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ABSTRACT. Using methods of higher algebraic K -theory, van der Kallen proved
that SLn(F [x]) does not have bounded word length with respect to elementary ma-
trices if the field F has infinite transcendence degree over its prime subfield. We
exhibit a short explicit proof of this result by constructing a sequence of matrices
with infinitely growing word length. We also use this construction to show that
SLn(Z[x]) does not have bounded word length with respect to elementary matrices
of “bounded degree”.

1. INTRODUCTION

Let G be an abstract group and X be a set of generators of G. Recall that G is said
to have bounded word length with respect to X (or to be boundedly generated by X ) if
there exists a positive integer N such that every element of G can be represented as a
product of at most N elements from X . Carter and Keller [1] proved that SLn(O ),
n ¾ 3, where O is the ring of integers in an algebraic number field, is boundedly
generated by the set of elementary matrices. One might expect that this result can
be extended to arbitrary Euclidean rings, however, it turned out that delicate arith-
metic techniques involved in the proof of the result in [1] (particularly, Dirichlet’s
prime number theorem) cannot be bypassed. It was shown by van der Kallen [7]
that SLn(F [x]), n ¾ 3, does not have bounded word length with respect to elemen-
tary matrices if the field F has infinite transcendence degree over its prime subfield.
His proof is of “existence” type and is essentially based on the fact that for such a field
K2(F ) does not have bounded word length with respect to the Steinberg symbols. The
goal of this note is to give an explicit proof of van der Kallen’s result by constructing
a sequence of matrices from SLn(F [x]) with infinitely growing word length.

Since every element in K2(Q) is a single Steinberg symbol [3], methods of algebraic
K -theory alone are not sufficient to yield the answer in the general case. The question
whether SLn(Q[x]) is boundedly generated by elementary matrices is still open. It
is also interesting to know the answer for SLn(Z[x]) since it is closely related to
Kazhdan’s property (T). An affirmative answer would provide first examples of linear
Kazhdan groups which are not lattices (see [6] for more details). We use the explicit
construction of §2 to show that SLn(Z[x]) does not have bounded word length with
respect to the elementary matrices of “bounded degree” (see §3 for definitions). The
idea to use p-adic numbers is due to A.S. Rapinchuk.

2. SLn(F [x])

For an element r of an arbitrary ring R we let ei j (r ) denote the corresponding
elementary matrix in SLn(R): it has 1’s on the main diagonal and the only nonzero
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off-diagonal entry is r in position (i , j ). Let {rn} be an infinite sequence of indepen-
dent transcendental elements in F and for n ¾ 1 let

An(x) = e12(r2n−1 r2n)e21(−r−1
2n−1 r−1

2n + x r−1
2n−1 r−1

2n )e12(r2n−1 r2n)

×e12(−1)e21(1− x)e12(−1)
×[e12(r2n−1)e21(−r−1

2n−1+ x r−1
2n−1)e12(r2n−1)e12(−1)e21(1− x)e12(−1)]−1

×[e12(r2n)e21(−r−1
2n + x r−1

2n )e12(r2n)e12(−1)e21(1− x)e12(−1)]−1.(1)

Set

(2) Bk (x) =
k
∏

n=1
An(x).

Theorem 2.1 The sequence {Bk (x)} ⊆ SLn(F [x]) does not have bounded word length
with respect to elementary matrices.

Proof. Assume the contrary. Suppose that there exists an integer N > 0 such that for
every k there is a presentation of length ¶N

Bk (x) = u1(x) · · · uN (x),

for some elementary matrices ui (x). (We may assume that all such presentations have
length N by inserting matrices e12(0).) Then we obtain the following equality in the
Steinberg group Stn(F [x]):

(3) B̃k (x) = T (x)ũ1(x) · · · ũN (x),

where B̃k (x) is obtained by taking canonical lifts of elementary matrices ei j (∗) from
presentations (1), ũi (x) is the canonical lift of the elementary matrix ui (x), and T (x)
is an element of K2(F [x]).

