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CHAPTER I 

INTRODUCTION 

As long ago as 200 B.C., the idea of the integral was known 

to Archimedes. More than two thousand years later, 1665, Sir Isaac 

Newton and Gottfried Leibniz simultaneously and independently invented 

the differential and integral calculus.  It was almost another two 

hundred years before Bernhard Riemann [10] gave the first rigorous 

definition of the integral.  G. Darboux [1] and S. Pollard [9] followed 

quickly with variations of their own.  In 1901, in a very short article 

for Comptes Rendus [6], Henri Lebesgue gave his definition of the 

integral.  Lebesgue's more general definition of the integral requires 

the use of measure theory.  This is not the case, however, for the 

integrals recently defined by Edward J. McShane [7], and Ralph Henstock 

[3], [A].  Their integrals are as general as Lebesgue's but do not 

require the use of measure theory. 

The following definition is a polished version of Riemann's 

definition.  We first need some terminology. 

Definition 1: A partition of [a,b]  is a finite set of points 

U^^ such that a - x0 < xx < ••' < ^.j < xn - b.  Then we say 

P . {x } "  is a partition.  At times it is more convenient to refer 

to P as the set of intervals determined by the points ^x^±mQ- 

Then P - (!%.,, "t^iHi i8 called a P«"*tlon of  !••*)• 



Definition 2:     The norm of a partition    P- fx.}"   ,  denoted 

P,   is    max { (xx - xQ),   (x2 - *j),   •••,   (xn - *,_!>>• 

Definition  3:     Let    P - l*^*^)    be a partition of     [a,b]     and 

,  n.     Then 

S(P,   f) -    I    f(5±)   (x£ - x^) 

norm 

let    »,  |  -  5± 
£ x      for    i - 1, 

n 

is a Riemann sum. 

Definition  4:    The number    I    is the Riemann Integral of    f    over 

[a,b]     if for every    e >   0,   there is a    6 >   0    such that 

norm    P < 6     implies     |   S(P,   f)  - I   |   < e    for every Riemann sum 

S(P,   f).     Denote this by    R/f(x)dx. 

For bounded,  real-valued functions defined on a closed interval, 

Riemann's integral is equivalent  to Darboux's integral.     For this 

reason we restrict our discussion to those functions which are defined 

and bounded on a closed interval.    All integrals are taken over  the 

interval     [a,b].     Darboux's own definition of  the integral can be  found 

in   [1]  and is  restated here. 

Definition 5:    Let    P - (s«>|£g    be a partition of     [a.b].     Then 
n 

U(P,   f) -    I    M    (x    - x    ,), 
i-1    x      ' 

where    M    - sup {f(x)   |   *.  .  * x s x±},  is called an upper Darboux sum. 

Similarly 
n 

L(P,   f) -    I    m.   (x    - x    ,), 
i-1    * 

where    m± - inf {f(x)   |   x±_x sxSXj},  is  called a lower Darboux sum. 

Definition 6:    The number    I    is the upper Darboux integral of 

f,  denoted    5/f(x)dx,  if for every    e>   0    there is a    <5 >   0    such that 

norm    P < 6     implies     |   U(p,  f) -  I   |   < e-     Likewise    I    is  the lower 



Darboux Integral of     f,  denoted   p/f(x)dx,   if for every    e >   0    there is 

a    6 >   C    such that    norm P <  6    implies     |   L(P,  f)  - I   |   <  e. 

Definition 7:     The number    I    is the Darboux integral of    f, 

D/f (x)dx,   if    5/f(x)dx - D/f(x)dx -  I. 

In   [9], Pollard states his definition of the definite integral. 

Although different from the Darboux and Riemann integrals in its 

limiting process,   the Pollard integral is equivalent to both the Darboux 

and Riemann  integrals.     Again another definition precedes  that of  the 

integral. 

Definition 8:     A partition    P'  - iy^hmn    ls a refinement of  the 

partition    P = tx.}"  ,  both partitions of     [a,b],   if    x± e   ?    implies 

x,  £  P'     for    i -  1,   •••, n. 

Definition  9:     The number    I    is the Pollard integral of    f     if 

for every    e >   0    there is a partition    P    such that    P'     a refinement 

of    P    implies that     |   S(P',   f) -  I   |   <  e    for every Riemann sum 

S(P',   f).     This integral is denoted    P/f(x)dx. 

Most elementary calculus books in use today give the following 

definition for the definite integral and incorrectly call it the 

Riemann integral.     However,   it is equivalent to the Riemann integral. 

Since it is a combination of  the ideas of Darboux and Pollard we call 

it the Darboux-Pollard integral. 

Definition  10:     The number    I    i» the upper Darboux-Pollard 

integral of     f,  DP/f(x)dx,   if for every    e >   0    there is a partition 

P    such that     P'     a refinement of    P    implies that     |   U(P\   f)  - I   |   < e. 

Similarly    I     js th» j™«r narhoux-Pollard integral of    f,  denoted 



DP/f(x)dx,   if for every    e >   0    there is a partition    P    such that 

|  L(P',   f)  - I   |   < e    for every    P'     finer than    P. 

Definition 11:     The number    I    is  the Darboux-Pollard integral 

of    f,   denoted    DP/f (x)dx,   if    DP/f(x)dx - DP/f (x)dx - I. 

These four integrals,  R/f(x)dx, D/f(x)dx,  P/f(x)dx    and 

DP/f(x)dx,  are redefined and proved equivalent in the setting of 

convergence theory for nets in Chapter III.     This is done using the 

tools of  convergence theory developed in Chapter II. 

In Chapter IV we present the standard definitions from Lebesgue 

integration theory and restate the definition of the Lebesgue integral 

in terms of convergence of nets. 

Two relatively new definitions for the definite integral are 

stated,  discussed and redefined in Chapter V.    That  these, the McShane 

integral   [7]   and the Riemann-complete  integral of Henstock [4]  are 

equivalent,   is proved in Chapter V. 

We now present  the essential ideas from convergence  theory for 

nets. 



CHAPTER II 

CONVERGENCE THEORY OF NETS 

The following definitions are basic to convergence theory.  The 

first five are from a book by John L. Kelley [5]. The definition of an 

approximate subnet (Definition 17) is due to B. J. Pettis [8].  The 

definitions are stated for the case when the range of the net is a 

metric space.  In fact, for each net defined in this thesis the range 

is the real numbers. 

Definition 12: A set D is directed by the binary relation £ 

if D is non-empty and 

i)  if m, n and p are in D with n £ m 

and p £ n then p £ m; 

ii) if m e D, then m < m; and 

iii) if m and n are in D, then there is a p « D such that 

m ^ p and n s p. 

Then we say that < directs D or that s is a direction in D. 

Definition 13; A directed set is an ordered pair (D, s), where 

< directs D. 

Definition 14: A net is a function defined on a directed set. 

Definition 15: A net v    defined on (D, <)  into X, denoted 

w:(D, <) - X, converges to a point p £ X if for every e > 0 there 

is a d c   D such that {u(d') | d' 2 d) c N£ (p), the neighborhood 

about p of radius e. 



Definition 16:    Let   "ji:(D, s) + x    and    V:(E, <) + X    each be 

nets.    Then    v    is a subnet of    p     if there exists a net, 

N:(E, <) *   (D, <),   such that 

i)    v - p o  N;  and 

ii)     for every    d e   D    there is an    e e   E    such that 

(N(e')   |   e' >    e) c   {d'   |   d' >   d}. 

Definition 17:     Let    p:(D, s) + X    and    v:(E, <> +1    each be 

nets.    Then    v     is an approximate subnet of    p    if  for every    e >   0 

and  for every    d e   D    there is an    e e   E    such that 

(v(e')   |   e' >   e} c  Ne({p(d')   |   d' £  d}). 

Lemma 1:     [5]  Let    p: (D, i) * I    be a net.     If    p     converges  to a 

point    p e   X,   then so does every subnet of    p. 

Proof:     Let    v:(E, <) * X    be a subnet of    p.    Let    e>   0.     Since 

p     converges  to    p,   there is a    d e   D    such that    (p(d')   |   d'  2  d)  c Ne(p). 

