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1,  Introduction. 

The subject of matrices and their applications is of 

great importance, for this branch of mathematics, perhaps 

more than any other, has been applied to numerous diversi- 

fied fields, namely, to education, psychology, chemistry, 

physics, electrical, mechanical, and aeronautical engineer- 

ing, statistics, and economics.  Its importance lies in its 

use as a "tool" for the mathematician as well as those en- 

gaged in other fields.  As one would expect, some phases of 

this theory, such as the theories of quadratic forms and 

symmetric matrices, are more highly developed than others 

because of their importance in the study of conic sections 

and quadric surfaoes, in problems of maxima and minima, and 

in dynamics and statistics. 

In this paper, the basic theorems and properties of 

orthogonal matrices have been set forth and discussed, 

however, although some theorems on general matrix theory 

have been used in proofs leading to and including orthogonal 

matrices, no proofs of these theorems have been presented 

but they can be found in almost any book on matrix theory. 

The orthogonal matrix is approached form the standpoint 

of vectors, the subject of vectors and vector spaces being 

undertaken first,  in section two some essential, basic de- 

finitions of terms in general matrix theory are given. 

Following this, in the third section, vectors and vector 

spaces are defined, the various properties of these are 

treated, and the orthogonal vector is introduced,  in sec- 
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tion four, the orthogonal matrix and the theorems regarding 

It are treated at length. Section five introduces orthogo- 

nal similarity, the main function of which is to accomplish 

the important orthogonal reduction of a real symmetric matrix 

which is treated in section six. Section seven, which deals 

with the applications of the orthogonal matrix to analytio 

geometry, begins with the definition of an orthogonal trans- 

formation followed by the correlation of this transformation 

with matrices.  Prom this, we get our geometric interpretation 

of the orthogonal matrix in the rotation of axes in analytic 

geometry, and in the reduction of a real quadratic form. 

2. Definitions. 

The following definitions of the basic terms and concepts 

in matrix theory are necessary before a discussion of the 

orthogonal matrix can be undertaken.  However, since these 

terms do not relate directly to orthogonal matrices, they 

will be listed and defined in this section. 

Matrix,  if a„ ,*m a^ are elements over a ring R, 

the mn elements arranged in a rectangular array of m rows 

and n columns is called an m by n algebraic matrix over the 

ring R and is denoted by A. 

A = 

»ll «*., 

Hi 

Squa re 

it has as many rows as 

Matrix.  A matrix A is called a square matrix if 

columns, that is, A is an n by n matrix. 
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Dlagonal Matrix,  An n-square matrix A. which has zeros 

everywhere except in the principal diagonal is called a 

diagonal matrix* 

Non-singular Matrix. A matrix A is non-singular if A is 

a square matrix and )A)^0. 

Singular Matrix,  A matrix A is singular if A is a 

square matrix and /A] = 0. 

Transpose of a Matrix A,  If the rows and columns of 

an m by n matrix A are interchanged, the result is an n by m 

matrix A called the transpose of A and denoted by A  • 

Conjugate of a Matrix A.  If each element of en m by n 

matrix A is replaced by its conjugate complex number, the 

result is an m by n matrix called the conjugate of A and is 

denoted by A.  The conjugate of the transpose of a matrix A 

is called the conjugate transpose and is denoted by A . 

Inverse of a Non-singular Matrix.  If A is a non-sin- 

gular square matrix 

»»• 

A = 
*.. 

^»,<w— *w 

the matrix 

m W (fll 

A* 
a, *%* ...   "wg, / 

\W   P   P / 
is called the inverse of the non-singular matrix A where 

the element in the i-th row and J-th column is -tff,  where 

A,,is the cofactor of a • in the determinant )A| . The In- 
7 -i 

verse is denoted by A , 
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adj.   A * 

Adjoint of a Square Matrix A.     If A la an n-square  matrix 

(a^)   and If A/-1   denotes  the  cofactor of nj,.   In   \k\,  and If 

the  element In the i-th row and J-th column la  A;^ ,   then the 

n-square matrix which Is  composed of these elements Is  called 

the  adjoint  of A;   that Is,   If A * (a^),   then adj.  A •(%£> 

. ■ *i' 

Characteristic Bquatlon of a Matrix*  The character- 

istic equation of a matrix A Is JA-»/|lj • 0, where /| is a 

scalar Indeterminate and the determinant JA-/J l| * t{/\ ) 

Is the characteristic determinant of the characteristic 

function of A* 

Symmetric Matrix, A matrix A which is equal to Its 

transpose is called a symmetric matrix, that is, if A- A * 

Skew-symmetric Matrix.  A matrix A which is equal to 

the negative of its transpose is called a skew-symmetric 

matrix, that is, A =-A • 

3. Vectors and Vector Spaces. 

To define the orthogonal matrix, we must first develop 

some basic theorems and ideas regarding vectors. 

The concepts of a vector as learned in physics are 

familiar, for example, displacement, velocity, accelera- 

tion, and forces.  It is a magnitude that can be represented 

by a directed line segment.  This representation can be 

thought of as points in a plane represented by ordered pairs 

(x,y) of real numbers? or, as points in space represented 
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by ordered triples lx,y,z);  or,   generalizing still further, 

as points in n-dimensional  space  represented by ordered 

n-tuples.     We  can say then that  a sequence X=ix (, x^, ... ,x^) 

of n numbers x^ is an n-dimensional vector or,   as  frequent- 

ly called,   an n-tuple where  xt x^   are the  coordinates 

of X and x.  is the  i-th component.     If we  consider ordered 

n-tuples X»(a »•••,*«)   Qt elements x^ lying in a field F, 

each n-tuple  is called a vector with n components x^.     Tne 

totality,   which we  shall call Til),   of all vectors,   for a 

fixed integer n,   is  called the  n-dimensional vector space 

over P.     F can be taken to be  H*,   the  fiel3 of real numbers; 

then,   the  resulting vector space   V„l*')  is frequently called 

the  n-dimensional Euclidean space.     A vector or linear space 

V over a field F is a set  of elements,   called vectors,   such 

that any two vectors X and  Y  of V determine a unique vector 

X-t-Y as a sum,  and that any vector X from V and any scalar 

c  from P determine a  scalar product c.X in V,   with the  fol- 

lowing  five  properties: 

U)    X + Y=Y-rX 

12)     c(Xi-T) - cX + cY 

15)    vcc' jX-olo'X) 

U)     (c+c')X=c.Hc'.X 

(b)     l.X=» X. 

