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INTRODUCTION 

A crystal lattice may be described as a regular array 

of atoms and/or molecules.  One may be described using two 

basic concepts - the unit cell and the translation vectors 

of the crystal.  A particular arrangement of molecules (the 

"unit cell" of the crystal) is located at the origin of a 

coordinate system.  This arrangement or unit cell is re- 

peated at regular intervals in space.  These intervals are 

described by three translation vectors.  A unit cell is 

located at particular combinations of these vectors, as, 

for example, at every combination of integer multiples of 

the vectors.  In the case of gallium, an orthogonal set of 

vectors will be chosen such that a unit cell is located at 

every combination of even-integer multiples of the trans- 

lation vectors. 

A force exerted on a molecule in such a crystal lattice, 

perhaps produced by a wave progressing past the molecules, 

disturbs the molecule from its equilibrium position.  This 

disturbance propagates through the crystal at a speed which 

is dependent on the incident direction of the wave with re- 

spect to the crystal axes.  In the harmonic approximation 

we may treat the molecules as if they were a collection of 

oscillators.  The standard method of handling this is in 

terms of the normal modes of the oscillators. 

In this thesis, gallium is treated as forming a crystal 



of diatomic molecules.  The equations of motion for a mole- 

cule in the lattice are derived using the harmonic approxi- 

mation.  The inter-atomic forces are found analytically 

using the "6-exp" potential form, V = - 4?- + Be"ar.  Using 

these analytical forms the inter-molecular force constants 

are found numerically.  The secular determinant is evalu- 

ated and an attempt is made to find the normal mode frequen- 

cies for selected values of the wave vector q. 

The model of the gallium molecule is that of a rigid 
O-l 

dumbbell of length 2.442 A and the mass of each atom is 
-24      2 , 115.735199 x 10   grams.  In the crystal lattice (base- 

centered orthorhombic), there are two possible molecular 

orientations.  With respect to the crystal axes (figure l), 

both molecule positions lie parallel to the b-c plane. 

Type A is tipped ~ 16.9° counter-clockwise from the b-axis 

and type B ~ 16.9° clockwise from the same axis-5 (figure 2). 

The principal axes for each type are located such that one 

lies along the dumbbell axis (the 8-axis).  A second (the 

a-axis) passes through the center of the dumbbell parallel 

to the a-axis and the third (the Y-axis) 
is selected to form 

a right-handed system with the first two. 

Lengths on the crystal axes are most conveniently 

measured in integer multiples of one-half the respective 

lattice constants.  The integers are designated h, k,   and 

I.     A unit cell containing four molecules can therefore be 
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Figure   1:     The  base-centered orthorhombic lattice 
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Figure 2:  Relative molecular orientations in the 

gallium lattice 



a b described using   translation vectors  ex   = -* i   ,   e_= -* j   , 

and e3  = -w k   (figure  3).     A type  A molecule is  located at 

(0,0,0)   and another at   (1,1,0).     The   two   type B molecules 

are at   (0,1,1)   and   (1,0,1).       By translating  this unit  cell 

along every  combination of even-integer multiples  of ex, 

e_,   and  e,,   one   can generate  the rest of the   base-centered 

orthorhombic   lattice. 
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DEVELOPMENT OP THE DYNAMICAL MATRIX 
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Since the molecules are assumed rigid, there are only 

the three translational and three librational degrees of 

freedom per molecule.  The translational motion will be 

considered first by assuming each molecule to be a point 

mass located at the center of mass of the molecule.  The 

resulting equations may then be extended to include li- 

brational motion as well. 

Consider the equations of translational motion of a 

molecule located at r. with respect to some origin in the 

crystal axes.  The equations, expressed in terms of dis- 

placement from the equilibrium position of the molecule, 

are 

P = M u, = - E $(jj ') u, , 

where the following definitions are made: 

(1) 

M, = 

m 0 0 

0 m 0 

0 0 m 

in *ia *i 3 

>81 $aa $33 

S3l  $38  $33 

"ik" 

m = mass of Ga molecule 

$-u,(JJ ') = force constant for the i 

component of the force on 

the j (or "origin") mole- 

cule due to displacement 

of the j' (or "source") 

molecule in the k direction 



u, / = displacement of the molecule from its equilibrium 

position, components along the crystal axes. 

The range of the j ' index includes both j, the molecule 

being discussed, and its neighbors to any desired range. 

The harmonic expression for u. 

u,   = A.   e 

J 

■ (Qj    •   £j   -   U)t) 
(2) 

is postulated.     Substituting this into Equation (l) gives 

MA.   u)a   e 
-i   u)t    iq-r 

e 
-i   uit i q*r. , 

1  = e E     fCJj^Aw e    ~ ~J 

If the various A, , are assumed equal, this may be expressed 

in component form as 

3 
Mm8 Ak =   2    j;   *(JJ') *N 

e 
iq   •   r., 

(3) 
N=l    j '       kN 

for k =  1,   2,   or  3 and where r, , now means r    ,- r.   . 

The  coefficients of  the  three  amplitude  components may be 

collected  to rearrange Equations (3) as 

iq   •   r   , ig   •   r,, 
~J     - Mn,2]  Aj   +   [y   *ia(Jj ')e J   1A. 

+  [I   *13(JJ ')   e 
y 

y 
iq   •   r_j , 

]   A3   =  0 (*) 

iq   •   r iq   •   r 
rz,*81(JJ')e ~      **']Ai   +  [Ztiaa(iy)e ~      ~J   - Mu,a]As 

J 
iq   •   r,, 

+  [S   *83(JJ')e  ~      ~J   ]A,   = 0 
J' 
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iq   • r,,                                        iq   •   r,, 
[E   §3i(JJ')e ~ ~J   ]AX   +  [5:   $3a(jj'(e~      ~J   ]AS 

