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INTRODUCTION 

In recent years there have been many studies of the thermodynamic 

properties of aqueous electrolyte solutions. Much of the economic inter- 

est in this work stems  from the need to develop a suitable method for 

converting sea water to potable water.    It has been shown that the deter- 

mination of the heats  of mixing of aqueous  electrolyte solutions is an 

excellent way to study specific ion interactions.       However,  such a 

study is  complicated by a lack of understanding about the role played by 

water in influencing these  interactions.    As an introduction to the 

field of electrolyte solutions, a brief review of some of the available 

theoretical and experimental information follows. 



DOCUMENTATION OF PREVIOUS TORK 

2 
The study of electrolyte solutions dates back to van't Hoff,  who 

discovered that solutions which conduct electricity possess freezing points, 

boiling points, osmotic pressures, and vapor pressures characteristic of 

a special class of systems, and to Arrhenius, who discovered that these 

systems contain electrically charged particles, or ions.  The next major 

advance was the realization that the deviations from ideality in dilute 

solutions differ from those in nonelectrolyte solutions, due to the long- 

range nature of the electrostatic interionic forces. Among the contribu- 

tors in this area were Sutherland,^ Noyes,5 and Bjerrum.6 MilnerT was 

the first to treat this behavior theoretically, but his expression was so 

complicated that it could only be approximately evaluated. It was not 

until 1925 that Debye8 formulated the first statistical theory of inter- 

ionic attraction. According to Debye and Huckel the natural logarithm 

of the activity coefficient in very dilute solutions approaches linearity 

in the square root of the concentration. 

Eq. 1 

where 

In y+ = -Ay I z+z_| I 

#t  = mean activity coefficient 
A„  = Debye-Huckel coefficient 

* 2Nnd,  e|_ 
1000    x 2.503^    DkT 

where    N0 = Avogadro's number 
dx = density of the  solvent 
e = charge on an electron 
D = dielectric constant of the solvent 
k = Boltzmann constant 
T = temperature 

z+,z» 
= charge on positive, negative ions 
= molal ionic strength 

The original equation was 

In XL - -e2tclz4.z-J 
2DkT 

Eq. 2 



where K   ■ 

If the definition of ionic  strength as  originally proposed by Lewis  and 

9 
Randall  , 

I    =  1/2 £ miZi
J 

i 

is used,  then 

V 1000 DkT 

Substitution of this  expression into equation 2 yields    equation 1.     The 

assumptions which had to be made to obtain the relatively simple Debye- 

Uuckel equation limit  its  validity to only very dilute solutions.     However, 

it has proven quite valuable in the practical treatment of electrolyte 

solutions for extrapolation to zero concentration of activity coefficients, 

10 
heat capacities,  volumes,  etc. 

At about the same time that Debye's statistical theory was being 

formulated,  there appeared  Bronsted's  principle of the specific interact- 

ions  of ions,  a phenomenological theory which states, "In a dilute 

salt solution of constant total concentration, ions will be uniformly 

influenced by ions  of their own sign."     The basis  for this  theory is  that 

specific  electrical effects  take place between ions  and,  in dilute solu- 

tions,  only the ions  of unlike sign approach each other closely enough 

for short-range  interactions to manifest themselves.     Bronsted noted two 

effects  influencing the activity coefficient of an ion:     the  interactions 

between ions  of opposite sign and the saltinjout effects  due to the  sol- 

vent.     In a subsequent paper12 he suggested the combination of the  speci- 

fic  ion interactions with the Debye-Huckel limiting law.    For a one-to- 

one electrolyte,  MX, this takes  the form 



1/2 
2.305  log^= -3oCz2I + 2yS m 

k 

Eq.   3 

where o<    = universal constant 
/3    =  function of the particular salt 
m    = molality 

This  equation fit the experimental data up to  I = 0.1.     In 1935 

Guggenheim      suggested the use of a standard value of the distance of 

closest approach of the ions  of 3.05  on the basis  that this would improve 

the empirical success of Bronsted's  equation.     This   resulted in the addi- 

tion of a linearLterm to account  for specific  effects of the electrolyte 

which include ion-pairing and the  effects  due to size and polarizability. 

The Guggenheim equation is 

log L--AjvJ-i^wa    +   BMxm 
i + ix/^ 

Eq.   k 

where Bwy is the correction for pairwise interactions. 

The above equations apply to single electrolytes, but they may be 

extended to give the activity coefficient of the electrolyte M»X« in a 

solution of mixed electrolytes. 

logX+= -AyM 
ll7l/g 

+  7^   Bmm*      + 
1 + I '      TV*- "K. 

V-     Bj« Bx Eq. 5 

where V is the number of ions per molecule of electrolyte. The Bronsted 

principle continues to receive discussion.  Its defense by Scatchard and 

its refutation by Friedman and Wood will be presented later. At this 

point it is necessary to review some of the early experimental work. 