A subspace  of V^(R;  is a subset  V   (containing at 

least one vector; of Vfi>>   mn V 1S cl0Sed under Sddi" 

tion and  scalar multiplication,   that  is,   if the  M of any 

two vectors of V lies in V,   and if the product of 
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any vector of V    by a scalar lies In V. 

A set of vectors (X, rt*"***^ of * vector 8Pace v 

over a field R is linearly dependent over R if there are 

scalar I c^ in R, not all 0, such that £ c„.X^ 0. Other- 

wise the set is linearly independent.  Prom the statements 

previously made, we can say that V„(R) is a space of n-di- 

mensions or that the dimensions of V„(R) are n.  V^ (R) is 

then the totality of 1 by n matrices over R or, writing the 

vector X as a column, the totality of n by 1 matrices over 

R. we can then say that a vector is a one column or one 

row matrix where a column vector is a n by 1 matrix and is 

denoted by X or fx;,xx,... ,xj, and a row vector is a 1 by n 

matrix and is denoted by X or (x, ,\,. •• ,\ )• 

Let the field R of all real numbers be a field of 

scalars.  If X and Y belong to V>>(R), a particular scalar 

will be associated with them.  Let X= ]x,,xx,...,xj and 

Y, yty....,lj. Then the scalar x'Yxx^y, ^ xvyv-r...+ ^y, 

1. called the inner product of X and Y, sometimes written 

(X,Y). It is clearly seen that the inner product of X with 

itself is a sum of squares: 

x'».U,.vVa/..*>&*-"^- X> ^ 'V^V 
Also, if we restrict the components of X to real numbers 

only! this sum of squares of real numbers x. will never be 

zero unless every x,» 0, which leads to the theorem 

Theorem ?.l. The inner product of a vector of VR) with 

itself is positive unless the vector is zero. 

pour important algebraic properties of inner products 
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which are Immediate consequences of the definition that 

(X'Y)= x,y,-»- *»7,_-* •••+Vn ares 

(1) (XfY.ZH (X,Z) *(Y,Z) 

(2) c(X,Y)-- c(Y,X) 

(3) (X,Y)*(Y,X) 

(Ij.)  (X,X)> 0 unless Xr 0. 

By the first and second the linearity of the left-hand 

factor of inner products is represented.  The third, to- 

gether with the first and second,shows the linearity of 

inner products in both factors. One fourth shows the 

positiveness of inner products. 

If X is any vector in V„(R), the square root of the 

inner product of X ' and X, (x'x)v , is defined as the length 

of X. Since positive real numbers have square roots in the 

real number system, (x'xP'may always be taken as positive. 

A normal vector Is one whose length is unity. 

Two n-dimensional vectors, X c/_x,,*,.,••• #x>,J » 

i» ft »IL »•*"*»*J » of v->>(Rj are said t0 be orthos°nal to 

each other if their inner product is zero, that is, 

*,%*•  K&*   •••+ *>,V- °» or» in matrlx **rmlnolo&y>  if 

Y'X^X'Y^ 0.  If X is orthogonal to one or more vectors, 

it is orthogonal to the linear system which they define. 

Extending this idea further, it can be said that all the 

vectors orthogonal to a linear system constitute a linear 

system called the orthogonal complement of the first linear 

system.  The vectors, X, ,X,,...,X „are called normal or- 

thogonal when (1)  tlj* 1 for all 1, (2) Xj is perpendicular 
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to X.-   where 1 ^ J. 

These concepts of length and orthogonality are the 

same as those studied In analytic geometry? for, If we 

take the vector (x,,xx)   of V^(R), It can be thought of as 

a line from the origin to a point whose coordinates in a 

rectangular coordinate system are (x( ,x^).  The length of 

this line is (x,* + xj" ) ".  If we consider the slope of 

this line, x^, and the slope of another line from the origin 
x 

to the point (y( ,yA ), y^, we have for the two lines to he 
y 

orthogonal, that x^.y^-1, or that xf y# +■ \J^- 0, which 
x, y, 

is the necessary condition for two vectors to be orthogonal. 

The same interpretation can be extended to Vj(R). More- 

over, these properties of orthogonal vectors are applied 

in plane analytic geometry in proving that the cosine of 

the angle between two orthogonal vectors is zero.  To prove 

this, let P and Q be any two points distinct from the ori- 

gin and © be the angle between the two points in rectangu- 

lar Cartesian coordinates, the origin being denoted by the 

column vector (0,0), the point P by Xe(x, ,xj, and the 

point Q by Y * (y, ,yv),  The lengths of X and Y are t 
'< lx|= (x*-»-x;fv

s u'xfw» (X,x£ 
[t\ s  faf**? >** CY'Y)S  (Y,Y)"". 

If we Join P and q, we form the  triangle OPQ with sides 

X,Y, PQ»X-Y. 
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From the trigonometric law of cosines, we have 

(1) |X-Y|V= |xr+-\Yl"-2jX| .)Y| . cos© 

which we can also write as 

(2) )X-Yf ^ (X-Y,X-Y) = (X,X)f-(Y,Y) - 2(X,Y). 

Combining (1) and (2), we get 

(J)   cos ©= cos L.  (X,Y)~ (X.Y)   . 
T*R*T 

It follows immediately that if X and Y are orthogonal 

vectors, then (X,Y)=0, and the cos £(X,Y)-0.  Conversely, 

if (X,Y)iO, then cos A (X,Y)-0 and X and Y are orthogonal. 

In generalising this case of two vectors to one of n 

vectors, we encounter some complications.  It is relatively 

easy to see that in the case of three dimensional space, 

formula (3) becomes 

However, although the inner products can always be defined, 

the lengths j xl = (X ,X)^ are not definable unless every sum 

of n squares has a square root.  For this reason, we shall 

confine ourselves to vector spaces over the real field. 

One such vector space, which is mentioned in the following 

theorems, is called Euclidean and is a vector space R with 

real scalars, such that, to any vectors X and Y in R, 

corresponds a real inner product (X,Y) which is symmetric, 

bilinear, and positive in the sense of the four algebraic 

properties of inner products as given on page seven. 