J' y 

+ [E,t..(JJ ')e ~     ~J" " Mwa]A3 - 0 
j 

From Cramer's rule the secular determinant Is therefore 

iq'r, , iq-r, ,                           iq-r., / 
I   «n(JJ ')e ~ ~J  - MUJ

8
   2   *ia(JJ ')e ~ ~J     F  *l3(jj ')e ~ ~J 

y y                    y 
iq*r. lq#r,, iq*r. iq-r, , iq  r, , J.4  r* / 

I   *8l(JJ ')e ~ ~J     F   *s3(jj ')e  ~ ~J   - MU,3   I   *aa(JJ ')e  ~ ~J 

iq-r, Iq.r, iq-r    , iq-r, , ^-H-J- , / 
E   *3l(jJ')e ~ ~J     I  «38(jJ')e ~ ~J       F  $33(JJ')e   ~~J   - Mur 
y y y 

= 0 

(5) 

The molecular structure may be considered by extending 

these results to include llbrational motion as well.  Torque 

components are taken along the principal axes of the mole- 

cule on which they are exerted so that the moment of inertia 

tensor I of the molecule is diagonal.  Equation 0) involving 

linear displacements and forces may be extended to include 

torques and molecular rotations as well.  The resulting 

equation involves a 6x6 "force constant" matrix and is of 

the form 



Pi 

F8 

F3 _ 

L 
a 

Le 
L 

L  YJ 

/constants        \ /constants} 
coupling 
forces & 

\displacementsy 
/constants 
coupling 
torques & 

^displacements,/ 

coupling 
forces & 
rotations,/ 

\   /constants 
coupling 
torques & 

^rotations/J 

'ul' 

u3 

• 
U3 

Si 

«8 

.P3. 
where  the 6x6 matrix   §    is divided  into   four  3x3   submatrices 

There are  two main  variations   from  the method of  the 

previous derivation.     First,   two  equations of motion are 

used to describe  translation  and rotation of  the   "origin" 

molecule.     In component  form,   these are 

F.(j)   =  m u^j)   = -   r  E  E   [«lk(jJ ')uk(j ') + *lB(JJ ')eB(j ')] 
J      K   B 

0  (J)   =1  Va(J)   —  2J2  [$ak(JJ')uk(j') + %(JJ')«s(J')] 
J       Kg 

where i, k, a, and e run from 1 to 3 and where the following 

definitions are made: 

C (j) = net torque on the jth or origin molecule 
a 

§  (jj ') = "torque constant" relatingthe a component of 
(X H 

torque on the origin molecule to a rotation 

of the j ' or source molecule about the e 

principal axis 

9  = rotation about the 9 principal axis 
8 

i*   (jj ') relates forces on the origin molecule to 
1 8 

rotation of the source molecule 

$  (jj ') relates torques on the origin molecule to 

translation of the source molecule 
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It should be noted here that the k subscript connotes 

translation of the molecule, while the B subscript implies 

rotation.  Thus $., does not equal $.  nor does § . equal 

$  when k happens to equal R.  For convenience these may 
CXB 

be written 

i        j , k  IK        K 

where i and k range from 1 to 6 (l to 3 imply translation 

and 4 to 6, libration).  Second, the origin and source mole- 

cules are not necessarily identical, so that all amplitudes 

in the harmonic form may not be assumed equal.  There must 

be equations of motion for each type of origin molecule, and 

there must be a different amplitude for each type of mole- 

cule in the lattice.  The harmonic solution is now substi- 

tuted, i.e., 

!2j = £j e 
i(q-£j - wt) 

where u. and A1 are now six-element column matrices.  If the 

factor e~iu)t is cancelled, the amplitudes of all type A 

molecules are assumed equal, and those of all type B mole- 
c 

cules are assumed equal, then the resulting two equations are- 

M A m = T     $ (jj') A e ~ ~J '+ E  § (J-t')B e^'Ll' 
y - ~      t 

(6) 

*a-£j iq*r , j a-rt , 
M B m- = E * iU')  A e ~ *"* + E * (TJ')B e 

where in each case j ' indicates only those molecules of 
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the same type as the origin molecule, and l'  indicates 

only those not of the same type as the origin.  The mass 

has been extended to a 6x6 diagonal matrix, 

m  0  0  0  0  0 

0  m  0  0  0  0 

0  0  m  0  0  0 
M - 

0  0  0  I  0  0 
a 

O  0  0  0  I  0 
P 

0  0  0  0 0  I 

These  equations may   be written in component  form and   the 

coefficients  of the   components of A and B collected.     There 

are now   six  equations of the  form 

y  US     t,„   (JJ')e fc'Sj' 
r ik 

+  Z   l[l     *,,,  (H')e 

~  Mi   <*>"   6ik^Ak^ 

(7) 
-•l 

k I' 
ik H\'° 

and  six of  the  form 
iq-r lq'V E   f[E/*llc(JJ/)e~  ~J']Ak]  +  E{[E#   *lk(K')e 

- Mi <"2 6ik^BkJ " °- 
where i, k = 1, 2, ..., 6.  These equations give a 12x12 

secular determinant whose elements are of the form 

F  |lk (Jj')e~ 
Zi'-  \\   +   6ik (8) 

J 
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The order of the matrix may be reduced by considering mole- 

cular symmetry.  Physically, motion about the 8- or dumbbell 

axis can have no meaning since I is zero.  Accordingly, the 
6 

fifth and eleventh columns, which involve rotation about the 

6-axis, and the fifth and eleventh rows, which involve 

8-components of torque, may be omitted.  The determinant is 

thus reduced to 10x10. 

For the same reason, the fifth row and column of each 

inter-molecular force constant matrix may be omitted, 

reducing it to 5x5.  Lattice symmetries further restrict 

the form of this matrix for certain locations of the source 

molecule.  The symmetry notation described by Pawley is 

used.  The type B symmetry transformation, or inversion 

through a point in the lattice such as the origin, takes 

molecule n at (h, k, l) into molecule n' at (-h, -k, -l). 

