

THOMPSON, DALE ERMINE. Lattice Dynamics in a Gallium Crystal Using the "6-exp" Potential. (1970) Directed by: Dr. Clifton Bob Clark.

The equations of motion for a diatomic molecule of gallium are derived using the harmonic approximation. The interatomic forces are found analytically using the "6-exp" potential form, and the intermolecular force constants and secular determinant are evaluated numerically. An attempt to evaluate the normal mode frequencies is unsuccessful since no method for determining satisfactory potential parameters was developed.

APPROVAL SHEET

This thesis has been approved by the following committee of the Faculty of the Graduate School at the University of North Carolina at Greensboro.

Thesis Adviser

Clifton Boblilark

Oral Examination Committee Members \qquad Dished T. Whitlock OF meavidas Fino milcomede $\frac{\text { May } 201970}{\text { Date rn }}$

LATTICE DYNAMICS IN A GALLIUM CRYSTAL " USING THE "6-EXP" POTENTIAL

by

Dale Ermine Thompson

A Thesis Submitted to the Faculty of the Graduate School at The University of North Carolina at Greensboro in Partial Fulfillment
of the Requirements for the Degree Master of Science

Greensboro
June, 1970

Approved by

The assistance of D. F. McAllister, F. J. McCormack, R. T. Whitlock, and especially of C. B. Clark, all of the University of North Carolina at Greensboro, is acknowledged with much gratitude.

TABLE OF CONTENTS

Page
INTRODUCTION 1
DEVELOPMENT OF THE DYNAMICAL MATRIX 6
SUMMARY AND CONCLUSIONS 19
FOOTNOTES AND BIBLIOGRAPHY 23
APPENDIX I: Symmetry Transformations on the
Gallium Lattice 24
APPENDIX II: Analytical Calculation of the
Interatomic Force Constants 31
APPENDIX III: Calculation of the Self-ForceTerms 36
APPENDIX IV: Programming Considerations 41
APPENDIX V: Calculation of the First Brillouin
Zone Boundaries 51

Table 1: Calculated Values of ω^{2} for Plane Waves Propagating Along the Crystal Axes 21

LIST OF FIGURES

Page
Figure 1: The base-centered orthorhombic lattice 3
Figure 2: Relative molecular orientations in the gallium lattice 3
Figure 3: The basis for a unit cell of gallium 5
Figure 4: Principal axis orientation 33
Figure 5: The first quadrant of the $x-y$ planeof the reciprocal lattice showing theBrillouin zone boundaries53
Figure 6: The first quadrant of the $y-z$ plane of the reciprocal lattice showing the Brillouin zone boundary 55

INTRODUCTION

A crystal lattice may be described as a regular array of atoms and/or molecules. One may be described using two basic concepts - the unit cell and the translation vectors of the crystal. A particular arrangement of molecules (the "unit cell" of the crystal) is located at the origin of a coordinate system. This arrangement or unit cell is repeated at regular intervals in space. These intervals are described by three translation vectors. A unit cell is located at particular combinations of these vectors, as, for example, at every combination of integer multiples of the vectors. In the case of gallium, an orthogonal set of vectors will be chosen such that a unit cell is located at every combination of even-integer multiples of the translation vectors.

A force exerted on a molecule in such a crystal lattice, perhaps produced by a wave progressing past the molecules, disturbs the molecule from its equilibrium position. This disturbance propagates through the crystal at a speed which is dependent on the incident direction of the wave with respect to the crystal axes. In the harmonic approximation we may treat the molecules as if they were a collection of oscillators. The standard method of handling this is in terms of the normal modes of the oscillators.

In this thesis, gallium is treated as forming a crystal
of diatomic molecules. The equations of motion for a molecule in the lattice are derived using the harmonic approximation. The inter-atomic forces are found analytically using the " $6-\exp$ " potential form, $V=-\frac{A}{r^{6}}+B e^{-\alpha r}$. Using these analytical forms the inter-molecular force constants are found numerically. The secular determinant is evaluated and an attempt is made to find the normal mode frequencies for selected values of the wave vector $\underset{\sim}{q}$.

The model of the gallium molecule is that of a rigid dumbell of length $2.442 \AA^{\circ}$ 1 and the mass of each atom is $115.735199 \times 10^{-24}$ grams. ${ }^{2}$ In the crystal lattice (basecentered orthorhombic), there are two possible molecular orientations. With respect to the crystal axes (figure 1), both molecule positions lie parallel to the b-c plane. Type A is tipped $\sim 16.9^{\circ}$ counter-clockwise from the b-axis and type $B \sim 16.9^{\circ}$ clockwise from the same axis 3 (figure 2). The principal axes for each type are located such that one lies along the dumbbell axis (the b-axis). A second (the α-axis) passes through the center of the dumbbell parallel to the a-axis and the third (the γ-axis) is selected to form a right-handed system with the first two.

Lengths on the crystal axes are most conveniently measured in integer multiples of one-half the respective lattice constants. The integers are designated h, k, and l. A unit cell containing four molecules can therefore be

Figure 1: The base-centered orthorhombic lattice

$\begin{aligned} & \text { Figure 2: Relative molecular orientations in the } \\ & \text { gallium lattice }\end{aligned}$
described using translation vectors $\underset{\sim}{e}{ }_{1}=\frac{a}{2} \hat{i},{\underset{\sim}{2}}_{2}^{e}=\frac{b}{2} \hat{j}$, and $\underset{\sim}{e}=\frac{c}{2} \hat{k}$ (figure 3). A type A molecule is located at $(0,0,0)$ and another at $(1,1,0)$. The two type B molecules are at $(0,1,1)$ and $(1,0,1) .^{3}$ By translating this unit cell along every combination of even-integer multiples of ${\underset{\sim}{e}}_{1}$, ${\underset{\sim}{e}}_{e}$, and $\underset{\sim}{e}{ }_{3}$, one can generate the rest of the base-centered orthorhombic lattice.

Figure 3: The basis for a unit cell of gallium

DEVELOPMENT OF THE DYNAMICAL MATRIX

Since the molecules are assumed rigid, there are only the three translational and three librational degrees of freedom per molecule. The translational motion will be considered first by assuming each molecule to be a point mass located at the center of mass of the molecule. The resulting equations may then be extended to include librational motion as well.

Consider the equations of translational motion of a molecule located at $\underset{\sim}{r} j$ with respect to some origin in the crystal axes. ${ }^{4}$ The equations, expressed in terms of displacement from the equilibrium position of the molecule, are

$$
\begin{equation*}
\underset{\sim}{F} j=\underset{\approx}{M} \underset{\sim}{\underset{\sim}{u}} \underset{j}{ }=-\sum_{j}, \underset{\approx}{\Phi}\left(j j^{\prime}\right) \underset{\sim}{u} j^{\prime} \tag{1}
\end{equation*}
$$

where the following definitions are made:

$$
\begin{aligned}
& \underset{\approx}{M} j=\left[\begin{array}{lll}
m & 0 & 0 \\
0 & m & 0 \\
0 & 0 & m
\end{array}\right] \quad m=\text { mass of Ga molecule } \\
& \underset{\sim}{\Phi}=\left[\begin{array}{lll}
\Phi_{11} & \Phi_{12} & \Phi_{13} \\
\Phi_{21} & \Phi_{22} & \Phi_{23} \\
\Phi_{31} & \Phi_{32} & \Phi_{33}
\end{array}\right] \begin{array}{r}
\Phi_{i k}\left(j j^{\prime}\right)=\text { force constant for the } 1 \\
\text { component of the force on } \\
\text { the } j \text { (or "origin") mole- }
\end{array} \\
& \text { cule due to displacement } \\
& \text { of the } j^{\prime} \text { (or "source") } \\
& \text { molecule in the } k \text { direction }
\end{aligned}
$$

$\underset{\sim}{u} j^{\prime}=$ displacement of the molecule from its equilibrium position, components along the crystal axes.

The range of the j^{\prime} index includes both j, the molecule being discussed, and its neighbors to any desired range. The harmonic expression for $\underset{\sim}{u} j$

$$
\begin{equation*}
\left.\underset{\sim}{u} j=\underset{\sim}{A} e^{i(\underset{\sim}{q} j} \cdot \underset{\sim}{r} j-\omega t\right) \tag{2}
\end{equation*}
$$

is postulated. Substituting this into Equation (1) gives

$$
\underset{\sim}{M} \underset{\sim}{A} j \omega^{2} e^{-i \omega^{t}} e^{i \underset{\sim}{q} \cdot \underset{\sim}{\sim} j}=e^{-i \omega t} \sum_{j}, \underset{\sim}{\Phi}\left(j j^{\prime}\right) \underset{\sim}{A}, e^{i \underset{\sim}{q} \cdot \underset{\sim}{\sim} j} \text {, }
$$

If the various $\underset{\sim}{A} j$, are assumed equal, this may be expressed in component form as

$$
\begin{equation*}
M \omega^{2} A_{k}=\sum_{N=1}^{3} \sum_{j}, \underset{k N}{\Phi\left(j j^{\prime}\right)} A_{N} e^{1 q} \sim \underset{\sim}{r} j^{\prime} \tag{3}
\end{equation*}
$$

for $k=1,2$, or 3 and where $\underset{\sim}{r}$, now means $\underset{\sim}{r}{\underset{\sim}{j}}^{r} \underset{\sim}{r} \underset{\sim}{r}$. The coefficients of the three amplitude components may be collected to rearrange Equations (3) as

$$
\begin{aligned}
& {\left[\sum_{j}, \Phi_{11}\left(j j^{\prime}\right) e^{i q} \underset{\sim}{r} \underset{\sim}{r} j^{\prime}-M \omega^{2}\right] A_{1}+\left[\sum_{j}, \Phi_{1_{2}}\left(j j^{\prime}\right) e^{i q \cdot \underset{\sim}{r} j^{\prime}}\right] A_{z}} \\
& +\left[\sum_{j, \Phi_{13}\left(j j^{\prime}\right)} e^{i q}{\underset{\sim}{\sim}}^{r}{ }_{f}^{\prime}\right] A_{3}=0 \\
& {\left[\sum_{j}, \Phi_{21}\left(j j^{\prime}\right) e^{i \underset{\sim}{q}} \cdot \underset{\sim}{r} j^{\prime}{ }_{j} A_{1}+\left[\sum_{j}, \Phi_{22}\left(j j^{\prime}\right) e^{i \underset{\sim}{q} \cdot \underset{\sim}{r} j^{\prime}}-M \omega^{2}\right] A_{2}\right.} \\
& +\left[\sum_{j}, \Phi_{23}\left(j j^{\prime}\right) \mathrm{e}^{i \underset{\sim}{q} \cdot \underset{\sim}{r} j^{\prime}}\right] \mathrm{A}_{3}=0
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\sum_{j}, \Phi_{31}\left(j j^{\prime}\right) e^{i q} \sim \underset{\sim}{\sim} j^{\prime}\right] A_{1}+\left[\sum_{j}, \Phi_{32}\left(j j^{\prime}\left(e^{i q} \cdot \underset{\sim}{r} j^{\prime}\right] A_{2}\right.\right.} \\
& +\left[\sum_{j}, \Phi_{33}\left(j j^{\prime}\right) e^{1 \underset{\sim}{q}} \cdot \underset{\sim}{r} j^{\prime}-M w^{2}\right] A_{3}=0
\end{aligned}
$$

From Cramer's rule the secular determinant is therefore

(5)

The molecular structure may be considered by extending these results to include librational motion as well. Torque components are taken along the principal axes of the molecule on which they are exerted so that the moment of inertia tensor $\underset{\approx}{I}$ of the molecule is diagonal. Equation (1) involving linear displacements and forces may be extended to include torques and molecular rotations as well. The resulting equation involves a 6×6 "force constant" matrix and is of the form

where the 6×6 matrix $\underset{\sim}{\Phi}$ is divided into four 3×3 submatrices.
There are two main variations from the method of the previous derivation. First, two equations of motion are used to describe translation and rotation of the "origin" molecule. In component form, these are ${ }^{5}$

$$
\begin{aligned}
& F_{i}(j)=m \ddot{u}_{i}(j)=-\sum_{j^{\prime}} \sum_{k B} \sum_{B}\left[\Phi_{i k}\left(j j^{\prime}\right) u_{k}\left(j^{\prime}\right)+\Phi_{i \beta}\left(j j^{\prime}\right) \theta_{\beta}\left(j^{\prime}\right)\right] \\
& C_{\alpha}(j)=I \ddot{\theta}_{\alpha}(j)=-\sum_{j^{\prime}} \sum_{k} \sum_{B}\left[\Phi_{\alpha k}\left(j j^{\prime}\right) u_{k}\left(j^{\prime}\right)+\Phi_{\alpha B}\left(j j^{\prime}\right) \theta_{\beta}\left(j^{\prime}\right)\right]
\end{aligned}
$$

where i, k, α, and B run from 1 to 3 and where the following definitions are made:
$C_{\alpha}(j)=$ net torque on the j th or origin molecule
$\Phi_{\alpha \beta}\left(j j^{\prime}\right)=$ "torque constant" relating the α component of torque on the origin molecule to a rotation of the j^{\prime} or source molecule about the β principal axis
$\theta_{B}=$ rotation about the B principal axis
$\Phi_{i \beta}\left(j j^{\prime}\right)$ relates forces on the origin molecule to rotation of the source molecule
$\Phi_{\beta k}\left(j j^{\prime}\right)$ relates torques on the origin molecule to translation of the source molecule

