3 = 0 

 
x0 + x2 + x3 + y0 + y1 + y2 + y3 + x0y0 + x0y2 + x0y3 

+ x1y0 + x1y1 + x1y2 + x2y0 + x2y3 + x3y0 + x3y1 
= 0 

 
x1 + x2 + x3 + y0 + y2 + x0y0 + x0y1 + x0y2 + x0y3 + 

x1y0 + x1y1 + x1y2 + x2y0 + x2y1 + x2y2 + x2y3 + 
x3y2 + x3y3 = 0 

 
x1 + x2 + x3 + y0 + y1 + y2 + x0y1 + x0y2 + x1y1 + 

x1y2 + x1y3 + x2y0 + x2y1 + x2y2 + x2y3 + x3y1 + 
x3y2 + x3y3 = 0 

 
x1 + x2 + x3 + y0 + y1 + y2 + x0y0 + x0y1 + x0y2 + 

x1y0 + x1y2 + x1y3 + x2y0 + x2y1 + x2y2 + x2y3 + 
x3y0 + x3y1 + x3y3 = 0 

 
x1 + x2 + x3 + y0 + y2 + y3 + x0y0 + x0y2 + x0y3 + 

x1y0 + x1y1 + x1y2 + x1y3 + x2y2 + x2y3 + x3y0 + 
x3y1 + x3y3 = 0 

 
x1 + x2 + x3 + y0 + y1 + y2 + y3 + x0y0 + x0y1 + x0y2 

+ x0y3 + x1y0 + x2y1 + x2y2 + x2y3 + x3y0 + x3y1 
+ x3y2 = 0 

 
x1 + x2 + x3 + y0 + y1 + y2 + y3 + x0y0 + x0y2 + x1y0 

+ x1y2 + x1y3 + x2y0 + x2y1 + x2y2 + x3y0 + x3y2 
+ x3y3 = 0 

 
x0 + x1 + x2 + x3 + y0 + x0y0 + x0y2 + x0y3 + x1y0 + 

x1y2 + x1y3 + x2y0 + x2y1 + x3y0 + x3y1 + x3y2 + 
x3y3 = 1 

 
x0 + x1 + x2 + x3 + y2 + x0y2 + x1y0 + x1y1 + x1y2 + 

x1y3 + x2y0 + x2y1 + x2y2 + x2y3 + x3y0 + x3y1 + 
x3y2 + x3y3 = 1

Figure 15:  SBox Equations – Set Two 
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0 = k0 + z0 + j0 
0 = k1 + z1 + j1 
0 = k2 + z2 + j2 
1 = k3 + z3 + j3 
0 = kt + zt + jt  for 4 ≤ t < 15 
0 = ju + ku + jv  for 16 ≤ u < 64 and 0 ≤ v < 48 

Figure 16:  ExpandRoundKey Equations  
Where ji with 0 ≤ i < 64 are the bits of the first round key and zm with 0 ≤ m < 16 

are the bits of the output of the SubBytes operation 
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Table 4:  Matrix Terms - First Half 
Above are the terms used in the system of equations, they are numbered 

in the order they are stored in the matrix shown in the sample data. 
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Table 5:  Matrix Terms - Second Half 
Above are the terms used in the system of equations, they are numbered in the 

order they are stored in the matrix shown in the sample data. 
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APPENDIX B 
 

INPUT DATA 
 
 
 

 The following 27 pages contain an example of the matrix input to the 

Gaussian Elimination.  There are ten bits per each column of the table.  If all the 

bits in a cell were zero, only one zero is shown instead of ten. 

 This example had the following data from the execution of rAES: 

The plaintext is: 

0111000001101100011000010110100101101110011101000110010101111000 

The ciphertext is: 

1011100010110111110110000111100011100101100101011011100110100010 

The key is: 

1000111110100100011111110000101100110100100101011110100011000001
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APPENDIX C 
 

OUTPUT DATA 
 
 
 

 The following 28 pages contain an example of the matrix output from the 

Gaussian Elimination.  There are ten bits per each column of the table.  If all the 

bits in a cell were zero, only one zero is shown instead of ten. 

 This example had the following data from the execution of rAES: 

The plaintext is: 

0111000001101100011000010110100101101110011101000110010101111000 

The ciphertext is: 

1011100010110111110110000111100011100101100101011011100110100010 

The key is: 

1000111110100100011111110000101100110100100101011110100011000001 
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