Inversion through the origin indicates that $ between the 

origin molecule and any other molecule in the lattice is 

of the form 

§12 

$! a 

§sa 

§=3 

§8 4 

1 

'13 

ha 

33 

t34 

h* 

h* 

»44 

'15 

hB 

'45 *14 

§16     _§S5     _§35 §45 

A type  A  symmetry  transformation  brings   the transformed 

molecules  into   self-coincidence,   as in   the  case of re- 
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$ = 

'as 

>33 

'S3 

^3 3 

flection in the plane containing the molecules.  This trans- 

formation leaves $ unchanged.  Reflecting the gallium 
fa 

lattice in a plane perpendicular to the a-axis indicates 

that the form of §  between molecules lying in such a 

plane is 

"in   0   0 

0 

0 

0      "$34  "$34 

"$l5       0      ° 

Type C symmetry, a screw dlad transformation, relates 

the force constant matrix ( <k)   between a type A origin mole- 

cule and the source molecule located at (h, k, t)  with 

respect to this origin to the force constant matrix (^') 

between a type B origin molecule and a source molecule 

located at a corresponding position with respect to this 

type B origin.  The application of this symmetry transforma- 

tion indicates that the following relationship must hold 

between $ and $ ' : 

0 

&S4 

*34 

0 

*16 

0 

0 

0 

B5 

*11 

$is 

$13 

»18 

'!! 

[!3 

*14     -*34 

'33 

!34 

'15 '35 

*14 

$34 

*34 

$44 

*45 

'15 

»35 

^35 

Us 

"11 

ll'l 

»*'■ 

^a'a 

'34 

$35 * 

'13 

>•'■ 
/ 

>33 

i 
34 

/ 
35 

"14 

>s'4 

U'4 

\U 
ran 

The details of these symmetry transformations are shown in 

Appendix I. 
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The large number of Independent parameters involved 

in molecule-molecule (m-m) interactions is not further 

reducible due to the low order of symmetry of the crystal. 

There are at least nine parameters involved in each m-m 

interaction.  If only fifth-nearest neighbors are included 

in the dynamical matrix, a total of 101 independent parame- 

ters are involved.  It is unlikely that this many independent 

parameters can satisfactorily be determined from experimental 

data. 

If, however, a particular potential is assumed for 

interactions between atoms, the parameters in the m-m 

expressions become dependent on the potential used.  The 

number of variables is thus greatly reduced. 

The atoms are assumed to interact via the "6-exp" 

potential energy form, which is 

There are now only three independent parameters, with the 

intermolecular constants dependent on these.  The potential 

energy of the crystal may be expressed in a Taylor series 
7 

expansion about the equilibrium position as 

* - S + l*i fq; + * I J xi XJ i*i% + • • • • 
evaluated at the equilibrium position of the molecule. 

Since both u and -|£- are zero when evaluated at the ox^ 
equilibrium position,   the  first  non-vanishing term is  the 

"harmonic oscillator"  term.     The harmonic  approximation 
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then  implies  that  the  inter-atomic  force constants are  the 

second derivatives of the potential.     Prom this,   one can 

show   that  the  force  constants   ($,,)   between  an atom in the 

origin molecule and one in the  source molecule are of the 

following form: 

a. 1  =   1,   2,   3 j   = 1,   2,   3 

•ij   "  5iJ   f(r)   + Xi   XJ   S(r) 

b. i  =  4,   5 

Kl = v° 

j   =  1,   2,   3 
y0,   z0   = position of the 

3j a^ origin  atom relative  to 
*5j = -(yocose+zosine)*^    the center of mass of the 

origin atom 

i   =   1,   2,    ...   5 J  - 4,   5 
y,   z  = position of the 

J8 source  atom relative to 

JB 
;   sineJijx   the center of mass of  the 

source  atom 

^     =    y     §J3     "     Z 

J5 

where 

,   ,        1   9V   _  6A  _   Ba     -nV 

,   »       1   3f = _  48A 
>'r'   '    r   dr        '   r10 

Bqe-ar   ,   Ba^-ar 

r3 r= 

and  the x,   are   the components   (with  respect to   the   crystal 

axes)   of  the position of the  source  atom relative to  the 

origin atom.     This derivation is  carried out in greater 

detail   in Appendix II. 

The force constants between the origin molecule and the 

source (or displaced) molecule may be found by including the 

four  inter-atomic interactions possible  between the  two mole- 
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cules.  If however the origin molecule is itself displaced 

and the rest of the lattice molecules remain in equilibrium, 

the forces exerted on the origin molecule (called the "self- 

forces") must be calculated differently. 

For a simple translation u. of the origin molecule, 

the force on it is the same as if it were undisplaced and 

each neighbor were displaced by u,, = - u,,  It is thus 

clear that 

*lk(jJ) = - I  *lk(JJ') for i, k = 1, 2, 3  . 

A pure rotation e, of the origin molecule is equivalent to 

each neighbor experiencing a translation of -j}, x r, ,  and a 

pure rotation of -9, = Q. ,.       The resulting forces are derived 

in Appendix III. 

The self-force and intermolecular force constants may 

now be used to compute the dynamical matrix for different 

values of the wave vector q.  The 10x10 secular determinant 

elements have already been described (Equation (8)).  It is 

convenient to redefine the amplitudes of the harmonic solu- 

tions (A) by (m  for i   = 1, 2, 3 

a, = Ai ji47      where Mj_ - < I i = 4 

1=5 

The secular equations may then be written 

(D - Iu)s) a = 0 

*XY 

(9) 

where I is the identity matrix and the Dlk are of the form 

Dik = ^,   $ik^J') ^^VVMA   • 
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The elements of the dynamical matrix are either purely real 

or purely Imaginary.  By taking account of the 90° phase 

difference between the translational and rotational com- 

ponents of the molecular motion, one may redefine the rota- 

tional amplitudes as ' 

a4 = i A4 VI a 

a_ = 1 A. VI, 

a9 = i A9 VI, 

aio= i A10vT v        l o    --i u v - y 

After making this substitution, we find the D,. terms of 

Equation (9) are of the following forms: 

a. for type A origin and source molecules: i, k = 1 - 5 

Dik - i^W'J C
P ^'~yi - ^ik(jj')}/./MA 

summed over type A molecules only. 

b. for type A origin and type B source molecules: 

1=1-5   k = 6 - 10 

Dik = fj, *i(k-0(jr) C
P 

e a^J"}/^iM(k-5) 
summed over type B molecules only. 

c. for type B origin and source molecules: i, k = 6 - 10 

Dik= ^,*(i-s)(k-5)(JJ'V 
J 

ia'~J'] -•(i..)(k-.)(W')I 

summed over type B molecules only. 

d.  for type B origin and type A source molecules: 

1-6-10     k = 1 - 5 
iq*r. 