Since    v     Is a subnet of    p     there is an    e e   E    such that 

{v(e')   |   e' >   e} c   {p(d')   |   d'  2 d)  c NE(p).     This implies that    v 

converges   to    p. 

Lemma 2: [8] Let p:(D, £) * X be a net. If p converges to 

a point    p e   X    then so does every approximate subnet of    p. 

Proof:    Let    v:(E, <) * X    be an approximate subnet of    p.     Let 

e >   0.    Since    p     converges  to    p,   there is a    d e   D    such that 

{p(d')   I   d* 2  d}  c Ne   (p).     Since    \>     is an approximate subnet of    p, 
1 

there  is an    e e   E    such that    {v(e*)   |   e1 >   e} e Ne   ({p(d')   |   d'   > d}). 

This  implies    Me1)   |   e* >   e) c N£(p).     Therefore    v    converges  to    p. 



Lenma 3: Let v:(D, *) + X and v:(E, <) + X ba nets. If 

there exists a net, N:(E, <) + (D, £), such that v - M • N, N(E)  is 

oofinal in D and N is order preserving, that is e' > e implies 

N(e') 2 N(e), then v is a subnet of p. 

Proof:  Let d e D.  Since N(E) is cofinal in D, there is 

an e £ E such that N(e) i  d.  Let e' > e, then N(e') a N(e)  and 

so {N(e') | e' > e} c {d' | d' 2 d}. Therefore v is a subnet of \i. 

Definition 18: A net y:(D, <) ♦ R  is monotonically 

increasing if d' > d implies M(d') * y(d) and w is monotonically 

decreasing if d' > d implies v(d') S w(d). 

Lemma 4: Let u:(D, <) * R be a monotonically decreasing net 

which is bounded below.  Then u converges. 

Proof:  Let I   - inf {w(d) | d £ D), then w converges to I. 

Since p  is bounded below, I e  R.  For every e > 0, there is a 

d e D such that y(d) < I  + e.  For all d « D, u(d) 2 I.    Let 

d' > d, then u(d') * u(d) and so y(d') < I  + e.  Therefore v 

converges to t. 

Similarly if u:(D, <) * R is a monontonically increasing net 

which is bounded above then v    converges. 



CHAPTER III 

THE  RIEMANN TYPE  INTEGRALS 

Each of  the definitions of  the integral as   stated in Chapter I, 

has a natural  redefinition in convergence  theory of nets.     First set 

P - {P   |   P    is a finite partition of     [a,b]}    and 

0 - {d -   (P,   UJJJJ^   I   P e   P,  P -  {x1J1"1    and    x^ s  %± S x±). 

The binary relation,   <   ,  defined by    P <    P1     if    P'     is a refinement of 

P,   is a direction in    P,  and so    (P,   <  )     is a directed set.     Likewise 

(V,   <r)     is a directed set, where for    d -   (P,   Ujh'j) and 

d'  =   (P',   U, h,),   d <    d*     means    P <    P'.     Now we define the binary 

relation,   <   ,   by    P <    P1     if    norm P1   £ norm P.     This  too is  a 

direction in    P.     If  for    d -   (P,   CCJJJ-J)* «« take norm d    to mean 

norm P    then    <       is a direction in    P.     Thus     (P,   < )    and    (P,   < ) n n n 

are directed sets.     We are now prepared to restate the definition of 

an integral as the limit of a net. 

In  this chapter our discussion is restricted to those functions 

which are defined and bounded on    [a,b]. 

Definition 19;     The  Riemann integral of    f    over     [a.b]     is the 

number    I    if the net    Rf:(P,   <n) * R    defined by 

Rf(p. iqii) - X. £<ci) (xi " H-4> 
converges to I. 

Definition 20:     The Darboux integral of    f    is    I    if the net 

D,:(P,   <   )  *I    defined by r n 

Df(P)  -  X M±   («i  - x^p 



and the net     Df:(P,   <  )  + R    defined by 

^£<P>  "  ji mi  (xi " xi-l> 
both converge to    I. 

Definition 21:     The Pollard integral of    f    is    I    if  the net 

Pf:(P»   < ) -*■ R    defined by 

Vp- <VA> - jx 
f tti> (xi - xi-i> 

converges  to     I. 

Definition 22:     The Darboux-Pollard integral of    f    is     I    if 

the net    DPf:(P,   <r) * R    defined by 

DPf(P)  - j1 "i   C«i " *!_!> 

and the net     DPf:(P,  <r> ♦ R    defined by 
n 

DPf(P)  - ^ m±   (x± - x^) 

both converge  to    I. 

The equivalence of the Riemann,  Darboux,   Pollard and Darboux- 

Pollard integrals,   as defined in Chapter I,   is well known.     In  [5], 

Kelley sketches the outline of a proof for the equivalence of  the 

Riemann,  Darboux and Pollard integrals in the setting of  convergence 

theory.     The development in this chapter is more complete since it 

includes the Darboux-Pollard integral and uses the more recent  idea 

of approximate subnets.     Thus Theorem 1 is  a more complete statement 

than Kelley makes. 

Lemma 5:    The net Pf     is a subnet of    Rf. 

Proof:     Let    N:(P, <r> - (P.   <n>    be the identity map.     Let 

d «   (P,   <n),   say    d -  (P, ((gtjrt)*   then    d £   (P*   V*    L6t    Vf dl 

say    dr -   (P\   (Ctljy. Then    P' » r P    whlch tapllM th8t 
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norm P1 < norm P.  Thus P' > • P so d >  d, and n r    n 

(N(dr)   I   dr>rd}c{dn   |   dn>nd}. 

Therefore    P,    is a subnet of    R-. 

Lemma 6:     [8]   The net    R„    is an approximate subnet of    P.. 

Proof:     Let     e >   0,   let    d    e   (V,  <  )    say 

dr "   *P'   *5i*i-l**  P '  {xi}i-0'     We show that  there ls a    dn e   ^'   <n) 

such that 

(1)     (R£(dn')    |   d„' >n  dn}  c N£   ({Pf(dr.)   |   df. >r  dr}). 

There exists a    6,   1 > -6 >   0,  such that    norm d    < 6    implies   (1)  is 

true.     Choose    d    e   (P,   <  )     such that    norm d    < 6    for    6 £ y^g 

where    - M ^ f(x) ^ M    for all    x e   [a,b], and    K    is the number of 

intervals in the partition    P    associated with    df.     Let 

dn' >   V  9ay    V "   <P'«   {^i}i-l>'  P'  " 1
H

}
£T     

Form    d* " dn'   V V 
as suggested by Pettis in   [8],  d* -   (P*.  {CJ^JJJJ), 

where 

P* = {yi}i-0 U  {xi}i-0"     Relabel these P0int8 80 that    P* ' W^-O' 

m    being the number of distinct intervals in    P*.     Now choose 

ioA i'i-1 by 
;      if  there is a    C.    such that    z±1 £ Cj s  z± 

z.    otherwise 

The partition    P - {X^.Q    adds at most    K - 1    points  to the 

partition    P'  -  lyJ^Q    to form the partition    P*.     Therefore  the 

points     (JO.,^0    repartition no more than    K - 1    of the intervals 

[y1_1, yJ.     There are at most    K - 1    non-zero terms in the difference 

I  Rf(d*)  - Rf(dn')  |    and    each of these is less than    6  ■ 2M   which 

is equal  to    7.     The other terms are all zero.     Therefore the 
K 
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difference is less than    e,   that is 

I   Rf(d*)   - Rf(dn')   I  - 

|   £ f^)   (2l - .t-1) - £ f(c±)  (y± - h_j)  |  < e. 

To see this,   look at a subinterval     [yn_i» y±]    "'     U.b]     from 

the partition    P'.     If  there is no    x^    such that    y^,  * x., < y^     then 

the  term    f(?.)   (y.  - y<_i)    !*•    Rf^n' ^     is e1ual to tne term 

f(V (zk - W  in hm> 2k" yi- Vi" yi-i and °k" h- 
This case corresponds  to a zero  term in the difference 

I   Rf(d*)  - Rf(dn*)   |. 