Theorem ft.2. Non-zero orthogonal vectors X, ,X,_,.. .,X* of 

a Euclidean vector space R are linearly independent. 
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If oiX,  +-... +^ *>,=0» tnen for k= *»•• •»m» 

0 = (0,x*) = -S,(x, .x^)-*- ♦**♦ *wH,»*fc** •**!%*%) 

where ^L(X.,XI) comes from the orthogonality assumption. 

But it was assumed that XJ? 0, therefore (x^,x^)> 0 and 

^»0.  Prom this theorem, it follows that normal ortho- 

gonal vectors spanning R, are a basis for R.  This basis 

is called the normal orthogonal basis. 

Prom this discussion of normal orthogonal vectors, we 

are now in the position to define an orthogonal matrix. 

Let it be understood that the approach to the study of 

orthogonal matrices could be reversed, that is, the ortho- 

gonal matrix could be defined, and from that standpoint 

orthogonal vectors discussed. 

Ij.. Orthogonal Matrices. 

A square matrix A is orthogonal as to rows if and only 

if each row of A has length one, and any two rows are 

orthogonal. A*(a>y) is orthogonal if and only if: 

(1)  l^a.^ 1 for all i, (2)  Jj •^•y4- 0, if 1 +  J. 

Making use of the Kronecker delta 3y,   the above equa- 

tions become: 

A square matrix A is orthogonal as to columns if 

S^.m^m tf*  (i,j=l,2,...»»)• 
47/ A* V   1 , 

Writing A; for the i.-th row of the matrix A and A/ for 

its transpose, the inner product of A,; by A;- is the matrix 

product k^k'  . Then the above equations can be written 

(1) K*i9**£ 
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where <5*V is the element In the i-th row and j-th column 

of the Identity matrix I* ( Sjj).    A row-by-column inter- 

pretation of the equation (1) leads to the theorem 

Theorem jj.,1,  A matrix A is orthogonal if and only if 

1 lys I. 

Theorem U..2.  A matrix A is orthogonal if its inverse is 

the same as its transpose, that is, A = A~ . 

Since A A'- I, A is non-singular. Multipling both 

sides of the equation on the left by A" , we have 

A'AA'* A''I . 
-i * 

But by a definition on the inverse of a matrix, li*L 

Whence,  A = A". 

The above definitions and theorems have defined ortho- 

gonal matrices in several ways.  To summarize, a square 

matrix A is orthogonal ifi 

(1)  5VA*J*« **"i  (*«$••*»•#• ••»■) 

(2) £%J*V'*^ 
(3) 

(k) 
It may be pointed out that any one of the above implies 

the other three. 

Two examples of orthogonal matrices are :  (1) the 

unit matrix I which is the simplest and (2) the matrix of 

the rotation transformation from plane analytic geometry. 

 H—Hereafter—all material referred to in a footnote 
denoted STS"SSrSk may be found in any of the books on 
ma?rix theory listed in the bibliography, in particular 

numbers 5 an<^ 9» 

AA = I 

*'. A"' 
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t I 

(1) 

(2) 

100 0 
0 10 0 
0 0 10 
0   0  0 

which gives  the matrix 
x = x cos © + y sin © 

j'» -x sin © 4- y cos © 

/cos ©  sin © 

v^-sin ©  cos 9 

The latter will be discussed in more detail in section 

seven of this paper. 

Having arrived at the definition of the orthogonal 

matrix, we are now in the position to prove some interesting 

properties that belong to this particular type of matrix. 

Theorem 1+.3.  The transpose of an orthogonal matrix is or- 

thogonal• 

If A is orthogonal, then, by theorem l|-.l 

A'(A' )-  A'A-I; A-'A y 

for by theorem ij..2, £\  A''whlch is a defining property of 

an orthogonal matrix. 

Theorem k.k*     K a matrix A is orthogonal as to its rows, 

it is orthogonal as to its columns; and vice versa. 

This theorem follows directly from theorem I4..5, that 

is, the transpose of A is orthogonal. 

Theorem k.l.  The inverse of an orthogonal matrix is or- 

thogonal . 

Let A be an n by n orthogonal matrix. Then A *  A . 

By theorem I4..3 A' is an orthogonal matrix, therefore A- , 

the inverse of A, is also an orthogonal matrix. 

Theorem U.6.  The product of the orthogonal n by n matrices 

A and B is orthogonal. 
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(AB)'^ BV*  B"A"'S (AB)~ 

Therefore AB is orthogonal. 

At this point, it is appropriate to say a word about 

the group formed by orthogonal matrices.  All n by n or- 

thogonal matrices form a group, for they conform to the 

definition of a group of transformations which states 

that a group of transformations on a space V is a set of 

one-one transformations on V which includes the identity, 

with any transformation its inverse, and with any two 

transformations their product.  For an orthogonal matrix, 

the n-th row identity matrix is orthogonal, the inverse 

A'' is orthogonal, and the product of two orthogonal ma- 

trices is orthogonal.  The group of all these n by n ortho- 

gonal matrices form a subgroup of the full linear group 

V„(rf*) and is called the orthogonal group 0^ . 

Theorem U..7*  ** A and B are orthogonal matrices, then 

'A O' 

0 iv 
is an orthogonal matrix. 

A     o".    'A     0\   ' A     0   .     A*   0 \    /AA        0 
r   I. 

0     B/\0     B/       \0     B/\ 0     I'/   \0        BB    ' 

Theorem U.S.     The determinant of an orthogonal matrix is 

equal to x 1. 

Letting P represent an orthogonal matrix, we have 

P P = I. 

Then 

)P'PI=  IPIN-JPI1"- W -+-1- 
Before giving the Jfiforims that concern the char- 

4 
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acteristic equation and roota of an orthogonal matrix, we 

must define a reciprocal equation. 

An algebraic equation f(/) )= 0 of degree n is a re- 

ciprocal equation provided t{A )= ^ * M&   )• 

Theorem lw9-  The characteristic equation of an orthogonal 

matrix is a reciprocal equation. 

prom the characteristic matrix of P, we have 

On taking determinants of botn sides, it becomes 

Theorem fc.10.  The characteristic roots of a real orthogo- 

nal matrix are of modulus unity. 

For every characteristic root of a real orthogonal 

matrix P, there is a column vector X^O such that 

(1) PX ~AX. 

Taking the conjugate trenepoee of both members of equation 

(1), it becomes 

(2) X*P'=^"X*. 