D ik = (?, *(i-5)k(JJ') 
Cp •  ~r'/^(l-s)Mk 

summed over type A molecules only. 
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The values of §lk.(jj') are given in Equations 6, Appendix III, 

and C is defined by: 

Cp = cos 2e   if i, k = 1, 2, I,   6, 7, 8 

or if i, k = 4, 5, 9,   10 

C = sin 26   if i = 4, 5, 9,   10 

and k = 1, 2, 3, 6, 7, 8 

C = -sin 29  if i = 1, 2, 3, 6, 7, 8 

and k = 4, 5, 9, 10 

The elements of the dynamical matrix may now be evalu- 

ated and the eigenvalues of the matrix found for specific 

values of q.  These values are those of UJ
S
, where the ui's 

are the normal mode frequencies of the oscillators. 
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SUMMARY AND CONCLUSIONS 

The intermolecular force constants for gallium may be 

obtained analytically using the "6-exp" potential form for 

inter-atomic interactions.  These constants may be used to 

evaluate the dynamical matrix numerically and thus to obtain 

the dispersion relations for gallium. 

An attempt was made to compute the dispersion relations 

for gallium using the program listed in Appendix IV.  The 

values of the parameters A, B, and a were selected such 

that 

and 

a = 2.562205 A" 

B   ? 
(1) 

These values were computed from equilibrium considerations 

by C. B. Clark. 

The normal mode frequencies were calculated for plane 

waves propagating parallel to each of the crystal axes. The 

maximum value of the wave vector (qmax) was taken to be the 

boundary of the first Brillouin zone on that axis.  These 

values are found in Appendix V to be 

The frequencies were evaluated for waves at intervals of ^ 

q   along each axis. Mmax 
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The force constant matrices and the dynamical matrix 

found with the above parameters did not obey the restrictions 

indicated by the inversion and glide plane symmetries.  (These 

restrictions are discussed in Appendix I.)  Several methods 

were used to force the matrices to follow these restrictions, 

but no satisfactory values of uja were obtained.  The most 

nearly satisfactory results are listed in Table 1.  In each 

case, some values of UJ
S
 are negative. 

We are unable to obtain values for A, B, and a which 

would yield ten values of UJ
S
 with a uniform sign for one of 

the incident wave vectors.  Final results in which all values 

of u)S are negative might suggest that the "6-exp" potential 

is appropriate for gallium only with a dominant repulsive 

term rather than a dominant attractive term.  These parameters 

might be found by relating calculated values of UJ
3
 to those 

determined empirically.  A selection criterion, such as a 

least squares fit, could be used to minimize the difference 

between the calculated values of uis and the empirical values9 

to give a "best value" of A, B, and a.     This, however, is 

beyond the scope of this paper. 
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Calculated Values of ;us   for Plane Waves  Propagating Along 
the Crystal Axes* 

units: uj2 in 10s4  Hz2  ; q in A 

q U)» q (IIs q ID* 

.06741 .4954 x 101 .1000J .5072 X 101 .1000k .5037 x 101 

-.1371 .5795 x 10" ' .1258 

-.1234 x 102 -.3239 -.9219 x 101 

-.5700 x 101 -.3674 X 101 -.6952 X 101 

-.2753 x 10"1 -.3316 -.6846 

-.1088 x 103 -.9403 X 10l -.1516 x ioa 

-.3484 x 101 -.5768 X 101 -.2660 x 101 

-.1543 x 108 -.1524 x 10s -.2731 x io= 

-.3104 -.2786 X 10s -.9997 

-.2794  X  102 -.1396 X 10= 
A 

-.1335 X 10s 

.13481 .5482 x 101 

-.5301 

.2000J .5906 X 

.2289 

101 .2000k .5308 

.4544 

X 101 

-.1237 x 103 -.7475 X 10
1 -.6525 X 101 

-.5252 x Id -.5581 X 10
1 -.8715 x lOi 

-.1070 -.1187 X 101 -.1286 X 101 

-.1079 x 10s -.1542 X 10s -.1510 x 102 

-.3064 x 101 -.3842 x 101 -.2671 x 101 

-.1616 x 10s -.2748 x 10s -.2532 x 10a 

-.1063 x 101 -.1111 X 101 -.3254 x lOi 

-.2777 x 10s -.1618 X 10
s -.1406 X 10» 

The values for the parameters were a = 2. 562205 A 
1 1 

-1 
> 

0 = R on v 10~18 er 
^      0 

KS A  , and B = 1 00 x 10~   ergs. 
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,20221 

,2696i 

,33701 

ID 

.6054 x 

.1028 x 

.12^1 x 

.4460 x 

.2266 

.1081 x 

.2618 x 

.1726 x 

.1955 x 

.2745 x 

.6515 x 

.9290 

.1242 x 

.3722   x 

.3501 

.1103 X 

.2941 X 

.1861 X 

.2435 x 

.2696 x 

.6790 x 

.2179 

.1234 x 

.4183 x 

.2599 

.1144 x 

.4120 x 

.2014 x 

.1555 x 

.2628 x 

101 .3000J 
1 

10 

10* 
1 

10 

10 
1 

10 
3 

10 
1 

10 
3 

10 

101 .4000J 

10 
1 

10 

10 
1 

10 
3 

10 

101 
3 

10 

101 .5000J 

10 
1 

10 

10 
] 

10 

10s 

] 
10 

io! 

.6926 

.5017 

.2150 

.4350 

.2038 

.5675 

.5455 

.1569 

.2687 

.1845 

.7969 

.8536 

.2672 

.4491 

.2910 

.4099 

.6541 

.1602 

.2607 

.2067 

.8948 

.1250 

.3954 

.8668 

.2857 

.1637 

.4181 

.2514 

.2470 

.2277 

101 .3000k 

10 

10 

10 

10 

10 

10 

103 
3 

10 

10* .4000k 

10 

10 

10 

10 

10 

io: 

io! 

