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It has long been known, that ω∗ = βω \ ω is not homogeneous, that is, that

there are at least two topologically different points. In fact, it was proved by Froĺık

in [Fro67a] that the Čech-Stone growth of any non-pseudocompact space X is not

homogeneous. Froĺık’s result, which was “non-constructive” in nature, prompted

interest in finding specific, topological reasons for the nonhomogeneity of the Čech-

Stone growths of non-pseudocompact spaces in general and ω∗ in particular.

To this day, there have been discovered a total of 16 mutually exclusive topo-

logically described classes of points, called topological types, in ω∗, such as Kunen’s

weak P-points. We investigate along these lines, defining another topological type

called a uniquely ω-accessible point. Such a point is known to exist in ω∗ under MA

and in this work we investigate a method possibly leading to a proof in ZFC. The

main result of this thesis is the construction of two irresolvable spaces one with a

remote point and the other with a weak P-point. We also present a construction of

irresolvable spaces, which is similar to [Hew43] but is used in the context of Boolean

algebras.
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INTRODUCTION

The starting point for the study of the nonhomegeneity of ω∗ was W. Rudin’s
proof ([Rud56]), that, under CH, there are P-points in ω∗. Since there are obviously
points in ω∗ which are not P-points, this shows that, supposing CH, ω∗ is not
homogeneous. The continuum hypothesis in his proof can be weakened to Martin’s
axiom but, by a deep and hard result of Shelah ([Wim82]), it is consistent with
ZFC that there are no P-points in ω∗. In 1967 Froĺık gave a surprising answer
to the question of whether ω∗ is or is not homogeneous ([Fro67a], [Fro67b]). It is
not; in fact, there are 2c pairwise “topologically different” points (i.e. there is no
homeomorphism taking one to another) in ω∗. (In his paper he shows that X∗ is not
homogeneous for any non-pseudocompact space X.) The problem with his proof
was that it was based on cardinality arguments and did not yield a “topological”
description of even two different points. A next step forward was Kunen’s proof of
the existence of weak P-points in ZFC ([Kun78]). He proved that there are points
in ω∗, which are not limit points of any countable set. Obviously not every point
of ω∗ is a weak P-point, so this also gives a proof of the nonhomegeneity of ω∗.
And it actually shows two concrete topologically distinct points (a weak P-point
and a non-weak P-point) attesting to the nonhomegeneity, so it is an “effective”
proof in the sense of van Douwen [vD81], because it provides a topological property
which one class of points has and another does not. The next result and a huge
step forward was van Mill’s description of sixteen distinct topological properties of
points in ω∗ ([vM82]). We continue this line of developmentent by looking for a
seventeenth property — topological type.

There are, a priori, two approaches to finding a specific point in ω∗. One can
use transfinite induction to construct the point, at each step ensuring the necessary
properties. This process is usually aided by some independent matrix. The other
way is to find a space with the needed point and embed it in an appropriate way
into ω∗. We have adopted the second approach, which seems to uncover the nature
of the problem while not going into all the details of finding the right matrix. We
will still need some matrix but, presumably, a much simpler one. The following
definition states what type of points we are looking for.

Definition 0.1. A point is uniquely ω-accessible in a space X if it is in the closure
of a countable set, not in the closure of a discrete set, and any two countable sets,
whose limit point it is, intersect.

The definition says, that there is, really, only a “single” countable set, whose
closure contains the point (i.e. the countable sets form a filter base). See [VD93] for
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a similar notion of accessibility, but unlike in that paper we include the requirement
that the point is not in the closure of a discrete set, since the existence of such a point
was proven by Van Mill ([vM82]). When trying the first approach of constructing
the point by induction, it is soon seen, that one needs to evade certain “parts” of
ω∗. For example one certainly wants to evade a subspace, which has two countable
disjoint dense sets. Hence the following definition is relevant:

Definition 0.2 ([Hew43]). A space is irresolvable if any two dense sets intersect.

If we have a uniquely ω-accessible point and if we take a countable set, whose
limit point it is, with the subspace topology, we indeed get an irresolvable space.
For our purposes we will need a slightly weaker condition which will only talk about
countable dense sets. For the respective definitions see chapter 5.

The plan is to find a suitable irresolvable space, whose compactification con-
tains a uniquely ω-accessible point and which can be embedded into ω∗ without
losing this point. The second part can be guaranteed under certain additional con-
ditions on the space (extremal disconnectedness, π-weight ≤ c) and we will deal
with it in the second chapter. One way to get a uniquely ω-accessible point in an
irresolvable space is to find in it a remote, weak P-point. Then this point cannot be
accessed by a countable set from the growth (since it is a weak P-point) and cannot
be in the closure of a nowhere dense set in X. Thus if we can show, that any two
sets, dense in a given open set, must intersect, we are almost done. The following
definition gives the additional conditions:

Definition 0.3 ([Hew43]). A space is open hereditarily irresolvable (OHI for short)
if any two sets, which are dense in the same open set, intersect.

In the third chapter, we will look more closely at weak P-points, giving first
some existence theorems and then constructing a suitable space with a weak P-
point. The fourth chapter will concentrate on remote points and will be structured
in a roughly similar way to the third chapter. In the fifth chapter we will investigate
irresolvable spaces and maximal topologies in the setting of Boolean algebras. It
will provide us theorems which, starting from a certain space, give us a finer OHI
topology on the space which nevertheless preserves the properties we are interested
in. In the final chapter we give a summary of the results and also a plan of how the
construction of a uniquely ω-accessible point would go through. The main results
of this thesis are Theorem 4.5 and Theorem 3.11.
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CHAPTER I

BASIC DEFINITIONS

We assume the reader is familiar with basic topological and set-theoretic

concepts. In this chapter we list for reference some of the ones we will be using.

We also give some basic facts about the Čech-Stone compactification and introduce

some elementary definitions and theorems from Boolean algebras. In the last part

we give several simple topological lemmas and also relate the properties of Boolean

algebras to those of topological spaces. For further details, see [Eng] for unexplained

topological terms, [Jech] for set-theoretic notions and [HBA] for Boolean algebraic

ones. Also we do not include most proofs since they are elementary and may be

found in, e.g., [Eng] or [HBA].

1.1 Set Theory & Topology

First we introduce notation. The Greek letters κ, λ, θ will denote infinite cardinal

numbers, α, β ordinal numbers, k, n, m, i, j natural numbers. The first infinite cardi-

nal will be denoted by ω and c will be the cardinality of the powerset of ω. For two

sets X, Y their symmetric difference is denoted by X∆Y = (X \ Y ) ∪ (Y \ X).

The symbol FR(X) will stand for the generalized Fréchet filter on X, that is

FR(X) = {F ⊆ X : |X \ F | < |X|}. A filter base for a filter F is a system

of sets from the filter such that any set in the filter contains a set from the filter

base. The character of a filter (denoted by χ(F)) is the minimal cardinality of a

filter base for F . If X is a set let its powerset be denoted by P(X). The symbols

[X]κ, [X]<κ shall denote the set of all subsets of X of cardinality κ and less than κ
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respectively. XY shall denote the set of all functions from X to Y . The cardinality

of a set X shall be denoted by |X| and 2X shall be the cardinality of X2. We shall

say that a system of sets is centered (or, equivalently, has the finite intersection

property), if any finite subsystem has nonempty intersection.

Turning to topology, we note, that all topological spaces we will consider will

be (at least) Hausdorff (i.e. T2). Other separation properties we will use are T0, T1,

regularity (T3) and complete regularity (T3 1
2
). Note that T3 1

2
⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0.