If not,   then there is an    Xy.    such that    y^_.   < xfe < y±.     There 

could be more than one partition point from    P    in the interval 

[y      ,  y  ].     However,   the result  is still true and the reasoning is 

similar. 

Assume there is exactly one    xfc    such that    y1_1 < x^ <  y±. 

Then the  interval     [y*_ji   y±l     is divided into the two intervals 

[yi-l'   xk]     and     [V  yi]'     Relabel the8e     [zj-2'   Zj-1]    and 

[z z   ].     So  the  term    f(C1>   (y± - y^)    in the sum    R£(dn')     is 

relabeled    f(C±)   (z    -  ■..)    and corresponds to 

'Cj-i) (vi' Z
J-2

)
 

+ f(aj) (zj " *i-ih   Notice th-t 

f
(q>   (»j   - *j.2> - f«=i>   <zj-l " zj-2> + '^i*   (ZJ " Zi~lh    N°W 

either    a or    0.     is equal to    C£     (possibly both),  say    a^ - C±' 
J      A J 

This case results in a non-zero term in the difference 

I   R,(d   ')  - R,(d*)   |,  but still 
in i 
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f(C±) Cij - Zj.2) - (f<cM) (t^ - Zj_2) + f<ffj) (Zj - Zyl)) 

mty (Zj - Vl) - f^) (2j - .J-4> i - 

(fCSj) - £(0^)  (2j - zj^)   |  - 

f(c±) - Ho.) («. - *.  ,)   I  S 2M •   6 - 4 . 
j        J-l'   '       K 

A non-zero difference occurs only when there Is an    x.     such that 

y^_,   < x.   < y..     Since there are at most    K - 1    points of  the 

partition    P    different from the points of the partition    P',   this can 

happen no more  than    K -  1    times.     Therefore     |   Rf(<L') " Rf(d*)   I   K  e 

and so    Rc(d  ') e  N     (R.(d*)).     But    R-(d*) - P-(d*),  so r    n e       r r r 

Rf(dn')  c HE   (Pf(d*)).     Also    d*>ji dr    so  (1)  is true.    Thus    Rf    is 

an approximate  subnet of    P*. 

Now assume there are  two points of the partition    P    between 

y. ,    and    y .    Then the term    fftj)  (y1 - y^)    in the sum    Rf(<>n') 

is relabeled    f(C.)   (z.  - z       )    and corresponds to 

f(oj-2>   <zj-2 " zj-3> + f«"j-l'  (zj-l " »J-2> + f(°j)  (zJ " ,j-l) 

in the sum    Rf(d*).     Assume    o. - f..     Then the difference is still 

less  than    § .     That  is 

|f(C1)(zj-zj_3)-[f(oj_2)(zj_2-zJ_3)+f(aj_1)(zj_1-Zj.2)+f(a;])(zj-Z;)_1)]|- 

|f(«1)-f(o:}_2) |. (Zj_2-zj-3>+lf (Ci)_f (oj-l> I' (zj-l"Zj-2)S 

2M<z
j_2-

z
j.3>+2M<z

j-r
z
j-2

)-2M(zj-rzj-3)<2M'6" i • 
Thus no matter how many points from the partition    P    fall in an 

interval     [y^,  f>*h   Rf    l8 8ti11 *" aPPr°*imate subnet of    Pf. 

Lemma 7:     The net    DPf     is a subnet of    Df    and    DPf    is a 

subnet of    D-. 
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Proof:    Let    N:(P,   <r) +   (P,  < )    be the identity map.     Let 

P«   (P,   <n),   then    Pe   (P,   <r>.     Let    P' > » P    this implies 

norm P'   ^ norm P    so    P1 > • P.     Thus n 

(N(P')   I   P' > ; P)  c {P1   I   P' >     P}.     Therefore    DP-    is a subnet of r n i 

D-, and    DP.    is  a subnet of    D-. 

Lemma 8: The net D- is an approximate subnet of DP, and 

Df    is an approximate subnet of    DP-. 

Proof:     Similar to proof of Lemma 6. 

Lemma 9: The net DP« is an approximate subnet of Pf and 

DPf    is an approximate subnet of    P^. 
b 

Proof:    Let    e>   0,  let    de   (P, <r), say    d - (P,  tn1)1.1> 

where    P -  Cx^^g.     Now    P e   (P,   <f).     Let    P'> r P, say 

P'   - (yt)A   •     Choose    d* £   (P,  <r)     such that    d* -  (P\  {C^jjj) 

where    S.     is   chosen so  that    y_^ S C^ S y4    and 

Mi " f«±> < 75=iT • 
DP 

Thus 

d. 

f(P') - Pf (d*) - J^ M± (x± - HmJ) - ^ f(£±) (xt - n^} ■ 

iSi IV f(5i)] (xi - Ws Ji -fl^y (xi" "W" 

Thus    DTf(P') e  N£   (Pf(d*))  <= N£   ({Pf(d')   |   d' >f d}),   since    d* > f 

Therefore    DP-    is an approximate subnet of    Pf.     Similarly      DPf    is 

an approximate subnet of    Pf. 

Lemma 10:     The net    DPf    is a mono ton ically decreasing net 

which is bounded below and therefore converges.     The net    DPf    is a 

monontonically increasing net which is bounded above and therefore 

converges. 
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Proof:     Since    f    is a bounded function    DP.    and    DP,    are 

bounded.     By the definition of    M.     and    m.,  DP-    and    DP-    are 

monotone.     Therefore by Lemma A they each converge. 

Lemma 11:     If    P £   P,  say    P - U^JJQ. and    <* ■   (P.   ^i}^{> 

for any choice of    £.     such that    x±_^ £ E    s x  ,   then 

DP-(P)  £ Pf(d)   s DP-(P). 
-* £ * n n 

Proof:    DPf(P) ■ .2   "i  <xi " xi-i>« Pf<d> " JL   £*Ei>  (xi " xi-l) 

and    DPf(P) - 1^   (Xl - x^).     Since    ^ 5 Ift^  * M£    for 

i - 1 n,   DP£(P)  £ Pf(d)  S Wf(P). 

Lemma 12:     If    f    is Darboux-Pollard integrable over     [a,b], 

then    Pf    is an approximate subnet of    DPf    and    Pf    is an approximate 

subnet of    DP-. 

Proof:     Let    E>   0,   let    P e   P.     Since    f    is Darboux-Pollard 

integrable over    [a,b],  there is    P1 e P, say    P* - {x±>±"0. P' >
r 

p. 

such that    DPf(P)  - DPf(D)  <  e    for every    P>r P*.    Now 

d-  (P\   tt^JJj)     ^ in     (P.   <r).     Let    d* > r d,  say    d* -   (P*,f CiW 

then    P*>r P',   so    DPf(P*)  - Pf(d*)   <  e    and    Pf(d*) - DPf(P*)  <  e. 

Therefore    Pf    is an approximate subnet of    DPf    and    Pf    is an 

approximate subnet of    DPf 

Example  1:     The net    P-    is not  always an approximate subnet 

of    DP :.     If the hypothesis  that    DPf    and    DP^    both converge to    I 

is omitted from Lemma 12  then Dirichlet's   [2]   function defined on 

[0,1]    by 

0 if x is irrational 
f(x) - 

1    if    x    is rational, 
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is a counterexample.     It Is not the case that for every    e >   0    and 

for every    P e   f    there is a    d £  V    such that 

(Pf(d')   |   d" >r d) c N£   ({DPf(P')   |   P' >. P}).    Equivalently  there is 

an    E >   0    and a    P e   r    such that for every    dc  D 

{Pf(d')   |   d' >r d} 4 NE   ({DPf(P')   |   P' >r P}),   that is there exists 

an    e >   0    and a    d' >     d    such that  there is no    P* >  ■  P    for which 

P£(d')  «   N£   (DPf(P*)).     Let    e - j,   let    P -  {0,1}.    Let    d e V    say 

d =   (P,   UjA)    where    P - (x  } n  .     Let    d'  -   (P,  (p,),",)    where 
i  i-1 i i»o 1 *F1 

p,     is  an irrational number such that    Xj_i- PA - \>   then    d' >r d. 