10 
1    * 

10  .5000k 
1 

10 
1 

10 
1 

10 
1 

10 
3 

10 
1 

10 

108 
1 

10 
3 

10 

.4924 

.8656 

.5972 

.1041 

.2023 

.1491 

.5764 

.2223 

.3579 

.1391 

.3740 

.1212 

.4579 

.9657 

.7215 

.8678 

.1178 

.1454 

.1833 

.1288 

.1623 

,1351 
.1240 

,6736 

,1978 

,1096 

.1383 
,1440 

,1404 

,1118 

x 10 

x  10 

x  10! 

x 10 

x 10' 

x 10S 

x 10' 

x 10! 

x 101 

x 101 

X   10 

x io_ 

x 10J 

x 101 

x 101 

x 10' 

x 101 

x 10' 

x 10' 

x 10_ 

x 10* 

x 10* 

x 10* 

x 10* 

X 10" 
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APPENDIX I 

Symmetry Transformations On The Gallium Lattice 

There are three lattice symmetry operations which may 

be applied to the gallium crystal in order to reduce the 

number of independent elements in the intermolecular force 

constant matrices.  Two of these are described by Cochran 

R 6 and Pawley-' and the third by Pawley.  A class A symmetry 

operation is used to bring the origin and source molecules 

into self-coincidence, as, for example, molecules located 

in a mirror plane are reflected into themselves.  The oper- 

ation has no effect on the intermolecular interactions and 

so yields 

T *(JJ ') T = e(jj ') (1) 

Class B is symmetry about a point in the lattice such as 

the origin.  It is applied to gallium as inversion through 

the origin and takes the molecule located at r., or 

(h, k, t),   into the one at r,,,or (-h, -k, -i).  The force 
." 

•, constant  matrix of molecule j ' can   be  shown to  obey- 

T   i   (jj ')   T  =   $   (jj')        . (2) 
5» as 

Type C symmetry relates the interaction tensors or force 

constant matrices between two different pairs of molecule 

(i.e., it relates $(jj') and $(j"j"')) by 

T $ (jj') T = $(j" j"')   • (3) 
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An example of this is the screw diad transformation, which 

takes, for instance, the molecules located at the origin 

and (0, 1, l) (molecules j and j ', respectively) into those 

of opposite orientation located at (0, 1, 1) and (0, 0, 2) 

(molecules j " and j'") respectively.  From Equation(3) it 

may be shown   that the relationship between the interaction 

tensors of the two pairs of molecules is 

* (j" j'") = I i (JJ ') I  • 
R= 

(4) 

where 

-1 0 0 0 0 0 

0 -1 0 0 0 0 

0 0 -1 0 0 0 
I = 
as 0 0 0 1 0 0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

1 

In each of equations (l - 3), the matrix T is the six- 

dimensional symmetry transformation.  It is formed from 

S, the three-dimensional rotation matrix for polar vectors. 

If det S = 1 (a proper rotation), S is also appropriate for 

axial vectors.  For an improper rotation (det S = - l), 

-S is needed for axial vectors.  Thus S det S may always 

be used for axial vectors.5  In the case of gallium, how- 

ever, the axial and polar vectors are not measured in the 

same coordinate system (since the principal and crystal 

axes do not coincide).  A vector V measured with respect 
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to   the  crystal axes  transforms  to  the principal axes  through 

XPA = £ XCA (5) 

where 

a 
SB 

0 0 

COSQ     -sin9 

sine       cos0 

Beginning  then with the   transformation of 

XCA  =  I d6t  £ VCA   > 

and   substituting  from Equation(^,   one   finds 

XP'A = a V'.   = a(S det  S)  V ~CA XCA 
_i 

= a(S det S)   a"     a V   . 
PS  «s as     ss        as  ~OH 

=  a(S det S) 
.i 

XPA 

Therefore  T   ,   the  transformation matrix for some  symmetry 

operation S   ,   is given  by 

I = 

0 

0 a(S det S)   a 
_ i 

»= 

The three classes of symmetry may be applied to the 

gallium lattice using this form of T.  The application of 

class B symmetry in the form of inversion of the lattice 

through the origin gives the most general results of the 

three.  The matrices used in forming T are 
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S   = 

-10 0 

0-10 

0       0-1 

and 

o(S det S)o 
_i 

1 0 0 

0 1 0 

0 0 1 

T is  therefore defined   by 

T  = 

-1 

0 

0 

0 

0 

0        0 

0 -1 

0 0 

0 

0 

1 

0       0 

0        0       0       0 

and T   §(jj ')   T Is   given  by 

0 0 

0 0 

0 0 

0 0 

1 0 

0 1 

r Hi 

T   $  T   = 

si 

hi 

199 

h* 

ha 

1*1 a       *13 *14 

ha "§3 4 

U| **4 

- $fl , $6 4 

Pi 5 »16 

^2 5 

»*■ 

'5 1      "'BS "5 3 -»4 ES 

From Equation(2) this must equal T(jj') so that one has 

»3 6 

h9 

he 

he 
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$11 llS *13     ~$14     ~$lF 

$31       *23      f33   "^4   -*as 

'18 

?3l 

'41 

33 x 34 35 36 

"44 45 *46 34 '4 4 "54 "64 42 "43 

5 2 *5 3 "54 

8 a     -$63 
{6t 

The form of the force constant matrix between the origin 

molecule and any source molecule is therefore 

"5 1 '55 '56 

8»5      *e 6 

'11 *81 

>ll *aa 

h» *33 

>14 *S4 

*16 $S5 

'l8 *S6 

3 1 *4 1 *5l *6 1 

%»       #5a       *62 33 

'33 43 '5 3 '6 3 

■35 

?36 

45 55 

Us        $56 

*. 