We will also need the notion of a regular open set, i.e. a set, which is equal to the

interior of its closure. The following fact will be useful:

Fact 1.1. In an infinite space without isolated points a regular open set is either

infinite or empty, as is its complement.

Among the separation properties we may also count total disconnectedness

(i.e. two points can be separated by closed-and-open (clopen for short) sets), zero-

dimensionality (that is, the space has a base consisting of clopen sets) and extremal

disconnectedness (i.e., the closure of any open set is open). Note that any discrete

space has all the listed separation properties. A further notion, which proves to be

useful, is extremal disconnectedness at a point. We say that a space X is extremally

disconnected at p ∈ X if p is not in the closure of two disjoint open sets. Let us

note a simple lemma:

Lemma 1.2. A T0 zero-dimensional space satisfies T3 1
2

and hence has a base con-

sisting of regular open sets.

For a topological space X, denote by τ(X) the topology of X. Let A
X

be the

closure of A in X and, if X is clear from the context, we will drop it. Clopen(X)

is the set of closed and open sets of X. A subset of a topological space is dense if

its closure is the whole space or, equivalently, if it meets any nonempty open set.
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It is called nowhere dense (n.w.d. for short) if its closure has empty interior (or,

equivalently, if the complement of its closure is dense), and it is called somewhere

dense otherwise.

Lemma 1.3. The nowhere dense sets in a space form an ideal.

The weight of a space (denoted by w(X)) is the minimal cardinality of a base

for the space (i.e., a system of open sets of X such that any open set is a union

of sets from the system). A π-base for a space is a family of nonempty open sets

such that any nonempty open set of the space contains a set from the π-base. The

π-character of a space (denoted πχ(X)) is the minimal cardinality of a π-base. A

local base at a point x is a system of open sets containing x such that any open

set containing x contains a set from the local base. A local π-base at x is a system

of nonempty open sets such that any open neighborhood of x contains a set from

the π-base. Define the character and π-character of a point x ∈ X as the minimal

cardinality of a base and π-base respectively at x.

A space is compact if any cover of the space by open sets contains a finite

subcover or, equivalently, if any centered system of closed sets has nonempty inter-

section. It is locally compact if any point has an (open) neighborhood with compact

closure and it is nowhere locally compact if the closure of any nonempty open set is

noncompact. Note that a subset of a compact, T2 space is compact iff it is closed

and any compact subset of a T2 space is closed in this space.

A homeomorphism between two topological spaces is a continuous bijection

which has a continuous inverse. A continuous map (function) is open, if the im-

ages of open sets are open. It is quasiopen, if the images of nonempty open sets

have nonempty interiors. It closed if the images of closed sets are closed and it is

irreducible, if the image of a proper closed subspace of the domain is never onto.

A closed map is perfect if the preimages of points are compact. For a space X we
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say that EX is its projective cover iff it is extremally disconnected and admits an

irreducible perfect map onto X. EX (sometimes called the absolute of X) can be

shown to exist for any completely regular space X.

A topological space is homogeneous if, for any two points x, y, there is a

homeomorphism fx,y from the space onto itself such that f(x) = y. A topological

type is a (“topologically defined”) class of points of a topological space, such that no

point outside of this class can be mapped to a point inside it via a homeomorphism.

1.2 Čech-Stone compactification

For any completely regular space X there is a compact space βX, such that X

embeds densely into βX and any continuous function from X into a compact space

can be continuously extended to βX. The space βX is called the Čech-Stone com-

pactification of X. The book [Wal74] is a standard reference for Čech-Stone com-

pactifications. We refer the reader to this book for the proofs in this section which

we omit.

Dealing with Čech-Stone compactifications, it is customary that X∗ stands

for the (Čech-Stone) growth of X, i.e. X∗ = βX \X. Let us now give a definition

of four concrete topological types relevant to (Čech-Stone) growths:

Definition 1.4. A point p ∈ X∗ is a remote point of X iff it is not in the closure

(in βX) of a n.w.d. subset of X. A slightly weaker requirement on p ∈ X∗ is that it

is not a limit point of a countable discrete subset of X. We call such points ω-far.

A point p ∈ X is a κ-O.K. point of X iff for any countable sequence 〈Un : n ∈ ω〉 of

neighborhoods of p there is a system {Vα : α < κ} of neighborhoods of p such that

for any finite K ∈ [κ]<ω, the following is true:

⋂
α∈K

Vα ⊆ U|K|
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Note that, if κ < λ, then any λ-O.K. point is also a κ-O.K. point and if B is a base

for the topology of X, then the definition is equivalent if we only consider sequences

of neighborhoods from the base. A point p ∈ X is a weak P-point of X if it is not

a limit point of any countable set. A closed subset Y of a space X is a weak P-set

(κ-O.K. set) if Y is a weak P-point (κ-O.K. point) of the quotient space X/Y . Note

that a weak P-set does not contain a limit point of a countable set disjoint from it.

Proposition 1.5. If X is a T1 space and p is an ω1-O.K. point of X, then p is a

weak p-point of X.

Proof. If {xn : n ∈ ω} ⊆ X \ {p}, then because X is T1 we can choose a descending

sequence of neighborhoods Un of p such that Un misses xn. Then, because p is

ω1-O.K., choose {Vα : α < ω1} neighborhoods of p, so that the intersection of any

n of them is contained in Un. Then each xn is contained in only finitely many of

them, so there is α < ω1 which misses all of them, so p is not in the closure of

{xn : n ∈ ω}.

A similar argument can be used to show the following proposition:

Proposition 1.6. If X is regular and Y is a closed subset of X which is an ω1-O.K.

subset of X, then Y is a weak P -set of X.

The following facts will be useful.

Fact 1.7 ([Wal74],1.59). X∗ is compact iff X is locally compact.

Fact 1.8 ([Wal74],2J.3). A space X is extremally disconnected iff βX is.

Fact 1.9 ([vD81],5.2). βX is extremally disconnected at each remote point of X,

and if X is nowhere locally compact, X∗ is also extremally disconnected at each

remote point of X.
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Proposition 1.10. Let X be extremally disconnected. If p ∈ X∗ is a remote point

and p ∈ D0
βX ∩ D1

βX
for two sets D0, D1 ⊆ X, then there is an open G ⊆ X such

that G ⊆ D0
X ∩ D1

X
.

Proof. First observe, that a point in an extremally disconnected space cannot be in

the closure of two disjoint open sets. Let Gi = int(Di
X

). The set Ni = Gi \Di is

n.w.d. Then, since p is remote and cannot be in the closure of Ni, p is in the closure

of both G0, G1, hence by our observation G = G0 ∩G1 is nonempty.

1.3 Boolean algebras

Definition 1.11. A set B, together with operations ∨,∧,− and constants 0,1 ∈ B

is a Boolean algebra, if the following is satisfied

(i) (∀a ∈ B)(a ∧ a = a ∨ a = a)

(ii) (∀a ∈ B)(a ∧ −a = 0 & a ∨ −a = 1)

(iii) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

(iv) a ∧ b = b ∧ a, a ∨ b = b ∨ a

(v) 0 6= 1.

We shall write B = 〈B,∧,∨,0,1〉, and also B instead of B (e.g. |B| denotes

|B| etc.). The canonical order ≤ on any Boolean algebra is defined in the following

way:

(vi) a ≤ b iff a ∧ b = a

Also for a, b ∈ B we define

(vii) a− b := a ∧ −b
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and for A ⊆ B,
∨

A := sup≤ A,
∧

A := inf≤ A. The operation ∨ is called a join, ∧

is called a meet.