Now    Pf(d') ■ 0    but  for every    P1 *     P, DPf (P1) - 1    since every 

interval contains a rational number.     Therefore    Pf    is not  an 

approximate subnet of    DPf,   since    0 <J   11.(1).     Thus the hypothesis   that 

f    be Darboux-Pollard integrable is necessary for Lemma 12. 

The following  theorem summarizes the results of this chapter 

and states what  is usually said about  these integrals.     Lemmas 5,   6, 

7,   8,   9 and  12 imply Theorem 1 and together are a more general 

statement about  the relations among these integrals  than Theorem 1. 

Theorem 1:     The following statements are equivalent: 

i)    R|    converges  to I; 

ii)    both    D.    and    D,    converge to    I; 

iii)     P,    converges  to    I; 

iv)    both    DP-    and    DP,     converge to    I. 
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XE" 

CHAPTER IV 

THE LEBESGUE CASE 

The development of Lebesgue Integration by Royden   [11], which 

is equivalent  to Lebesgue's own definition   [6],   is outlined by the 

following definitions.     For more detail the reader may refer to  [11]. 

Let    M    denote  the set of Lebesgue measurable sets,   and    \iE 

denote the Lebesgue measure for    E €  M.     Then for    E e  M    we define 

the charactertic function of    E    by 

1    if    x e   E 

0    if    x <j   E. 
n 

Definition 23:     Let    *    be a function defined on    E -  -U, Z± 

n 
by    4>(x)  -    5"    C    xp      then    *    is a simple function if each    E^ e M. 

i-1     *     V 
Definition 24:    Let    *    be a simple function, (c^.^    be the 

finite set of distinct non-zero values of    *    and let 

E    - (x  |   *(x) - c.),   then    *(x) -    f    c    XE,     i»  the canonical 
i i i-1    x    Di 

representation of     *.     Notice that the    Et    are disjoint. 

Definition 25:     Let    •    be defined on    E £   M    with    uE    finite, 

where    *(x)  -    J    c, X.      is  the  canonical representation of    ».    Then 
i»l    *    Ei 

we define the Lebesgue integral of    *    over    E    by 
n 

L/*(x)dx -  I    cA wEj  . 

For representations of    *    which are not canonical the following 

lemma,   also from   [11],  defines the integral of    *• 
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Lemma 13:    Let    4>    be defined on    E B    E      by 
i-1 

4>(x) -    I    c      x»  »   where    {E  )    ,     18 a set of disjoint measurable 
i"l 1 n 

sets each of finite measure.     Then    L/*(x)dx -    f    c.   uE.. 
i-1    *      1 

Definition 26:     Let    f    be a non-negative measurable function 

defined on    E e  M    with    ME    finite.    Then the Lebeague integral of 

f    over    E    is defined by 

L/f(x)dx - inf L/Y(x)dx 

for  all simple functions    V 2 f. 

Definition 27:     Let    f    be a non-negative measurable function 

defined on    E    e   M    then 

L/Ef(x)dx - sup /E h(x)dx 

where    h £ f    is a bounded measurable function and    p{x   |   f(x)  f 0} 

is finite.     If    L/_f(x)dx    is  finite th«n    f    is said to be integrable 

over    E. 

Definition 28:     Let    f    be a measurable function.     Define 

f+(x) = max (f(x),  0}    and    f"(x) - max {-f(x),   0}.     Then 

f - f+ - f-    and    f    is integrable over    E e   M    if both    f+    and    f 

are integrable over    E.     Now we define 

L/Ef(x)dx - L/Ef+(x)dx - L/f"(x)dx. 

Lemma 14:     [11]   If     f    is defined and bounded on    E e M    with 

uE   finite then 

inf L/„*(x)dx - suo L/ *(x)dx 

for all simple functions    ♦    and    *,   if and only if    f    Is a ^asurable 

function. 
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Lemma 15:     [11]   If    £     Is defined and bounded on     [a,b]     Chen 

f    Pollard integrable over     [a,b]     Implies    f    Is measurable,   thus 

integrable over     [a,b]     and 

L/f(x)dx - p/f(x)dx. 

For this  chapter all functions considered are defined and 

bounded on a Lebesgue measurable set    E    with    uE    finite. 

The first step in redefining the Lebesgue Integral In terms 

of convergence theory of nets  is to let 

Jl - {P   |   P    is a partition of    E    into disjoint measurable sets}. 

Next let 

A -  (d -   <P,   CtjlJJi)   |   P e  n,  P - fVi-1    "nd    Ci '   EiK 

Definition 29:    The norm of_ a partition    P e n, P - t^}^    ls 

max {pE.   |  E    e P}, and the norm of an element    d e  A, d -  (P, te±\m{>' 

is   norm P. 

Definition 30:    For    P,  P' « tt, f» ■ <Vi-l    ls a refinement 

of    P -  (E.).*.     if each    f± 
c  E      for some    J - 1,   ••••»• 

Now let   P* >    P,  d' >n d, P' >r P   and    d' > f d    have the 

same meaning as in Chapter III.     Then    (n,  <n>    and     (A,  <fl)    are 

directed sets directed by norm, while    (n,  <f)    and    (A,  <r)    are 

directed sets directed by refinement.    We define nets on these 

directed sets following the style of the nets    Rf. Df, D£, P£, DPf and 

DP£    of Chapter III. 

Definition 31:    L.t    LRf:(A,  <n> - R   be the net defined by 

LR£(P,   (€,>£> " X *"i> •»%• 
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Definition 32:     Let    LDf    and    LD-    be the nets defined on 

(n,   < )     into     R    by 

LD.(P) ■    I    M.  uE.     and f i.l    i      J 

LDf(P) -    f   m± vE±, where 
i-1 . 

M.  ■ sup  {f (x)   I   x e   E.}     and    m    - inf {f(x)   | x e   E.}. 

Definition 33:    Let    LPf:(A,   < ) +8    be the net defined by 

LPf (P, {q}^) - jj t(h) m4 . 

Definition 34:     Let    LDPf    and    LDPf    be the nets defined on 

(n,   <r)     into    R    by 
n 

LDP-(P) -    I    M.   VE.     and 
f i-1    1      1 

n 
LDPf(P)  -    I    B,   uE.. 

■ i-1    x      l 

The following integrals,  LR/f(x)dx, LD/f(x)dx, LP/f(x)dx    and 

LDP/f(x)dx    are analogous  to the Riemann,  Darboux,  Pollard and Darboux- 

Pollard integrals respectively. 

Definition 35:     The integral,  LR/f(x)dx,  equals    I    if the net 

LR|    converges  to    I. 

Definition 36:     The integral,  LD/f(x)dx,  equals    I    if the nets 

LD,    and    LD,    both converge to    I. 

The directed sets     (A,  <  )    and     (II, < )    are so dominated by 
n n 

their direction,   <   ,   that these integrals are not Lebesgue Integrals, 

despite the fact  that    E    may be partitioned into measurable seta. 

Definition 37:     The integral, LP/f(x)dx    equals    I    if the net 

LPf    converges  to    I. 
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Definition 38;     The integral    LDP/f (x)dx    equals    I    if both 

of the nets    LDP,    and    LDP,    converge to    I. 

The  two integrals,  LPJf(x)dx    and    LDP/f(x)dx    are equivalent 

to the Lebesgue integral.     To prove this, we first prove that 

LDP/f(x)dx    is  the Lebesgue  integral and then that    LDP/f(x)dx    is 

equivalent  to    LP/f(x)dx.     That the two integrals    LRJf(x)dx    and 

LD/f(x)dx    are not equivalent  to the Lebesgue integral is shown by 

counterexample.     In fact these integrals are no more than Riemann- 

type integrals, which  is also proved. 
n 

Lemma 16:     If    Pen,   say    P - U.} "  ,  then    Y(x) -    £    M    X£. 
 JT 1U i-1 i 

and    *(x) • • /    m.  Xo      *re 8imple functions defined on 

E -  A.   Et    such that     V *   f    and £  f. 