•6 8. 

f(JJ')   = 

$11 $ia $13 $14 $15 $16 

ha $aa $33 *34 * = 5 * = 6 

$13 $33 $33 $34 *35 $36 

"$14 -$a* "$34 *44 *4B *46 

"$15 -$as "*35 $45 *5S $66 

-$16 -$ae "$36 *46 $56 $66 

(6) 

Reflection of the lattice in a plane perpendicular to 

the a-axis is class A symmetry.  The transformation matrices 

are 

-1 0 0 

s = 
S3 

0 1 0 

0 0 1 

_1 
and a(S det S)a~ = 

10 0 

0-10 

0  0  1 

so that T is given by 
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-1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 
T  = 
as 0 0 0 1 0 0 

0 0 0 0 -1 0 

, 0 0 0 0 0 -1 

From Equation (l), it is known that 

T   *(Jj ')T = 

ha 

hs 

h* 

h* 

he 

'is 

'S3 

'3S 

he 

'33 

'35 

^36 

114 

h< 

h5 

he 

-I 

•15 

'•l 

35 

45 

5 5 

56 

'16 

he 

he 

he 

he 

h* 

is  equal   to   $(jj')»     Thls indicates  that  the form of   $_ 

between any  two molecules in a plane perpendicular  to   the 

a-axis   is 

0 

I(JJ')   = 
as 

n i 

0 

0 

0 

'IB 

'16 

0 

§as 

*S3 

0 

0 

*S3 

§33 

0 

0 

0 

§2 4 

§34 

§4 4 

0 

0 

*15 

0 

0 

0 

§BS 

§5 6 

*16 

0 

0 

0 

§5 5 

66 

Type C   symmetry may be used to  relate   the interaction 

tensor   *(JJ ')   between a  type A origin molecule (J)   and  some 
as 

source molecule (J') located at (h, k, i)  with respect to 
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the origin and the tensor $(n n ') between a type B origin 

molecule (n) and the source molecule (n ') located at some 

(h, k, i)  with respect to it (molecule n).  A screw diad 

transformation about an axis parallel to the b-axis and 

crossing the c-axis at (0, 0, *) will transform the pair 

of molecules (jj ') at (0, 0, 0) and (0, 1, l) into the pair 

(j" J'") at (0* 1J !) and (°>  °>   2)• With resPect to an 

origin located on the j" molecule (of type B) at (0, 1, l), 

the j"' molecule (of type A) would be located at (0, 1, -l). 

From Equation (4) this indicates that the interaction tensors 

for the two pairs are related.  Upon calculating 

$13 "$14 "*18 "$18 

*23 "*24 -*S6 -*36 

$. 

I      t(jj')     I    = 

fll 

rl 2 '23 

*1 3 

$14 

$15 

$16 

'24 

^25 

^26 

33 T34 *35 

'34 

hs *45 

>36 $46 

44 "45 

55 

66 

"36 

and comparing this to $ (j"j"') (which is of the same 

form as Equation (6)), one finds that the force constant 

matrices differ only in the signs associated with certain 

elements. 

These  are  the only reductions possible   from symmetry 

operations on  the gallium lattice. 
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APPENDIX II 

Analytical Calculation of the Interatomic Force Constants 

Using the "6-exp" form for potential, one may derive 

the analytical expressions used in calculating the contri- 

butions from the interatomic forces to the intermolecular 

force and torque constants. The forces may be derived from 

the potential form 

V = - L  + B e-*r 

r X + i*.+fa:.Tl*-Bc--*rl 
using 

* dV 
I = ~  ZV =  -  r UF == LF* Kl + r* e» + —  e3JLF^ ""ac   J 

where elt   ea,   and e3 are unit vectors along the a, b, and c 

crystal axes.  This may be written in component form as 

F±  = x.f(r)   where f(r) = ff - |S e"ar  . 

If the source atom is displaced by some infinitesimal amount 

U, then the force increments generated on the atom at the 

origin are 

SF, 9F1 

- j [|% 'M +H¥%J',   • (i) 
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If g(r)   is defined  by 

K(r)   - Il£ - - i^A + Ba e-ar       Baf. e~ar 

then Equation (l) becomes 

dF i = E[6ij f^ + Xi Xj s^r^J D ■ 

By comparing this to the Hooke's law approximation, which 

gives 

dFi = " I *ij UJ  » <2) 

one can say that the force constants are represented by 

|±j = -6±j f(r) - xi Xj g(r)  1 - 1, 2, 3 

j = 1, 2, 3  • 

The U,, which are atomic displacements, must now be 
J 

related to generalized displacements of the source molecule. 

Consider the atom located at (o, y, z) relative to the 

center of the dumbbell.  The displacements of the atom with 

respect to the crystal axes due to translation of the mole- 

cule are the same as those of the molecule center and are 

designated by ux, u9, and u3.  The displacements of the atom 

due to some rotation ro of the molecule must also be included. 

Let u4i and usk be the components of co about the principal 

axes which have non-zero moments of inertia associated with 

them.  (Note that i, a principal axis, is coincident with 

elt  See Figure 4 for the relative orientation of axes.) 

The contribution may be found by taking D = cp x(ycoso+zsine)j 

and converting the result to the crystal axis coordinates 
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(see Figure 4). 
A      " 

Figure  h:     Principal  axis 

orientation 

one can show that 

This   is   found to   be 

£ =   (u4i   + uEk)   x 

(ycose + zsino)j 
A 

=  -u5   (ycosfi + zsine)   i 
A 

+ u4 (ycose + zsino) k 

Using the conversion equations 
A     A 
i = ex 
A A A 

k = - sine e3 + cose e, , 

£ = - u5 (ycose + zsine) e1   - u4z e3 + u4y e3 

The total component displacement of the atom due to trans- 

lation and rotation of the molecule are therefore 

Ux = ux - us (ycose + zsine) 

Us   =  us   -   zu4 

U3   = u3   + yu3     . 
A 

The el-   force  component  may now   be written as   follows: 

AF1   ■   [f(r)   + x1
a  g(r)][ux   -   us   (ycose + zsine)] 

+ xa   xs   g(r)   [ua   -  zu4] + xx   x3  g(r)   [u3  + u4] 

=   [f(r)   + x/ g(r)] ux   +   [Xj   xs  g(r)]  ua 

+   [xx   x3   g(r)]   u3   +   [xx   g(r)(x3   y  -   xs   z)]   u4 

-   (ycose  + zsine)   [f(r)   + xx
a g(r)] u5 
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A A 
The ea- and e3- components may be written similarly and 

the following expressions found for the contributions to 

the intermolecular force constants: 

I U = 6±1 f(r) + x±  x g(r) k - 1, 2,  3 

j = 1, 2, 3 

sl4 = y *i3 - z *is 

and     $i = ~ (ycosQ + zslnQ) $il 

where y and z represent the position of the source atom 

with respect to the center of mass of its molecule and 9 

is the angle of inclination of the source molecule. 