It should be noted here that the k subscript connotes translation of the molecule, while the β subscript implies rotation. Thus $\Phi_{i k}$ does not equal $\Phi_{i \beta}$ nor does $\Phi_{\alpha k}$ equal $\Phi_{\alpha \beta}$ when k happens to equal 8 . For convenience these may be written

$$
F_{i}(j)=-\sum_{j^{\prime}} \sum_{k} \Phi_{i k}\left(j j^{\prime}\right) u_{k}\left(j^{\prime}\right)
$$

where i and k range from 1 to 6 (1 to 3 imply translation and 4 to 6 , libration). Second, the origin and source molecules are not necessarily identical, so that all amplitudes in the harmonic form may not be assumed equal. There must be equations of motion for each type of origin molecule, and there must be a different amplitude for each type of molecule in the lattice. The harmonic solution is now substituted, i.e.,

$$
\underset{\sim}{u} j=\underset{\sim}{A} j e^{i(\underset{\sim}{q} \cdot \underset{\sim}{r} j-\omega t)}
$$

where $\underset{\sim}{u} j$ and $\underset{\sim}{A} j$ are now six-element column matrices. If the factor $e^{-i \omega t}$ is cancelled, the amplitudes of all type A molecules are assumed equal, and those of all type B molecules are assumed equal, then the resulting two equations are ${ }^{5}$

$$
\begin{align*}
& \underset{\sim}{M} \underset{\sim}{A} w^{2}=\sum_{j}, \underset{\sim}{\Phi}\left(j j^{\prime}\right) \underset{\sim}{A} e^{i \underset{\sim}{q} \cdot \underset{\sim}{r} j^{\prime}}+\sum_{l^{\prime}} \underset{\sim}{\Phi}\left(j l^{\prime}\right) \underset{\sim}{B} \mathrm{e}^{i \underset{\sim}{q} \cdot{ }_{\sim}^{r} l^{\prime}} \tag{6}\\
& \underset{\sim}{M} \underset{\sim}{B} \omega^{2}=\sum_{l^{\prime}} \underset{\sim}{\Phi}\left(j l^{\prime}\right) \underset{\sim}{A} e^{i \underset{\sim}{q} \cdot \underset{\sim}{r} l^{\prime}}+\sum_{j}, \underset{\sim}{\Phi}\left(j j^{\prime}\right) \underset{\sim}{B} e^{i \underset{\sim}{q} \cdot{ }_{\sim}^{r} j^{\prime}}
\end{align*}
$$

where in each case j^{\prime} indicates only those molecules of
the same type as the origin molecule, and ℓ^{\prime} indicates only those not of the same type as the origin. The mass has been extended to a 6×6 diagonal matrix,

$$
\underset{\sim}{\mathbb{M}}=\left[\begin{array}{llllll}
m & 0 & 0 & 0 & 0 & 0 \\
0 & m & 0 & 0 & 0 & 0 \\
0 & 0 & m & 0 & 0 & 0 \\
0 & 0 & 0 & I_{\alpha} & 0 & 0 \\
0 & 0 & 0 & 0 & I_{\beta} & 0 \\
0 & 0 & 0 & 0 & 0 & I_{\gamma}
\end{array}\right]
$$

These equations may be written in component form and the coefficients of the components of $\underset{\sim}{A}$ and $\underset{\sim}{B}$ collected. There are now six equations of the form

$$
\begin{align*}
& \sum_{k}\left\{\left[\sum_{j}, \Phi_{i k}\left(j j^{\prime}\right) e^{i q \cdot r_{\sim}^{\prime}} j^{\prime}-M_{i} w^{2} \delta_{i k}\right] A_{k}\right\} \\
& \tag{7}\\
& \quad+\sum_{k}\left\{\left[\sum_{\ell^{\prime}}, \Phi_{i k}\left(j \ell^{\prime}\right) e^{i q \cdot \sim_{\sim}^{r}} \ell^{\prime}\right]\right\} B_{k}=0
\end{align*}
$$

and six of the form

$$
\begin{aligned}
\sum_{k}\left\{\left[\sum_{j}, \Phi_{i k}\left(j j^{\prime}\right) e^{i q \cdot \sim_{\sim}^{\prime}}{ }^{\prime}\right] A_{k}\right\} & +\sum_{k}\left\{\left[\sum_{l}, \Phi_{i k}\left(j l^{\prime}\right) e^{i q \cdot{\underset{\sim}{r}}^{\prime}}\right.\right. \\
& \left.\left.-M_{i} \omega^{2} \delta_{i k}\right] B_{k}\right\}=0 .
\end{aligned}
$$

where $i, k=1,2, \ldots, 6$. These equations give a 12×12 secular determinant whose elements are of the form

$$
\begin{equation*}
\sum_{j}, \Phi_{i k}\left(j j^{\prime}\right) e^{i q \cdot{\underset{\sim}{r}}_{j}^{\prime}}-\mathbb{M}_{i} w^{2} \delta_{i k} \tag{8}
\end{equation*}
$$

The order of the matrix may be reduced by considering molecular symmetry. Physically, motion about the β - or dumbbell axis can have no meaning since I_{B} is zero. Accordingly, the fifth and eleventh columns, which involve rotation about the β-axis, and the fifth and eleventh rows, which involve β-components of torque, may be omitted. The determinant is thus reduced to 10×10.

For the same reason, the fifth row and column of each inter-molecular force constant matrix may be omitted, reducing it to 5×5. Lattice symmetries further restrict the form of this matrix for certain locations of the source molecule. The symmetry notation described by Pawley ${ }^{6}$ is used. The type B symmetry transformation, or inversion through a point in the lattice such as the origin, takes molecule n at (h, k, l) into molecule n^{\prime} at ($-h,-k,-\ell$). Inversion through the origin indicates that $\underset{\sim}{\Phi}$ between the origin molecule and any other molecule in the lattice is of the form

$$
\stackrel{\Phi}{\approx}=\left[\begin{array}{ccccc}
\Phi_{11} & \Phi_{12} & \Phi_{13} & \Phi_{14} & \Phi_{15} \\
\Phi_{12} & \Phi_{22} & \Phi_{23} & \Phi_{24} & \Phi_{25} \\
\Phi_{13} & \Phi_{23} & \Phi_{33} & \Phi_{34} & \Phi_{35} \\
-\Phi_{14} & -\Phi_{24} & -\Phi_{34} & \Phi_{44} & \Phi_{45} \\
-\Phi_{15} & -\Phi_{25} & -\Phi_{35} & \Phi_{45} & \Phi_{55}
\end{array}\right]
$$

A type A symmetry transformation brings the transformed molecules into self-coincidence, as in the case of re-
flection in the plane containing the molecules. This transformation leaves $\underset{\sim}{\Phi}$ unchanged. Reflecting the gallium lattice in a plane perpendicular to the a-axis indicates that the form of $\underset{\approx}{\Phi}$ between molecules lying in such a plane is

$$
\underset{\sim}{\Phi}=\left[\begin{array}{ccccc}
\Phi_{11} & 0 & 0 & 0 & \Phi_{15} \\
0 & \Phi_{22} & \Phi_{23} & \Phi_{24} & 0 \\
0 & \Phi_{23} & \Phi_{33} & \Phi_{34} & 0 \\
0 & -\Phi_{24} & -\Phi_{34} & \Phi_{44} & 0 \\
-\Phi_{15} & 0 & 0 & 0 & \Phi_{55}
\end{array}\right]
$$

Type C symmetry, a screw did transformation, relates the force constant matrix $(\underset{\sim}{\Phi})$ between a type A origin molecole and the source molecule located at (h, k, l) with respect to this origin to the force constant matrix (${\underset{\sim}{\Phi}}^{\prime}$) between a type B origin molecule and a source molecule located at a corresponding position with respect to this type B origin. The application of this symmetry transformation indicates that the following relationship must hold between $\underset{\sim}{\Phi}$ and ${\underset{\sim}{\Phi}}^{\prime}$:

$$
\underset{\sim}{\approx}=\left[\begin{array}{ccccc}
\Phi_{11} & \Phi_{12} & \Phi_{13} & \Phi_{14} & \Phi_{15} \\
\Phi_{12} & \Phi_{22} & \Phi_{23} & \Phi_{24} & \Phi_{25} \\
\Phi_{13} & \Phi_{23} & \Phi_{33} & \Phi_{34} & \Phi_{35} \\
-\Phi_{14} & -\Phi_{24} & -\Phi_{34} & \Phi_{44} & \Phi_{45} \\
-\Phi_{15} & -\Phi_{25} & -\Phi_{35} & \Phi_{45} & \Phi_{55}
\end{array}\right]=\left[\begin{array}{ccccc}
\Phi_{11}^{\prime} & \Phi_{12}^{\prime} & \Phi_{13}^{\prime} & -\Phi_{14}^{\prime} & -\Phi_{15}^{\prime} \\
\Phi_{12}^{\prime} & \Phi_{22}^{\prime} & \Phi_{23}^{\prime} & -\Phi_{24}^{\prime} & -\Phi_{25}^{\prime} \\
\Phi_{13}^{\prime} & \Phi_{23}^{\prime} & \Phi_{33}^{\prime} & -\Phi_{34}^{\prime} & -\Phi_{35}^{\prime} \\
\Phi_{14}^{\prime} & \Phi_{24}^{\prime} & \Phi_{34}^{\prime} & \Phi_{44}^{\prime} & \Phi_{45}^{\prime} \\
\Phi_{15}^{\prime} & \Phi_{25}^{\prime} & \Phi_{35}^{\prime} & \Phi_{45}^{\prime} & \Phi_{55}^{\prime}
\end{array}\right]=\underset{\sim}{\Phi} .
$$

The details of these symmetry transformations are shown in Appendix I.

The large number of independent parameters involved in molecule-molecule ($\mathrm{m}-\mathrm{m}$) interactions jis not further reducible due to the low order of symmetry of the crystal. There are at least nine parameters involved in each m-m interaction. If only fifth-nearest neighbors are included in the dynamical matrix, a total of 101 independent parameters are involved. It is unlikely that this many independent parameters can satisfactorily be determined from experimental data.

If, however, a particular potential is assumed for interactions between atoms, the parameters in the m-m expressions become dependent on the potential used. The number of variables is thus greatly reduced.

The atoms are assumed to interact via the "6-exp" potential energy form, which is

$$
V=-\frac{A}{r^{6}}+B e^{-\alpha r} .
$$

There are now only three independent parameters, with the intermolecular constants dependent on these. The potential energy of the crystal may be expressed in a Taylor series expansion about the equilibrium position as ${ }^{7}$

$$
u=u_{e}+\sum_{i} x_{i} \frac{\partial u}{\partial x_{i}}+\frac{1}{2} \sum_{i} \sum_{j} x_{i} x_{j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\cdots \cdot
$$

evaluated at the equilibrium position of the molecule. Since both u and $\frac{\partial u}{\partial x_{i}}$ are zero when evaluated at the equilibrium position, the first non-vanishing term is the "harmonic oscillator" term. The harmonic approximation
then implies that the inter-atomic force constants are the second derivatives of the potential. From this, one can show that the force constants $\left(\Phi_{i j}\right)$ between an atom in the origin molecule and one in the source molecule are of the following form:

$$
\begin{aligned}
& \text { a. } i=1,2,3 \quad j=1,2,3 \\
& \Phi_{i j}=\delta_{i j} f(r)+x_{i} x_{j} g(r) \\
& \text { b. } i=4,5 \quad j=1,2,3 \\
& \Phi_{4 j}=Y_{0} \Phi_{3 j}-z_{0} \Phi_{2 j} \\
& \Phi_{5 j}=-\left(y_{0} \cos \theta+z_{0} \sin \theta\right) \Phi_{1 j} \\
& y_{0}, z_{0}=\text { position of the } \\
& \text { origin atom relative to } \\
& \text { the center of mass of the } \\
& \text { origin atom } \\
& \text { c. } i=1,2, \ldots 5 \\
& j=4,5 \\
& y, z=\text { position of the } \\
& \Phi_{j_{4}}=y \Phi_{j_{3}}-z \Phi_{j z} \\
& \Phi_{j_{5}}=-(y \cos \theta+z \sin \theta) \Phi_{j_{1}} \\
& \text { source atom relative to } \\
& \text { the center of mass of the } \\
& \text { source atom }
\end{aligned}
$$

where

$$
\begin{aligned}
& f(r)=\frac{1}{r} \frac{\partial V}{\partial r}=\frac{6 A}{r^{8}}-\frac{B \alpha}{r} e^{-\alpha r} \\
& g(r)=\frac{1}{r} \frac{\partial f}{\partial r}=-\frac{48 A}{r^{10}}+\frac{B \alpha e^{-\alpha r}}{r^{3}}+\frac{B \alpha^{2} e^{-\alpha r}}{r^{2}}
\end{aligned}
$$

and the x_{i} are the components (with respect to the crystal axes) of the position of the source atom relative to the origin atom. This derivation is carried out in greater detail in Appendix II.