Three main techniques were used to study solutions of single and mixed 

electrolytes:  electromotive force measurements made by Harned and later 

by Lietzke, freezing point measurements made by Scatchard and Prentiss, 
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and isopiestic studies made by Owen and Cook and later Robinson.    Harned1^ 

began his  electromotive force  studies before the advent of the theories 

of Bronsted and Debye and Huckel.    Using cells of the type 

H2|fflC (ma),  MX  (m2)jAgX-Ag 

he has shown that the activity coefficient, at , of the acid varies linear- 

ly with concentration according to this equation 

log)f, = log$(0) -GhzMp- Eq. 6 

where ^i(o\ = the activity coefficient of the pure acid at constant 
^'       total molality, temperature, and pressure. 

eXa2 = the Harned coefficient, an'empirical coefficient which 
may be a function of total molality 

McKay's15*16 method may be used to findOd^ in the equation for the acti- 

vity coefficient, 2>x>  of the salt. 

lOg X2=   lOg^p(o) "^21% E<1* T 

m 
where 

Equations 6 and 7 are known as Harned-s Rule:  The log of the activity 

coefficient of one electrolyte in a mixture of constant total molality is- 

directly proportional to the molality of the other component.  The Harned 

coefficients may be used to calculate the excess free energy of mixing. 

This thermodynamic quantity is not usually directly measured, but the ex- 

cess enthalpy of mixing may be experimentally obtained.  It is the 

temperature derivative of the excess free energy. Lewis and Randall 

have derived the expression for the excess free energy of mixing 

4mG
E - -2.303 RTm^s ^2 + 2(«*fi m  + ^M  + ^  V ^ ' fi*^"*' 

JBQ) +  ...  Eq. 8 

,17 



whereof and A are the Harned coefficients.     Consequently, the expression 

for the excess enthalpy of mixing is 

AjF = 2.505 R^mama ± \oL23 +<*32 + 2(m3ot23 + m^i32) + 2/5(^23 - m >T I ^ 
^32) U2 - ma) + ...     Eq. 9 

For the mixture MX- NY (NY= 2, MX= 5), the Harned coefficients are 

given by the following equations. 

<*23 = %Y - 1/2 ( Brfy + B^) 

<*32 - B^ - 1/2 ( BMV + %x) 

Eq. 10 

Eq. 11 

if the coefficients of higher order are zero. Here B represents the 

specific interaction constants. The sum of c/23 and oi32  is 

0(23 +0<32 = Bfjy + B^ - BMY - BNX Eq. 12 

In the case where the two electrolytes have a common ion, the sum is 

equal to zero.  This agrees with Bronsted's principle of specific ion 

interaction. Experimental work by Wood and Smith18 did not yield the zero 

heats of mixing that would be anticipated form the above analysis. 

Using the cell 

Pb-He (p = 1 atm)|HX(ma),MX(ma)|AgX-Ag 

Lietzke 19#20f21 has made electromotice force studies in aqueous solutions 

at elevated temperatures for a variety of systems over a range of concen- 

tration. He reports his work in terms of interaction coefficients B and 

C. His data may be used to calculate the Harned coefficients according 

to the following equations. 

0(23 = - 1/2.505 [2(B23 - B32) ♦ 6(C223 " C222U] Ed- 12 



This permits the evaluation ofCk23 at any temperature since B and C are 

defined by the following equations, which give rise to excess enthalpies 

varying linearly with temperature. 

3iq 
= B'iq + B,'iq/T + B,"iq loS T 

CiJCL    =    C-U4+  C.     /T    +  C" logT 

Eq.   15 

Eq.   Ik 

In interpreting the data obtained from freezing point depressions, 

Scatchard22'2^ has  extended the Bronsted specific  ion interaction princi- 

ple to include triplet and pairwise oppositely-charged interactions.     He 

obtained the following expression for the excess  free energy: 

GE/RT - (G - G*)/RT + J 114.(1 - H» ni/noWo) +     I^n^-yfT + 

Zljnia^Bij + C^V^/noWo    +   ^ijkninj%(Di5k + ^Ij^/'-^oY 

Eq.   15 

where      G = free energy of the system 
G* = the free energy in the standard state of zero concentra- 

tion of all solutes 
w0 = 1/1000 times the molecular weight of the solvent 
no = the number of moles of solvent 
ni = 'the number of moles of the i'th solute. 
I = ionic strength 

A,B,C,D,E = par-5uneters characteristic of the solute, solvent, tem- 
perature, and pressure 

Scatchard then assumed that the short-range electrostatic forces between 

two like-charged ions may be neglected unless there is a third ion of 

opposite sign in their immediate neighborhood.  Then the B and C coeffici- 

ents may be determined from single salt solutions and the D and E coef- 

ficients may be determined from the single salt solution and one solution 

of each mixture with a common ion.  This extension of Bronsted's theory 

gives accurate results up to 1 molal concentrations. 

0Wn and Cook
2* used the isopiestic method in investigating the 
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conclusions that the sum of the Harned coefficients is small, that their 

difference is independent of concentration.  They concluded that<X23 + 

0(32 is no*, zero as assumed by Bronsted nor as small relative to 0(23 - 

0(32 as predicted from Scatchard's work. The isopiestic technique has 

also been employed by Robinson. ^ He overcame the difficulty of making 

measurements on solutions of exactly the same molality by using the equa- 

tions of McKay and Perring-  to calculate the activity coefficients. 

Robinson^ also used vapor pressure measurements to demonstrate the 

validity of the square-cross rule for excess free energies.  This rule will 

be discussed later. 