The torque increments along the i and k axes of the 

origin molecule may be found using 
A A 

A e4  =  i 
dr-e,   =   [(y0e3+z0e3)xdF   ] • e     for j   = 4,   5 where   A , 
~J ~.LJ es   = k 

where y0  and z0  represent  the position of the origin atom 

with  respect  to  the   center of mass of the origin molecule 

and 

One  then  finds 

dF - dF,.   e\   + dF3 es  + dF3   e3 

dT  =   (y0dF3 -   z0dFs)e1   + z0  dPx   es  -  y0   dPx 3) 

Converting this expression to principal axes gives 

. A 

dr -   [y0dF3   - z0dFs]  i   +  [-yodPi   coso0   -   z^   sino0]  j 
A 

+ [-(y0 cose0 + z0 sin90) dPxJ k 

where e0 is the angle of inclination of the origin molecule. 

Since we may neglect the j- or g- axis (lg = 0), the torque 

components are 
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dTl = dP4 = y0dF3 - z0dFs 

dTa = dF5 = - (y0 cose0 + z0 sin o) dFx 

The "torque constants" may then be found by substituting for 

dFx, dFa, and dF3.  After substituting these expressions into 

dF± = E Sji u.     for i = 1, 2,   3 

one finds the torque constants to be 

and 

4J « = yc ij -   z0    * 
aj 

= -   (y0   COSQ0 + z0sino0)   ^ j   for  j  =  1-5. 
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APPENDIX III 

Calculation Of The Self-Force Terms 

The self-forces result from the motion u. of the origin 

molecule while the source molecules are undisplaced.  Clear- 

ly, for a purely translational u., the force of the origin 

molecule is the same as if it were undisplaced and the 

source molecules were all translated by -u,.  If, however, 

u, has a rotational part, &,,   the corresponding shifts of 

the source molecules are both rotational and translational. 

The molecules must be rotated by an amount -m. and trans- 

lated by -©. x r,,. 

If v, represents the translational part of u., then 

the total forces on the origin molecule (including both 

those due to source molecules and Fg, the self-force) are 

F, = - T.   «(JJ') u,,+ F = - E §(jj')L(vr-v.) - Jgj X r , 

+ (row - jn^) J (1) 

All the displacement terms must be expressed in terms of 

the u  (i = 1 - 5) of the source molecule.  For the trans- 

lational terms, [(v^ ,-V^) - (^ x % ,) ], this is straight- 

forward.  If co. and r, , are defined by 

0A      OA      O  A  _  0   .  „  A   ,,,° 
a,.   = u.   i   + u.   k = u4   ux   + u5   sine  ua  + u5 
~J 

cose u, 

A A A 

and r, ,  = H ux   + K u3 +  L u3, (2) 
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then 

"2,1 x £i' = us ^K cose * L sln?lui 

- [- u° L + u° H cose]u2 

- [u4 K + u° H sine]u3 

Where there is a choice of sign, the top sign goes with a 

type A origin molecule (tipped at + e with respect to the 

b-axis) and the bottom one with a type B origin molecule 

(at -e with respect to the b-axis).  Thus the translation 

components are given by 

Uj = vl(J
/) - vx(j) + u°[K cose + L sine] 

u2 = va(J') - va(j) + u4 L - u° H cose (3) 

u. = v8(j ') - v3(j) - u° K - u° H sine  . 

The rotational terms must both be expressed with respect to 

the principal axes of the source molecule.  If those of the 

origin molecule are parallel, then the components of rotation 

are 

u. = u. (j ') - u. 

us = us(j') - u°  . 

If the source molecule is not the same type as the origin, 

co, must be converted first to crystal axis components and 

then to components along u4 and us.  If CPJ is defined as in 

Equation 2, then it may be converted to the desired coordi- 

nate system using Equation (5), Appendix I.  The resulting 

components for (co, / - co,)   are 

u4 = u4(j ') - u4 

uK = u,(j ') - u° cos2e  . 
(5) 
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Substituting the harmonic solution into Equation (l) as 
iq-r. , 

in Appendix I will leave a factor of e -J multiplying 

each term.     If   $(jj')   =   r*-u,] is  the  force constant  matrix 

between  the j  and j ' molecules,   then the  contribution to 

the  D.,    term of the dynamical matrix from source molecule 
iq-r,, 

motion is   $.^. e "    ~J   .     The  contribution due  to  motion of 

the   original molecule may  be expressed in terms  of   $„. 

These   self-force  contributions   to  the dynamical  matrix 

may  be   found by writing out Equation   (l)   in matrix  form using 

$  =   [$ik.l   and the u.   given in Equations   (3)   and   (4)   or  (5). 

If  the components of P.   are now written  in terms of source 

molecule and self-force  contributions,   as 

F,   = -  S     I   *lk(JJ')   uR(j')   + I   *ik(jj)   u  (j)      . 1 j  ,    k       IK K k 

Comparison of the force  components written from Equation   (3) 

and those   in Equation   (4)   shows  that  the  self-force   contri- 

butions  to  the dynamical matrix are of  the following forms: 

a.     for type  A origin molecules: 

I - 1, 2, 3, *, 5 k = l - io 

1. *lk(JJ) = E, *lk(JJ')  for k - 1, 2, 3 
J 

2. *.4(jj) = r,[*i4(JJ') - L *l8(JJ ') + K *l8(JJ') 
J 

(summed over  both types A and B) 
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b. 

n< 

3. «.    (JJ)   =     E,      r*lR(JJ')   -   *,,(JJ')   L  sine Is J/(A)     is ii 

- fti^JJ')   K   cose  +   *lt(JJ')   H   COSP 

+   $i3(JJ ')   H   sine] 

+     S        [L.(JJ ')   cos  29  -   *,    (JJ ')   L   si 
J'(B)     1B lx 

- llx(JJ')   K   cose  +   $ia(jj')   H   cose 

+   lia(JJ')   H   sine 

(where   the  first sum is over type A molecules 

only and  the  second over  type B only) 

4. $ik(Jj)   =0 k = 6,  7,  8,  9,   10 

for type B origin molecules: 

i   = 6,   7,   8,   9,   10    k =  1  -   10 

It  is   convenient  to define m = i-5 and n = k-5- 

1. $mn(JJ)   -E     VCJJ')       for, =6,   7,   8 
J 

(summed over types  A and B molecules) 