The force constants between the origin molecule and the source (or displaced) molecule may be found by including the four inter-atomic interactions possible between the two mole-
coles. If however the origin molecule is itself displaced and the rest of the lattice molecules remain in equilibrium, the forces exerted on the origin molecule (called the "selfforces") must be calculated differently.

For a simple translation u_{j} of the origin molecule, the force on it is the same as if it were undisplaced and each neighbor were displaced by $u_{j},=-u_{j}$. It is thus clear that

$$
\Phi_{i k}(j j)=-\sum_{j \neq j} \Phi_{i k}\left(j j^{\prime}\right) \text { for } i, k=1,2,3
$$

A pure rotation $\underset{\sim}{\theta} j$ of the origin molecule is equivalent to each neighbor experiencing a translation of $-\underset{\sim}{\underset{\sim}{\theta}} \underset{j}{r} \times \underset{\sim}{r}$, and a pure rotation of $-\underset{\sim}{\theta} j=\underset{\sim}{\sim} j . .^{5}$ The resulting forces are derived in Appendix III.

The self-force and intermolecular force constants may now be used to compute the dynamical matrix for different values of the wave vector $\underset{\sim}{q}$. The 10×10 secular determinant elements have already been described (Equation (8)). It is convenient to redefine the amplitudes of the harmonic solulions (A) by

$$
a_{i}=A_{i} \sqrt{M_{i}} \quad \text { where } M_{i}= \begin{cases}m & \text { for } i=1,2,3 \\ I_{\alpha} & i=4 \\ I_{\gamma} & i=5\end{cases}
$$

The secular equations may then be written

$$
\begin{equation*}
\left(\underset{\sim}{D}-I w^{2}\right) \underset{\sim}{a}=0 \tag{9}
\end{equation*}
$$

where I is the identity matrix and the $D_{i k}$ are of the form

$$
D_{i k}=\left\{\Sigma_{j}, \Phi_{i k}\left(j j^{\prime}\right) e^{i q} \cdot \stackrel{r}{\sim}_{j}^{\prime}\right\} / \sqrt{M_{i} M_{k}}
$$

The elements of the dynamical matrix are either purely real or purely imaginary. By taking account of the 90° phase difference between the translational and rotational components of the molecular motion, one may redefine the rotational amplitudes as ${ }^{5,6}$

$$
\begin{array}{ll}
a_{4}=1 A_{4} \sqrt{I_{\alpha}} & a_{0}=1 A_{9} \sqrt{I_{\alpha}} \\
a_{5}=1 A_{5} \sqrt{I_{\gamma}} & a_{10}=1 A_{10 \sqrt{I_{\gamma}}} .
\end{array}
$$

After making this substitution, we find the $D_{i k}$ terms of Equation (9) are of the following forms:
a. for type A origin and source molecules: $1, k=1-5$ $D_{i k}=\left\{\sum_{j},\left[\Phi_{i k}\left(j j^{\prime}\right) C_{p} e^{i q \cdot \underset{\sim}{r} j^{\prime}}\right]-\Phi_{i k}\left(j j^{\prime}\right)\right\} / \sqrt{M_{i} M_{k}}$ summed over type A molecules only.
b. for type A origin and type B source molecules:

$$
\begin{aligned}
& \quad i=1-5 \quad k=6-10 \\
& D_{i k}=\left\{\sum_{j}, \Phi_{i(k-5)}\left(j j^{\prime}\right) C_{p} e^{1 q \cdot x_{j}^{\prime}}\right\} / \sqrt{M_{i} M}(k-5) \\
& \text { summed over type B molecules only. }
\end{aligned}
$$

c. for type B origin and source molecules: $i, k=6-10$

$$
\begin{gathered}
D_{i k}=\left\{\left[\sum_{j, \Phi(i-5)(k-5)}\left(j j^{\prime}\right) C_{p} e^{i q \cdot \sim_{\sim}^{r}} j^{\prime}\right]-\Phi(i-5)(k-5)^{\left.\left(j j^{\prime}\right)\right\}}\right. \\
/ \sqrt{M}(i-5)^{M}(k-5)
\end{gathered}
$$

summed over type B molecules only.
d. for type B origin and type A source molecules:

$$
i=6-10 \quad k=1-5
$$

$$
D_{i k}=\left\{\sum_{j}, \Phi(i-5) k\left(j j^{\prime}\right) C_{p} e^{i q \cdot{\underset{\sim}{r}}_{\prime}^{\prime}}\right\} / \sqrt{\left.M_{(i-5}\right)^{M} k}
$$

summed over type A molecules only.

The values of $\Phi_{i k}\left(j j^{\prime}\right)$ are given in Equations 6, Appendix III, and C_{p} is defined by:

$$
\begin{aligned}
& C_{p}=\cos 2 \theta \quad \text { if } i, k=1,2,3,6,7,8 \\
& \text { or if } \quad i, k=4,5,9,10 \\
& C_{p}=\sin 2 \theta \quad \text { if } i=4,5,9,10 \\
& \text { and } k=1,2,3,6,7,8 \\
& C_{p}=-\sin 2 \theta \quad \begin{aligned}
\text { if } i & =1,2,3,6,7,8 \\
\text { and } k & =4,5,9,10
\end{aligned}
\end{aligned}
$$

The elements of the dynamical matrix may now be evaluated and the eigenvalues of the matrix found for specific values of $\underset{\sim}{q}$. These values are those of w^{2}, where the w^{\prime} s are the normal mode frequencies of the oscillators.

SUMMARY AND CONCLUSIONS

The intermolecular force constants for gallium may be obtained analytically using the "6-exp" potential form for inter-atomic interactions. These constants may be used to evaluate the dynamical matrix numerically and thus to obtain the dispersion relations for gallium.

An attempt was made to compute the dispersion relations for gallium using the program listed in Appendix IV. The values of the parameters A, B, and α were selected such that
and

$$
\begin{align*}
& \alpha=2.562205 \AA^{-1} \tag{1}\\
& \frac{A}{B}=\frac{1}{2} \quad .
\end{align*}
$$

These values were computed from equilibrium considerations by C. B. Clark. ${ }^{8}$

The normal mode frequencies were calculated for plane waves propagating parallel to each of the crystal axes. The maximum value of the wave vector $\left(q_{\max }\right)$ was taken to be the boundary of the first Brillouin zone on that axis. These values are found in Appendix V to be

$$
\begin{aligned}
& q_{1}=\frac{\pi}{a}\left[\frac{1+\left(a^{2} / b^{2}\right)}{2}\right] \\
& q_{2}=\frac{\pi}{b} \\
& q_{3}=\frac{\pi}{c}
\end{aligned}
$$

The frequencies were evaluated for waves at intervals of $\frac{1}{5}$ $\mathrm{q}_{\max }$ along each axis.

The force constant matrices and the dynamical matrix found with the above parameters did not obey the restrictions indicated by the inversion and glide plane symmetries. (These restrictions are discussed in Appendix I.) Several methods were used to force the matrices to follow these restrictions, but no satisfactory values of ω^{2} were obtained. The most nearly satisfactory results are listed in Table l. In each case, some values of ω^{2} are negative.

We are unable to obtain values for A, B, and α which would yield ten values of ω^{2} with a uniform sign for one of the incident wave vectors. Final results in which all values of ω^{2} are negative might suggest that the "6-exp" potential is appropriate for gallium only with a dominant repulsive term rather than a dominant attractive term. These parameters might be found by relating calculated values of ω^{2} to those determined empirically. A selection criterion, such as a least squares fit, could be used to minimize the difference between the calculated values of ω^{2} and the empirical values ${ }^{9}$ to give a "best value" of A, B, and α. This, however, is beyond the scope of this paper.

TABLE 1

Calculated Values of ω^{2} for Plane Waves Propagating Along the Crystal Axes*
units: ω^{2} in $10^{24} \mathrm{~Hz}{ }^{2} ; \underset{\sim}{q}$ in \AA^{-1}

* The values for the parameters were $\alpha=2.562205 \AA^{\circ}{ }^{-1}$,
$A=5.00 \times 10^{-18} \mathrm{ergs} \mathrm{A}^{6}$, and $\mathrm{B}=1.00 \times 10^{-17} \mathrm{ergs}$.
$\underset{\sim}{q}$. $2022 \hat{i}$
ω^{2} $.6054 \times 10^{1} \cdot 3000 \hat{j}$
$-.1028 \times 10^{1}$
$-.1241 \times 10^{2}$
$-.4460 \times 10^{1}$
-. 2266
$-.1081 \times 10^{2}$
$-.2618 \times 10^{1}$
$-.1726 \times 10^{2}$
$-.1955 \times 10^{1}$
$-.2745 \times 10^{2}$
. $2696 \hat{i}$ $.6515 \times 10^{1}$
-. 9290
$-.1242 \times 10^{2}$
$-.3722 \times 10^{1}$
-. 3501
$-.1103 \times 10^{2}$
$-.2941 \times 10^{1}$
$-.1861 \times 10^{2}$
$-.2435 \times 10^{1}$
$-.2696 \times 10^{2}$
$.3370 \hat{i} \quad .6790 \times 10^{1} .5000 \hat{j}$

$$
-.2179
$$

$-.1234 \times 10^{2}$
$-.4183 \times 10^{1}$
-. 2599
$-.1144 \times 10^{2}$
$-.4120 \times 10^{1}$
$-.2014 \times 10^{2}$
$-.1555 \times 10^{1}$
$-.2628 \times 10^{2}$
ω^{2}
$6926 \times 10^{1} \quad \underset{300}{\hat{k}}$
$.6926 \times 10^{1} .3000 \mathrm{k}$. 5017
$-.2150 \times 10^{1}$
$-.4350 \times 10^{1}$
$-.2038 \times 10^{1}$
$-.5675 \times 10^{1}$
$-.5455 \times 10^{1}$
$-.1569 \times 10^{2}$
$-.2687 \times 10^{2}$
$-.1845 \times 10^{2}$
$.4000 \hat{j} .7969 \times 10^{1} .4000 \hat{k}$.8536
$-.2672 \times 10^{1}$
$-.4491 \times 10^{1}$
$-.2910 \times 10^{1}$
$-.4099 \times 10^{1}$
$-.6541 \times 10^{1}$
$-.1602 \times 10^{2}$
$-.2607 \times 10^{2}$
$-.2067 \times 10^{2}$
$.8948 \times 10^{1} .5000 \hat{k}$
$.1250 \times 10^{1}$
$-.3954 \times 10^{1}$
$-.8668 \times 10^{1}$
$-.2857 \times 10^{1}$
$-.1637 \times 10^{2}$
$-.4181 \times 10^{1}$
$-.2514 \times 10^{2}$
$-.2470 \times 10^{1}$
$-.2277 \times 10^{2}$