Proof:     There are only a finite number of    H^    and 

V   i-1 Ei " E    and the    Ei    are dl8J°int 80    *    and    *    are simple 

functions.     By definition of    M1    and    (j, t H    and    * s f. 

Lemma 17:     Let     «    be a simple function defined on    E    by 

*(x) -    I    e. %.,   then    P -  {E.} "      i« « partition in    0. 
1=1     1      Ei 1   X   X 

Proof:     By definition of a simple function the    Et    form a 

finite partition of    E    into disjoint measurable sets.     Thus    P £   n. 

Lemma 18:     If    P    and    P'     are in    n,  and    P' >f P,  then 

lDPf(P')   < LDPf(P)     and    LDPf(P') * LDPf(P). 

Proof:    Let    P    and    P'    be in    n   with    p1 > r P, say 
n 

P - (E^!    and    P' -   i^Uty     Now    LDPf(P) - J^ "t »*± 
  k 
LDPf(p')  -    I    Mj*   uFj,     where    Fj  c E± 

and 

for some    i.     But 

J-l 

■o 
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LDPf(P') -    I        I      M'.  IJF    S    [    H   pE.  ■ LDP.(P),  since    M, 2 M\ 
1 i-1 FjCEl      

J       J       i-1 *     " 1 J 

for all    j     such that    F    c E±.    Therefore    LDP.(P')  S LDP,(P). 

Similarly    m    ^ m'       for all    j    such that    F.  c E      so 

LDPf(P') 2 LDPf(P). 
n 

Lemma 19:  Let *(x) - I c. xE  be a simple function defined 

on £.  Then 

L/*(x)dx - LDP/*(x)dx. 
n 

Proof:     Assume    L/«(x)dx -  I.     Then    I -      /.   c.   yE..    Let 

P - l*i>i2i.  then 
n n n 

LDPf(P)  •    J    Mj uE± -   X   ci V\ " tlx \ uE
t " LDPjCP)-    Let 

P' >r P,   then    LDPf(P)  * LDPf(P') s LDP^P')  S LDPf(P).    Thus 

IDP(P')  -  I - LDPf(P')     for every    P' >^ P.    Therefore 

LDP/«(x)dx - L/*(x)dx. 

Assume    LDP/*(x)dx - I.     Then both    LDPf    and    LDPf    converge 

to    I.     Let    P - {E.}",,   then  for every    P1 >r P, 
n   

LDPf(P')  -    I    c.   uE.   - LDPf(P').    Thus    LDPf    and    LDPf    both converge 
n i"l 

to     I    c± PE    - L/*(x)dx.    Therefore    L/»(x)dx - LDPJ«(x)dx. 

Theorem 2:     A bounded function    f    is Lebesgue integrable with 

L/f(x)dx - I    if and only if    LDP/f(x)dx - I. 

Proof:     Assume  that    f     is bounded and Lebesgue integrable 

with    L/f (x)dx - I.     Let    e >   0.     Then 

sup L/»(x)dx - inf Lfi(x)dx - I. 
$sf Y*f n 

Therefore there exists a simple  function    »(x) -   X   Cj XEJ    
8uch 

that    ♦  < f    and    L/*(x)dx e Ne   (I).    Also there is a simple function 

*(x) 
m -I i"l 'i XF, 

such that    I 2 f    and    !./*(*> dx e Ne   (I). 
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Then    P -  tE±}1"1    and    P'   - tlj}.^j    «" in    n.     Since     (n,  < )    is 

a directed set there is a    P e   II    such that    P>^ P    and    P>     P1. 
A A A 

Let    P*> • P,   then    LDPf(P*)   -IS LDPf(P) - I - Ljf(x)dx - I < e, 

and    I - LDP£(P*)  £ I - LDPf(P1) - I - L/»(x)dx < e.    Therefor* 

LDP/f(x)dx -   I. 

Assume    LDP/f (x)dx -  I.     Let    e >   0.     There exists a    P t  II, 

say    P -  {Ej}^    such  that    LDPf(P*) - I< |   and    I - LDPf(P*)   < § 
n 

for every    P' >r P.     Now    *(«)■■/    M± xg      and 

*(x) »    1    m,   Xp      are simple functions such that    * £ f    and    ¥ 2 f. 
i-1 

But 

LUMP) - L/*(x)dx * sup L/*(x)dx * inf hjt(x)ix * L/*(x)dx - LDPf(P). 
*<f fit 

This implies  that    sup L/»(x)dx - I - inf L/*(x)dx.     Therefore 
*£f VZf 

L/f(x)dx -  I. 

Lemma 20;    The net    LDPf    is an approximate subnet of    LPf    and 

LDP,    is an approximate subnet of    LPj. 

Proof:     Since      uE - 0    implies both    LDPf    and    LP£    are 

constantly    0, we assume    uE 4 0.     Let    e>   0,  let    d e   A,  say 

d=(p. {^}i-i>  where  p" {Vi-r   Then  Pen"   Let  p'>rp, 

say    P'  -  (E'} °.     Form    d* €   A    such that    d* > j, d    by letting 

d* " C**U«)j2|)    where    $.     is choaen so that    %± € I*4    and 

Mi " ««i>  « rf '    ««» 

LDP 

n 

f(P')   - LP,(d*) -    I    M    ,*•    -    I    ftt±) Ml'i " 
1 f i-1    X 1-1 

n 

yl • Jx 
wE'i " 51   ' uE - e. 
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Therefore    LDPf(P') £  N£   (LPf(d*))  c N£   ({LPf(d')   |   d' >     d}). 

Similarly    LDP,    is an approximate subnet of    I.P   . 

Lemma 21:     Given    P e  II,  say    P "tE.}.   .    and any 

d-  (P.U^JJJ)     then    LDPf(P)  * LPf(d)   s LDPf(P). 

Proof:     Since for every    i,   Is i s n, m.  s  f(5.)   s M.,   then 

LDPf(P) s LPf(d) s LDPf(P). 

Lemma 22:     If  the    LDP/f(x)dx    exists then    LPf    is an 

approximate subnet of    LDP-    and    LPf    is an approximate subnet of 

LDP,. 

Proof:     Let     e >   0,   let    Pe   II.     Since the    LDP/f(x)dx    axists, 

there is a    Pen    such that    P > r P    and for every    P > r P, 

LDP£(P)  - LDPf (P)  <  e.     Choose    d e   A,  say    d -   (P*,   U1>1.1)    such 

that    P* >     P.     Let    d1  e   A    be such  that    d' >  • d    say 
r r 

d' =  (P'.U^J^),   then    P' > r P*    so    P' >^P.     Therefore 

LDP  (P')  - LDPf(P')   <  e    and so    LDPf(P')   - LPf(d')   <  e    and 

LPf(d')  - LDPf(P')   <   e.     This implies 

LPf(d') €   N£   (LDPf(P')) e N£   ({LDPf(P')   |   P' >r P» 

and 

LPf(d») €   N£   (LDP^P'))  c N£   ({LDP£(P')   |   P" >r ?»• 

The function    f    defined on     [0,1]     by 

0 if    x    is irrational 

1 if   x    is rational 

is a counterexample  to Lemma 22 if the hypothesis  that    LDP/f(x)dx 

exists is omitted.     The proof of this is analogous to that  for 

Example 1. 

f (x) - 
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The integrals    LRJf(x)dx    and    LDJf (x)dx    are no more powerful 

than Riemann's integral.     Their only advantage over Riemann's  integral 

is that the subset of the domain of    f    over which    f    is integrated 

nay be any measurable set.     If    f    is defined and bounded on     [a,b] 

then the following is  true: 

LR/f(x)dx - LD/f(x)dx - RJf(x)dx - D/f(x)dx. 

This fact  is proved by the following lemmas. 

Lemma 23:    Let    N:(P,   <n) * (P,  <n)    be the net defined by 

N(P) - (P.{xi>iH1)    "he"    P e   P, P - C^IJJQ.     Then    N(P)    is cofinal 

in   P   and    N    is order preserving. 