Definition 1.12. A Boolean algebra B is κ-complete, if for every A ∈ [B]<κ the

following exist:
∧

A,
∨

A. B is complete, if for any subset A ⊆ B the following

exist:
∧

A,
∨

A.

Definition 1.13. If B, C are two Boolean algebras, and h : B → C is a function

we say that h is a homomorphism, if it preserves the operations (it does not need

to preserve infinite suprema and infima). An injective homomorphism is called an

embedding. An onto embedding is called an isomorphism. If a homomorphism h

respects all (existing) suprema and infima, we call it regular. A regular homomor-

phism of complete Boolean algebras will be called a complete homomorphism.

Definition 1.14. If A ⊆ P(X) is closed under intersections, unions and comple-

ments (into X) then A = 〈P(X),∩,∪, ∅, X〉 is an algebra of sets. If the
∧

,
∨

agree

with
⋂

,
⋃

, we say that it is a complete algebra of sets.

Definition 1.15. If A ⊆ B and the identity mapping from A into B is a homomor-

phism, we say that A is a subalgebra of B (and write A ≤ B. If the identity is a

regular homomorphism, we say that A is a regular subalgebra of B and if A, B are

complete, we call A a complete subalgebra of B.

Definition 1.16. If B is a Boolean algebra, two elements a, b ∈ B are disjoint,

(denoted by a ⊥ b) if a ∧ b = 0. A set X ⊆ B is called disjoint, if every two

distinct members of the set are disjoint. We define B+ := B \ {0}. An element

b ∈ B+ is an atom, if (∀a ∈ B+)(a ≤ b → a = b), or, equivalently, if there are

no two disjoint b0, b1 below a (we say, that a cannot be split). We further define

At(B) := {b ∈ B+ : b is an atom }. We say, that B is atomary, if
∨

At(B) = 1. If

an algebra has no atoms, we say that it is atomless.
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Definition 1.17. For each b ∈ B+ the set B � b := {a ∧ b : a ∈ B} together with

operations ∨,∧,− (complements taken in b, i.e. −a = b − a) and constants 0, b

forms a Boolean algebra We call it the factor algebra of B with respect to b.

Lemma 1.18. Suppose B is a Boolean algebra, M, N ⊆ B, 〈Mα : α < κ〉 is a

sequence of subsets of B and
∨

M ,
∨

N ,
∨

α<κ Mα exist. Then the following holds:

(De Morgan laws) −
∨

M =
∧
{−m : m ∈ M}

(distributivity) a ∧
∨

M =
∨
{a ∧m : m ∈ M}

(distributivity)
∨

M ∧
∨

N =
∨
{m ∧ n : m ∈ M, n ∈ N}

(associativity)
∨

α<κ(
∨

Mα) =
∨
{m : (∃α < κ)(m ∈ Mα)}

Definition 1.19. For a Boolean algebra B and a set A ⊆ B we define an elementary

meet over the set A to be
n∧

i=0

ε(i)ai,

for any {a0, . . . , an} ⊆ A and ε : n → {−1, 1} (where −1ai = −ai and 1ai = ai. A is

said to be independent, if all elementary meets over A are nonzero. The minimal car-

dinality of a maximal (with respect to inclusion) independent subset of B is denoted

by i(B). We say that B has hereditary independence κ if (∀b ∈ B)(i(B � b) ≥ κ).

Lemma 1.20 (Normal form Theorem). Let B be a Boolean algebra and A ⊆ B be

a subset. Then every element in 〈A〉, the algebra generated by A, can be written in

the form of a finite join of elementary meets over A.

As a special case of this lemma, we will be using the following corollary

Corollary 1.21. Let C be a Boolean algebra, B a subalgebra and c ∈ C. Then every

atom of 〈{c} ∪ B〉 can be written in the form c ∧ b or −c ∧ b for some b ∈ B.
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Definition 1.22. A subset F of a Boolean algebra B is a filter if it contains the

meet of any two of its members, does not contain 0 and is upwards closed with

respect to the canonical ordering on the Boolean algebra. It is an ultrafilter if for

each b ∈ B it contains either b or −b. An ideal and prime ideal are the “dual”

notions to the notion of a filter (and ultrafilter respectively). That is I ⊆ B is an

ideal (prime ideal) if F = I∗ := {−i : i ∈ I} is a filter (ultrafilter). In that case

we say that I is dual to F and also write I = F ∗. If I is an ideal in a Boolean

albebra. B, let B/I consist of the quotient classes modulo the I-equivalence relation

(i.e. a ' b ⇐⇒ (a − b) ∨ (b − a) ∈ I) where the operations are defined using

representatives. It is easy to check that this gives B/I the structure of a Boolean

algebra and we call this algebra the quotient algebra of B mod I. If I is an ideal

on P(ω) and A, B ∈ P(ω), we say that A is I-almost contained in B if A \ B ∈ I.

Similarly we write A =I B if (A \B) ∪ (B \ A) ∈ I.

Definition 1.23. Any Boolean algebra B gives rise to a compact, zerodimensional

space (a Boolean space), the Stone space of B, denoted by St(B). The points of

St(B) are ultrafilters on the Boolean algebra B and the base for the topology consists

of sets Â for A ∈ B, where Â = {p ∈ St(B) : A ∈ p}.

The following lemmas and definitions are a motivation for our endeavors in

Chapter 5. They tie together Boolean-algebraic properties of Boolean algebras with

the topological properties of certain topological spaces. If B is an algebra of sets,

i.e. B ≤ P(X), then B is a base for some zero-dimensional topology on X. Call this

topology τB. (Every zero-dimensional space arises in this way.) The next lemmas

(and definitions) describe this topology. (Until the end of this section the space X

will always have B as the basis for its topology.)

Definition 1.24. A set C ⊆ B is independent with respect to D ⊆ B if for all
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c ∈ C, d ∈ D+ we have c ∧ d 6= 0. For D ⊆ B define idp(D) to be the set of all

members of B independent with respect to D.

Definition 1.25. A subalgebra B of P(X) is said to have the T2 property if for

distinct x, y ∈ X, there are disjoint bx, by ∈ B, so that x ∈ bx, y ∈ by.

Lemma 1.26. B is atomless if (X, τB) is T2 and crowded (i.e. has no isolated

points). If X is T2 then B is atomary iff (X, τB) is discrete.

Lemma 1.27. B has T2 iff (X, τB) is T2.

Lemma 1.28. D ⊆ X is dense in (X, τB) iff it is independent with respect to B.

Lemma 1.29. B is complete iff (X, τB) is extremally disconnected.

Proof. Let B be complete and U = ∪U for some U ⊆ B. Then
∨
U (which is,

usually, different from ∪U , even though for any a, b ∈ B a∨ b = a∪ b) is the closure

of U , hence the closure of an open set is open. On the other hand if X is extremally

disconnected and U ⊆ B, then ∪U =
∨
U , i.e. B is complete.

Lemma 1.30. The π-weight of (X, τB) is equal to the density of B, and the weight

of (X, τB) is less or equal to the cardinality of B.

Since we will be mostly concerned with extremally disconnected spaces, the

following characterization, which ties together Boolean algebras with Čech-Stone

compactifications, is useful:

Proposition 1.31. If Y is extremally disconnected then βY is homeomorphic to

St(Clopen(Y )), where St(A) is the space of ultrafilters on A.