ω^{2}

$.4924 \times 10^{1}$
. 8656
$-.5972 \times 10^{1}$
$-.1041 \times 10^{2}$
-. 2023
$-.1491 \times 10^{2}$
$-.5764 \times 10^{1}$
$-.2223 \times 10^{2}$
$-.3579 \times 10^{1}$
$-.1391 \times 10^{2}$
$.3740 \times 10^{1}$
$.1212 \times 10^{1}$
-. 4579
$-.9657 \times 10^{1}$
-. 7215
$-.8678 \times 10^{1}$
$-.1178 \times 10^{2}$
$-.1454 \times 10^{2}$
$-.1833 \times 10^{2}$
$-.1288 \times 10^{2}$
$.1623 \times 10^{1}$
$.1351 \times 10^{1}$
$-.1240 \times 10^{2}$
-. 6736
$-.1978 \times 10^{1}$
$-.1096 \times 10^{2}$
$-.1383 \times 10^{2}$
$-.1440 \times 10^{2}$
$-.1404 \times 10^{2}$
$-.1118 \times 10^{2}$

1. G. V. Raynor, Phil. Mag. 31, 139 (1941).
2. R. C. Weast, ed., Handbook of Chemistry and Physics (The Chemical Rubber Co., Cleveland, Ohio, 1966) 47th ed..
3. A. J. Bradley, Z. Kristallographie 91, 302 (1935).
4. Jules deLaunay, Solid State Physics, editors F. Seitz and D. Turnbull, (Academic Press, Inc., 1956) Vol. II, page 219.
5. W. Cochran and G. S. Pawley, Proc. Roy. Soc. A280, 1 (1964).
6. G. S. Pawley, Phys. Stat. Sol. 20, 347 (1967).
7. Form of Expansion From C. D. Hodgman, ed., Standard Mathematical Tables (Chemical Rubber Publishing Company, Cleveland, Ohio, 1959) 12th ed.
8. C. B. Clark, private communication.
9. W. B. Waeber, J. Phys. C. (Solid St. Phys.), 2, 2 (1969). W. Reichardt, unpublished results obtained at Oak Ridge National Laboratories.
10. A discussion of the Jacobi method for finding the eigenvalues of a real, symmetric matrix can be found in
A. Ralston, A First Course in Numerical Analysis (McGraw-Hill Book Co., New York, 1965), chapter 10, pages 487-492.
11. C. Kittel, Elementary Solid State Physics (John Wiley \& Sons, Inc., New York, 1956) 2nd ed., chapter 2, pages 58-61.

APPENDIX I

Symmetry Transformations On The Gallium Lattice
There are three lattice symmetry operations which may be applied to the gallium crystal in order to reduce the number of independent elements in the intermolecular force constant matrices. Two of these are described by Cochran and Pawley ${ }^{5}$ and the third by Pawley. A class A symmetry operation is used to bring the origin and source molecules into self-coincidence, as, for example, molecules located in a mirror plane are reflected into themselves. The operation has no effect on the intermolecular interactions and so yields ${ }^{6}$

$$
\begin{equation*}
\underset{\approx}{\mathbb{T}} \underset{\approx}{\Phi}\left(j j^{\prime}\right) \underset{\approx}{\underset{\sim}{\sim}}=\underset{\approx}{\Phi}\left(j j^{\prime}\right) \tag{1}
\end{equation*}
$$

Class B is symmetry about a point in the lattice such as the origin. It is applied to gallium as inversion through the origin and takes the molecule located at r_{j}, or (h, k, ℓ), into the one at r_{j} "or $(-h,-k,-\ell)$. The force constant matrix of molecule j^{\prime} can be shown to obey ${ }^{5}$

$$
\begin{equation*}
\underset{\approx}{T} \underset{\approx}{\Phi}\left(j j^{\prime}\right) \underset{\approx}{\underset{\sim}{T}}=\underset{\approx}{\sim}\left(j j^{\prime}\right) \tag{2}
\end{equation*}
$$

Type C symmetry relates the interaction tensors or force constant matrices between two different pairs of molecules (i.e., it relates $\Phi\left(j j^{\prime}\right)$ and $\left.\Phi\left(j^{\prime \prime} j^{\prime \prime \prime}\right)\right)$ by ${ }^{6}$

$$
\begin{equation*}
\underset{\approx}{\underset{\sim}{\underset{\sim}{\Phi}} \underset{\approx}{\Phi}}\left(j j^{\prime}\right) \underset{\approx}{\underset{\sim}{T}}=\underset{\sim}{\Phi}\left(j^{\prime \prime} j^{\prime \prime \prime}\right) \tag{3}
\end{equation*}
$$

An example of this is the screw diad transformation, which takes, for instance, the molecules located at the origin and ($0,1,1$) (molecules j and j^{\prime}, respectively) into those of opposite orientation located at $(0,1,1)$ and $(0,0,2)$ (molecules $j^{\prime \prime}$ and $j^{\prime \prime \prime}$) respectively. From Equation(3) it may be shown ${ }^{6}$ that the relationship between the interaction tensors of the two pairs of molecules is

$$
\begin{equation*}
\underset{\approx}{\Phi}\left(j^{\prime \prime} j^{\prime \prime}\right)=\underset{\approx}{I} \underset{\approx}{\Phi}\left(j j^{\prime}\right) \underset{\approx}{\underset{\sim}{I}} . \tag{4}
\end{equation*}
$$

where

$$
\underset{\approx}{\approx}=\left[\begin{array}{rrrrrr}
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

In each of equations $(1-3)$, the matrix $\underset{\approx}{T}$ is the sixdimensional symmetry transformation. It is formed from $\underset{\sim}{S}$, the three-dimensional rotation matrix for polar vectors. If $\operatorname{det} \underset{\sim}{S}=1$ (a proper rotation), $\underset{\approx}{S}$ is also appropriate for axial vectors. For an improper rotation (det $\underset{\sim}{S}=-1$), $-\underset{\approx}{S}$ is needed for axial vectors. Thus $\underset{\approx}{S}$ det $\underset{\approx}{S}$ may always be used for axial vectors. 5 In the case of gallium, however, the axial and polar vectors are not measured in the same coordinate system (since the principal and crystal axes do not coincide). A vector $\underset{\sim}{V}$ measured with respect
to the crystal axes transforms to the principal axes through

$$
\begin{equation*}
{\underset{\sim}{P A}}=\underset{\sim}{\alpha} V_{C A} \tag{5}
\end{equation*}
$$

where

$$
\underset{\approx}{\alpha}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
$$

Beginning then with the transformation of

$$
{\underset{\sim}{C A}}_{\prime}=\underset{\approx}{S} \operatorname{det} \underset{\approx}{\underset{\sim}{S}} \mathbb{V}_{C A},
$$

and substituting from Equation(5), one finds

$$
\begin{aligned}
& \underset{\sim}{V_{P A}^{\prime}}=\underset{\sim}{\alpha} \underset{\sim}{V} C_{A}^{\prime}=\underset{\sim}{\alpha}(\underset{\approx}{S} \operatorname{det} \underset{\sim}{S}) \underset{\sim}{V} A \\
& =\underset{\approx}{\alpha}(\underset{\sim}{S} \operatorname{det} \underset{\sim}{S}) \underset{\sim}{\alpha} \underset{\sim}{\alpha} \underset{\sim}{\sim} V_{C A} \\
& =\underset{\sim}{\alpha}(\underset{\sim}{S} \operatorname{det} \underset{\sim}{S}) \underset{\sim}{\alpha}{\underset{\sim}{x}}^{-1}{\underset{\sim}{P A}}
\end{aligned}
$$

Therefore $\underset{\sim}{T}$, the transformation matrix for some symmetry operation $\underset{\sim}{\mathbb{S}}$, is given by

$$
\underset{\approx}{T}=\left[\begin{array}{lll}
\underset{\sim}{S} & 0 & \\
\underset{\sim}{\underset{\sim}{\sim}(S} \underset{\sim}{S} \operatorname{det} & \underset{\sim}{S}) & {\underset{\sim}{\alpha}}^{-1}
\end{array}\right]
$$

The three classes of symmetry may be applied to the gallium lattice using this form of $\underset{\sim}{T}$. The application of class B symmetry in the form of inversion of the lattice through the origin gives the most general results of the three. The matrices used in forming $\underset{\sim}{T}$ are

$$
\underset{\approx}{\mathrm{S}}=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

and

$$
\underset{\sim}{\alpha}(\underset{\sim}{S} \operatorname{det} \underset{\approx}{S}) \underset{\approx}{\underset{\sim}{2}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$\underset{\sim}{T}$ is therefore defined by

$$
\underset{\approx}{T}=\left[\begin{array}{rrrrrr}
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and $\underset{\approx}{T} \underset{\sim}{\Phi}\left(j j^{\prime}\right) \underset{\sim}{\underset{\sim}{T}}$ is given by

$$
\stackrel{T}{\approx} \underset{\sim}{\approx} \underset{\sim}{\sim} \underset{\sim}{\approx}=\left[\begin{array}{rrrrrr}
\Phi_{11} & \Phi_{12} & \Phi_{13} & -\Phi_{14} & -\Phi_{15} & -\Phi_{16} \\
\Phi_{21} & \Phi_{22} & \Phi_{23} & -\Phi_{24} & -\Phi_{25} & -\Phi_{26} \\
\Phi_{31} & \Phi_{32} & \Phi_{33} & -\Phi_{34} & -\Phi_{35} & -\Phi_{36} \\
-\Phi_{41} & -\Phi_{42} & -\Phi_{43} & \Phi_{44} & \Phi_{45} & \Phi_{46} \\
-\Phi_{51} & -\Phi_{52} & -\Phi_{53} & \Phi_{54} & \Phi_{55} & \Phi_{56} \\
-\Phi_{61} & -\Phi_{62} & -\Phi_{63} & \Phi_{64} & \Phi_{65} & \Phi_{66}
\end{array}\right]
$$

From Equation (2) this must equal $\underset{\sim}{\underset{\sim}{\Phi}}\left(j j^{\prime}\right)$ so that one has
$\left[\begin{array}{cccccc}\Phi_{11} & \Phi_{12} & \Phi_{13} & -\Phi_{14} & -\Phi_{15} & -\Phi_{16} \\ \Phi_{21} & \Phi_{22} & \Phi_{23} & -\Phi_{24} & -\Phi_{25} & -\Phi_{26} \\ \Phi_{31} & \Phi_{32} & \Phi_{33} & -\Phi_{34} & -\Phi_{35} & -\Phi_{36} \\ -\Phi_{41} & -\Phi_{42} & -\Phi_{43} & \Phi_{44} & \Phi_{45} & \Phi_{46} \\ -\Phi_{51} & -\Phi_{52} & -\Phi_{53} & \Phi_{54} & \Phi_{55} & \Phi_{56} \\ -\Phi_{61} & -\Phi_{82} & -\Phi_{63} & \Phi_{64} & \Phi_{65} & \Phi_{66}\end{array}\right]=\left[\begin{array}{llllll}\Phi_{11} & \Phi_{21} & \Phi_{31} & \Phi_{41} & \Phi_{51} & \Phi_{61} \\ \Phi_{12} & \Phi_{22} & \Phi_{32} & \Phi_{42} & \Phi_{52} & \Phi_{62} \\ \Phi_{13} & \Phi_{23} & \Phi_{33} & \Phi_{43} & \Phi_{53} & \Phi_{63} \\ \Phi_{14} & \Phi_{24} & \Phi_{34} & \Phi_{44} & \Phi_{54} & \Phi_{64} \\ \Phi_{15} & \Phi_{25} & \Phi_{35} & \Phi_{45} & \Phi_{55} & \Phi_{65} \\ \Phi_{16} & \Phi_{26} & \Phi_{36} & \Phi_{46} & \Phi_{56} & \Phi_{68}\end{array}\right]$
The form of the force constant matrix between the origin
molecule and any source molecule is therefore

$$
\underset{\approx}{\Phi}\left(j j^{\prime}\right)=\left[\begin{array}{cccccc}
\Phi_{11} & \Phi_{13} & \Phi_{13} & \Phi_{14} & \Phi_{15} & \Phi_{16} \tag{6}\\
\Phi_{13} & \Phi_{22} & \Phi_{23} & \Phi_{24} & \Phi_{25} & \Phi_{26} \\
\Phi_{13} & \Phi_{23} & \Phi_{33} & \Phi_{34} & \Phi_{35} & \Phi_{36} \\
-\Phi_{14} & -\Phi_{24} & -\Phi_{34} & \Phi_{44} & \Phi_{45} & \Phi_{46} \\
-\Phi_{15} & -\Phi_{25} & -\Phi_{35} & \Phi_{45} & \Phi_{55} & \Phi_{56} \\
-\Phi_{16} & -\Phi_{26} & -\Phi_{36} & \Phi_{46} & \Phi_{56} & \Phi_{86}
\end{array}\right]
$$