28 
Turning again to theoretical consideration, Mayer  derived a more 

rigorous theory of ionic solutions which exhibits the Debye-Huckel limit- 

ing law.  It is the only theory for which calculations have been completed 

enough to provide a basis for a comparison of various models in the exper- 

mental concentration range. This theory is actually an adaptation of his 

cluster theory of imperfect gases.  The virial development of the osmotic 

pressure of a solution is used, provided the force potentials of the sol- 

ute molecules at infinite dilution are known, to compute the deviations 

from ideal behavior.  Then equations for the evaluation of osmotic and 

activity coefficients were expressed as power series. For ionic solu- 

tions, these power series converge only conditionally:  the clusters 

must be restricted to ring types and the coulomb potential must be 

multiplied by e"*r,  where*is finite and positive.  Mayer showed that 

these conditions were consistent with the Debye-Huckel limiting law.2? 

The large deviations of ionic solutions from ideality are due in part 

to the long-range nature of the mutual electrostatic potentials and in 

part to the large value of these potentials.  The difference in energy 

of two oppositely-charged ions at infinite distance and at closest approach 



is large enough to cause considerable ion-pairing even at concentrations 

of 0.1 to 0.01 molar.  Poirier  reduced Mayer's equation to forms suit- 

able for practical calculations of the thermodynamic functions of electro- 

lytes.  He then carried out numerical calculations and obtained good 

agreement with experimental values for a variety of valence types below 

0.1 molar.  The failure of the Mayer-Poirier equations at higher concen - 

trations and for higher valences is probably due to the neglect of trip- 

let interactions. 

In 1959 Friedman^1^2 applied Mayer's cluster theory to electrolyte 

solutions.  The thermo^ynamic properties of a solution can be obtained 

from a model for the solution only if the force potentials for sets of 

ions in the solvent are known as functions of the center-of*mass coord- 

inates of the ions.  Friedman used the primitive model consisting of 

hard spheres in a continuous dielectric, to derive the equation for the 

excess free energy of mixing. 
JO 

n i2RTy[(i - yOIsPYp Eq. 16 

where I = molal ionic strength 
R = universal gas constant 
y = mole fraction 

= coefficient for pairwise like-charged ion interactions 

= (i - 2y) 

He also derived an expression for the heat of mixing. 

A^    =  I2RTyl  1 - y  iJlhpYP 

hp    =    -T[>gp/>T] 

Eq. IT 

where 

Friedman observed that^mG
E/l2 does not vanish as I approaches zero, as 

the Bronsted principle would predict. His equation emphasizes the con- 

tributions of like-charged ion pairs and triplets.  The verification of 
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the Bronsted principle by some investigators may be the result of the 

small effects of such interactions at low concentrations.  Comparison 

with experimental results showed roughly consistent agreement in alkali 

metal chlorides if the distances of approach are composed of additive 

contributions from a set of radii.  The role of solvent structure then 

is not known even for Friedman's sophisticated model. 

But his conclusions are merely indicative of the general state of 

53 
bhe understanding of solute-solvent interactions. Kavanau  has dis- 

cussed water structure and solute-water interactions in a comprehensive 

review.  He discusses four of the models that have been proposed for the 

structure of liquid water.  The most widely applicable is the flicke ing- 

cluster model of Frank and Wen^ and Frank  which postulates that the 

formation of hydrogen bonds in liquid water is predominantly a cooperative 

phenomenon.  In other words, the formation of one hydrogen-bonded pair 

of atoms promotes the formation of many in the neighborhood.  By analogy, 

when one hydrogen bond breaks, several tend to break.  Figure 1 represents 

the short-lived (10~10 to 10_11_seconds) ice-like, flickering clusters. 

Figure 1: Schematic representation of hydrogen- 
bonded clusters and unbonded molecules ih liquid 
water according to the flickering cluster theory 

of Frank and Wen. 

* 
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Support for this model has been given in the thermodynamic  calculations 

of Nemethy and Scheraga^    and the near-infrar-ed studies  of  Buijs  and 

^hornin      Who  resolved the spectra by assigning three species of water: 

water molecules with zero,  one, and two OH groups participating in 

hydrogen bonding.     Miller''    has  shown the existence of an empirical 

correlation between the temperature dependence of the viscosity of water 

and the  flickering-cluster model.    Walrafen     ,  on the basis  of h*s  Raman 

studies  of water,   contends  that water possesses an intermolecular struct- 

ure which involves  tetrahedral hydrogen bonding which is disrupted by an 

increase  in temperature.     This break-down gives  rise to a second species   , 

thoughtto be a non-hydrogen-bonded monomer.     Values  fo- the hydrogen 

to , to 
bond enthalpy  reported by Scatchard et al.       and by Grunberg and Nissan 

are in reasonable ag-eement with Walrafen's model.     It then becomes 

•eadily apparent that there  is no widely accepted,  completely satisfactory 

model for the structure of water.     The nature of  ion interactions with 

water then becomes  even more  Important  in the quest for an understanding 

of water structure. 