Multiplying the 1 by n matrix in (2) by the n by 1 matrix 

in (1), 

X*P'PX =^ZX*X. 

V*Y ~JL! X*X.  Since X*X is a But PP'^I.  Therefore, X*X ^^J.  X A. 

-. ^ i m**mm     -t^=l.  Following directly from 
non-zero 1 by 1 matrix, *** *■• 

this theorem, we have 

Theorem lfr.ll.  A real orthogonal matrix has no real char- 

acteristic roots other than 1.1. 

M if #<%,   «-»*-»* .*-! "I *"*  " reaU 
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Two convenient terms which we shall make use of in 

the following discussions are proper and improper.  An 

orthogonal matrix which does not have -1 as a character- 

istic root is called proper.  It is equivalent to saying 

that I-HP is non-singular. An orthogonal matrix which does 

have -1 as a characteristic root is called improper. 

Theorem J4..12.  If T is any real skew-symmetric matrix and 

k is a real number not equal to 0, then the matrix 

P = (kl+Tf' (kl-T) is properly orthogonal. 

By a theorem on skew-symmetric matrices which states 

that a real skew-symmetric matrix has no real characteris- 

tic root other than zero, kl + T and kl-T are non-singular.* 

Multiplying both members on the right and left of the ma- 

trix identity 

(1)  (kH-T)(kI-T) = (kI-T)(kH-T) 

,-l by (kl-T)" , we have 

(2)  (kH-T)(kI-T)"'» (kl-T)"' (kI+-T). 

Taking the inverse and transpose of 

we  have, 

(3)     P -(kl+T)"'   (kl-T) 

(k)    P"'»  (kI-T)"'(kI-HT) 

or, on taking the inverse and using (2), 

(5) P = (kl-T)(kl+T)"'. 

Since T is real skew-symmetric, T'= -T, and 

(6) P* (*I+ T)(kl-Tf\ 

But the right hand members of (k)  and (6) are equal. Hence 

p^rP*, so that P is orthogonal. 

I 
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Theorem li.15.  If P ia a real properly orthogonal matrix, 

there exista a real skew-symmetric matrix T auch that P ia 

given by 

(1)    Ps(kH-T)"Vl-T). 

Rewriting (1),  we have 

(kI4-T)P= kl-T 
T +-TP = kl-kIP        , 
T»kI(I-P)(I-HP)   . 

Since P ia properly orthogonal,   14 P is non-aingular. 

T'= (I+P' )"' kI(I-P' ) 
T\, kKi+p-'jd-p-'      ., 
T*= kI(H-P«) P-'P(I-P

H
) 

f!» kl 
T;= kl [PM)-'XP-I) 

-I) 

T'^-kKl^Pr1 (I-P) 

Therefore T« -T' and T is a real skew-symmetric matrix. 

On taking the formula t *.(*** T)"' (kl-T), and varying 

the conditiona placed on the matrix T, one can arrive at 

several interesting results.  One of these is the deri- 

vation of a formula for all 3 by 3 orthogonal matricea. 

Let us take T/-C 0 ~aj , find such a formula, and show 

that the vector^ ("a'b.c/is an absolutely invariant vector 

of each matrix.  Substituting the value of T and evalua- 

ting the inverse, we have 

/ k%a* -ck+ab ca+kb\/k -c    b 
P-              1              _/ck+ab k-wV -*»"*•}[ *    k -{ 

TcIFtaWTlac-bk ak+bc k^c /^-b 

From which 

P- 

the  desired formula. 

/kNa^-b^-c" -2ok-j-2ab      2bk4-2ac 
1 (2ck+2ab        kWSlT V   r2^±|bc 

I'qTO'^F V-2bkH-2ac      2ak-f2bc k -a -b *c 
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If the vector (a,b,c) is an absolutely invariant vector 

of P, then p/bU/b 

/»\ fit** -**-•* -2ck-»-2ab  2bk+2ac 
bU    1      I 2ck+2ab   k^-a^b"-^ -2ak-t-2bc J b 
c/ KNa*-«fb*--»c»-\ -2bk-J-2ac  2ak-f-2bc   k -a -b tc/ 

/ak%a* -ab"-ac*'-2cbk-*-2ab*'-h2cbk-h2ac,*' \ 
1   J 2ack4-2av b-bk*-ba* 4b* -bc*"-2ack-2bc    )■ 

r k1*al -tb^c* \-2abk-t-2rf c-f-2abk-J~2tf cH-ck"-a"c-cb fc*/ 

Therefore, p/b)s( b) . Hence the vector (a,b,c) is an 

absolutely invariant vector of the matrix. 

Theorem ii.15.  Characteristic vectors, X,Y,... correspond- 

ing to distinct characteristic roots *<;,*£*" • "\   of a real> 

symmetric matrix are orthogonal. 

(1)  AX=*<;X,  (2)  ««4j   i*h+0* 

Multiplying each member of (1) on the left by Yf and each 

member of (2) on the left by Xf, we have 

(3) Y'AX.-^Y'X, ii\   X'AY^X'Y. 
Taking the transpose of (1+) 

(5) Y'A'XrWj'x. 

Since A is symmetric, A*- A.  Therefore -^Y'X^Y'X. 

Since ^4^ , T*XmO, or the inner product of the two 

vectors is zero.  Therefore X and Y are orthogonal. 

One cannot go far in the study of orthogonal matrices 

before the idea of orthogonal similarity is introduced. 

We are now at this point, but must refer again to the re- 

lationship of orthogonal vectors and matrices before the 

important orthogonal reduction of a symmetric matrix can 

be undertaken. 

5. Orthogonal Similarity. 
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If B= P*'AP, where P is orthogonal,   B is  said to  be or- 

thogonally  similar to A.     If we  take   the relationships 

p'tfsDs diag  U, ,..., J„>,   then APs PD,  and AP^ •<£,- %4 , 

where  P^   is  the i-th column of P.     Prom this,  P, ,...,F^ 

are  characteristic vectors  of A,   and from definition of 

an orthonormal basis,   these vectors  form an orthonormal 

basis  for V,,(R). 

Theorem 5.1.     If A is an n-aquare matrix over R and if the 

set of characteristic  vectors  of A includes an orthonormal 

basis  for %,(R),   then A is  orthogonally  similar to  a diago- 

nal matrix;  and conversely. 