Reflection of the lattice in a plane perpendicular to the a-axis is class A symmetry. The transformation matrices are

$$
\underset{\approx}{S}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { and } \underset{\approx}{\alpha}\left(\underset{\approx}{S} \operatorname{det} \underset{\approx}{\underset{\sim}{S}} \underset{\approx}{\underset{\sim}{\alpha}}=\left[\begin{array}{lcc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\right.
$$

so that $\underset{\approx}{T}$ is given by

$$
\underset{\sim}{\sim}=\left[\begin{array}{cccccc}
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1
\end{array}\right]
$$

From Equation (1), it is known that

$$
\underset{\sim}{T} \underset{\sim}{\Phi}\left(J J^{\prime}\right) \underset{\sim}{\sim} \underset{\sim}{\sim}=\left[\begin{array}{rrrrrr}
\Phi_{11} & -\Phi_{12} & -\Phi_{13} & -\Phi_{14} & \Phi_{15} & \Phi_{16} \\
-\Phi_{12} & \Phi_{22} & \Phi_{23} & \Phi_{24} & -\Phi_{25} & -\Phi_{26} \\
-\Phi_{13} & \Phi_{23} & \Phi_{33} & \Phi_{34} & -\Phi_{35} & -\Phi_{36} \\
-\Phi_{14} & \Phi_{24} & \Phi_{34} & \Phi_{44} & -\Phi_{45} & -\Phi_{46} \\
\Phi_{15} & -\Phi_{25} & -\Phi_{35} & -\Phi_{45} & \Phi_{55} & \Phi_{56} \\
\Phi_{16} & -\Phi_{26} & -\Phi_{36} & -\Phi_{46} & \Phi_{56} & \Phi_{86}
\end{array}\right]
$$

is equal to $\underset{\sim}{\Phi}\left(j j^{\prime}\right)$. This indicates that the form of $\underset{\approx}{\Phi}$ between any two molecules in a plane perpendicular to the a-axis is

$$
\underset{\sim}{\Phi}\left(j j^{\prime}\right)=\left[\begin{array}{cccccc}
\Phi_{11} & 0 & 0 & 0 & \Phi_{15} & \Phi_{16} \\
0 & \Phi_{22} & \Phi_{23} & \Phi_{24} & 0 & 0 \\
0 & \Phi_{23} & \Phi_{33} & \Phi_{34} & 0 & 0 \\
0 & -\Phi_{24} & -\Phi_{34} & \Phi_{44} & 0 & 0 \\
-\Phi_{15} & 0 & 0 & 0 & \Phi_{55} & \Phi_{55} \\
-\Phi_{16} & 0 & 0 & 0 & \Phi_{56} & 66
\end{array}\right]
$$

Type C symmetry may be used to relate the interaction tensor $\underset{\sim}{\Phi}\left(j j^{\prime}\right)$ between a type A origin molecule (j) and some source molecule (j^{\prime}) located at (h,k, l) with respect to
the origin and the tensor $\underset{\sim}{\Phi}\left(n n^{\prime}\right)$ between a type B origin molecule (n) and the source molecule (n^{\prime}) located at some ($\mathrm{h}, \mathrm{k}, \mathrm{l}$) with respect to it (molecule n). A screw diad transformation about an axis parallel to the b-axis and crossing the c-axis at ($0,0, \frac{1}{\circ}$) will transform the pair of molecules $\left(j j^{\prime}\right)$ at $(0,0,0)$ and $(0,1,1)$ into the pair ($j^{\prime \prime} j^{\prime \prime \prime}$) at $(0,1,1)$ and $(0,0,2)$. With respect to an origin located on the $j^{\prime \prime}$ molecule (of type B) at ($0,1,1$), the $j^{\prime \prime \prime}$ molecule (of type A) would be located at ($0,1,-1$). From Equation (4) this indicates that the interaction tensors for the two pairs are related. Upon calculating

$$
\underset{\approx}{\approx} \underset{\approx}{\Phi}\left(j j^{\prime}\right) \underset{\approx}{\tilde{I}}=\left[\begin{array}{llllll}
\Phi_{11} & \Phi_{12} & \Phi_{13} & -\Phi_{14} & -\Phi_{15} & -\Phi_{16} \\
\Phi_{12} & \Phi_{22} & \Phi_{23} & -\Phi_{24} & -\Phi_{25} & -\Phi_{26} \\
\Phi_{13} & \Phi_{23} & \Phi_{33} & -\Phi_{34} & -\Phi_{35} & -\Phi_{36} \\
\Phi_{14} & \Phi_{24} & \Phi_{34} & \Phi_{44} & \Phi_{45} & \Phi_{46} \\
\Phi_{15} & \Phi_{25} & \Phi_{35} & \Phi_{45} & \Phi_{55} & \Phi_{56} \\
\Phi_{16} & \Phi_{26} & \Phi_{36} & \Phi_{46} & \Phi_{56} & \Phi_{86}
\end{array}\right]
$$

and comparing this to $\underset{\sim}{\Phi}\left(j^{\prime \prime} j^{\prime \prime \prime}\right)$ (which is of the same form as Equation (6)), one finds that the force constant matrices differ only in the signs associated with certain elements.

These are the only reductions possible from symmetry operations on the gallium lattice.

APPENDIX II

Analytical Calculation of the Interatomic Force Constants Using the " $6-e x p "$ form for potential, one may derive the analytical expressions used in calculating the contributions from the interatomic forces to the intermolecular force and torque constants. The forces may be derived from the potential form

$$
V=-\frac{A}{r^{B}}+B e^{-\alpha r}
$$

using

$$
\underset{\sim}{F}=-\underset{\sim}{\nabla V}=-\hat{r} \frac{d V}{d r}=\left[\frac{x}{r^{2}} \hat{e}_{1}+\frac{x_{2}}{r} \hat{e}_{2}+\frac{x_{3}}{r} \hat{e}_{3}\right]\left[\frac{6 A}{r^{7}}-B \alpha e^{-\alpha r}\right]
$$

where $\hat{e}_{1}, \hat{e}_{\boldsymbol{z}}$, and \hat{e}_{3} are unit vectors along the a, b, and c crystal axes. This may be written in component form as

$$
F_{i}=x_{i} f(r) \quad \text { where } f(r)=\frac{6 A}{r^{8}}-\frac{B \alpha}{r} e^{-\alpha r} \text {. }
$$

If the source atom is displaced by some infinitesimal amount $\underset{\sim}{U}$, then the force increments generated on the atom at the origin are

$$
\begin{align*}
d F_{i} & =\sum_{j} \frac{\partial F_{i}}{\partial x_{j}} d x_{j}=\sum_{j} \frac{\partial F_{i}}{\partial x_{j}} U_{j} \\
& =\sum_{j}\left[\frac{\partial x_{i}}{\partial x_{j}} f(r)+x_{i} \frac{\partial f}{\partial r} \frac{\partial r}{\partial x_{j}}\right] U_{j} \tag{1}
\end{align*}
$$

If $g(r)$ is defined by

$$
g(r)=\frac{1}{r} \frac{\partial f}{\partial r}=-\frac{48 A}{r^{10}}+\frac{B \alpha}{r^{3}} e^{-\alpha r}+\frac{B \alpha^{2}}{r^{2}} e^{-\alpha r}
$$

then Equation (1) becomes

$$
d F_{i}=\sum_{j}\left[\delta_{i j} f(r)+x_{i} x_{j} g(r)\right] U_{j}
$$

By comparing this to the Hooke's law approximation, which gives

$$
\begin{equation*}
d F_{i}=-\sum_{j} \Phi_{i j} U_{j}, \tag{2}
\end{equation*}
$$

one can say that the force constants are represented by

$$
\begin{aligned}
\Phi_{i j}=-\delta_{i j} f(r)-x_{i} x_{j} g(r) \quad i & =1,2,3 \\
j & =1,2,3 .
\end{aligned}
$$

The U_{j}, which are atomic displacements, must now be related to generalized displacements of the source molecule. Consider the atom located at ($0, y, z$) relative to the center of the dumbbell. The displacements of the atom with respect to the crystal axes due to translation of the molecule are the same as those of the molecule center and are designated by u_{1}, u_{3}, and u_{3}. The displacements of the atom due to some rotation $\underset{\sim}{\underset{\sim}{~}}$ of the molecule must also be included. Let $u_{4} \hat{i}$ and $u_{5} \hat{k}$ be the components of $\underset{\sim}{\mathscr{\sim}}$ about the principal axes which have non-zero moments of inertia associated with them. (Note that \hat{i}, a principal axis, is coincident with \hat{e}_{1}. See Figure 4 for the relative orientation of axes.) The contribution may be found by taking $\underset{\sim}{D}=\underset{\sim}{\varphi} x(y \cos \theta+z \sin \theta) \hat{j}$ and converting the result to the crystal axis coordinates
(see Figure 4).

Figure 4: Principal axis orientation

This is found to be

$$
\begin{aligned}
\underset{\sim}{D}= & \left(u_{4} \hat{i}+u_{5} \hat{k}\right) x \\
& (y \cos \theta+z \sin \theta) \hat{j} \\
= & -u_{5}(y \cos \theta+z \sin \theta) \hat{i} \\
& +u_{4}(y \cos \theta+z \sin \theta) \hat{k} .
\end{aligned}
$$

Using the conversion equations $\hat{i}=\hat{e}_{1}$
$\hat{k}=-\sin \theta \hat{e}_{z}+\cos \theta \hat{e}_{3}$,
one can show that

$$
\underset{\sim}{D}=-u_{5}(y \cos \theta+z \sin \theta) \hat{e}_{1}-u_{4} z \hat{e}_{2}+u_{4} y \hat{e}_{3} .
$$

The total component displacement of the atom due to translation and rotation of the molecule are therefore

$$
\begin{aligned}
& U_{1}=u_{1}-u_{5}(y \cos \theta+z \sin \theta) \\
& U_{2}=u_{2}-z u_{4} \\
& U_{3}=u_{3}+y u_{3} .
\end{aligned}
$$

The \hat{e}_{1} - force component may now be written as follows:

$$
\begin{aligned}
d F_{1} & =\left[f(r)+x_{1}^{2} g(r)\right]\left[u_{1}-u_{5}(y \cos \theta+z \sin \theta)\right] \\
& +x_{1} x_{2} g(r)\left[u_{2}-z u_{4}\right]+x_{1} x_{3} g(r)\left[u_{3}+u_{4}\right] \\
& =\left[f(r)+x_{1}^{2} g(r)\right] u_{1}+\left[x_{1} x_{2} g(r)\right] u_{2} \\
& +\left[x_{1} x_{3} g(r)\right] u_{3}+\left[x_{1} g(r)\left(x_{3} y-x_{2} z\right)\right] u_{4} \\
& -(y \cos \theta+z \sin \theta)\left[f(r)+x_{1}^{2} g(r)\right] u_{5} .
\end{aligned}
$$

The \hat{e}_{2} - and \hat{e}_{3} - components may be written similarly and the following expressions found for the contributions to the intermolecular force constants:

$$
\begin{aligned}
\Phi_{i j}=\delta_{i j} f(r)+x_{i} x_{j} g(r) \quad k & =1,2,3 \\
j & =1,2,3 .
\end{aligned}
$$

$$
\Phi_{i_{4}}=y \Phi_{i_{3}}-z \Phi_{i_{3}}
$$

and

$$
\Phi_{i_{5}}=-(y \cos \theta+z \sin \theta) \Phi_{i_{1}}
$$

where y and z represent the position of the source atom with respect to the center of mass of its molecule and θ is the angle of inclination of the source molecule.