Frank and his  coworkers  h2M have described the structure of water 

surrounding an ion as  three concentric   regions.     See figure 2 

Figure 2:     A simple model  for the nature of 
ion-water  interactions,  Frank and Evans 
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Region A is the innermost structure-forming region of polarized, immobi- 

lized, and electrostricted water molecules.  Region B is the intermediate 

structure-broken region in which the water is more random in organization 

than ordinary water. Region C is the outer region containing water 

having the normal liquid structure. On the bas.'s of this Frank-Evane- 

Wen model, ions may be classified into two groups. Relatively small ions 

and multivalent ions, such as H+ ,L±t,  and Na , are said to have net 

structure-making effects, that is, their high electric fields immobilize 

and electrostrict nearby water molecules making region A larger than 

region B.  Large monovalent ions, such as K+ and Cs are considered to 

be structure-breakers.  Difole-dipole repulsions weaken their electrosta- 

lic field to such an extent that region B becomes larger than region A. 
kk 

The earliest eports of heats of mixing came from Young,and Smith . 

Young and his coworkers^''6 have determined heats of mixing for many one- 

to-one electrolytes at 25 C. and one molal concentration.  Their work 

illustrated that the heats of mixing are independent of a common ion, if 

one is present.  Friedman made a similar observation.  Furthermore, from 

the data obtained in these mixings AH/l does not decrease as required by 

the Bronsted principle. Young, Wu, and Krawetz^7 have shown that by 

utilizing the classifications of Frank and Evans, the sign of the heat of 

mixing can be predicted. When ions of the same classification are mixed, 

the heat of mixing is endothermic, and when ions of unlike classification 

are mixed, the heat of mixing is exothermic. 

For four single electrolyte, which have only two different cations 
ho 

and two different anions, there are six possible mixings.  Krawetz 

has shown empirically that the sum of the expe imental heats of mixing 

represented by the sides of the square in figure J equals the sum of the 

experimental heats of mixing represented by the diagonals.  This is 
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known as the cross-square^rule. 

MX 

Figure 3:  The ''ross-square Rule fo Heats 
of Mixing 

Bottcher^ has shown that this rule holds if the heats of mixing of the 

cations in the presence of each anion are nearly equal and the heat of 

mixing of the cations in the presence of an equal molal mixture of both 

anions has an intermediate value. 

Ste n and coworkers* >51'52 have studied the heat of mixing for sev- 

eral systems at va ying concentrations and temperatures.  The results 

were interpreted in terms of Bronsted's principle.  Their non-zero heats 

were explained as deviations.  They observed that agreement with the 

principle improved as the concentration decreased. 

Wood and Smith5? studied the concentration dependence of the heats 

of mixing of aqueous one-to-one electrolytes in the range of 0.1 to 0.5 

molal at 25°^.  They found that like-charged ion pai s contribute signi- 

ficantly to the heats of mixing; this refuted Bronsted's theory of speci- 

fic ion interaction.  Their results did agree with Friedas application 

of Mayer.s cluster theo -y.  Wood and Anderson5* measured still mo e 

systems and derived a set of general equations which allows the predict- 

ion of the total excess free energy and the relative apparent moial heat 

content of a multicomPonent mixture of electrolytes of the same charge 

type from the knowledge of only the thermodynamic properties of the 

component pure electrolyte and the co^on-ion mixed electrolyte solutions. 
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GEMIX   -    h yRlVVxj + RTI2      hTi yRiy*hyx/\hRi 
^ Ri 
>k yx/xk

y
Rie   XjXk 

Eq.   18 

H^TX    "    ♦ 
MIX t 

h  yRiyXj- LRiXd + RTl2/m W. yRhyRiyXjh JRhRi + 

o>k yxjyxfcyRi^xjxk Eq. 19 

where yR. , etc. = component mole fraction = mRi/*^mRl 

/JRhRi 
and hXjRhRi 

=  interaction parameters of ions Rh and R±  in the 
presence of common ion X- 

?: <b  RixJ  = pure component properties 
RiXj'  L 

Wood and Anderson also studied the heats of mixing of anions in the pre- 

sence of a common cation to determine whether the classification of ions 

was based on size o ■ structural properties.  Their work led them to the 

conclusion that it is the latter and that the heat of mixing depends pri- 

ma ily on the structure of water surrounding the like-charged ions.  The 

results of their heats of mixing for tetraalkylammonium chlorides led 

Wood and Anderson to report that the tetrap-opylammonium ion is a struc- 

ture maker, the tetramethyla-onivun ion is a structure breaker, and the 

tetraethylammonium ion is a borderline case, behaving as a structu -e 

breaker when mixed with an alkali metal ion and as a structure make ■ when 

mixed with tetramethyi™nium ion. Wood, Fatten, and Ohanfcar^ recently 

studied the heats of mixing of unsyn.etrical electrolytes.  Their results 

also agreed with Friedman's ionic solution theory.  Anderson and Petree 

recently studied the temperature dependence of the heats of mixing of 

aqueous electrolytes with a common anion.  Tne heat ofmixing of systems 

involving the sodium ion showed a dependence on temperature.  The sodium 

56 
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ion has been recognized as  a borderline ion.     On the basis  of their 

results they have postulated that the interaction which affects  the heat 

of mixing occur in the  interface between    regions A and B in the Frank- 

E aas-Wen model. 