Corollary 1.32. For an extremally disconnected Y the algebra Clopen(Y ) is iso-

morphic to Clopen(βY ).
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CHAPTER II

EMBEDDING SPACES INTO THE GROWTH OF INTEGERS

In this chapter we give needed definitions and quote theorems, which will

allow us to embed certain spaces into ω∗ in such a way, that will preserve unique

ω-accessibility of points. We will prove this fact after giving the theorems. All of

the listed results are known. The following theorem is the main theorem of the

chapter.

Theorem 2.1. The Čech-Stone compactification of any extremally disconnected

space X of weight ≤ c can be embedded as an ω1-O.K. set into ω∗.

This theorem is just a topological reformulation of a theorem of Kunen and

Baker ([KB02], Theorem 5.6; but see also [Sim85]). Before we quote it, we need

some definitions. They will not be needed in the other chapters and may be safely

skipped.

Definition 2.2. A set function ˆ : [θ]<ω −→ [κ]<ω is called a (θ, κ)-hatfunction.

If for any two sets A ⊆ B in the domain of ˆ we have, that B̂ ⊆ Â, we say that

ˆ is monotone. A set P ⊆ X in a topological space is a -̂set iff for any sequence

〈UK : K ∈ [κ]<ω〉 of neighborhoods of P there is a sequence 〈Vα : α < θ〉 of

neighborhoods of P such that for any A in the domain of ˆ the following is true:⋂
α∈A

Vα ⊆ UÂ

The function which assigns to each A ∈ [θ]<ω its cardinality shall be called the

θ-O.K. function.
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Definition 2.3. A sequence B 〈Mα : α ∈ A〉 of subsets of B is a matrix in B

independent with respect to a filter F on B, if for any A0 ∈ [A]<ω, c ∈ F and

f : A0 −→ ∪{Mα : α ∈ A} so that f(α) ∈ Mα the following intersection is nonzero:

c ∧
∧

α∈A0

f(α)

Definition 2.4. If G is a filter on B then M ⊆ B is a -̂step family on (B,G) iff it

is of the form:

M = {eK : K ∈ [κ]<ω}∪{aα : α < θ}∪

{
eK

∧
α∈A

aα : K ∈ [κ]<ω, A ∈ [θ]<ω, Â ⊆ K

}

and satisfies:

(i) {eK : K ∈ [κ]<ω} is a partition of unity (i.e. it is a set of disjoint elements

with supremum 1).

(ii) For each A ∈ [θ]<ω

−

(∧
α∈A

aα ∧
∨
{eK : Â 6⊆ K}

)
∈ G

(iii) For each A ∈ [θ]<ω and K ∈ [κ]<ω if Â ⊆ K then

eK ∧
∧
α∈A

aα 6∈ G∗,

where G∗ is the dual ideal to the filter G.

Theorem 2.5 (Kunen, Baker). Let B be a complete Boolean algebra of size 2κ with

G ⊆ F two filters on B. Let ˆ be any monotone (θ, κ)-hatfunction. Assume that

M = 〈Mi : i ∈ 2κ〉 is a matrix independent with respect to F so that each Mi is

a -̂step family on (B,G). Then for every complete Boolean algebra A of size ≤ 2κ,
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there is an h : B � A such that h′′F = {1} and such that h∗(st(A)) ⊆ st(B/F) is

a -̂set in st(B/G).

Proof of 2.1. Let A be a basis of X of size ≤ c consisting of clopen sets. Since

X is extremally disconnected A is a complete Boolean algebra. Let B be P(ω),

F ,G the Fréchet filter on ω, ˆ the ω1-O.K. hatfunction from definition 2.2 and M

the matrix given by Theorem 3.9 of [KB02] (which is proved in [KB01]). Then the

preceding theorem gives us an embedding of st(A) ≈ βX as an ω1-O.K. set into

st(P(ω)/fin) ≈ ω∗.

We also mention a useful corollary of a theorem of van Mill ([vM82]):

Theorem 2.6 (van Mill). The projective cover of a continuous image of ω∗ can be

embedded as a c-O.K. set in ω∗.

Proposition 2.7. If p ∈ Y ⊆ X is an ω-uniquely accessible point of Y and if Y is

a closed ω1-O.K. in X which is T3, then p is an ω-uniquely accessible point of X.

Proof. Suppose C, D ∈ [X]ω are two disjoint sets with p ∈ C ∩ D. Then, since

Y is a weak P-set of X by Proposition 1.6, p ∈ C ∩ Y ∩ D ∩ Y and, by ω-unique

accessibility of p in Y we have, that ∅ 6= (C ∩ Y ) ∩ (D ∩ Y ) ⊆ C ∩D.
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CHAPTER III

WEAK P -POINTS

Now we turn our attention to finding weak P-points (in fact ω1-O.K. points)

in general growths. We will give two versions of a theorem of van Mill since it is

not clear, which is actually the most useful. In the second part we will construct

a suitable space, to which, after some further modifications, Theorem 3.4 can be

applied.

3.1 Two existence theorems

Definition 3.1. A system of closed subsets of a topological space X is called

precisely n-linked if the intersection of n members of this system is noncompact

but the intersection of any n + 1 members of this system is compact. A system

{A(β, n) : β ∈ B, n ∈ ω} is a linked system, if each {A(β, n) : β ∈ B} is precisely n-

linked and for each β, A(β, n) ⊆ A(β, n+1). A system {Aα(β, n) : α ∈ A, β ∈ B, n ∈ ω}

is an |A| by |B| independent linked system with respect to some closed (i.e. con-

sisting of closed sets) filter F if each {Aα(β, n) : β ∈ B, n ∈ ω} is a linked system

and for any A0 ∈ [A]<ω, F ∈ F , n ∈ A0ω, β ∈ A0B the following intersection is

noncompact:

F ∩
⋂

α∈A0

Aα(β(α), n(α)).

A filter F on a topological sum
∑

Xn is called nice, provided for each F ∈ F

the set {n ∈ ω : F ∩Xn = ∅} is finite.
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Next we give a fact due to Kunen ([Kun78]). In 3.7 we actually describe such

an independent linked system.

Fact 3.2. There is a c by c independent linked system on the integers with respect

to the Fréchet filter.

The following theorem is Theorem 2.4 of van Mill [vM82].

Theorem 3.3. If Z is a compact space of weight at most c, F is a nice filter on

X = ω × Z and Y is a continuous image of ω∗ then the projective cover EY of Y

can be embedded as a c-O.K. set into X∗ such that EY ⊆ ∩{F ∗ : F ∈ F}.

A slight modification of the proof of this theorem yields the following theo-

rem, which can also be useful:

Theorem 3.4. If X is a space of weight ≤ c admitting a c by c independent linked

system with respect to some filter C, then there is a c-O.K. point of Y = ω ×X in

Y ∗, which lies in the intersection
⋂
{F ∗ : F ∈ F}, where

F =

{⋃
n∈A

{n} × F (n) : F ∈ ωC,A ∈ FR(ω)

}

Proof. Let {Aα(β, n) : α, β < c, n < ω} be the independent linked system on ω

from Theorem 3.2, {Bα(β, n) : α, β < c, n < ω} be the respective independent

linked system on X. Note, that F is a nice filter on Y (and if C was remote, then

so is F), and that the following sets form an independent linked system mod F on

Y:

Cα(β, n) =
⋃

m∈Aα(β,n)

{m} ×Bα(β, n).