The torque increments along the \hat{f} and \hat{k} axes of the origin molecule may be found using

$$
d \tau \cdot \hat{e}_{j}=\left[\left(y_{0} \hat{e}_{2}+z_{0} \hat{e}_{3}\right) \times{\underset{\sim}{F}}_{i}\right] \cdot \hat{e}_{j} \text { for } j=4 \text {, } 5 \text { where } \begin{aligned}
& \hat{e}_{4}=\hat{i} \\
& \hat{e}_{5}=\hat{k}
\end{aligned} .
$$ where y_{0} and z_{0} represent the position of the origin atom with respect to the center of mass of the origin molecule and

$$
d F_{\sim}=d F_{1} \hat{e}_{1}+d F_{2} \hat{e}_{2}+d F_{3} \hat{e}_{3} .
$$

One then finds

$$
d_{\sim}=\left(y_{0} d F_{3}-z_{0} d F_{2}\right) \hat{e}_{1}+z_{0} d F_{1} \hat{e}_{2}-y_{0} d F_{1} \hat{e}_{3} \cdot \text { (3) }
$$

Converting this expression to principal axes gives

$$
\begin{aligned}
d_{\tau}=\left[y_{0} d F_{3}-z_{0} d F_{2}\right] \hat{i} & +\left[-y_{0} d F_{1} \cos \theta_{0}-z_{0} d F_{1} \sin \theta_{0}\right] \hat{j} \\
& +\left[-\left(y_{0} \cos \theta_{0}+z_{0} \sin \theta_{0}\right) d F_{1}\right] \hat{k}
\end{aligned}
$$

where θ_{0} is the angle of inclination of the origin molecule. Since we may neglect the \hat{j} - or β - axis ($I_{\beta}=0$), the torque components are

$$
\begin{aligned}
& d \tau_{1}=d F_{4}=y_{0} d F_{3}-z_{0} d F_{2} \\
& d \tau_{2}=d F_{5}=-\left(y_{0} \cos \theta_{0}+z_{0} \sin \theta\right) d F_{1}
\end{aligned}
$$

The "torque constants" may then be found by substituting for $d F_{1}, d F_{2}$, and $d F_{3}$. After substituting these expressions into

$$
d F_{i}=\sum_{j} \Phi_{i j} u_{j} \quad \text { for } i=1,2,3
$$

one finds the torque constants to be

$$
\begin{aligned}
& \Phi_{4 j}=y_{0} \Phi_{3 j}-z_{0} \Phi_{a j} \\
\text { and } \quad \Phi_{5 j} & =-\left(y_{0} \cos \theta_{0}+z_{0} \sin \theta_{0}\right) \Phi_{1 j} \text { for } j=1-5 .
\end{aligned}
$$

APPENDIX III

Calculation of The Self-Force Terms

The self-forces result from the motion $\underset{\sim}{u} j$ of the origin molecule while the source molecules are undisplaced. Clearly, for a purely translational $\underset{\sim}{u}$, , the force of the origin molecule is the same as if it were undisplaced and the source molecules were all translated by $\underset{\sim}{-\mu}$. $\underset{\sim}{u} \underset{j}{ }$ has a rotational part, ${\underset{\sim}{j}}_{j}$, the corresponding shifts of the source molecules are both rotational and translational. 5 The molecules must be rotated by an amount $-\infty j$ and translated by $-\underset{\sim}{\sim} j \times \underset{\sim}{r}{ }_{j}$.

If $\underset{\sim}{v} j$ represents the translational part of $\underset{\sim}{u} j$, then the total forces on the origin molecule (including both those due to source molecules and $\underset{\sim}{F}$, the self-force) are

$$
\begin{align*}
& \left.+\left({\underset{\sim}{j}},-{\underset{\sim}{j}}^{j}\right)\right] \text {. } \tag{1}
\end{align*}
$$

All the displacement terms must be expressed in terms of the $\hat{u}_{1}(i=1-5)$ of the source molecule. For the translational terms, $\left[(\underset{\sim}{v},-\underset{\sim}{v} j)-\left(\underset{\sim}{\varphi} j \times \underset{\sim}{r} j^{\prime}\right)\right]$, this is straightforward. If $\mathscr{\sim}_{j}$ and $\underset{\sim}{r} \underset{j}{ }$, are defined by

$$
\begin{equation*}
\mathscr{\sim}_{j}=u_{4}^{\circ} \hat{i}+u_{5}^{\circ} \hat{k}=u_{4}^{\circ} \hat{u}_{1} \mp u_{5}^{\circ} \sin \theta \hat{u}_{2}+u_{5}^{0} \cos \theta \hat{u}_{3} \tag{2}
\end{equation*}
$$

and $\underset{\sim}{r}{ }_{f}=H \hat{u}_{2}+K \hat{u}_{z}+L \hat{u}_{3}$,
then

$$
\begin{aligned}
-{\underset{\sim}{j}}_{j} \times \underset{\sim}{r} j^{\prime} & =u_{5}^{\circ}[K \cos \theta \pm L \sin \theta] \hat{u}_{1} \\
& -\left[-u_{4}^{\circ} L+u_{5}^{\circ} H \cos \theta\right] \hat{u}_{2} \\
& -\left[u_{4}^{\circ} K \mp u_{5}^{\circ} H \sin \theta\right] \hat{u}_{3} .
\end{aligned}
$$

Where there is a choice of sign, the top sign goes with a type A origin molecule (tipped at $+\theta$ with respect to the b-axis) and the bottom one with a type B origin molecule (at $-\theta$ with respect to the b-axis). Thus the translation components are given by

$$
\begin{align*}
& u_{1}=v_{1}\left(j^{\prime}\right)-v_{1}(j)+u_{5}^{\circ}[K \cos \theta+L \sin \theta] \\
& u_{2}=v_{2}\left(j^{\prime}\right)-v_{2}(j)+u_{4}^{\circ} L-u_{5}^{\circ} H \cos \theta \tag{3}\\
& u_{3}=v_{3}\left(j^{\prime}\right)-v_{3}(j)-u_{4}^{\circ} K-u_{5}^{\circ} H \sin \theta .
\end{align*}
$$

The rotational terms must both be expressed with respect to the principal axes of the source molecule. If those of the origin molecule are parallel, then the components of rotation are

$$
\begin{align*}
& u_{4}=u_{4}\left(j^{\prime}\right)-u_{4}^{\circ} \tag{4}\\
& u_{5}=u_{5}\left(j^{\prime}\right)-u_{5}^{\circ}
\end{align*}
$$

If the source molecule is not the same type as the origin, $\sim_{\sim}^{\rho} j$ must be converted first to crystal axis components and then to components along \hat{u}_{4} and \hat{u}_{5}. If ${\underset{\sim}{p}}_{j}$ is defined as in Equation 2, then it may be converted to the desired coordinate system using Equation (5), Appendix I. The resulting components for $\left(\varphi_{j},-\varphi_{j}\right)$ are

$$
\begin{align*}
& u_{4}=u_{4}\left(j^{\prime}\right)-u_{4}^{\circ} \tag{5}\\
& u_{5}=u_{5}\left(j^{\prime}\right)-u_{5}^{\circ} \cos 2 \theta
\end{align*}
$$

Substituting the harmonic solution into Equation (1) as in Appendix I will leave a factor of $e^{i q \cdot r} \sim j^{\prime}$ multiplying each term. If $\underset{\sim}{\Phi}\left(j j^{\prime}\right)=\left[\Phi_{i k}\right]$ is the force constant matrix between the j and j^{\prime} molecules, then the contribution to the $D_{i k}$ term of the dynamical matrix from source molecule motion is $\Phi_{i k} e^{i q \cdot \sim} \sim j_{j}^{\prime}$. The contribution due to motion of the original molecule may be expressed in terms of $\Phi_{i k}$.

These self-force contributions to the dynamical matrix may be found by writing out Equation (1) in matrix form using $\underset{\sim}{\Phi}=\left[\Phi_{i k}\right]$ and the ${\underset{\sim}{i}}^{i}$ given in Equations (3) and (4) or (5). If the components of $\underset{\sim}{\mathrm{F}}$ j are now written in terms of source molecule and self-force contributions, as

$$
F_{i}=-\sum_{j}, \sum_{k} \Phi_{i k}\left(j j^{\prime}\right) u_{k}\left(j^{\prime}\right)+\sum_{k} \Phi_{i k}(j j) u_{k}(j)
$$

Comparison of the force components written from Equation (3) and those in Equation (4) shows that the self-force contributions to the dynamical matrix are of the following forms:
a. for type A origin molecules:

$$
i=1,2,3,4,5 \quad k=1-10
$$

1. $\Phi_{i k}(j j)=\sum_{j}, \Phi_{i k}\left(j j^{\prime}\right)$ for $k=1,2,3$
2. $\Phi_{i 4}(j j)=\sum_{j},\left[\Phi_{i_{4}}\left(j j^{\prime}\right)-L \Phi_{i_{2}}\left(j j^{\prime}\right)+K \Phi_{i_{3}}\left(j j^{\prime}\right)\right.$ (summed over both types A and B)
3. $\Phi_{i_{5}}(j j)=\sum_{j^{\prime}(A)}^{\left[\Phi_{i 5}\left(j j^{\prime}\right)-\Phi_{i 1}\left(j j^{\prime}\right) L \sin \theta\right.}$

$$
-\Phi_{i 1}\left(j j^{\prime}\right) K \cos \theta+\Phi_{i z}\left(j j^{\prime}\right) H \cos \theta
$$

$$
\left.+\Phi_{i 3}\left(j j^{\prime}\right) H \sin \theta\right]
$$

$$
+\sum_{j^{\prime}(B)}\left[\Phi_{i_{5}}\left(j j^{\prime}\right) \cos 2 \theta-\Phi_{i_{1}}\left(j j^{\prime}\right) L \sin \theta\right.
$$

$$
-\Phi_{i 1}\left(j j^{\prime}\right) K \cos \theta+\Phi_{i z}\left(j j^{\prime}\right) H \cos \theta
$$

$$
+\Phi_{i 3}\left(j j^{\prime}\right) H \sin \theta
$$

(where the first sum is over type A molecules only and the second over type B only)
4. $\Phi_{i k}(j j)=0 \quad k=6,7,8,9,10$
b. for type B origin molecules:

$$
i=6,7,8,9,10 k=1-10
$$

It is convenient to define $m=i-5$ and $n=k-5$.

1. $\Phi_{\mathrm{mn}}(j j)=\sum_{j}, \Phi_{\mathrm{mn}}\left(j j^{\prime}\right)$ for $k=6,7,8$
(summed over types A and B molecules)
2. $\Phi_{m 9}(j j)=\sum_{j},\left[\Phi_{m_{4}}\left(j j^{\prime}\right)-L \Phi_{m a}\left(j j^{\prime}\right)+K \Phi_{m 3}\left(j j^{\prime}\right)\right]$
(summed over types A and B)
3. $\Phi_{m_{1} 0}(j j)=\sum_{j}\left[\Phi_{m_{5}}\left(j j^{\prime}\right) \cos 2 \theta+\Phi_{m 1}\left(j j^{\prime}\right) L \sin \theta\right.$

- $\Phi_{\mathrm{m} 1}\left(j j^{\prime}\right) \mathrm{K} \cos \theta+\Phi_{\mathrm{m} a}\left(j j^{\prime}\right) \mathrm{H} \cos \theta$
- $\left.\Phi_{\mathrm{m} 3}\left(j j^{\prime}\right) \mathrm{H} \sin \theta\right]$
$+\sum_{j},\left[\Phi_{m_{5}}\left(j j^{\prime}\right)+\Phi_{m_{1}}\left(j j^{\prime}\right) L \sin \theta\right.$
- $\Phi_{m^{1}}\left(j j^{\prime}\right) K \cos \theta+\Phi_{m_{\mathbf{z}}}\left(j j^{\prime}\right) H \cos \theta$
- $\left.\Phi_{\mathrm{m} 3}\left(j j^{\prime}\right) \mathrm{H} \sin \theta\right]$
(where the first sum is over type A only and the second over type B only)

4. $\Phi_{i k}(j j)=0$
for $k=1,2,3,4,5$.

APPENDIX IV
 Programming Considerations

The normal mode frequencies of the lattice under the influence of an incident wave of momentum $\underset{\sim}{q}$ were calculated using the IBM 360/75 located at Triangle Universities Computation Center. The computation is divided into three main parts:
a. Calculation and storage of the intermolecular force constant matrices and of the self-force matrix.
b. Calculation of the dynamical matrix for a specific wave vector $\underset{\sim}{q}$.
c. Determination of the eigenvalues of the dynamical matrix for this $\underset{\sim}{q}$.

The program listing is included in this appendix.
The calculation and storage of the intermolecular force constant matrix for each pair of atoms are accomplished using three nested do-loops to select values of h, k, and ℓ. The interatomic force constants for the four possible combinations of origin and source atoms are computed and summed to give the intermolecular constants. These are used to calculate the self-force term and are then stored to be used in computing the dynamical matrix.

Each term of the dynamical matrix involves the corresponding term of the self-force matrix and the corresponding
term of each intermolecular matrix multiplied by the factor $e \stackrel{i q \cdot r}{\sim}$, where r is the location of the source molecule relative to the origin molecule. This exponential must be evaluated for each molecule. The dynamical matrix is accumulated for the specific $\underset{\sim}{q}$ involved.