Next, we use van der Kallen’s idea from [7] and specialize (3) at x = 0 and x = 1 to
obtain equalities

B̃k (0) = T (0)ũ1(0) · · · ũN (0)

and
B̃k (1) = T (1)ũ1(1) · · · ũN (1)

in the Steinberg group Stn(F ). Note that from (1) and (2) we have

B̃k (0) =
k
∏

n=1
{r2n−1, r2n},

where {r2n−1, r2n} is a Steinberg symbol, and

B̃k (1) = x12(∗),

where x12(∗) is a canonical generator of the Steinberg group Stn(F ).
Since K2(F [x]) =K2(F ) (see [5]), we obtain the following equality in Stn(F ):

x12(−∗)
k
∏

n=1
{r2n−1, r2n}= ũ−1

N (1) · · · ũ
−1
1 (1)ũ1(0) · · · ũN (0),
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which holds for arbitrarily large k. Matsumoto’s theorem (see, for example, [4])
implies that the sequence consisting of products of Steinberg symbols

(

k
∏

n=1
{r2n−1, r2n}
)∞

k=1

does not have bounded word length in K2(F ) in terms of Steinberg symbols. On the
other hand, it follows from Bruhat decomposition for Stn(F ) (see, for example, [2])
that this implies that it does not have bounded word length in Stn(F ) with respect
to the canonical generators (this has been observed by van der Kallen), whence the
contradiction. �

3. SLn(Z[x])

We begin with the following observation.

Lemma 3.1 SLn(Zp[x]) does not have bounded word length with respect to elementary
matrices.

Proof. Since Qp is complete it is uncountable, therefore, has infinite transcendence
degree overQ. Let {rn} ⊆Qp be a sequence of independent transcendental elements.
Write rn = p ln sn with sn ∈ Z×p . Using multiplicativity of Steinberg symbols we
obtain

k
∏

n=1
{r2n−1, r2n} =

k
∏

n=1
{r2n−1, p l2n}{p l2n−1 s2n−1, s2n}

=
k
∏

n=1
{r2n−1, p}l2n{p l2n−1 , s2n}{s2n−1, s2n}

=
k
∏

n=1
{r l2n

2n−1, p}{p, s2n}
l2n−1{s2n−1, s2n}

=
k
∏

n=1
{r l2n

2n−1, p}{s l2n−1
2n , p}{s2n−1, s2n}

= {
k
∏

n=1
r l2n

2n−1 s l2n−1
2n , p}

k
∏

n=1
{s2n−1, s2n}.

Therefore, since the sequence {
∏k

n=1{r2n−1, r2n}} has infinitely growing word length
with respect to Steinberg symbols in K2(Qp ), the sequence {

∏k
n=1{s2n−1, s2n}} has

the same property.
Next, construct matrices An(x) and Bk (x) as in (1) and (2) but use the sequence {sn}

instead of {rn}. Since all sn’s are p-adic integer units, each elementary matrix in the
representation of An(x) has entries with p-adic integer coefficients. We conclude that
Bk (x) ∈ SLn(Zp[x]) and the proof of Theorem 2.1 implies that the sequence {Bk (x)}
does not have bounded word length in SLn(Zp[x]). �

Now we will show that SLn(Z[x]) does not have bounded word length with re-
spect to elementary matrices with entries of “bounded degree”. First, we make the
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following convention. If A is a nonzero polynomial matrix, we define the degree of A
to be the maximum of the degrees of its nonzero polynomial entries.

Proposition 3.2 There is no constant N such that every matrix A∈ SLn(Z[x]) can be
written as a product of at most N elementary matrices each of which is of degree ¶ δ(d ),
where d is the degree of A and δ : N→N is a nondecreasing function.