Let B be a base of Y of cardinality ≤ c and {〈Dα
n : n ∈ ω〉 : α < c} be an

enumeration of all sequences of closures of sets from B satisfying Dα
n+1 ⊆ intDα

n \
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(n×X). Without loss of generality let each such sequence be listed cofinally many

times. By induction on α < c we construct Fα ⊇ F and Kα ⊆ c satisfying

(i) {Cβ(µ, n) : β ∈ Kα, µ < c, n < ω} is an independent linked system mod Fα

for all α < c.

(ii) Fα ⊆ Fβ for all α < β are centered systems of closed sets

(iii) Kβ ⊆ Kα for all α < β and Kβ \Kβ+1 is finite.

(iv) If Dα
n ∈ Fα for all n ∈ ω, then there are {Eα

γ : γ < c} ⊆ Fα+1 witnesses to the

O.K. property for Dα.

Let K0 = c and F0 = F . If α is limit, then let Fα =
⋃
{Fβ : β < α} and

Kα =
⋂
{Kβ : β < α}. Now suppose we have constructed Kα,Fα and that Dα

satisfies the condition in (iv). Choose β ∈ Kα and let Kα+1 = Kα \ {β}. Define

Eα
γ =

⋃
n<ω

Cβ(γ, n) ∩Dα
n︸ ︷︷ ︸

∈F

and let Fα+1 be generated by Fα and {Eα
γ : γ < c}. Note that, for any A0 ∈ [c]n

( ⋂
γ∈A0

Eα
γ

)
\Dα

n ⊆

( ⋂
γ∈A0

Cβ(γ, n)

)

and the last term is compact, giving us (iv).

If we let H = ∪{Fα : α < c} then any p ∈ Y ∗ containing H will (by (iv)) be

a remote, c-O.K. point of Y ∗.

Some further analysis of the previous proof shows, that requiring an inde-

pendent linked system is, in fact, not needed. We can weaken the conditions to

only require for each n ∈ ω a precisely n-linked system of closed sets, independent

with respect to a remote filter. Finding such a system is presumably much easier.
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Since the proof of the modified theorem is somewhat involved and we do not use it

anywhere, we do not state it precisely or prove it.

If we drop the hypothesis that C is remote, it is easy to see that the previous

proof will still give as an c−O.K. point. We will need this for Theorem 5.23, so we

state it here as a separate theorem:

Theorem 3.5. If X is a space of weight ≤ c admitting a c by c independent linked

system with respect to some nice filter C, then there is a c-O.K. point of Y = ω×X

in Y ∗, which lies in the intersection
⋂
{F ∗ : F ∈ C}.

3.2 A crowded space with an independent linked system

In this section we proceed to construct a completely regular space containing a

c by c independent linked family with respect to the filter of finite sets. Using

the methods of Chapter 5, we will be able to modify this space to an irresolvable,

extremally disconnected space while retaining the independent linked family.

The following definition and a theorem are due to Simon ([Sim85]).

Definition 3.6. Let X = {〈k, f〉 : k ∈ ω, f ∈ P(k)P(P(k))} and for X, Y ∈ P(ω),

n ∈ ω let

F (Y,X, n) = {〈k, f〉 : |f(Y ∩ k)| ≤ n & X ∩ k ∈ f(Y ∩ k)}.

Further let O(Y,X, n) = X \ F (Y,X, n).

Theorem 3.7. The family {F (Y,X, n) : X, Y ∈ P(ω), n ∈ ω} is a c by c indepen-

dent linked family with respect to the Fréchet filter on X, with the discrete topology.

Let us prove the following lemma:
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Lemma 3.8. For any {Y0, . . . , Yn} ∈ P(ω) and any X0, . . . , Xn, Y ′
0 , . . . , Y

′
m, X ′

0, . . . , X
′
m

subsets of ω and any i0, . . . , in, j0, . . . , jm natural numbers, the following intersection

is either empty or infinite:

F (Y0, X0, i0) ∩ · · · ∩ F (Yn, Xn, in) ∩O(Y ′
0 , X

′
0, j0) ∩ · · · ∩O(Y ′

m, X ′
m, jm)

Proof. Suppose, that 〈k, f〉 is in the intersection and suppose, without loss of gener-

ality, that there is l ≤ m, that the following three groups of conditions are satisfied

(and show that 〈k, f〉 is in the intersection):

|f(Y0 ∩ k)| ≤ i0 & X0 ∩ k ∈ f(Y0 ∩ k) (3.1)

...

|f(Yn ∩ k)| ≤ in & Xn ∩ k ∈ f(Yn ∩ k)

|f(Y ′
0 ∩ k)| > j0 (3.2)

...

|f(Y ′
l ∩ k)| > jl

X ′
l+1 ∩ k 6∈ f(Y ′

l+1 ∩ k) (3.3)

...

X ′
m ∩ k 6∈ f(Y ′

m ∩ k)

By Theorem 3.7, the condition (3.1) is satisfied by infinitely many 〈k, f〉s.

Now if 〈k′, f ′〉 satisfies the conditions (3.1) for some k′ > k, then the set

{Y0 ∩ k′, . . . , Yn ∩ k′, Y ′
0 ∩ k′, . . . , Y ′

n ∩ k′, }

has greater cardinality than the corresponding set with k in place of k′. So we

can easily define a function g ∈ P(P(k′))P(k′), such that the conditions (3.1) and
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(3.2) are satisfied. Notice now that satsifying condition 3.3 is also possible (the

only reason why it would fail is that it would go against the second part of a

condition in 3.1; but then already 〈k, f〉 would not have satisfied 3.1 and 3.3 since,

if X ′ ∩ k′ = X ∩ k′, then also X ′ ∩ k = X ∩ k). Thus for every 〈k, f〉 in the

intersection, there is 〈k′, g〉 with k′ > k in the intersection, so the intersection must

be infinite.

Lemma 3.9. For any 〈k, f〉 6= 〈k′, f ′〉 ∈ X, Y ∈ [P(ω)]<ω, there are n ∈ ω,

Y ∈ P(ω) \ Y and X ∈ P(ω) so that F (Y,X, n) separates the two points.

Proof. Consider three cases.

Case 1. If k = k′, then there are infinitely many Y ’s, which satisfy the following

f(Y ∩ k) 6= f ′(Y ∩ k′ = Y ∩ k) (because, if not, then, necessarily, f 6= f ′). Choose

one such Y not in Y , n ≥ |f(Y ∩k)| and X ∈ f(Y ∩k)∆f ′(Y ∩k′). Then F (Y,X, n)

separates the points.

Case 2. If k 6= k′ and there is Y so that f(Y ∩ k) 6= f ′(Y ∩ k′). Then there are

infinitely many such Y s (modifying a Y above max{k, k′} preserves the inequality)

so we can proceed similarly to the first case.

Case 3. If k 6= k′ and for all Y , f(Y ∩ k) = f ′(Y ∩ k′), then choose any Y not in

Y and X so that |{X ∩ k,X ∩ k′} ∩ f(Y ∩ k)(= f ′(Y ∩ k′))| = 1 (assume k′ < k,

then f(Y ∩ k) ⊆ P(k′) $ P(k) so P(k) \ f(Y ∩ k) 6= ∅).