The eigenvalues of the matrix are found using a subroutine, JACOBI, which was obtained from Oak Ridge National Laboratories, where it has been used extensively in lattice dynamics calculations. ${ }^{10}$

```
$JOR
                COP.INCG.DY500020/CLARK,TTMP=010,PAGFS=990
                    C
CGAPCN - SFCULAR DETERMTNANT AND DISDPRSTON RETATTONS
    FOR GALTTサM
    VARTABLP AND ARPAV NAMFS
    IDNATM(3,4) MOLEC & ATOMTC TOENTTPYTNG #S
    POR EACH PATR
    SPPAR (3,4) ATOMTC SEEARATTONS
    RPG(3,4) RADTT,F(R), AND G(R) POR EACH ATOM PATR
    PCON (5,5,4) FORCE CONCTANTS POR EACH PATP
    DHI (5,5) FORCE CONSTANTS POR EACH MOLPCITE DATR
    AYIS(3) INNT AYTS LPNGTHS (1/2 CIBE PDGE LENGTH)
    H,K,I POSITTON CF SOURCE MOLFCUT,F
    HMAX,KMAX, LMAX HIGHEST VALIE CONSIDPRED FOR H,K,L
    A,B,ALPA CONSTANTS IN G-BXP DOTENTIAT PUNCTION
    DOSIT(4,4) POSTTTONS OF ATOMS TN ORTGTN AND
    SOTRCE MOLECUIPS
    ATOM DTSPIACEMRNTS RFLATTVE TO
    CM OF MOLECUT. 
    Y(1),Y(2) BOUTL POS OF ORIGTN ATOMS
    Y(3),Y(4) DOS OF SOURCE ATOMS
    SINE,COSTNE STN AND CCS OT ANGTE BFTW PRIN
    AND CPVSTAAL AVES
    ONP-HATF [TMBBELI LENGTH
    SELP(10,10) SELP FORCF TRRMS
    DYNAM(10,10) DYNAMTCAL MATRIX
    WAVE(3) TNCTDENT KAVE COMPONENTS
    AMASS(10) MASSES ANE MOMENTS OF TNPPTTA
    DHTSTR (5,5,100,2)
    STORAGE FCR TNTRRMOI.FC CONSTANTS
    IMPLICIT RFAL* 3(A-H,O-2)
    RFAL TT
    TNTEGER H,HM,HMAX
        TMEHGTON ONATM(7,4), SPPAR(3,4), RPG (7,4), PCON(5,5,4),
    1 VTC(3), DUT (5,5),V(4), SET (10, 10), DVNAN (10, 10), VAVB(3),
    2NHISTR (5,5,100,2), NITMRTRR(2),SC (5,5), POSTT (4,4), AMASS (10),
C EXTRA ARRAYS REOITPED BY MATBIY SOLTTTON SBR
    3RIGEN (10),WORK (10,10)
C TNITTALITE SC AND TDNATM
    DO 20.T=1, ?
    O) 2OI=1,3
    IDNATM (T,T)=1
20 IDNATM (T,J+2)=2
    DO 25I=1,10
    D) 25,T=1,10
25 SETV (T,J)=0.
    DO }35\textrm{T}=1,
    n\cap 30.J=1,3
30 SC (T,T)=1.
    DO 35J=4,5
    SC (T,T) =- 1.
35SC (T,I)=-1.
    DO }36\textrm{T}=4,
```

11

$36 \quad S C(T, T)=1$.
PRAD (1,5101) A, B
$\operatorname{PEAD}(1,6102)$ ATFA, (AXTS (T), $T=1,3), H M A X, K M A Y, L M A Y,(Y(T), 44$
$1 \mathrm{I}=1$, 4)
PEAD (1,5104) (AMASS (I), $T=1,2)$
5104 PORMAT (2F11.7)
6101 PORMAT (2F10.0)

WRITE $(3,950)$
FORMAT (1×, ' A
11 AY ')
KDTTV $(3,755) A, B, A L P A, ~(A X I S(T), T=1,3)$
ORPMA (1र, 2F1?.2,4F13.9)
QRIMF (3, 051)
951

POPMAT (1X, LF13.9, 3T5)
UP MASS MATRIY
AMASS (4) $=$ AMASS (2)
AMASS (5) $=$ AMASS (2)
$\operatorname{AMASS}(2)=\operatorname{MMASS}(1)$
$\operatorname{AMASS}(3)=\operatorname{AMASS}(1)$
no $3 T=1$, 5
MMASS (5+T) $=$ AMASS (I)
$v u=Y(1) * 4$.
$24=v(2) * 4$.
D) $5 \mathrm{I}=1,2$
$Y(I+2)=V(T+2) * \operatorname{AXTS}(T+1) * 2$
$Y(T)=V(T) * 2 * A X I S(T+1)$
DO $10 T=1,4$
DO $10 \mathrm{~J}=1,4$
$\operatorname{OOSTT}(I, J)=V(J)$
DO $15 \mathrm{~T}=1,2$
0) $15 \mathrm{~J}=1,2$
$\operatorname{POSIT}(T+2, I)=-\operatorname{POSTT}(1+2, T)$
$\operatorname{POSTT}(T * 2, T+2)=-\operatorname{DOSTT}^{T}(T * 2, T+2)$
$H M=4 M A Y+1$
$K M=K M A Y+1$
$L M=L M A X+1$
$n=Y(1) * v(1)+\gamma(2) \neq v(2)$
$D=D S Q R T(D)$
STNE $=\mathrm{Y}(2) / \mathrm{D}$
COSTNE $=\mathrm{V}(1) / 0$
$A R G=\operatorname{ADCOS}(C O S T N R)$
$\cos ?=\operatorname{DCOS}(2 * \operatorname{ARG})$
C
C SRLPCT H,K,L POR SOURCE MOTECULE
C
62
63
64
65
66
67
DO 200 OMTVPE $=1,2$
MOLEC $=$ MTVPE-1
C INITTALIZE FLAGS, ETC.
$\operatorname{IDNATM}(1,1)=0$
$\operatorname{IDNATM}(3,1)=0$
$\operatorname{IDNATM}(3,3)=$?
$\operatorname{IDNATM}(3,2)=1$

69
69 70 71 72 73 74 75 76 77

$$
78
$$

$$
79
$$

30
91
8 ?
83
84
85
86
87
98

89
90

```
    TDNATM (3,4)=1
    LPTAG = 1
    50 DO BOONDX1=1,LM
    L}=ND\times1-
    L.FLAG = -LFLAG
    MXCODE=1
    CONST=COS2
    TF (LFTAG+1)60,55,6)
    55 MXCONE = ?
    CONST = 1.
    60 DO }700ND\times2=1,K
    K=NDX2-1
    70 DO 600 NDY 3 = 1, HM
    H=ND\times3-1
C SKIP THE 0-0-0 DOSITION
    IF (L) 78,72,78
    IP (K) 78,73,78
    TF (H)78,75,78
    H}=H+
    TEST POR EVEN H+K+I
    78 TT = (प+K+T)/2
    TT =(H+K+L)/2.
    TF(TT.NE. II) GO TO 500
C RETIIRN DOSITION FOR प-MIRROR CAICILATIONS
C OTHRRS GO TO BEGTVNING OP NPXT DO LOOD
- clear molecula p force constants
    89 DO 95, = = 1.5
        DO 95T=1,
    a5 PHI (I,J)=0.
C TNCREMPNT SOURCE MOLECULE ANT ATOM#S
    GO TDNATM (1,1)= TDNATM (1,1)+1
        NUMBER (NTVPE)= TDNATM(1,1)
        DO OOT=1,4
    90 TDNAMM (3, 1) = TDNMTM (3,1) +1
C STORE H,K,L AS ATOMTC SPRARATTONS
            DO 100 T=1,4
            SEPAR (1,J)= = 1 
            SEPAR (2,J)=K
    100 SEPAR (3,T)= L
C ADJITST ATOMTC SEPARATIONS
    SEP AR (2,2) = SEPAR (2,2) - v/4
    SEPAP}(2,3)=SEPAD(2,3) + V4
    TE (L,PLAG+1) 105,103,105
C LTKE MOLECULE ROUTTNE (L = EVPN)
    103 SPDAR (3,2)=SEPAR (3,2)-74
    SEPAR}(3,3)=\operatorname{SEPAR}(3,3)+2
    GO TO 107
C INLIKE MOLECULF POUTTNP (T, = ODD)
    105 SEPAR (3,1)=SEPAD (3,1)-74
    SPPAR (3,4)=SPPAR (3,4)+74
C COMPUTE RADTT,F, & G FOR EACH PATR
C
    107 DO 110N= = ,4
        DO 110, J=1,3
```

110

```
            110 SEPAP(J,N) = SEPAR (T,N) % AXTS(J)
            DO 150 T=1,4
            RPG (1,T)=SEPAR (1,I) * SEPMP (1,T)
            & + SEPAR (2,I) * SFPAR (2,I)
                    + SEPAR (3,T) * SEPAR (3,T)
            RPG(1,T)= DSORT(RPG(1,T))
            R= REG (1,I)
            EXPO = DEYP(-ALFA*R)
            PFG (2,T) = (6.*A)/R**3-B*ALFA*EXPO/P
    150 RPG (3,T)=(-48.**A)/R** 10 + (B*ALFA* EXPO)/(R*R*R)
                        +(B*ALPA*MLFA*EXPO)/(R*R)
C
    CALCILATP PORCF AND TOROTE CCNSTANTS BFTWERN ATOM PATRS
    STN1 = SINP*((-1)**MOLEC)
    SIN2 = STN1*LPLAG
    200 DO 400N=1,4
CCALCULATE FORCE CONSTS
    DO 250I=1,3
    DO 260J=1,3
C EVALTAATON OF KRONECKER DELTA
    KDEL,TA = 0
    TP(I-T)210,205,210
    205 KDELTA = 1
210 PCON(T,T,N)=-KDRI,TA*RPG (2,N)
    1
260 CONTTNTIS
C CALCULATE TOROUE CONSTANTS
C J4 & T5 FOP J = 1-5
            D) 325,J=1,3
            PCON}(T,4,N)=\operatorname{FCON}(3,T,N)*POSTT (N,3)
            1
    325 PCON(J,5,N)= FCON (1,J,N)*(POSTT (N,3)*COSTNE +
            1 POSTT (N,4) *STN2)
C 4.T & 5J FOR T=4,5
            D. 300.5=4,5
            \squareCON(4,J,N)=\operatorname{FCON}(3,J,N)*POSTT (N,1)
                                    PCON (2,0,N) *POSIT (N,2)
            \operatorname{PON}(5,T,N)=}\operatorname{PCON}(2,J,N)*(\operatorname{PCONTT}(N,1)*\operatorname{COSTNE}
            POSTT(N,2) *STN1)
C ACCTMULATE MOLECTLAAR FORCE CCNSTANTS
            DO 350I=1.5
            DO 350.T=T,5
            350 DHIT,T)=PHI(I,T)+FCCN(T,T,N)
                    C FORCE SYMMETRY ON PHI MATRTCES
C
```

```
DO 420 T=2,5
```

DO 420 T=2,5
TT=T-1
TT=T-1
DO 420,T=1,.1I
DO 420,T=1,.1I
420 PपT (T,T) = PHT (T,T)
420 PपT (T,T) = PHT (T,T)
DO 400I=4,5
DO 400I=4,5
00 400,T=1,3
00 400,T=1,3
PHT (T,J)=-PHI (I,T)
PHT (T,J)=-PHI (I,T)
400 CONTTNOE

```
C
```