By the preceding definition,   the  converse  of the 

theorem was  proved.     The proof of the theorem follows. 

Let X  ,...,&   D©  characteristic  vectors  of A forming 

an orthonormal basis  for V^(R).     Then 

•s2*4|Jfe    (i-l,...,n) 
or APs PD,  D>diag  {A,,.. .,-<„), 

where  P is   the matrix whose i-th column is X^-,   (fc   l,...,n). 

But  the X,;   are mutually orthonormal  vectors by hypothesis; 

therefore,   P is  orthogonal,  and 

PJAP = D,   "id P  : P   . 

Theorem 5.2.     If X, X^ are mutually orthogonal non-zero 

vectors of VjR),   they are linearly independent. 

Let aX, ^X<;0,  where  *   is  a scalar.     Since 

x^-'x^o,    <i#J) 

,0*0_- XM-    (a, X *. ,+ftJLj *A>' 

a,Xx'X<-... 

a.-X,'x.-„- 0 

.♦a X.'X.-- 0 -x   "1 
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By hypothesis, Xt-^0; therefore, a<- 0, (i»l,...,t). 

Therefore, the set of vectors (X^,...,X^) is linearly 

independent. 

Theorem 5.3.  Every set of mutually orthogonal, normal vec- 

tors of V may be extended to an orthonormal basis of V. 

Every non-zero vector space V over the field of real num- 

bers has an orthonormal basis. 

Let X,,...,X;, where 1* 1, be a set of mutually ortho- 

gonal, normal vectors of V.  If I* 1, the X, must be a vec- 

tor of length one.  We know i cannot be greater than the 

dimension, t, of V.  Let i be less than the dimension, t, 

of V.  If i is 1®8S than fc» tne aubsPace sPanned by *• »•••»*< 

will not include all of V; that is, there will be some vec- 

tor Y not in this subspace.  Therefore, there is no vector 

X of the form 

(1)  X^Y-a,X, -a^X,., 

where a,< i. a scalar, that can equal 0.  If the scalars a/ 

are chosen to be ay, c} X/Y, C, , x/*,, <j, 1,....D. 

Multiplying (1) on the left by x/, we have 

X/X-X/Y- £«v%« VY
-VVV V*VV- °- 

Therefore, all the vectors X, ,...,XX are orthogonal to X 

and to d,t c-'X, where c is the length of X.  I* this 

process, X;,...,X<. has been extended to X, ,.. .,* **» of 

dually orthogonal, normal vectors of V. As long a. 

1+1 <t. the process can be repeated and the desired basis 

can be constructed by a finite number of repetitions. 

per proof of the second part of the theorem, it can 

be noted that every non-zero vector space V has a vector 
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X^O, therefore, it will have a vector X which will be 

normal.  This will give a set of vectors to which the pro- 

cess of the first part of the theorem can be applied. 

This theorem 5»3 leads to a method by which a real 

orthogonal matrix P, of order n, can be built up so that 

the elements in the first column are proportional to any 

set of real numbers X,= (x, ,x^ ,...,x„), not all 0.  The 

theoretical explanation of this follows. 

By hypothesis, X, ■ (x,,xa,... ,x^) is a set of real 

numbers.  If £ X,. = 1, let X, be the first column of P. 

If £ X^?   1* k, normalize the set by dividing through by 

jfk", and use the set obtained as the first column ^(x, ,xa,.. • ,X»,2j 

of P.  To make the second column vector orthogonal to the 

first column vector, find a real non-zero solution 

(7, ,y*»...,y„> of x„ y( *xM y^.-.+^y^ 0. If necessary 

normalize it by dividing through by ]2~yT" , and use the 

set obtained as the second column of P. Repeat this pro- 

cess until S £ n-1 columns of P /jx^ ,x^ ,•••»**<; J » 

(isl,2,...,s) are obtained.  For the (s-f-l)-th column, 

find a real solution (z, A,...,«h)^ (0,0,...,0) of the 

set of s < n homogenous linear equations. 

X,A. z, ♦•xXM. z^-f.. *M^£ **= °» (i = 1 »2»• • •»a) • 

On normalizing this set and using it as the s+l-th column 

of P, the real n-squar« orthogonal matrix P is constructed. 

We know that P is orthogonal because we have built up its 

columns orthogonally. 

For an illustration of this procedure, let us construct 

I 
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a real  orthogonal matrix P whose first column is  propor- 

tional to the set (1,2,3). 

Since   ^j X- r   ll|_^ 1,  the set must be normalized by 

dividing through by     )%Xi   * ]fll4-»    The  set obtained, 

f-4?  -£=>■£=? ),   is used as  the  first  column of P.     To  find 

the second column,   obtain a  solution of the equation 

7 ♦2yv+3y>=-0,   say  (1,1,-1)   and normalize it.     This  set, 

(ii**) -^=-, "Tr1)*   is   the  second column of P.     To find the 

third column,   select a solution of the two equations: 

z, *2zvt3zJ±0 

z. •*  z s v ° 
say (5,-J+,D snd normalize it. This ••*,\w£*Y?^'^/, 

is the third column of P. The required real orthogonal 

matrix P is 

P ; 

IS 

if 
VJ 

6. Orthogonal Reduction of a Symmetric Matrix. 

A real symmetric matrix A is orthogonally equivalent, 

or similar, to a real symmetric matrix B if there is an 

orthogonal matrix P with real elements such that 

BsPJAP-* P'AP . 

The matrix B r P4AP is similar to A and has the same charac- 

teristic roots as A.  We now have the necessary material to 

state and prove the well known result about a real symmetric 

matrix* 

■ 
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Theorem 6.1. Every real symmetric matrix A Is orthogo- 

nally equivalent to the diagonal matrix D = diag (4,,... ,-4,^), 

where A  »«»»»4 Rre *^e characteristic roots of A arranged 

in any prescribed order.  In equation form, 

P'Aft: diag (•<,,...,«^)» 

It is obvious that if A is a 1 by 1 matrix, it is 

already in diagonal form.  We shall prove this theorem 

by the method of induction, assuming that it is true for a 

matrix of order n-1 and proving that it is also true for 

a matrix of order n. 