Proposition 3.10. There is a topology τ on X so that all sets of the form F (Y,X, n)

are closed, the topology is totally disconnected, has no isolated points and the regular

open sets form a basis for τ .
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Proof. Enumerate [X]2 as {{〈kn, fn〉, 〈k′n, f ′n〉} : n ∈ ω} and by induction (using

the previous lemma) find Yn ∈ P(ω) \ {Y0, . . . , Yn−1}, Xn ∈ P(ω) and mn ∈ ω so

that F (Yn, Xn, mn) separates 〈kn, fn〉 from 〈k′n, f ′n〉. Then let τ be the topology

generated by {O(X, Y, n) : n ∈ ω,X, Y ∈ P(ω)} ∪ {F (Yn, Xn, mn) : n ∈ ω}. By

Lemma 3.8, this topology has no isolated points (by Lemma 1.2). For the last part,

use a Theorem of Van Douwen ([vD81],1.5, 1.6) to refine this topology.

Corollary 3.11. There is a countable, crowded, totally disconnected space with a

base consisting of regular open sets and having a c by c independent linked system

of closed sets.
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CHAPTER IV

REMOTE POINTS

As stated in the introduction and as will be seen in the last chapter, remote

points are an essential tool for constructing ω-uniquely accessible points. We will

first list some general conditions guaranteeing the existence of remote points in a

large class of spaces and then give a concrete construction of a suitable space with

a remote point. After modifying this space using the methods of Chapter 5 we will

use it in the last chapter.

4.1 General theorems

This section will list some conditions under which we can have remote points. It

will only be an overview; we do not include any proofs. The notion of a remote

point was introduced by Fine and Gillman in [FG62] as a method for studying the

nonhomogeneity of βX. The existence of remote points for spaces of countable

π-weight was proved independently by van Douwen in [vD81] and Chae and Smith

in [CS80]. The assumption of nonpseudocompactness in the theorems is due to

the fact that any pseudocompact space of π-weight less than the first measurable

cardinal has no remote points (see [Ter79]).

Theorem 4.1 ([Dow84]). Any ccc nonpseudocompact space of π-weight ω1 has a

remote point. (A space is ccc if any system of disjoint open subsets of the space is

at most countable.)
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Theorem 4.2 ([Dow82]). Under MA any ccc nonpseudocompact space of π-weight

at most c has a remote point.

Theorem 4.3 ([HP88]). A nonpseudocompact space with a σ-locally finite π-base

has a remote point.

4.2 An irresolvable space with remote points

We will construct our space by constructing a topology on the integers. The follow-

ing theorem is standard:

Theorem 4.4. There is an ideal I on ω such that P(ω)/I has hereditary indepen-

dence c.

Proof. The complete Boolean algebra B = Compl(Clopen(2c)) has hereditary inde-

pendence c and is σ-centered so there is an ideal I on ω such that B is isomorphic

to P(ω)/I.

Theorem 4.5. There is a crowded, T0, zero-dimensional, irresolvable topology on

ω with a closed filter missing all sets with empty interior.

Proof. The plan is to construct a subset M of P(ω) independent in P(ω)/I and

then let the set of elementary meets over this subset be a base for the topology.

The subset itself will then be the required filter. Now at each step we will look at

a subset of ω and enlarge M so that either the subset will have nonempty interior

in the resulting topology or our filter will miss it.

Let {Pα : α < c & α = 0 mod 2} be an enumeration of P(ω) and let

{〈Zα, nα〉 : α < c & α = 1 mod 2} be an enumeration of {〈Z, n〉 : Z ∈ I∗, n ∈ Z}.

First construct, by induction on ω, M0 ⊆ P(ω), which is independent in P(ω)/I

and for each pair of natural numbers i, j there is an m ∈ M0 such that i ∈ m and
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j ∈ ω \m = −m. This is easy, since if a member of an independent family is finitely

modified, the family remains independent and there are only countably many pairs

of integers. Now construct an increasing chain 〈Mα : α < c〉 of subsets of P(ω)

which are independent in P(ω)/I, at a limit ordinal α, Mα =
⋃
{Mβ : β < α}) and

such, that the following condition is satisfied if α = 1 mod 2

(i) There is an m ∈ Mα+1 such that either nα ∈ m ⊆ Zα or nα ∈ −m ⊆ Zα.

and at the same time either of the following is true if α = 0 mod 2:

(ii) The set Pα I-almost contains an elementary meet over the set Mα+1.

(iii) There is an m ∈ Mα+1 such that Pα ∩m = ∅.

Suppose we have constructed 〈Mβ : β ≤ α〉.

Case 1 If α = 1 mod 2 then choose m ∈ P(ω) such that Mα∪{m′} is independent

in P(ω)/I (we can do that since |Mα| ≤ α · ω < i(P(ω)/I) = c) and find m so that

nα ∈ m ⊆ Zα and m′∆m ∈ I. Then Mα+1 = Mα ∪ {m} is independent and (i) is

satisfied.

Case 2 Suppose α = 1 mod 2 and there is m ∈ P(ω) so that Pα is I-almost

contained in an elementary meet over the set Mα ∪ {m} which is at the same time

independent in P(ω)/I. Then let Mα+1 = Mα ∪ {m} and (ii) is staisfied.

Case 3 Suppose α = 1 mod 2 and that for any m ∈ P(ω) for which Mα ∪ {m}

is independent in P(ω)/I, Pα is not almost contained in any elementary meet over

Mα ∪ {m}. Then, necessarily, Q = ω \ Pα 6∈ I. Let B := P(ω)/I � Q. We claim

that the following is true:
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Claim 1 M ′ = Mα � B = {m ∩ Q : m ∈ M} is an independent subset of B. If

it were not, then for some elementary meet k over M , k ∩ Q ∈ I. But, since M is

independent, k 6∈ Q, so k is I-almost contained in ω \Q = Pα — a contradiction.

Now B has independence continuum (since P(ω)/I has hereditary indepen-

dence continuum), so M ′ is not maximal and there is an m ⊆ Q such that M ′∪{m}

is independent in B. Then also Mα+1 = Mα ∪ {m} is independent in P(ω)/I and

m ∩ Pα = ∅.

So we have constructed the sequence 〈Mα : α < c〉 satisfying (i–iii). Now let

Let M contain
⋃
{Mα : α < c} and be maximal independent in P(ω)/Z0. Then let

τ be the topology generated by elementary meets over M. This topology is zero-

dimensional and T0 (M0 ⊆ M ⊆ τ and M0 separates all points of ω). It is crowded,

since the elementary meets of an independent system are in I+ and I+ contains no

finite sets. Also notice that all U ∈ I∗ are τ -open. To see this, let A be the set of

indices of pairs of the form 〈U, n〉 in our enumeration of {〈Z, k〉 : Z ∈ I∗, k ∈ Z}.

Then, for each α ∈ A there is, by condition (i), mα ∈ Mα ⊆ M ⊆ τ such that

nα ∈ mα ⊆ U . Then U =
⋃
{mα : α ∈ A} so it is open. To see that (ω, τ) is

irresolvable, first note that for any D dense and U open, D ∩ U 6∈ I. Also, if both

D and ω \ D are dense, then {D, ω \ D} ∩ M = ∅. Now, if D and ω \ D were

dense, then both would intersect any elementary meet over M in a set from I+, so

M ∪ {D, ω \ D} would be independent — a contradiction with the maximality of

M . Now, let F be a filter of closed sets extending the centered system {M}. It is a

filter of closed sets, since all sets in M are clopen in τ . If N ⊆ ω has empty interior,

then for some α < c, N = Pα. Since it has empty interior, it does not contain an

elementary meet over M hence, a fortiori, over Mα+1. So, by condition (ii) in the

inductive construction, there is an m ∈ Mα+1 ⊆ M ⊆ F such that m ∩N = ∅.
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CHAPTER V

BUILDING IRRESOLVABLE SPACES

In this chapter, methods for constructing special kinds of topologies will be

introduced and the properties of the resulting topologies will be investigated. Our

main result will be the existence of a countable, hereditarily open irresolvable, ex-

tremally disconnected space whose Čech-Stone compactification will have “special”

properties. Our method is very similar to [Hew43], but we will use it in the context

of extremally disconnected spaces and Boolean algebras. Also some of the results

can be derived from [vD93]. First we give purely algebraic results. After that, we

will look at the topological consequences.