This  incomplete review has  traced majo1' developments  in theory and 

experimental efforts which verified or refuted the theories. 
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RESEARCH PROPOSAL 

It was  apparent  in the documentation of the wo "k that has  been done 

in the field of aqueous  electrolyte solutions that little has  been done 

in the study of the temperature dependence of the heats of mixing.     Yet 

the structure of water has  been shown to be strongly dependent on 

temperature.     '^       Therefore,  the temperature dependence of the heats  of 

mixing should prove useful in understanding the  role water plays  in influ- 

encing the specific  ion  interactions.     Furthermore,  the excess   free energy 

of mixing at an elevated temperature can be calculated from the excess 

free energy at  25"C and the heat of mixing as a function of temperature 

59 acco ding to this  equation'7: 

-» t "1*2 
^E(t2)    =    V^Ct,)  +4Cp(m)J ta AT    -  ABSUJAT    -     T^CpCm)]^^ 

where Acp(m)     =  AriH& bg)  -AmH(t, ) 
AT Eq.   20 

Thus,  kn owledge of the heat of mixing as a function of temperature would 

make it possible to calculate thermodynamic properties  from as  few Para- 

meters as possible. 

Anderson and Petree have already postulated that the  interactions 

which affect the heat of mixing take place at the interface between the 

primary hydration sphere and the disordered water  region.     To  further 

this  study of the temperature dependence of the heats  of mixing,   it was 

oroposea to determine the heats of mixing of the systems,  at one molal, 

CsCl-LiCl-HsO,  CsCl-NaCl-HsO,  CsCl-KCl-H^ at 60° and 80° and HCl-KCl-H^ 

at 60 °. 
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EXPERIMENTAL 

CALORIMETER 

As the heats  of mixing of electrolyte solutions  involving a common 

ion are small,  a calorimeter with a sensitivity in the microdegree  range 

was desired.     The  isothermal,  double calorimeter designed for the mea- 

surements  has been described elsewhere."0 

PROCEDURE 

The experimental n "ocedure for carrying out heats of mixing has 

,  61,62,65 
been reported previously. 

MATERIALS 

Stock solutions of Mallinckrodt Analytical Reagent sodium chloride, 

potassium chloride, and concentrated hydrochlo ic acid, Research Inorganic 

Chemical lithium chloride and Penn Rare Metals Division cesium chlo-ide 

.  ,  6^,65 
were p.-epa-ed and analyzed as described previously. 

TREATMENT OF DATA AND RESULTS 

The experimental heats of mixing were fitted by the method of least 

66 
squares to the two-^a ameter form of the equation proposed by Friedman. 

mH (cal/kg solvent) = HTI2y(l-y) ho + (l + 2y)hx 
Eq.  21 

where ^  is  the magnitude of the interaction,  h,  is a measure of asymmetry 

from the quadratic  function with respect to mole  fraction,  and y is the 

mole fraction of the component having the largest molecula^    weight.     The 

parameters  for equation 21 are listed in table 1.     The details of this 
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computer fit have already given in the literature.   '   The computer print 

outs  for each set  of mixings  are included in Appendix A. 

ERRORS 

68 
An anlysis of the errors in these data has been given.   These 

include inherent errors in the concentration and purity of the solutions 

and experimental procedure errors in slope extrapolation, electrical heat 

input, and the heat of opening of the pipet. 



Mixture 

CsCl-LiCl 

CsCl-NaCl 

CsCl-KCl 

HC1-KC1 

TABLE   I 

Aqueous  Heats  of Mixing Parameters 

?s°c 60 C 

I RThoa RTho                 RThj 

1.0 -19^.6 -176A +2.7   -5-9± 3-8 

1.0 -3*. 8 -46.7 ± 0.7 

1.0 6.4 1.38 + 0.09    —- 

1.0 -15.0 -13.3 ± 0.8      — 

OnO'-i 

RThr RTh, 

-170.0 + 5.0        -10.0 ± 6.0 

■51.1 ± 0.9 -1.2 + 0.2 

1.50 + 0.8 

(a) Y.C. Wu, M.B. Smith, and T.F. Young, J. Phys. Chem. , 6_9_, I87O (1965) 

(b) Note:  the units for RTho are cal/kg solvent 

^o 
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DISCUSSION 

69 
Wood and Smith 7  pointed out in their first paper the importance of 

the measurement of the heats of mixing of electrolyte solutions in the 

study of specific ion interactions.  If the measurements are made at con- 

stant ionic strength, then the effects of the ionic atmosphere are can- 

celled.  If the measurements are made with a common ion, the effects of 

oppositely charged ion-pai -s cancel.  Finally, these measurements are 

independent of the eommon ion.  According to Anderson and Petree the 

measurements of heats of mixing as fanctions of temperature should pro- 

vide information about the nature of the solute-solvent interaction.  It 

has already been shown70 that the heat of mixing is primarily influenced 

by the water structure about the like-charged ions.  If the mixing 

involves two ions with the same structural properties, the heat of mix- 

in will be endothermic, while the heat of mixing of ions of unlike 

structural properties will be exothermic.  Figure h  shows the RTho 

values plotted against tenrne -ature.  The heat of mixin" of HC1-K81 is 

negative as would be expected since H+is a small structure-maker  and 

K+ is a medium-sized structure-breaker.  It shows no temperature depen- 

dence up to 60°C.  However, the three mixings involving the cesium ion 

do exhibit a dependence on temperature.  Petree71 has also observed 

temperature dependence in mixings involving the sodium ion.  These 

results were interpreted in terms of a gradual change with temperature 

of the structural p-operties of the sodium ion, and it was postulated 

that the interactions which affect the heat of mixing occur in the inter- 

face between the primary hydration sphere and the region of disordered 

water.  The apparent insensitivity of the primary hydration sphere up 

to temperatures of about 150°C. has been reported by both Walrafen ' 

on the basis of his Raman studies and by Ackerman
7' on the basis of heat 
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capacity studies  of aqueous  alkali halides.    Ackerman has also concluded 

that theregion of disordered water is being destroyed from 30°to 130°C. 