It is known that, if A is a real symmetric matrix, its 

characteristic roots, «^; ,.••,•*., are real numbers.  Since 

)A-^, l/= 0, the equation 

(1)  AX.^X, 

has a non-zero solution, which we can take, after normaliz- 

ing, to be a single-column unit vector X, with real elements 

(x  ,x ,.-.*,X^ ). We take this unit vector X, as the first 

column (x„ ,x^ ,...,xh| ) of a real orthogonal matrix * 

The remaining columns of Q can be built up by the preceding 

method of constructing a real orthogonal matrix Q whose 

first column is proportional to a given set. 

In forming the matrix product Q'AQ, let us first form 

the product AQ. But we know that the first column of Q is 

the vector X, of equation (1); therefore, the first column 

of the matrix AQ is the vector J^ * &# x»f **t
mu »•••»•'» X*J 

and the first column of the matrix Q*AQ will be the inner 

products of successive row vectors of Qfj that is, the sue- 

',1 

1 
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cesslve  column vectors of Q with the  vector j., X/ .     By the 

definition of an orthogonal matrix that    2%^ P*.- ■ 4^*f 

&#©»••••»      ls  the fir8t  column of QfAQ.     Symbolically 

QfAQ_ 

the stare representing undetermined elements of the matrix. 

We now have need of a theorem on symmetric matrices which 

we shall state without proof. This theorem is as followst 

If an n-square matrix A is symmetric and P is an n by n 

matrix, then P'AP is symmetric* Since A is a real symme- 

tric matrix, and Q is a real n-square matrix, Q'AQ is real 

symmetric.  Then we can say that the starred elements are all 

zero, and A; is a real symmetric matrix of order n-1.  A- 

gain, we have need of a theorem which shall be taken with- 

out proof.  This theorem states that the characteristic 

function of a matrix A is identical with that of any of its 

transforms.* From this theorem, it follows immediately 

that the characteristic roots of QfAQ are the same as 

those of A, and the characteristic roots of the (n-D- 

rowed real symmetric matrix A, are K, \ * • • •» -<,•  Now ln 

the beginning of this proof, we assumed that there was a 

real orthogonal matrix of order n-1 which satisfied the 

relationship 

then we can write 

i 

i 



-2V- 

Therefore,   S Is  an n-rowed real orthogonal matrix which 

satisfies   the  equation 

(2)     S' (Q'AQ)S -^'T"H7,K 

Letting P^^S, by theorem I4..6, P will be a real orthogonal 

matrix.  Substituting P ^QS in (2), we obtain 

p'AP^diag U,,^,...,^), the desired result. 

The proof above is rather clumsy for use in finding 

an orthogonal matrix P such that p'AP*diag K, <,...,<Q* 

The procedure that is easier to employ is that of building 

up a real orthogonal matrix whose first column is propor- 

tional to any set of numbers and whose columns are pair- 

,iae orthogonal non-zero vectors. The method is explained  ■ 

below, followed by a numerical example. 

Let A be a real symmetric matrix of order n which has 

the characteristic roots A,.^.. — ±  °f multiplicities 

Y,.VV,...^ , respectively (where£ ^ -   n). By a theorem 

in'mltrix theory, we know that two invariant vectors of a 

real symmetric matrix arising from two distinct character- 

istic roots are orthogonal.* Another theorem which we shall 

need for proof of the next step in this method and which 

we shall state without proof is as follows: If A is an 

n-square matrix having the characteristic roots <,^.,;^., 

of multiplicities Y, 4*.,_vtf * respectively, a necessary 

and sufficient condition that A be similar to a diagonal 

matrix is that for each root A  , the matrix A-<< I be of 

rank n-V.* By this theorem, we can state that, since A 

1 
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ls similar to a diagonal matrix, and It A   is a charac- 

teristic root of multiplicity V> 1 of A, then the matrix 

A-«AI must be of rank n-V. We have now to show that we 

can choose the V invariant vectors of the characteristic 

root **• so that they will be orthogonal to each other.  To 

do this, let Xr U  tM •••»V< * be one real non"zero s0~ 

lution of the set of n- V linearly independent equations 

(1) AY-s^ Y. 

To  the  equations in (1),  adjoin the  equation 

(2) Y,XrX/1yl+xilv...^,y„iO. 

Since we know that V = 2, then we have at most n-1 linearly 

Independent equations which will always have a real non- 

zero solution, X^s l*f»»
S^*',,,',WI *hich, by equation 

(2), will be orthogonal to X,. We can proceed in this way 

until S^-Y mutually orthogonal real vectors X, ,1^ ,...,*, 

are obtained which will satisfy (1).  To the n-V linear- 

ly independent equations in (1), adjoin the S additional 

equations 

*« y. ***.,£ *•••**. y«* °» 
(3)       ...   

In  (1)   and  (3),   we now have at most n-V   ♦•  a <n linearly 

independent homogeneous  linear equations  that  have a  solution 

x$+/   which will   satisfy  (1)  and will be  orthogonal to  the 

vectors X;   ,...,£   .     Proceeding in this  way,  we obtain V 
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mutually orthogonal vectors of the root </» .  On using 

each of the s roots t£   t      £  %£ = n vec*ors are obtained, 

When normali?ed, these vectors will be the columns of the 

orthogonal matrix P such that 

P'AP -  diag idf9 -^ •••,-0» 

To illustrate this method, let us take a numerical 

example.  Our problem is to find a real orthogonal ma- 

trix P such that P'AP = diag (X, ,«^,...,X„), where A is 

the real symmetric matrix 

k       -2  0 

-2    3   -2 

0-2   2 

We proceed by first finding the characteristic equation 

of A and form it, the characteristic roots.  The charac- 

teristic equation of A is 

A5 -9X Ti8/\ - 0. 

The roots of this equation are 0,6,3. 

■^^ 
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Corresponding to the root 0, we solve the two equations 

km, -2x^s o 
-2xv42x>s 0 

and find the single invariant vector  (1,2,2). 

Corresponding to  the  root 6,  we  solve  the  two  equations 

x, +xw« 0 
x„-r2x,.0 

and find the single invariant vector (2,-2,1). 

Corresponding to the root 3, we solve the two equations 

2xv* x,a 0 

and find the single  invariant vector  (2,1,-2). 

On normalizing the  three  invariant vectors  obtained and 

using them as  columns,  we obtain the desired real  ortho- 

gonal matrix P. 

If 

A/3    2/3    2/3\ 

P J 2/3  -2/3     1/3     ,  P'APsdiag  (0,6,3). 