5.1 Building complete atomless algebras

Lemma 5.1. Let B be an atomless subalgebra of a complete algebra C. If D ⊆ B

has no supremum in B, then there is a c ∈ C \ B so that 〈B ∪ {c}〉 is atomless.

Proof. Let c′ be the supremum of D in C. Define U = {u ∈ B : u ≥ c′} and

D′ = {d ∈ B : d ≤ c′} ⊇ D. Now let c be the infimum of U in C (c 6∈ B otherwise

it would be a supremum of D inB). Suppose a were an atom of 〈B∪ {c}〉, then, by

Lemma 1.21, there are two cases:

Case 1. For some b ∈ B, a = b∧c. But then all d ∈ D′ are less then −b (otherwise

for some d ∈ D′ we would have that d∧b 6= 0, but d ≤ c′ ≤ c, so 0 6= d∧b ≤ c∧b = a

which is a contradiction since B is atomless). So −b ∈ U (since D′ ≤ −b so D ≤ −b

so −b ≥ c′ because c′ is the supremum of D) and −b ≥ c which contradicts a 6= 0.
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Case 2. For some b ∈ B, a = b ∧ −c. But then b ≤ u for all u ∈ U (otherwise for

some u ∈ U we would have −u∧ b 6= 0; then u ≥ c so −u ≤ −c, and we would have

0 6= −u ∧ b ≤ −c ∧ b = a, a contradiction with B being atomless) Suppose, aiming

for a contradiction, that there is an atom a in 〈B ∪ {c}〉. We conclude that b ≤ c,

so a = −c ∧ b = 0, a contradiction.

Proposition 5.2. If B is an atomless subalgebra of a complete algebra C, then there

is a complete algebra B′, which is a subalgebra of C (not necessarily a complete

subalgebra of C), which is atomless and contains B. Denote this algebra c(B, C) or

just c(B) if C is clear from the context1.

Proof. Order the atomless subalgebras of C by inclusion. Since the union of a

chain of atomless algebras is an atomless algebra we can use Zorn’s lemma to get

a maximal atomless subalgebra of C containing B. This algebra is necessarily com-

plete, since otherwise we could use Lemma 5.1 to extend the chain.

Lemma 5.3. Let B be an atomless subalgebra of C, D a centered set of elements

independent with respect to B and c ∈ C independent with respect to B. Then either

D ∪ {c} is centered, or for some d ∈ D 〈{d} ∪ B〉 is atomless.

Proof. Suppose the D ∪ {c} is not centered and choose d ∈ D so that d ∧ c = 0.

Suppose further that a ∈ 〈{d} ∪ B〉 is an atom. Then, using Lemma 1.21, we can

write written as a = −d∧ b for some b ∈ B (it cannot be of the form d∧ b otherwise,

since B is atomless, we could split b into b1, b2 and, since d is independent with

respect to B, d∧ b1 6= 0 6= d∧ b2 would be a split of a). Now there is a b′ ∈ B, such

that −d ∧ b′ = 0 (split b and use the fact, that a is an atom). Then b′ ≤ d and,

since d∧ c = 0, b′∧ c = 0 contradicting that c is independent with respect to B.

1Note that there will actually be many such algebras. For most of our needs, we will not care
which of these algebras is chosen to be c(B)



27

Lemma 5.4. Let B be an atomless subalgebra of C, b ∈ B, c ∈ C. If 〈(B � b)∪{c∧b}〉

is atomless, then so is 〈B ∪ {c ∧ b}〉.

Proof. Denote d = c∧ b. If a ∈ 〈B∪ {d}〉 were an atom, it would have to be (using

Lemma 1.21 and the fact that we could split d∧ b′) of the form a = −d∧ b′ for some

b′ ∈ B. Now, (a ≥)− d ∧ b′ ∧ b = 0 (otherwise we could again split a), hence wlog,

b′ ∧ b = 0 (i.e. b′ ≤ −b). But, since −d ≥ −b, we have that a ≥ −b∧ b′ = b′ and we

can split a, which is a contradiction.

Proposition 5.5. Let B be a subalgebra of a complete Boolean algebra C. Then

for any c ∈ c(B) the set of elements of C independent with respect to c(B) � c is

centered.

Proof. Let B′ = c(B) � c and (using Zorn’s lemma) let D be a maximal centered

set of elements (of C) independent with respect to B′. Suppose that there is some

e ∈ C \ D, independent with respect to B′. Then, using Lemma 5.3, we get d ∈ D

(necessarily d ∧ c 6∈ B′, since it is independent with respect to B′), such that 〈{d ∧

c} ∪ B′〉 is atomless. But then, using Lemma 5.4, we get a contradiction with the

fact that B is a maximal atomless subalgebra of C.

Proposition 5.6. If F is a filter on P(κ) extending the generalized Fréchet filter on

κ and B is a subalgebra of P(κ) such that F is independent with respect to B, then

there is an algebra A containing B which is maximal among algebras with respect

to which F is independent. Denote this algebra by i(B,F)2. If χ(F) ≤ κ then this

algebra is atomless.

Proof. The existence of A = i(B,F) is a simple consequence of Zorn’s lemma.

Now any a ∈ A must have cardinality κ (otherwise κ \ a ∈ F contradicting the

2Note that, again, there will actually be many such algebras. For most of our needs, we will not
care which of these algebras is chosen to be ı(B,F)
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independence of F with respect to A). Reasoning similarly for any f ∈ F and any

a ∈ A, f ∩a has cardinality κ. Suppose, aiming towards a contradiction, that a ∈ A

is an atom. Let {Fα : α < κ} be a base for F . By induction on α < κ choose two

distinct

c0
α, c1

α ∈ Fα ∩ a \ {ci
β : β < α, i < 2}

Then, if c = {c0
α : α < κ}, F is independent with respect to 〈A ∪ {c}〉, and that is

a contradiction with the maximality of A.

Lemma 5.7. If F is the filter of cofinite subsets of κ, then c(i(B,F)) = i(B,F).

Proof. This is evident, since if B is atomless, then F ⊆ idp(B), so the equality holds

by the maximality of i(B,F).

Proposition 5.8. If B is an atomless subalgebra of a P(X) which has T2, then

there is a subalgebra B′ of P(X) containing B with the following properties: B′ is

complete (not necessarily a complete subalgebra of P(X)), atomless, has T2 and for

any b ∈ B the set of elements independent with respect to b is centered. We may

also require idp(B′) to contain a chosen filter of character ≤ |X|.

Proof. Just take B′ to be c(B), use Proposition 5.5 and note, that any algebra larger

than B will also have T2. The additional requirement may be satisfied by taking

i(B,F) instead of c(B) and using Lemma 5.7.

Theorem 5.9. Any crowded, totally disconnected topology τ with a base of regular

open sets on a space X can be extended to a zerodimensional topology with no isolated

points.
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Proof. Let B be the algebra of clopen sets of τ and let B′ be a maximal atomless

subalgebra of P(X) containing B and satisfying that for any b ∈ B′ and U ∈ RO(τ)

b∩U and b∩(X \U) are empty or infinite. This algebra exists, because B is atomless

(τ is totally disconnected and crowded). Now B′ is a base for a topology containing

τ and having no isolated points: it has no isolated points since it is atomless, so we

only need to prove, that any set in RO(τ) can be written as a union of sets from B′.