Proof. Assume the contrary. By Lemma 3.1 we can find a matrix A ∈ SLn(Zp[x])
which cannot be written as a product of N elementary matrices. Let

(4) A=
s
∏

k=1

eik jk
( fk (x))

be the shortest possible presentation of A as a product of elementary matrices from
SLn(Zp[x]), s >N . Our goal is to construct a sequence of matrices {At } ⊆ SLn(Z[x])
converging to A.

For each elementary matrix ei j ( f (x)) in the presentation (4) we construct a se-
quence of elementary matrices {u (t )} ⊆ SLn(Z[x]) as follows. Write

f (x) = a0+ a1x + · · ·+ am x m

with ai ∈Zp , 0¶ i ¶ m, where

ai =
∞
∑

l=0

ai ,l p l , 0¶ ai ,l ¶ p − 1,

and define
u (t ) = ei j ( f

(t )(x)),

where

f (t )(x) = a(t )0 + a(t )1 x + · · ·+ a(t )m x m and a(t )i =
t
∑

l=0

ai ,l p l ∈Z.

Clearly, u (t ) ∈ SLn(Z[x]) and

lim
t→∞

u (t ) = ei j ( f (x)).

If we set

At =
s
∏

k=1

u (t )
k

,

where the sequence {u (t )
k
}∞t=1 is constructed as above to converge to eik jk

( fk (x)), 1 ¶
k ¶ s , then At ∈ SLn(Z[x]) for all t and the sequence {At } converges to A. Moreover,
we observe that the degrees of At ’s are uniformly bounded by

∑s
k=1 deg fk (in this sum

we, of course, include only those k for which the polynomial fk (x) is not zero).
By our assumption for each matrix At there is a presentation

(5) At =
st
∏

k=1

eik jk
(g (t )

k
(x))

with st ¶N , g (t )
k
(x) ∈Z[x], and deg g (t )

k
¶M for M = δ(

∑s
k=1 deg fk ), t = 1,2, . . . .
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Enlarging N we can always assume that the order of the occurrence of elementary
matrices in (5) is fixed, and, in particular, that st =N for all t . For this we just insert
ei j (0)whenever the corresponding matrix is missing. Thus, without loss of generality
we may assume that the indices ik and jk in (5) are the same for all t .

Write

g (t )1 (x) =
M
∑

l=0

b (t )
l

x l , t = 1,2, . . .

for some b (t )
l
∈ Z. Since Z is compact in Zp , the sequence {b (t )0 } has a convergent

subsequence {b (tm)
0 }. Say b (tm)

0 → b0 ∈Zp .

Next, we pick a subsequence of {b (tm)
1 } which converges to some b1 ∈ Zp . Con-

tinue in a similar manner by induction to find a sequence of indices {tr }∞r=1 such that

each subsequence {b (tr )
l
} converges to some bl ∈Zp , 0¶ l ¶M . The crucial moment

here is that the degrees of all g (t )1 ’s are uniformly bounded by M .
Observe that

lim
r→∞

ei1 j1
(g (tr )

1 (x)) = ei1 j1
(g1(x)),

where

g1(x) =
M
∑

l=0

bl x l ∈Zp[x].

Next, consider the subsequence {ei2 j2
(g (tr )

2 (x))}∞r=1. Arguing as above we can find
a subsequence {trm

} of {tr } such that

lim
m→∞

ei2 j2
(g
(trm
)

2 (x)) = ei2 j2
(g2(x))

with g2(x) ∈Zp[x].
Continue by induction to find a subsequence of indices {tn}∞n=1 with the property

that
lim

n→∞
eik jk
(g (tn)

k
(x)) = eik jk

(gk (x)),

for some gk (x) ∈Zp[x], 1¶ k ¶N . Finally, let

(6) B =
N
∏

k=1

eik jk
(gk (x)).

Then the subsequence {Atn
} converges to B which forces B = A. But the equality (6)

contradicts our choice of A, proving the proposition. �
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