Proof:     Clearly    N    is order preserving.    Let    d e  P,  say 

d"CP,f51}4°l>»   then    P€   P"     Let    *'*■    P*  8ay    P'  " {yi}i-l" 
Then   N(P') -  (P',  {y±>1"1) - d'    and   d'>n d.    Therefore   N(P)    is 

cofinal in    P. 

Lemma 24:    Let    N:<P,  <) * (a, O    be 'he n« defined by 

N(d) - N(P,   {q}^) -   (P.   tXj^jJi)    where    P - {(x^,  x^}^ when 

P- {[x^,  x1]}±21.     Then    N(P)    is cofinal in    A    and    N    is order 

preserving. 

Proof:    Clearly    N    is order preserving.    Let    d c A, let 

6 - norm d.    Then    d* - (P,  {*!>!*!>    where   P - (\^±m0   
aad 

a =■ xQ  < xx - xQ + 6   <   • • •   < «k_1 - x^ + 6  < ^ - b,  is such that 

d* ( P.    Now we let    d'  - N(d*),   then    d'  6  a    and    d' >n d. 

Therefore    N(P)     is cofinal in    A. 

Lemma 25:    Let    N:(A, <Q) - (n,  <n)    be the net defined by 

"(d) - N(P,  fq>^) - P.    Then    N(A)    H cofinal in    n    and   N    is 

order preserving. 



25 

Proof:     Clearly    N    Is order preserving.     Let    P e   n,  say 

P = {B1>1°1.     Then    d -   (P,   U^jJ^ e   A.    w"ere    |j £   Et    for 

i = 1, •,  n.     Let    d' >n d,   say    d1  -  (P\   tC^JL)     then 

norm P'   ^ norm P    so    N(d') - P' >n P.     Therefore    N(A)    is  cofinal 

in    n. 

Lemma 26:  Let N:(n, <n) * (P, <n) be the net defined by 

N(P) = P    where    P -   {xi>i-0. 

a - xQ < ». x0 + 6  < x2 " xl + 6 * 
< xk-l " V2 + 6 < *k " b 

for    6 - norm    P.     Then    N    is order preserving and    N(n)    is cofinal 

in    P. 

Proof:    Let    P 6  P    say   P - Hx,,, x.]} with 
1-1• *iJ'i-l 

norm P -  5,   then    P* -  {(x^,  xj}^    is in    I.     Let    P' >n P*. 

that is    6'  - norm P'   * norm P* - «•    This implies    norm N(P') - 6'   < 6 

so    N(P') >     P.     Therefore    N(n)     is cofinal in    P.    Let    P,  P'  e   II 

with    P' >     P    then    norm P'  - 6'   S 6 - norm P.    Since    norm N(P') = 6' 
n 

and   norm N(P) - 6, N(P') >n H(P)    so   N    is order preserving. 

Theorem 3:     The  following statements are equivalent: 

i)    R-    converges to    I; 

ii)    both    D£    and    Df    converge to    I; 

iii)    LR-    converges to    I; 

iv)    both    LD£    and    LDf    converge to    I. 

Corollary   j:     If any one of the integrals    R/f(x)dx, D/f(x)dx. 

LR/f(x)dx or LD/f(x)dx    exists  then they all do and they are equal. 
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CHAPTER V 

THE MCSHANE AND RIEMANN-COMPLETE INTEGRALS 

In [7], Edward J. McShane defines an integral which includes, 

among others, the Lebesgue integral. Ralph Henstock's Riemann-complete 

integral also includes the Lebesgue integral.  However, neither the 

McShane integral nor the Riemann-complete integral requires Lebesgue 

measure theory.  Here are McShane'a defintions. 

Definition 39:  A gauge £ defined on a set E is a neighbor- 

hood-valued function, that is it assigns 6(x)  an open set containing 

x, to each x in E. 
_      k 

Defintion 40: A finite set of ordered pairs, P - {(xj, A1)>1-1 

is a partition of  (a,b], where each k±  - (*<., x±]     is a right-closed 
k 

interval if A±   n Au - $, i 4 J. ^ \  " <a>bJ  and *i e t«»b]. 

-      k 
Definition 41:  A partition, P - { (x±, Aj)}^, is 6.-fine 

if each k±  = 5(x±). 

Definition 42: A real-valued function f  is McShane integrable 

over  (a,b]  if it is defined on [a,b], and there is a number J such 

that for every e > 0 there is a gauge 6 such that 

P - {(x,, A )}.k,  a 6-fine partition implies that 
I i"l jj 

| I   f(£iUA± - J I < t, 

where    U±    denotes the length of    A±.    Then we say that the McShane 

integral of    f    over     (a,b]     is    J.     Denote this by 

M/Uib]£Od. - J- 



27 

To reduce confusion between the notation of McShane's 

definitions and the following Riemann-complete definitions we use    y 

and    y-fine when referring to gauges,  instead of    6    and    6-fine. 

Notice that    y(x)     is not necessarily an open interval, and 

even if  it is an interval it is not necessarily centered about    x. 

If for every    x,   the open set assigned to    x    is an open interval with 

x    at its center,   i.e o(x) -  (x - e, x + e)    for some    e >   0,   then 

o    is called a symmetric gauge.     Clearly every symmetric gauge is a 

gauge. 

As defined in  [3],  the Riemann-complete integral seems quite 

different from the McShane integral.     However,  Henstock redefines 

the Riemann-complete integral in   [4].     Their similarity is  then 

apparent.     In fact they are equivalent.     Here is the Riemann-complete 

integral as defined in   [4]. 

Definition  43:    A division of     [a,b]    is a finite set of ordered 

pairs,  such as    d -  {(z±,   [»4_j» xi^i-l« where    z± £   1*1-1»  Xi* 

and    a - xn < x.   < x«  <   '••   < x- b.     The point    z±    is  the associated 

point of     [*J.JJ  *,]. 

Definition 44:    A division    d - {(Sj,   V*^* Xi^'i-i    ls 

compatible with the real-valued function    6(x) >   0    defined on     [a.b] 

zi  " xi   I   *  6(ei*     and z    - *..   |   < Hz^     for each if 

i,  1 £ i £ n. 

Definition 45: Let f be defined in the interval [a.b]. If 

there is a number I such that for every e > 0 there is a function 

6(z) >   0    in    [a.b]    such that    d -  {(z±,   [x^,  •1J»12l    compatible 
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with    fi(z)     implies 

|   J    f(Zi)   (xt - x^)  - I   |   <  t, 

then    f    is    Riemann-complete integrable and 

RC/ bf(x)dx - I. 
'a 

Although similar,   there are still some differences between the 

McShane and Riemann-complete definitions of  the integral.     A gauge     ,• 

is a neighborhood-valued function while the function    &    is real-valued. 

McShane does not require that    x    «   (xi_i»  x±^    while Henstock does 

require  that    z    e   [x±_1>  i»J.     The major difference,  however,  is 

that the gauge    Y    may assign to    x    an open neighborhood much more 

complicated  than an open interval.     Despite these differences,   the 

two are equivalent. 

We now proceed with the task of  redefining both of these 

integrals in the setting of convergence theory of nets,  and proving 

their equivalence. 

To redefine McShane  integrable in terms of  convergence of a 

net, we first need another directed set.    Let 

G • ((P,   y)   I   P    is a partition,  y    a gauge and    P    is    y-fineh 

We define an order on the set    G    by     (P't Y') >   (p. V)    lf    Y1   * Y« 

that is if    Y'(X)  
C
 Y(X)    for all    x    in    [a,b]. 

Definition   46:      Let    Mf    be the net defined    on    (G,   <) + R    by 

Mf(P,   Y) ■•JL   f(x1)«A1, 

f«    P - {(Xi,   AJJJJJ.    . 