\2/3    1/5 -2/3y 

This  can be  verified by actually multiplying the matrices 

P'AP  out. 

7.  Applications to Analytic Geometry. 

The most important  application of the  operations  per- 

formed by orthogonal matrices is  that of the rotation of 

axes  in analytic geometry.     Here,   too,  we see  the  impor- 

tance  of the orthogonal reduction of a real symmetric 

^a; grass s M^isF- 
be found in Solid Analytic Geometry by Adrian Albert, 
pp. I03-UI. 

• 

• 

1 

■ '•■ 

' 
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matrlx to diagonal form, for it is by applying this method 

that we perform the orthogonal reduction of a real quadra- 

tic form. We shall see that the latter is actually execu- 

ted by the rotation of axes.  The following section is con- 

cerned with the development of the ideas of orthogonal 

transformations, the rotation of axes, and the orthogonal 

reduction of real quadratic forms.  Since the rotation 

of axes is dependent upon orthogonal transformations, we 

must first investigate this type of transformation. 

If P, (p4. ) is an n by n matrix and X: 2?/»'#,»x>J» 

then PXtiY is a vector, Zy, ».»»»jj» «"* the equation 

Y-PX is called a linear transformation of V„(R).  If P 

is orthogonal, Y = PX is an orthogonal transformation. 

This is the same as saying that a linear transformation 

p is orthogonal if it preserves the absolute value of 

every vector X, so that |PXJ r /x) . 

An orthogonal transformation P has, for every pair of 

vectors X,Y, the following properties. 

(1) P preserves distance, or |X-YJ= | PX-PYj • 

Since P is linear, the above definition proves (1). 

(2) P preserves inner products, or (X,Y) =-(XP,YP). 

(X+Y,X+Y) = (X,X)+2(X,Y)+.(Y,Y) 

Solve for (X,Y) in terms of lengths such as | XJ = (X,X) . 

2<X,Y)„)X-Kf -\*f'l*r 
The orthogonal transformation P leaves invariant the 

lengths on the right, therefore also the inner product 

on the left of the equation.  Conversely, a transforma- 

tion P known to preserve all inner products must preserve 

II 

' 
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length and is therefore orthogonal, for length la defined 

in terma of inner product, 

(3)  P preserves orthogonality, or X   perpendicular to Y 

implies PX perpendicular to PY. 

(lj.)  P preaervea magnitude of anglea, or cos /-(X,Y).- 

cos l~  (PX.PY). 

The angle between two vectors has been defined in 

terms of inner products (see page 8, (J)). Since X ia 

perpendicular to Y, (X,Y)sO.  Prom (2) and the formula 

coa L  (X,Y)-   (X.Y), (3) and (k)  follow. 

Theorem 7.1.  Relative to any normal orthogonal basla, a 

matrix A repreaenta an orthogonal linear tranaformat!on if 

and only if each row of A haa length one, and any two rowa, 

regarded as vectora, are orthogonal. 

Any orthogonal tranaformation, by theorem 3.3, carriea 

the given baaia f,'Vl»*«**tty Into a new normal, orthogonal 

baaia J,*f,k,. •• Hi****  Conversely, if A carriea a 

given baaia ^,...,*„ into a new baaia Mr.   c^A,...,^3^A, 

then, for any vector X^ x,6t  -*.... 4-x^ with a tranaform 

XA^x-< -*>*».<+«fcO the formula ft« U,v *+••+*£ )*\x*\ 

will give the length, where A ia orthogonal.  The i-th row 

of A (regarded aa a vector) repreaenta the coordinatea 

9td$  a^i relatlve t0 the O^S111*1 Daais ^i»'««»^,* 

Now, to aee how orthogonal tranaformationa relate to 

analytic geometry, let ua take pointat 0 =:(0,0,0), 

U^(1,0,0), V^ (0,1,0), *--  (0,0,1), in apace.  Theae 

four pointa will determine a tetrahedron whoae vertex is 
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the origin,   and which we shall  call  the tetrahedron of 
» 

reference. 

Conversely, we can say that if we are given a tetrahedron 

of reference, the coordinate system is completely deter- 

mined. 

Let an initial coordinate system be given such that 

every point P has initial coordinates x,y,z, and such that 

P is a linear combination given by this equation 

(1)  P= (x,y,z)-xTH-yV-hzW 

with the coefficients the coordinates of P. With this in 

mind, we shall investigate all other rectangular Cartesian 

coordinate systems which have the same origin 0(0,0,0) 

as the initial system. Every one of these transformed 

systems will be determined by three new unit vectors 

U1 V* W* and every point will have transformed coordinates 

x ,y tz   .  In view of this we can say 

Pjrx'u'i-y'v'-ha'W 

where, again, the coefficients x',y! ,z' are the transformed 

coordinates of P.  If we let Tj'- {A,,% ,V, ), V =■ ('L, %.,l£), 

W'= U ,-%#T£) represent the initial coordinates of 

TJ',V',W', then 

p= x'u,,«, ,v, )+-y tfwX.^>^z'^i ^i >*>] ■ {x>v>z)- 
All the relations between the initial and transformed 

:' 

' 
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coordlnates   of all points are given by  the set  of equations 

("x-zA, xt^-/*vyl-l-/^Js
, 

(2)     <7z «, x'n-Wy'-*-</, z' 

In matrix form, this set of equations becomes 

% ^ *% 

where the columns of L are pairwise orthogonal unit vec- 

tors Uf, V"' ,w', and L is an orthogonal matrix.  This system 

of equations, where L is an orthogonal matrix is called an 

orthogonal transformation of coordinates. We have thus 

proved that an orthogonal transformation relates two rec- 

tangular coordinate systems with the same origin. Con- 

versely, it can be said that two coordinate systems can be 

related by an orthogonal transformation in which the ini- 

tial coordinates of the unit vectors on the transformed 

coordinate axes are given by the columns of the matrix L. 