2. $m9(Jj)   = Z,[im4(JJ')   " L  ^(JJ')  +K  *m.(jr)] 

J 
(summed over  types  A and B) 

3.      *ml0(JJ)   =   E,^ms(
JJ ')   COS 29 +   §mi^J ')   L Sine 

- tmi(JJ') K cose + tm,(JJ') H cose 

- *m3(jJ,)   H  Slnel 

+ s,^m5(JJ') + V(jr) L slnp 

J 

- *ml(JJ') K cose + ima(tt') H cose 

- $m3(JJ') H sin°] 
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(where the first sum is over type A only and the 

second over type B only) 

4.  *ik(jj) =0 for k = 1, 2, 3, 4, 5  . 
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APPENDIX IV 

Programming Considerations 

The normal mode frequencies of the lattice under the 

influence of an incident wave of momentum q were calculated 

using the IBM 360/75 located at Triangle Universities 

Computation Center.  The computation is divided into three 

main parts: 

a. Calculation and storage of the intermolecular 

force constant matrices and of the self-force 

matrix. 

b. Calculation of the dynamical matrix for a 

specific wave vector q. 

c. Determination of the eigenvalues of the 

dynamical matrix for this q. 

The program listing is included in this appendix. 

The calculation and storage of the intermolecular 

force constant matrix for each pair of atoms are accomplished 

using three nested do-loops to select values of h, k, and i. 

The interatomic force constants for the four possible combi- 

nations of origin and source atoms are computed and summed 

to give the intermolecular constants.  These are used to 

calculate the self-force term and are then stored to be used 

in computing the dynamical matrix. 

Each term of the dynamical matrix involves the corre- 

sponding term of the self-force matrix and the corresponding 



42 

term of each intermolecular matrix multiplied by the factor 
iq-r 
e~ ~, where r is the location of the source molecule rela- 

tive to the origin molecule.  This exponential must be evalu- 

ated for each molecule.  The dynamical matrix is accumulated 

for the specific q involved. 

The eigenvalues of the matrix are found using a sub- 

routine, JACOBI, which was obtained from Oak Ridge National 

Laboratories, where it has been used extensively in lattice 

dynamics calculations. 
10 
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n=T-i 
DO 2 U= 1, T r 

r^    (   n IBS (   A (T, 7)1 - 1    21,21, > > 

i 7?    3a    DABS (A f , J) 1 
307 |1          

23   »=«?/T  
1- I Ml *=s /r-. 1 
~*10 Tp (R-1 .OD-6) 2*, ?", 7C 

111 ■>«   00 281*1,11 
112 "        ' ")    • f, ') 
]' 1 ....... 
|   1     1 ■?■>*> 
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APPENDIX V 

Calculation  of  the First Brillouin Zone Boundaries 

The  limits of   the wave vector q for  the first Brillouin 

zone are  found in  the usual manner.       A  set of primitive 

translation vectors   for the  lattice  is   chosen,   and those of 

the  reciprocal   lattice  in momentum space  are calculated. 

The   boundary planes  of the first Brillouin zone are  the 

planes which perpendicularly bisect  the  vectors  from the 

origin  to   the nearest  base-centers and   to  the nearest  cell 

corners  on  each axis. 

A set  of primitive  translation vectors,   a.,   for the 

lattice   can be   shown to   be 
A A 

a,   =   (a/2)   Ul   -   (b/2)   u. 
~ A 

a^  =  bus 

a3   = cu3 

(1) 

by computing the volume of the primitive cell which they 

form.  Since there are two lattice points per unit cell (of 

volume abc), then the primitive cell, containing one lattice 

point should have a volume of abc/2.  The volume of the cell 

described by Equation (l) is 
A A A       A 

a^ x a3 = (a/2 ua - b/2 ua) " (bus x cu3) = abc/2  . 

Using Equation (l), the reciprocal lattice primitive 

*> 

vectors, b., may be found from 
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£i = ■< 
Sa x & 

XA S^      X     *3 

where 1,   j,   k are  cyclic  in 1,   2,   3.     The reciprocal   lattice 

is  found to   be  base-centered orthorhombic and  the cell   edge 

lengths are given values  of x =  k-n/a.,   y  = 4n/b,   and z   = 2TT/C. 

The reciprocal  lattice may be described  by primitive vectors 

bj. = (4n/a) Uj 
A A 

b2 = (2n/b) ux + (2n/a) us 
A 

b3 = (2n/c) u3 

The reciprocal lattice is now plotted, and the distance 

from the origin to the first Brillouin zone along each of 

the axes may be found geometrically.  The distance in the 

(100) and (010) directions are found using a plot of the 

x-y plane of the reciprocal lattice (in Figure 5).  Two 

Brillouin zone boundary planes intersect the x-axis.  The 

distance x,' is by definition one-half the distance to the 

first lattice point, or 

x/ = Ti/a 

geometrically, %x   is found from 

x, -e - * [®9' ♦ Qf)] *   " 
After  substituting 

CO S9   =   (2n/b)   /   [(2Tr/a)2   +   (2n/b)    ]        , 



a 

Brillouin zone 

boundary 

Brillouin zone 

boundaries 

Figure 5:  The first quadrant of the x-y plane of 

the reciprocal lattice showing the 

Brillouin zone boundaries 
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one finds 

xi ~ a L    2      J  ' 

Since aa/bs is less than one, X; is less than xx' and is 

therefore the distance to the edge of the first Brillouin 

zone. 

Using the same method, one can find the distances y1 

and yx' to be 

Yx = n/b 

and 

yi = -5 L—g       J 

Since b2/as is greater than one, yl  is the smaller of the 

two and is the distance along the y-axis to the zone 

boundary. 

Only one plane intersects the z-axis near the origin, 

since there are no face centers (see Figure 6).  The distance 

to the zone boundary in the (001) direction is therefore 

Zl   = TT/C 

The limits of wave vectors along the axes in the 

first Brillouin zone are therefore 

y - n/b 

z = TT/C 
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c 

Brillouin zone 

y    boundary 

2rr 
b 

Figure 6:     The   first quadrant of  the y-z  plane of 

the reciprocal  lattice  showing the 

Brillouin zone  boundary 