Theorem 4:  The McShane integral of f over  [a,b]  is I 

if and only if the net Mf converges to I. 
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Proof:    Assume    HJbf(x)dx -  I.     Let      e >   0.     Since 
a 

M/ f(x)dx » I,   there exists a gauge    y    such that if    P=  {(x., A,)}." 
an 

is    y-fine  then I    f(x.) £A,   - I   |   <  e.     Let    P-    be a    y-fine 
i-1 X U 

partition,   then     (PQ, y) «   G.     Now let     (P',  y')>    (PQ,  y), say 

P' - {(5lt A-Wjji.     Then    P'     is    y'-fine    and    (P*,y')>    (PQ, y) 
k 

so    P'     is    y-fine and thus   |     T    f(x',) £A'     - I  |   < e.     Therefore 
i-1 x x 

Mf(P',  y') e   N    (I)    and so    M^    converges  to    I. 

Assume    Mf     converges  to    I.     Let    e >   0.    Since    Mf    converges 

to    I,   there exists a     (P,  Y) e   G    such that for every 

(P1,  y1) >    (P,  y),  Mf(P\  y') e  Ne   (I).     Since     (P, y) c   G, y    is a 

gauge.     Let    P1   =   {(x±,  ^^^    be any    Y-fine partition,   then 

(P', y) e   G    and     (P',  Y) >    (P. Y>-     Hence    Mf(P', y) «  N£   (I). 
k . 

Therefore     |     I    f(x.) Ik,   -   I   |   < e    and so    M/ f(x)dx -   I. 
i-1 * x a 

To later prove the equivalence of the McShane and Riemann- 

complete integrals we now introduce a modification of the McShane 

integral.     This modification is stated in terms of nets.     Let 

S -  {(P.o)   |   P   "   {(x±,  A1)}^1, P    a partition such that 

x.  e  A.,  a  is a symmetric gauge and    P    is    o-fine}. 

Define    (P\   o1) >    (P,  o)     to mean    o'   < o,   then    (S,   <)     is a 

directed set.     Notice that     (P,  a) e   S    implies     (P,  o) c   G.    Now 

we define    M-     to be  the  restriction of    M£    to     (S,   <). 

Definition 47:    Let    Mf    be the net defined on     (S,   <) - R 

by 

Mf(P,  o)  - Mf(P,  o). 

Definition  48:    The    M/bf(x)dx -  I    if the net    Mf    converges 

to    I. 
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Given a gauge Y  there is an associated symmetric gauge o 

such that a     i y.     We define the symmetric gauge o  by setting 

o (x)  equal to the maximal symmetric interval about x such that 

o (x) c Y(X).  Thus if we prove that for every gauge Y there is a 

partition P  which is o -fine then for every gauge Y there is a 

P  which is Y-fine.  Although this may seem intuitively true it 

requires a proof similar to that of the Heine-Borel Theorem. 

Lemma 27: For every gauge Y there is a P , a partition of 

(a,b], which is o -fine. 

Proof:  Let 

S =  {x < b   |   there is a partition of     (a,x]    which is    o^-fine}. 

As in the proof of  the Heine-Borel Theorem,   S    is a non-empty set 

which is bounded above with least upper bound    y    and    y = b. 
b 

Lemma 27 is  the basis for the equivalence of    MJ   f(x)dx    and 
a 

M/ f(x)dx.     The important  step is the existence of a pair 
a 

(P  , o  ) e   S    for every gauge    Y,   such that    o^  < Y. 

Lemma 28:     Let    N:(S,   <) +  (G,  <)    be the identity map.    Then 

N(S)    is cofinal in    G    and    N    is order preserving. 

Proof:     Clearly    N    is order preserving.    Let     (P, Y) «   G,   then 

Y    is a gauge and by Lemma 27 there exists a     (By.  ay)  e   S    such that 

(P. ,  o  ) >   (P,   Y).     Thus    N(PY,  o> >    (P,  Y).    Therefore    N(S)     is 
Y'     Y 

cofinal  in    G. 

Corollary 2:     Then net    Mf    is a subnet of    Mf. 

Lemma   29:    Let    N:(G,   <) - (S,   <)    be the net defined by 

MP,  Y) -   (P  ,   °Y).  where    ?y    and    oy    are constructed as   In Lenwa 27. 

Then    N(G)     is  cofinal in    S    and    N    is order preserving. 
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Proof:     Clearly    N    is order preserving.    Let     (P,  o) e   s    then 

o    is a gauge and     (P, o) e  G.     Thus    N(P,  o) -   (P   ,  o  ) >    (P, a). 

Therefore    N(G)     is confinal is    S. 

Corollary  3;     The net    Mf    is a subnet of    Mf. 

Theorem 5:     The net    Mf    converges to    I    if and only    M, 

converges to    I. 

Proof:     Lemma 1. 

Corollary A:     The McShane integral is equal  to the modified 

McShane integral. 

This step,  defining the modified McShane integral and proving 

its equivalence to  the McShane integral,  is an intermediate step  to 

proving the equivalence of  the McShane and Riemann-complete integrals. 

Now we redefined the Riemann-complete integral in the setting 

of convergence theory  for nets.     First let 

D - {(d, Y(X)   I   d    is a division and    d    is compatible with    6(x)h 

Then     (D,  <<)     is a directed set, where     (d,  6(x))  <<   (d\  6'(x)) 

means    6'(x) S  6(x)     for all    x€   [a,b]. 

by 

Definition 49:  Let RCf be the net defined on (D, <<) ■* 

RC. 3f(d,   6(x)) -    I    fCZj)   (x4 - x^), 
k 

where    d -  {(z^   [x^,  x±])}±-1. 

Theorem 6:     The Riemann-conplete  integral of    f    over     [a,b] 

is    I    if and only if th« net    RCf    converges to    I. 

Proof:     The proof is similar to the proof of Theorem 4. 

The following  lemmas point out the natural correspondence 

between  the real-valued functions    6    of the Riemann-complete integral 
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and the neighborhood-valued symmetric gauges    o    of the modified 

McShane integral.     These lemmas  imply  that  the net    RCf    converges 

to    I    if and only if the net    M,    converges  to    I.    Thus 

M/f(x)dx - Rc/f(x)dx    which implies    M/f(x)dx - RC/f(x)dx. 

Lemma   30:    Let    N:(D,   <<) -* (S,   <)    be the net defined by 

N(d,  6(x))  =   (P,   o)    where    P -  {(ij,   (*1(.j,  »il>J
1*,    when 

d = l(*±t   [j^.p  x^))^, *i " zi    and    °    is defined by 

o(x) =■  (x - 5(x), x + 6(x)).     Then    N    is order preserving and    N(D) 

is cofinal in    S. 

Corollary 5:     The net    RC-    is a subnet of    M^. 

Lemma 31:    Let    N:(S,   <) *  (D,   <<)    be the net defined by 

N(P,  o)  =   (d,   6(x))  where    d -  {(z^   t*^.  ^D^Hi    when 

P =  [(Xv   (x1_1,  XiDjJx. *i " zt    and     6<x> - «0(x),   the radius of 

o(x).    Then    N    is order preserving and    N(S)     is cofinal in    D. 

Proof:     Clearly    N    is order preserving.     Let    (d,   5(x)) e D. 

Then    (P,  o) e   S    where    P-  {(x±,   (x^,  xj)}^    when 

d = [(zv   [xi_1,   xi])i21,  x± - «1,     and    o    is defined by 

o(x) =   (x - 6(x),  x + 6(x)).     Then    N(P,  o) -   (d,  6(x))>>    (d,   <5(x)). 

Thus    N(S)     is cofinal in    D. 

Corollary 6:     The net    Mf     is a subnet of    RCf. 

Theorem 7:     The net    Mf    converges to    I    if and only if    RCf 

converges  to    I. 

Proof:     Lemma 1. 

Corollary 7:     The Rieaann-complete integral is equal to the 

modified McShane integral. 
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Theorem 8:    The Riemann-complete integral is equal to the 

McShane integral. 

The McShane and Riemann-complete integrals are generalizations 

of the Riemann and the Lebesgue integrals.     The following theorem 

proves  that if a function is Riemann integrable then it is Riemann- 

complete integrable,   thus also McShane integrable with all three 

integrals equal. 

Theorem 9:     If    Rf     converges  to    I    then    RC,    converges to    I. 