The outermost  region,  bulk water,   is  so temperature sensitive according 

to studies  made by Bonner and Woolsey'     that none of the heats  of mixing 

could be constant were  this  the region of solute-solvent interaction. 

The present work lends  further support to the postulate that the A-B 

interface is  of greatest importance during the mixing process.     It  is 

postulated that the cesium ion is also a borderline ion.     It has been 

classified by Frank and Evans   '' as a structure-breaker.     However,  its 

behavior in mixings with lithium, potassium,  and sodium ions may be inter- 

p eted as a increased tendency toward structure making properties as the 

temperature increases.     Referring again to figure k, when Cs     is mixed 

with Li*  a small structure-maker,  the heat of mixing is  exothermic.     It 

may be observed that its heat is becoming less  negative as  tempeaw,e 

inc--eases.     This may indicate that the cesium ion is becoming less  of a 

structure-breaker.     An  endothermic heat is  observed for the Cs  -K 

mixing in which    both the ions are structure-breakers.     Here,   the heat  is 

becoming less positive with increasing temperature.    Again,  this may 

indicate that  the cesium ion is becoming less  of a structure-breaker. 

Finally,   then Cs+   is mixed with Na+,  the heat is  endothermic,  but it 

becomes more negative as the temperature    increases.     This  is  the only 

reported instance  in which the absolute magnitude of the heat of mixing 

i-c-eases with temperature.     If the interpretation for the behavior of 

the sodium ion in previous work is accepted,  then the negative heat which 

becomes more negative may best be explained by a divergence in the struc- 

tural properties of the  two ions.     The sodium is  a borderline structure- 

make • becoming a structure-breaker,  and the cesium ion is a borderline 

structure-breaker becoming a structure-maker.   The fact that Cs+ does  show 
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apparently changing structural properties  is additional evidence  in 

suppo-t of the idea  that  the major effects  on the heats of mixing occur 

at the interface between the primary and secondary hydration spheres. 

However,  still more  ions  should be investigated to verify or  refute 

these conclusions. 



Figure U'    Temperature  Dependence of Heats of Mixing 

KCl-CsCl 
I »■ 

HC1-KC1 

NaCl-CsCl 

LiCl-CsCl 

10 20 30 U0 50 6o 
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APPENDIX A 

HEAT OF MIXING DATA:  COMPUTOR FIT 



Heat of Mixing LiCl-CsC] 
CO m = 1.0 T = 6o°c. 

A =    176.1*308    SA =       1 .2049      B = 5.8893 SB =         1.7270 
SYBC =    0.0447 

DELH HCALC ERROR XF XI w F2 F3 
2.17160 2.19204 -0.02044 0.052750 0.000000 1.00000 0.0120641 0.0107914 
1.99350 1.93222 0.06128 0.102480 0.052750 1.00000 0.0107053 0.0073817 
1.75860 1.70511 0.05349 0.149330 0.102480 1.00000 0.0095069 0.0047190 
1.87090 1.85905 O.OII85 0.8853&0 0.940390 1.00000 0.0107712 0.0070179 
1.73650 1.68452 0.05198 0.833050 0.088538 1.00000 0.0096891 0.0042329 
1.56370 1.50366 o.o6oo4 0.784000 0.833050 1.00000 0.0085898 0.0020107 
2.20479 2.24782 -0.04303 0.052420 0.000000 1.00000 0.0123708 0.0110739 
1.97^70 2.00347 -0.02877 0.102370 0.052420 1.00000 0.0110998 0.0076635 
1.75455 1.77894 -0.02439 0.149770 0.102380 1.00000 0.0099188 0.0049171 
2.10412 2.15611 -0.O5I99 0.946290 1.000000 1.00000 0.0125960 0.0112430 
1.93H5 1.93914 -0.00799 e.895900 0.946290 1.00000 0.0002479' 0.0076978 
1.74262 1.76491 -0.02229 0.84o4O0 0.895900 1.00000 0.0101690 0.0049611 

XMI    = 10.49424 XM2    = 0.49166 
AO =       176.90^4       SAO    = =       I.6783 
SUM ERROS  SQUARED     =     0 •433E-01 F    =       11 6291 
SYB    =       0.0627 



ft 

Heat of Mixing LiCl-CsCl 
m =  1.0 T = 80°C. 