Suppose not. Then for some U ∈ RO(τ) and x ∈ U we have, that for any b ∈ B′

x ∈ b implies b ∩X \ U is nonempty. By the total disconnectedness of τ there is b,

so that x ∈ b. But then 〈B′∪{b∩U}〉 is atomless and satisfies the other conditions,

contradicting the maximality of B′: b′∧(b∩U) cannot be finite (and hence an atom)

because B′ satisfies our conditions and b′ ∧ −(b ∩ U) = b′ − b ∨ b′ ∩ (X \ U), which

also can’t be finite (and hence an atom).

5.2 Topological consequences

Let us now exploit the previous theorems to construct some interesting topologies.

Definition 5.10. We will call a space κ-dense centered iff any two dense subsets

of cardinality at most κ intersect. A space is open hereditarily κ-dense centered iff

every open subspace is κ-dense centered. Call a space maximal ([Hew43]), if any

finer topology contains isolated points.

The following two theorems can be found in [Hew43] or [vD93].

Lemma 5.11 ([vD93],1.5, 1.6). Any crowded totally disconnected topology can be

refined to a topology having a base consisting of regular open sets.

Theorem 5.12 ([vD93],2.2). If X is maximal, then all n.w.d. subsets of X are

closed.

Corollary 5.13. If X is maximal, then all n.w.d. subsets of X are discrete.
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Proposition 5.14. The topology τ
c(B)

is maximal.

Proof. The finer topology will be regular (since c(B) is extremally disconnected).

So there must be a regular open set g in the finer topology, which is not open in

c(B). Then c(B) ∪ {g} has an atom (that is, contains a finite set) which is of the

form g ∧ b or −g ∧ b. If the first is an atom, then it gives rise to an isolated point in

the finer topology. If the second one is, then we get an isolated point if we notice,

that −g is regular closed, so if it has finite intersection with a clopen set, it also

gives rise to an isolated point.

Proposition 5.15. If the topology given by c(B) is nowhere locally compact then

its compact sets are precisely the finite ones.

Proof. If a set is finite, then it is compact. On the other hand, if it is infinite, then

it is either discrete (and hence noncompact) or has nonempty interior, but then it

cannot be compact, since the space is nowhere locally compact.

Definition 5.16. Call a space κ-fine if it is an extremally disconnected, T2 hered-

itarily κ-dense centered space without isolated points. Fine is ω-fine.

Theorem 5.17. On any zerodimensional, T2 space X without isolated points, there

is a finer topology dτ , so that X with this topology is an |X|-fine space. We may

further require that the dense sets in (X, dτ) extend a given filter of character ≤ |X|.

Proof. Let B be the clopen sets of our space X. And let B′ (from Proposition 5.8)

be the base of the finer topology. Since B′ is a complete algebra, X is extremally

disconnected. Since it is atomless, no finite subset of X is open, hence X does not

have isolated points. The algebra has T2 which implies that X is T2. Now notice,

that a set d dense in some clopen subset c of X, regarded as an element d ∈ P(X) is

independent with respect to B′ � c (it must intersect all nonempty open sets). The
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additional requirement follows, if we have B′ satisfy the additional requirement of

Proposition 5.8.

Lemma 5.18. A subset of a κ-fine space X is nowhere dense iff its complement is

dense.

Proof. The implication from left to right is trivial. Suppose then, that N is not

nowhere dense and X \N = D is dense. Then, N and D are dense on some clopen

subset of the nonempty open set int(N), hence they must intersect, and this gives

us a contradiction.

Corollary 5.19. The dense sets in a κ-fine space form a filter.

Proof. Obvious, since the nowhere dense sets form an ideal.

Proposition 5.20. A countable fine space X is nowhere locally compact.

Proof. Fix a closed set b ∈ Clopen(X) = B. Enumerate all members of b as

{xn : n ∈ ω}. Now construct a decreasing sequence of closed sets bn such that

for each n ∈ ω, xn 6∈ bn+1: Let b0 = b and, if all bis were constructed for i ≤ n,

split bn into two parts (by atomlessness of B). One of them must contain xn, so

let the other be bn+1. This gives us a decreasing system of closed sets with empty

intersection, i.e. b is not compact.

Proposition 5.21. A disjoint sum of κ-fine spaces is a fine space.

Proof. Obvious.

We have thus proved the following theorems, which are the main results of

this chapter:

Theorem 5.22. On any countable zerodimensional space without isolated points

there is a finer topology giving a fine space. We can also assume that the remote

points of X are precisely the ω-far points.
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Proof. The last condition can be satisfied using corollary 5.13 which says that in

the topology of c(B) the nowhere dense sets are discrete.

Theorem 5.23. There is a countable fine space Y whose Čech-Stone compactifica-

tion contains a weak p-point. Thus βY is ω-dense centered.

Proof. Let (X, τ ′) be the space from Corollary 3.11. Then, using Theorem 5.11

and, extend τ ′ to a zerodimensional topology and then, using Theorem 5.17, extend

it to a finde topology τ . Now, since (X, τ) is nowherelocally compact we can use

Proposition 5.15 to see, that the ideal of finite sets coincides with the ideal of

compact sets. Let Y = ω × X. Then the c by c independent linked system in X

satisfies the conditions of Theorem 3.5. If we take C to be the filter dual to the filter

of finite sets it is nice and the Theorem 3.5 gives us p a c − O.K. point in Y ∗. By

Proposition 1.5 p is a weak P-point. Then, if D1, D2 were disjoint countable dense

in βY , then U = βY \D1 ∪D2 is nonempty, since p ∈ U . So D1 and D2 are dense

in U ∩ Y so they must intersect since Y is a fine space — a contradiction.
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CHAPTER VI

CONCLUSION

In Chapter 3 we constructed a crowded totally disconnected space with a

base of regular open sets with a c by c independent linked system. Using Theorem

5.9 and 5.22 we get an crowded, extremally disconnected OHI space of weight ≤ c,

which has a weak P-point (by Theorem 3.4) and can be embedded into ω∗ as a weak

P-set (Theorem 2.1).

Also, in Chapter 4, we constructed a crowded totally disconnected space

with a base of regular open sets with a filter missing all sets with empty interior.

Again, using Theorems 5.9 and 5.22 we get an crowded, extremally disconnected

OHI space, this time with a remote point. This space can, by the same Theorem

2.1, be embedded as a weak P-set into ω∗.

The last step is to get an extremally disconnected OHI space X with both of

the above properties, that is: a space which has a remote weak P-point p and has

weight ≤ c. Once we have such a space and embed its Čech-Stone compactification

into ω∗ as a weak P-set, this point will become a uniquely ω-accessible point of ω∗:

Since βX is a P-set of ω∗, using Proposition 1.6, there is no countable D ⊆ ω∗ \βX

such that p ∈ D̄. Since p is a weak P-point of X∗, applying Proposition 1.5 there

is no countable D ⊆ X∗, such that p ∈ D̄. Joining the previous two observations

with the fact that p is remote, any countable set D such that p ∈ D̄ must be dense

in some open set of X. But then, since X is extremally disconnected, any two such

sets must be dense in a common open set (Use Proposition 1.10, and the fact that

X is OHI to conclude that they have nonempty intersection).
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