CSTORF FORCT CONSTANTS

```
C
    NO = NTMRER (MTYPD)
        DO \(410 \quad T=1,5\)
        DO \(410 \mathrm{~J}=1.5\)
    410 DHTSTR (I, T,NQ , MTYDE) \(=\operatorname{DHT}(T, J)\)
C COMPITE AND ACCHM SELF-PORCE TEOMS
C
    DO \(460 \quad I=1.5\)
    N \(1=\mathrm{T}+(5 * \mathrm{MOLEC})\)
    \(\mathrm{N} 2=5\) *MOT PC
\(\operatorname{SELF}(N 1,4+N 2)=\operatorname{SETP}(N 1,4+N 2)-\operatorname{PHT}(T, 2) * L * A Y T S(3)+\)
1 PHI (T, 2)*K*AVTS(2) + DHT (T, 4)
    SELF \((N 1,5+N 2)=\operatorname{SELP}\left(N 1,{ }^{c}+N 2\right)+\operatorname{PUI}(T, 1) *(-K * C O S T N E *\)
    1 AXTS (2) + L*SINB*AYTS (3) * ( \((-1) * * M T Y P E))+\) PHI (I, 2) *
    \(2 H * C O S T N B * A X I S(1)+\operatorname{PHT}(I, 3) * H * S T N R * A X I S(1) *(1) * * M O L P C)\)
        \(3+\) PHT \((T, 5)\) *CONST
            DO \(460 \quad J=1,3\)
    460 SELF \((N 1, J+N 2)=\) SELP \((N 1, J+N 2)+\operatorname{PHT}(T, T)\)
C DO H-MIRROR POSITION IP NOT PREVTOITSLY DONP
C
    \(\mathrm{H}=-\mathrm{H}\)
    IP (H) \(88,600,500\)
    OTHEDNTSE CONTINUE KーROW
    600 CONTINUP
C
C DO \(-K\) ROW TP NOT VET DONE
C
    \(K=-K\)
    TP (K) \(70,700,700\)
    700 CONTTNIIR
C
C DO-L. PT.ANE FINATI.Y
    \(\mathrm{L}=-\mathrm{I}\).
    TO (L) 60, 901, 801
901 DO \(52 I=1.4\)
52 POSTT (T, 4) \(=-\operatorname{POSTT}(T, 4)\)
8OO CONTINUE
        \(2.4=-24\)
        DO B10T=1,4
        \(\operatorname{POSTT}(T, 2)=-\operatorname{POSTm}(T, 2)\)
        \(810 \operatorname{POSTT}(T, 4)=\operatorname{POSTT}(T, 4) * \operatorname{IFLAG}\)
    2000 CONTTNUE
    5566 PORMAT (5024.16)
C
: BEGTNCONSTRICTING DYNAMTCAL NATRTY
    READ COMPONENTS OP INCIDENT WAVE
        1000 PEAD \((1,6103)\) (WAVE (I), \(T=1,3)\)
    6103 FORMAT (3F10.9)
        LPLAG=1
C CTEAR DVNAM POR NEXT TNCTDENT NAVF
    DO \(1000 I=1,10\)
```

177 DO 1900.T= 1,10
1900 DVNAM (T,T)=0.
N=0
WRTTE (3.992)
WRITE (3.993) (NAVE(T),I=1,3)
992 PORMAT (18, OX OV O7,)
993 FORMAT(303.5)
C
C SELECT H,K,L ITSING DO-LOOPS AS ABOVE
C
1050 DO 180ONDY 1=1,LM
L}=NO\times1-
LPLAG=-LFLAG
MXCODE=1
TF(LPT,AG.LT.0) MXCODE=0
1060 0O 1700NDK2=1,KM
K=ND\times2-1
1070 DO 160OND\times3=1, प4
H=ND\times3-1
C SKTP O-0-0
TF (L) 1073,1072,1078
1072 IF (K) 1078,1073,1078
1073 IP (4) 1078,1075,1078
1075 H= H+1
C
C TEST POR EVEN H+K+L
C
1078 TT = (4+K+L)/2
TT}=(H+K+L)/2
IF(TT.NP.II)GO TO 1600
C PRTURN FOR -H DOSTTTONS; OTHERS GO TO NEYT DO LOOR
C
C COMPUTE COSIN E (0.?)
108R ARG = (WAVF(1)*H+WAVE(2)*K+NAVE(3)*I)*(3.1415927)
RCOS = DCOS (ARG)
RSTN = DSIN(ARG)
C
C ACCIM DYNAMTCAL MATRTY TERMS -
C NOTE DYNAM IS TNITIALTZED TO ZEPO
C
N=N+1
DO 450 I = 1,5
T5=T+5
nO 450 J=1,5
N1 = T+5*M* %ONT
N2 = J 55*(1-MXCODE)
PACTOR = QCOS
TF (SC (T,T))421,440,440
421 FACTOR = RSIN
440 DVNAM(T,N1)= DVNAM(T,N1) +
1. DHTSTR(I,N,N,1)*FACTOD
450 DVNAM(I5,N2) = DVNAM(T5,N2)
1+DHISTR(T,J,N,2) *PACTOP
C DO -H POSTTIONS

$$
T P \text { (H) } 1088,1600,1600
$$

```
    1600 CONTTNIUE
C DO -K ALSO
            K=-K
            TP (K) 1070,1700,1700
    17OO CONTINUS
C FTNALI,Y DO-I
    L= -T
    TP (L) 1050, 1900,1900
    1900 CONTTNTIP
C
    COMPLPTR DVNAMTCAL MATQTY USTNG SELF-TORCR TFRMS
    DO 925 N=1,6,5
    D) 825K}=1,6,
    nO 825T=1,3
    D0) 825.T=4,5
    IK=T+K-1
    JN=T+N-1
    825 DVNAM(IK,TN) = -DVNAM(TK,TN)
        DO 850I=1,10
        DO 950.J=1,10
        DENOM = AMASS(T)*AMASS(T)
        DENOM = DSORT(DENOM)
        DVNAM(T,T)=(DVNAM(T,T) - SELP(T,T))/(DENOM)
        DVN=DABS(DYNAM(T,T))
        TF(DYN.TT. (1.D-13)) DYNAM (I,J)=0.
    850 CONTINTE
C
C DPINTT DYNAMTCAI MX
    NRTTE (3,990)
    DO 875 T=1,10
    WRTTP(?,\square马1) (DVNAM (T,T),J=1,10)
    875 CONTTNTE
    990 FORMAT (1%,' THE DYNAMICAL MATRIY IS')
    991 FORMAT (5024.15)
C CATL MATRIY SOITTTON SUBROITTNE
    NCOT = 10
    CALT JACORI (DYNAM,NORK, PTGロN,NCOT)
    NRTTE (3,6100)
6100 FORMAT (1%,' THF NORMAT, MCDF PRSNOIPNCTRS ARE')
    \RTTE(3,5566) (EIGPN(T),T=1,101
    GO TO 1000
    END
    SUBROUTTNE JACOBL(A,B, P, N)
C GOLUTTON SIBROITTNT FQOM OAKFTDGP NATTONAL LABORATOPTES
    IMPTICTT QEAL*8(A-4,\cap-7)
    DTMENSION A(N,N), B(N,N), E(N)
    S=0.0
    DO 10T=1,N
    1\capS=S+\capABC(A(I,I))
    TEST=S/N
    DO12I=1.N
```

```
        DO11J=1,N
    11 B (T,T) =0.0
    12 B(T,T)=1.0
    GOTO15
    25 D013T=2,N
        TT=T-1
        DO 13.T=1,TT
        P=A (T,T)
        TP (DABS(P)-AMAX) 13,16,15
    16 V=(A(T,J)-A(I,T))/?.0
    D=Y**2+P*A(T,I)
    TF (0) 13,10,77
77 YSO= Y+DSORT (D)
    IP (YSO) 31, 31,17
31 DD = Y **2 + D*A (T,T)
    VV=DS\cap R"
    DENOM=v+Yv
    vSO=DABS (DFNOM)
    SSIGN= D*A(I,T)
    TF (SSTGN ) 32,17,17
32 YSO=-YSO
17 %=P/VSO
    GOTO19
18 }\textrm{K}=\textrm{P}/\textrm{y
19 H= DSORT( 1. +Y*Y)
    C=1/|
    S=y*C
    DO2OK=1,N
    v=A(K,T)
    Z=A (K,J)
    A(K,T)=C*Y-S*Z
    A (K,J) =S*V +C*न
    v=B(K,T)
    Z=B(K,J)
    B(K,I) =C*V-S*7
20B(K,J) =S*V+C*Z
    00 1 K=1,N
    V}=\textrm{A}(T,K
    7=A(J,K)
    A (T,K) =C*V -S*?
    1 A(J,K)=S*Y+C**
13 CONTINTE
15 S=0.0
    DO21T=2,N
    TT=T-1
    DO21J=1, IT
    IT (DABS(A(I,J))-S ) 21,21,22
    22S= DABS(A (T,J))
21 CONTTNUE
23 R=S/TロST
    AMAY=S/5.0
    TP(R-1.0D-6) 24, 24,25
24 DO26T=1,N
26 E(I)=A (T,T)
    RPTURN
    END
```


APPENDIX V

Calculation of the First Brillouin Zone Boundaries
The limits of the wave vector $\underset{\sim}{q}$ for the first Brillouin zone are found in the usual manner. ${ }^{11}$ A set of primitive translation vectors for the lattice is chosen, and those of the reciprocal lattice in momentum space are calculated. The boundary planes of the first Brillouin zone are the planes which perpendicularly bisect the vectors from the origin to the nearest base-centers and to the nearest cell corners on each axis.

A set of primitive translation vectors, ${\underset{\sim i}{ }}^{i}$, for the lattice can be shown to be

$$
\begin{align*}
& \underset{\sim}{a_{1}}=(a / 2) \hat{u}_{1}-(b / 2) \hat{u_{2}} \\
& {\underset{\sim}{a}}_{2}=b \hat{u}_{2} \tag{1}\\
& \underset{\sim}{a}=c \hat{u}_{3}
\end{align*}
$$

by computing the volume of the primitive cell which they form. Since there are two lattice points per unit cell (of volume $a b c$), then the primitive cell, containing one lattice point should have a volume of $a b c / 2$. The volume of the cell described by Equation (1) is

$$
\underset{\sim}{a} \cdot \underset{\sim}{a} \times \underset{\sim}{a}{ }_{3}=\left(a / 2 \hat{u}_{1}-b / 2 \hat{u}_{2}\right) \cdot\left(b \hat{u}_{2} \times c \hat{u}_{3}\right)=a b c / 2 .
$$

Using Equation (1), the reciprocal lattice primitive vectors, $\underset{\sim}{b}$, may be found from
where i, j, k are cyclic in l, 2, 3. The reciprocal lattice is found to be base-centered orthorhombic and the cell edge lengths are given values of $x=4 \pi / a, y=4 \pi / b$, and $z=2 \pi / c$. The reciprocal lattice may be described by primitive vectors

$$
\begin{aligned}
& {\underset{\sim}{b}}_{1}=(4 \pi / a) \hat{u}_{1} \\
& {\underset{\sim}{b}}_{2}=(2 \pi / b) \hat{u}_{1}+(2 \pi / a) \hat{u}_{2} \\
& \underset{\sim}{{\underset{\sim}{3}}_{3}}=(2 \pi / c) \hat{u}_{3}
\end{aligned}
$$

The reciprocal lattice is now plotted, and the distance from the origin to the first Brillouin zone along each of the axes may be found geometrically. The distance in the (100) and (010) directions are found using a plot of the $x-y$ plane of the reciprocal lattice (in Figure 5). Two Brillouin zone boundary planes intersect the x-axis. The distance x_{1}^{\prime} is by definition one-half the distance to the first lattice point, or

$$
x_{1}^{\prime}=\pi / a
$$

geometrically, x_{1} is found from

$$
x_{1} \cos \theta=\frac{1}{4}\left[\left(\frac{2 \pi}{a}\right)^{2}+\left(\frac{2 \pi}{b}\right)^{2}\right]^{\frac{1}{0}}
$$

After substituting

$$
\cos \theta=(2 \pi / b) /\left[(2 \pi / a)^{2}+(2 \pi / b)^{2}\right]^{\frac{1}{2}},
$$

Brillouin zone

Figure 5: The first quadrant of the $x-y$ plane of the reciprocal lattice showing the Brillouin zone boundaries
one finds

$$
x_{1}=\frac{\pi}{a}\left[\frac{1+\left(a^{2} / b^{\mathbf{z}}\right)}{2}\right]
$$

Since a^{2} / b^{2} is less than one, x_{1} is less than x_{1}^{\prime} and is therefore the distance to the edge of the first Brillouin zone.

Using the same method, one can find the distances y_{1} and y_{1}^{\prime} to be

$$
\mathrm{y}_{1}=\pi / \mathrm{b}
$$

and

$$
y_{1}^{\prime}=\frac{\pi}{b}\left[\frac{1+\left(b^{2} / a^{z}\right)}{2}\right] .
$$

Since b^{2} / a^{2} is greater than one, y_{1} is the smaller of the two and is the distance along the y-axis to the zone boundary.

Only one plane intersects the z-axis near the origin, since there are no face centers (see Figure 6). The distance to the zone boundary in the (001) direction is therefore

$$
z_{1}=\pi / c
$$

The limits of wave vectors along the axes in the first Brillouin zone are therefore

$$
\begin{aligned}
& x=\frac{\pi}{a}\left[\frac{1+\left(a^{2} / b^{2}\right)}{2}\right] \\
& y=\pi / b \\
& z=\pi / c \quad .
\end{aligned}
$$

Figure 6: The first quadrant of the $y-z$ plane of the reciprocal lattice showing the Brillouin zone boundary