A    =       169.5778    SA    = 1.5401    B 9.8370    SB    = 1.9852 
SYBC    = 0.0405 

DELH HCALC ERROR XF XI w F2 F5 
2.14780 2.16445 -O.OI665 0.053170 0.000000 1.00000 0.0121547 0.0108443 
I.698OO I.69609 0.00191 0.152020 0.104260 1.00000 0.0097268 0.0047414 
1.5^210 1.49641 0.04569 0.197300 0.152020 1.00000 0.0086727 O.OO26155 
2.02960 2.01418 0.01542 0.946410 1.000000 1.00000 0.0125264 O.OIH858 
1.75710 1.81657 -0.05927 O.896260 0.946410 1.00000 0.0111546 0.0076447 
1.97840 1.95745 0.02095 0.947910 1.000000 1.00000 0.0121758 0.0109075 

XMl 6.26070 XM2    = 0.48553 
A0     =       167.4989       SAO 3.5313 
SUM ERROS  SQUARED    =     0. 468E-01 F    = 24.5539 
SYB    =         0 .0968 



o 

A    =       46.6892     SA     = 
SYBC     - 0.0077 

DELH 
0.561+28 
0.51573 
0.46639 
0.59870 
0.52893 
0.^7102 

XM1 

Heat of Mixing: 
m = 1.0 

NaCl-CsCl 
T =  60°C 

0.2783       B    =       -0.3622     SB    ■ 0.3775 

HCALC 
0.57241 
0.51166 
0.45514 
0.59700 
0.53479 
0.46974 
-42.46876 

AO = 46.6958 SAO = 
SUM ERROS SQUARED = 0. 
SYB    = 0.0076 

ERROR 
-0.00813 
0.00207 
0.01125 
0.00170 

'-9T00586 
0.00128 
XM2    = 

0.2760 
290E-03 

XF 
0.053120 
0.103460 
0.150930 
0.945859 
0.894370 
0.846710 
0.50194 

F     = 

XI 
0.000000 
0.053120 
0.103460 
1.000000 
0.945850 
0.894370 

w 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 

F2 
0.0123457 
0.0110177 
0.0097856 
0.0126090 
0.0113941 
0.0100236 

F3 
0.0110341 
0.0075674 
0.0048o67 
0.0113236 
0.0077530 
0.0048331 

0.9213 



K> 

A     =       51.1263     SA 
SYBC     = 0.0092 

DELH 
0.62520 
0.52530 
0.45196 
0.65390 
0.62762 
0.56796 

XM1    ■ 

HCALC 
0.63356 
0.5H55 
O.U5IJO8 
O.65865 
O.63OOI 
O.56IO8 

14.18201 
AO    =      50.8421      SAO 
SUM ERROS  SQUARED     =    0 
SYB    = 0.0142 

Heat of Mixing: 
m == 1.0 

NaCl-CsCl 
T = 80°C. 

0.3451 B =   1.2461 SB = 

ERROR 
-O.OO836 
0.01375 

-0.00212 
-0.00475 
-0.00239 
0.00688 
XM2    = 

0.5079 
.100E-02 

XF 
0.05.2200 
0.152250 
0.198340 
0.9^3^20 
0.946110 
0.895680 
0.49391 

XI 
0.000000 
0.103210 
0.152250 
1.000000 
1.000000 
0.946110 

0.4448 

w 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 

F2 
0.0121274 
0.0098877 
0.0088172 
0.0131675 
0.0112389 
O.Olli6o4 

F3 
0.01108613 
0.0048363 
0.0026351 
0.0116774 
0.0125966 
0.0076290 

F    = 7.8500 



CM 

A   =     1.3595   SA   = 
SYBC     =       0.0010 

DELH 
0.013^2 
0.01379 
0.01715 
0.01510 

,0.02008 
0.01175 

XM1    = 

l!eat of Mixing: 
ra =  1.0 

KCl-CsCl 
T = 6o°c. 

0.0397      B    == -0.0760    SB    =      0.0627 

HCALC 
0.01^13 
0.01283 
0.01737 
0.01390 
0.0202^ 
0.01267 
-5.^7878 

AO     = 1.3810       SAO    = 
SUM ERROS  SQUARED    =       0 
SYB    = 0.0010 

ERROR 
-0.00071 

O.OOO96 
-0.00022 
0.00120 

-0.00016 
-0.00092 

XM2    = 
0.0371 

.516E-05 

XF 
0.10&070 
0.158530 
0.9^8130 
0.852500 
0.863570 
0.81891*0 
0.51391* 

F    = 

XI 
0.055230 
0.108070 
1.000000 
0.899230 
0.9298^0 
0.863570 

w 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 

F2 
0.0108808 
0.009693k 
0.0121690 
0.0099^5^ 
0.01W157 
0.0091316 

F3 
0.0072733 
0.00^5250 
0.0109066 
0.0050070 
0.008^59^ 
0.00333331 

1.^673 



K>1 

A   =       1.4659   SA = 
SYBC    = O.OO67 

DELH HCALC 
0.01735 0.01458 
0.00888 0.01278 
0.01156 0.01280 
0.0297^ 0.02180 
0.01481 0.02172 

XM1    =       -I.O9OO5 
AS     =       1.5061       SAO 
SUM ERROS  SQUARED    = 
SYB    = 0.0066 

Heat of Mixing: 
m =  1.0 

KCl-CsCl 
T = 80°C. 