Proof:    Let    e >   0.    There exists a    6>   0    such that 

norm P < 6     implies     |   Rf (P,   (tjjjjt - I |  < e.     Let    6(x) - 6    for 

all    x,   then    d    compatible with    5 (x)    implies 

|   RCf(d),   6(x))  -  I   |   < e. 

The following Monotone Convergence Theorem is true for the 

Lebesgue integral   [11],   the McShane integral  [7]   and Henstock's 

Riemann-complete  integral   [4].    We use the Monotone Convergence 

Theorem to prove  that the McShane integral is a generalization of the 

Lebesgue integral.     Therefore it is stated here,   in general,  for all 

three integrals. 

Theorem 10:   Monotone Convergence Theorem:     Let    {fR(x)}    be 

a monotone increasing sequence of integrable functions.     Then if 

f(x) - lia    f   (x)     is finite and    lim/f  (x)    is finite then    f(x)    is 
n-»«      n 

integrable with 

/f(x) - lim/f (x). 
B-**> 

Lemma33:     Let    ♦    be a simple function defined on     (a,b].    Then 

is an approximate subnet of    LP$. 
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Proof:     Let    *(x) -    J    C:   xE      be a simple function bounded by 

M.     Let    e >   0,   let    d e   A.     Now    d1  -   (P,   {?   } " ) e   A    where 

P - {E.},n,     and    C. «   E..     There exists a    d* e   A    such that    d* >      d 
j j-l J J r 

and    d*>r d',   say    d* -   (P,   U|}j2|>i   P" {Vi-l"     slnce each    E      ls 

a measurable set it  can be covered by an open set    0   , which is 
CD 

expressible  as  a union of open intervals,   i.e.     0^ -   .u^ 1^  .,   such 

that    u(0.\E.)  <-tj—?•     Now we define a gauge    o    as follows.     For l     l        n*m 

each    x e   E.,   let    o(x)    be any neighborhood    N(x)    such that 

N(x) c  Ii>;J. 

By Lemma 27 we know there exists a partition    P    which is    o-fine,  thus 

(P, o) £   s.     Let     (P',  o») >    (P, o), say    P'  - t^, IjJJj^i  Chen    P' 

is    o-fine.     Since    d*>rd',  E± <=  ij     for some    j,  and    Z±e   E^    so 

f(C )  -  c..     Also for every    \ e   Z±,   f(xfe)     is equal  to that same 

c,.     Associate this constant    C.    with    E1    by denoting it as    C* . 

Therefore 

I   LP$   (d*)  - M#   (P',  0*)   | - 

I jx f (q) PE± - Ji f(Xl) U± 

ill  '  \ * " xA ^  '   • 

Since for every    N,  1 s N £ m, 
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Thus    M      is  an approximate subnet of    LP  . 

Corollary 8:    Let    *    be a simple function, then 

L/*(x)dx - M/»(x)dx. 

Proof:     Since    M       Is an approximate subnet of    LP   ,   if    LP 

converges  to     I     then    M.     converges to    I.     Thus 

M/*(x)dx - LP/*(x)dx,  but    LP/»(x)dx - L/*(x)dx    so 

L/$(x)dx - M/*(x)dx. 

Theorem 11;   If    f     Is a bounded Lebesgue lntegrable function 

then it is McShane lntegrable and 

M/f(x)dx - L/f(x)dx. 

Proof:     Since    f    Is Lebesgue lntegrable it Is  the limit of an 

increasing sequence of simple functions    •  .     By the Monotone 

Convergence Theorem 

L/f(x)dx - ||| L/*n(x)dx 

" }H */*n<*)<bt 
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since for every    n,  L/*n(x)dx = Mj*n(x)dx.    Again by the Monotone 

Convergence Theorem 

lim M/»   (x)dx - M/f(x)dx. 
n-»>        n 

Therefore    iff(x)dx - M/f(x)dx. 

This proof  for Theorem 11 is different  from the proof sketched 

by Henstock for an analogous theorem about the Riemann-complete 

integral.     Since    f     is  the limit of an increasing sequence of simple 

functions  the proof has only a one step limiting process and thus  is 

more straightforward  than Henstock's proof with its  three step 

limiting process. 

Theorem 11 implies   that  the Riemann-complete integral also 

includes the Lesbesgue integral since the Riemann-complete integral 

is equivalent  to  the McShane integral. 

The Riemann-complete integral seems a more natural generalization 

of the Riemann integral than the McShane integral.     For this reason 

we give the  following example to show how to compute an integral 

using McShane's definitions. 

Example 2:     Let    f    be defined on     [0,1]    by 

0 if    x     is irrational 

1 if    x     is rational. 

Again this  is Dirichlet's  classic example of a function which is not 

Riemann integrable but is Lebesgue integrable with    L/(0>1]f<x>dx " °' 

By actual computation we show that    M/(Q>1)f(x)dx - 0.    To do this we 

show that for every     t >   0    there is a gauge    Y "   °    sucn that  f°r 

f(x) 

every    y -fine partition    P - {<i\,  A.)},.,     it is true that 
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|     I    f (x.) Ik.  - 0   |   < e. 
i=l 

Then    MJ,Q xjf(x)dx - 0 - W(o,i]f(x)dx- 

Let    e >   0.     Let    r,,  r»,   r-,   ""     be an enumeration of the 

rationals  in     (0,1].     Such an enumeration exists since the rationals 

are countable.     Let    N    be a natural number such that    2      <  e. 

Define the gauge    y    by 

Y(x) 
N2-N-n   (x)     if    x - rn 

Nl   (x)     if    x    is irrational. 
2 - ■ 

Let    P    be a    y-fine partition of     (0,1],  say    P ■  {(xj, k^)   j-, 

where each    k± c y(x±)     as required.     The partition    P = ?t u P2 

where    Pf -   {(x1>  Af)  e   P   |   x±    is rational}    and 

P2 -  {(x.,  A.)  e  P   |   x1    is irrational).     The partitions    ?x 

are  disjoint, that is     (u    A,} n {   u A } - <>,   and 
Pi    '        ?2 

{u    A,} U {u    A,} -   (0,1].     The sum, 
Pl P2 

and    P„ 

"N"n - 2"N <  e. llk.*l    Y(xt)   <     I    2 
P,       i      P, n-1 

Therefore    T   £A   >   1  -  e    since    I Ik    - 1.     This implies that 

0 <    I    f(x.) Ik,  - I    f(x.) Ik    + I    f(x )«A    - 
i=l * *      Px P2 

1 •  I   tA, + 0  •  I   lk,< e. 
p p Fl P2 

Therefore       |     £    f&) £Aj - 0   |   <  e,  and    so    M/(01]f(x)dx - 0. 

If a gauge     Y    is given by     yW  - N{ (x)    for all    x    and a 

fixed     a    then we say  that     Y    is a uniform gauge.     Every uniform 

gauge is a symmetric gauge but not vice-versa since    6    may vary with 
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x    for a symmetric gauge.     The integral obtained using a uniform 

gauge in McShane's definition is equivalent to the Riemann  integral. 

This implies   that the Riemann integral is a special case of the McShane 

integral. 
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CHAPTER VI 

SUMMARY 

In this  thesis several definitions of the integral are unified 

in the setting of  convergence  theory for nets.    We prove  the equivalence 

of the Riemann,   Darboux,   Pollard and Darboux-Pollard integrals.    Thus we 

may direct  the sets    V    and    P    either by norm or by refinement  to 

obtain the Riemann integral.     The equivalence of the integrals 

LR/f(x)dx    and    LD/f (x)dx    to  the Riemann integral shows  that direction 

by norm on  the sets    A    and    II     does not yield the Lebesgue integral. 

However,  direction by refinement on    A    and    n    does yield the Lebesgue 

integral.     Thus  the integrals    LP/f(x)dx    and    LDP/f(x)dx    are equiva- 

lent to the Lebesgue  integral.     The equivalent McShane and Riemann- 

complete integrals are generalizations of  the Lebesgue integral.    Thus 

all of the integrals discussed in this  thesis, as well as several 

integrals not mentioned, are included in both the McShane and Riemann- 

complete integrals   [7],   [4]. 
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