0.2710    B    = -0.5178    SB    = 0.5467 

ERROR 
0.00297 

-0.00589 
-0.00125 
0.00794 

-O.OO692 
XM2    = 
0.2620 

0.175E-05 

XF 
0.055990 
0.159500 
0.211860 
0.946480 
0.946290 

0.55241 

F    = 

XI 
0.000000 
O.IO89OO 
0.159500 
1.000000 
1.000000 

W 
1.00000 
1.00000 
1.00000 
1.00000 
1.00000 

F2 
0.0121509 
0.0096894 
0.0092275 
0.0124598 
0.0124166 

F5 
0.0107902 
0.0044882 
0.0022945 
0.0111261 
0.0110828 

0.8400 



to 

A    -      13.5503    SA = 
SYBC    = 0.0099 

DELH 
0.16878 
0.15717 
0.13068 
0.13252 
0.15555 
0.i44i4 
0.14288 

XM1  = 

Heat of Mixing:     H61-KC1 
m - 1.0 T = 6o°C 

0.3457       B    = 0.2778     SB    = 0.4541 

HCALC 
0.15967 
0.15855 
0.1^3 
0.13935 
0.016176 
0.14456 
0.13095 

16.52668 
A0 = 13.3070 SAO = 
SUM ERROS SQUARED = 0 
SYB    =       0.0094 

ERROR 
0.00911 

■0.00138 
■0.01475 
0.00317 

-O.OO619 
-0.00042 
0.01193 

XM2    = 
0.3202 

,551E-03 

XF 
0.943839 
0.944270 
0.890420 
®.840100 
0.051910 
0.101140 
0.148480 
0.3202 

XI w F2 
1.000000 1.00000 0.0121850 
1.000000 1.00000 0.0120999 
0.944270 1.00000 0.0410475 
0.891420 1.00000 0.0097828 
0.000000 1.00000 0.0118949 

0.051910 1.00000 0.0106743 
0.101140 1.00000 0.0097072 

F3 
0.0108161 
0.0107512 
0.0073950 
0.0047103 
-.0106599 
0.0048612 
0.0048612 
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APPENDIX B 

PREDICTION OF HEAT OF MIXING AT ELEVATED TEMPERATURES 

Several different methods  for calculating the excess  free energy of 

mixing have been reviewed in this paper.    A practical test of some of 

these methods  is their ability to predict the heat of mixing at some 

temperature other than 25°C.    Lewis and Randall have derived an expres- 

sion for the excess  free energy of mixing: 

AmGE =    -2.303 KBuania \0C23 +  <*32 +    2(m2/S  32)] 

In Table  III,  J.  Phys.  Chem.,  64,  112,  Harned gives the value at 

25°C.  for    the system HC1-KC1 

<*!2    +    °<2i    +    2m2/32l    =    -0.0104 

Substitution of this number in the above expression gives a value  for the 

excess free energy at 25°C.  of      +3.55 cal/kg solvent.    Extrapolation of 

Harned's data gives a value at 6o°C  of 

<*is    +     <*2;L    +    2m2/?2l    =    -0.0146 

which,  when substituted,  gives a free energy of    +5.56 cal/kg solvent. 

Lietzke has  derived equations for the Harned coefficients: 

<*23    =     (i(B23 -  B22)    +    6(C223  -C222)J I 

£X32    =     J2(B23 - B33)    +    i(C233  " C333)j I 

fi 32      =       [B(C333   +   C223   "   2C233)] I2 

where        B_._ B'iq +  Bl*iq/T    + Biq'''   log T 

+ CiJq/T 

From Table IX,  J.   Phvs.  Chem., Jg,  WK>8,  the values  for the B and C 

parameters at 25°C.   are,  for the system HC1-KC1, 

B23    = -0.4093 
B22    = -1.5879 
C223 = -0.001222 
Cooo = -0.OO9T03 
B33     = -0.0149227 
C233 =     -0,007259 
C333 -       O.OO389896 

Bi<! 

Cij<l    -    C'ijq 
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Therefore, 0( 23    =       -l.-lj.56 

<*32    =       -0.3772 

{} 32      = +0.015^ 

and 0^23    +   0^32    +     A 32ni2   =    -I.I1.151 

Hence, at 25°C.  AmG
E = +482.5 cal/kg solvent. 

At 6o°C. the B and C parameters are 

B23 = -O.I4O78 
B22 = 02.0080 
C223 = -0.001781 
C222 = -0.004984 
B33 = -0.0149227 
C^.33 = 0.001422 
C333 = O.OO389896 

Therefore,       o(  23 =       -I.398 

0<32    = 0.3^76 

A 32      = 0.00095 

Tus at 6o°C.  Lietzke would predict a free  energy of mixing of +400.0 cal/ 

kg solvent. 

The data obtained for the enthalpy of mixing of the HC1-KC1 system 

at 6o°C. may be used to test these two predictions,  using the equation 

A    GEC60)     =     AG*(25)     +^Cpl*2    -    ^SE(25)^T -   T2^   CPr
2ln  T2/Ti 

m     • m   " ■   Itj m I   1 

I   t2 

where     A Cp  . -    £ji*JSa )  Z A.H(tp) 
m ^tj M      '^T    up— 

Assuming Harned's value at 25°C  for the excess  free  energy of mixing and 

using the data for the enthalpy of mixing in Table  I,  this paper,  the 

free    energy of mixing at 6o°C  should be    +5.83 cal/kg solvent.     This  is 

a reasonable prediction and agrees well with Harned's own data.     If the 

value at 25°C.  of Lietzke is assumed,  the  free energy at 6o°C.  should be 

+484.8.     This  is not at all reasonable and does not  even agree very well 

with the predicted value.   It  is obvious that the vagueness and inconsistency 

of Lietzke's data makes it far less reliable than Harned's. 