Since L is orthogonal, if'- L' and (3) may be written 

\,  H, V, Vx 

The relations between the transformed and the initial co- 

ordinates of all points are also given by the set of equa- 

tlons 

(5) y' = A* x-i- *fcyH- U 

Many times the determination of vectors of integers 

which are scalar multiples of TJ' ,V ,W is desired.  These 

scalar multipliers, which are square roots of rational 

numbers, will appear as common denominators in each e- 
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quation of  (5).     In this  discussion,  it should be remember- 

ed that 
U* (1,0,0)-* {A,, K, A,) 
V = (0,1,0)—(^,y>,v,) 
W* (0,0,1) — Wt ,V^t Vi) 

where the set of x',y',z' coordinates is the set of coor- 

dinates of each of the points after the arrow.  The 

x',y',z' coordinates are obtained by substituting the set 

of coordinates before the arrow, that is, U: (1,0,0), 

V^ (0,1,0), Wr (0,0,1), for x,y,z in formula (5).  The 

columns of L are the x,y,z coordinates of the unit vectors 

on the x',y',z' axes, and the rows of L are the x',y*,zf 

coordinates of the unit vectors on the x,y,z axes. 

As an example let us take the orthogonal matrix 

A=  1/9 * i t 
-i kj 

and find the x1,y*,z'   coordinates  of  the points  whose 

x,y,z  coordinates  are  (-1,2,2). 

From formula  (k)$  we have 

x'\   fy%      k/9      7/9\A^ 

r p|   8/9    -1/9     k/9 I   2 
zr   \^-i/9     8/9     V9/V 

and x'r   -10/9,  yV   -2/9,  z'=  25/9- 

Sometimea.it is desired to apply two successive or- 

thogonal  transformations  of coordinates.    When  this is 

done,   the result is an orthogonal  transformation of coor- 

dinates  called their product 

(1)    If   (   y]= L/ yjj represents  one  orthogonal trans- 

formation with matrix L, 

• 
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represents the second orthogonal 

transformation with the matrix M, 

, where the matrix N is obtained 

by substituting in formula (1), 

the equality of formula (2). 

But we know that 

r L I 
.t t 

=    (LM)( y" 
\  i 11 

!• v. z 

We have then proved that LM_-N, or, that the matrix of a 

product of two orthogonal transformations is the product of 

the matrices of the transformations, and is also orthogonal. 

We are now in the position to define and illustrate 

what is meant by the reflection and rotation of axes. 

If we change the direction on a coordinate axis, we 

obtain an orthogonal transformation of coordinates which is 

defined by one of the following three matrices, depending 

on which coordinate axis the change in direction is madej 

0 
1 
0 

0 
1 
0 

This transformation is a reflection of axes. 

On the other hand, if we take a tetrahedron of refer- 

ence whose vertex is 0, and rotate this tetrahedron about 

its vertex which is held fixed in space, we perform an or- 

thogonal transformation called a rotation of axes. 

If we rotate the axes about the Z axis, we have per- 

formed a rotation of axes of plane analytic geometry, which 

is called a planar rotation of axes.  The rotation can be 

represented by the equations 
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X - X COS 0 -y1 gin 9 
y= x' sin 9 +y' cos 9 
lit 

where the angle of rotation is measured in a counterclock- 

wise direction form the unit point U to the unit point u1. 

Formula 13; gives the matrix form of this rotation where 

/cos 9 -sin 9 o\ 

It j sin 9 cos 9 0 I , and \b\s  1. 

\ 0     0    0/ 

Geometrically, the rotation is represented oy the figure 
" 

if, instead of the Z  axis, we nad rotated the axes a- 

hout the X  or Y axis, the matrices of these rotations would 

be 

0   \    /cos9 0 

H -sin9 j or/  0   1  0   \ respectively, 

i i'    9/   \-sin9 0 cos9 

which are orthogonal matrices havingjLJ* 1. 

It should be noted that the product of two reflections 

of axes is a rotation of axes, but a reflection of axes is 

is not a rotation of axes.  For example, let us form the pro- 

duct of the two matrices which represent two reflections. 

We have 

... 
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We see that their product is the matrix of a rotation of 

axes.  Geometrically, it can be seen that the product of 

two reflections of two distinct axes is the planar rota- 

tion about the third axis through 180 .  If, in the ex- 

ample, we replace y by -y and z by -z, the result is i- 

dentical with that obtained by rotating about the x axis 

through 180 .  The following diagram may help to visualize 

this analogy, for, if we rotate about the x axis through 

180*, y will go into -y and z into -z.  It is obvious that 

similar statements could be made if the y or z axis was 

the axis of rotation. 

A rotation of axes that carries'any two of the points 

U,V,W into a corresponding pair of the points U',V ,W is 

a rigid motion, that is, is represented by an orthogonal 

linear transformation of the tetrahedron, and will also 

carry the remaining point of U,V,W into the remaining point 

of U' Vf W* . With this result, we shall prove the follow- 

ing fundamental theorem. 

Theorem 7»2.  If an orthogonal transformation is a rota- 

tion of axes, the determinant of its matrix must be 1. 

Every orthogonal transformation which is a rotation of 

axes can be expressed as a product of three planar rota- 

tions, and every orthogonal transformation which is not a 

I 

• 

! 
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rotation of axes can be expressed as the product of a ro- 

tation and reflection of axes. 

Consider an orthogonal transformation in which U,V,W 

and U',V',w' are the positive unit vectors on the X,Y,Z 

and X* ,Y',Z! axes respectively.  Denote the line of inter- 

section of the plane XOY and X'OY' by NN!, the L ZQZ' 

by 9,     L XON by #,   and    I. NOX'   by jf. 

i 

We shall now revolve/as  a rigid body,   the O-XYZ axes  a- 

bout  OZ  through the    L f*     By this,   OX is  revolved into 

the position ON,   the intersection of the X!,Y'   plane with 

the X,Y  plane.     Let  the new position of 0Y; be denoted by 

OY   ,   so  that   £ YOY,  = 0.     The  trihedral   /.  O-XYZ  is  brought 

into the position O-NY, Z.     Now,   on revolving O-NY, Z about 

ON through an   /   ©,   OZ takes  a new position OZ1,   and 0Y; , 

a new position 0YA.     Then the    L ZOz' a   ^ Y, 0Y>r  ©.     The 

trihedral   L  O-NY, Z is  thus  revolved into 0-NYvZ  .     Let 

the  trihedral angle  in this  last position be  revolved a- 

bout OZ1   through an   L jt,   so that ON is  brought into 0Xf . 

OY  is  thus  revolved into a direction through 0 perpendicu- 

lar to  OX'   and to OZ'.     OY  either coincides  with OY'   or 

its  direction is  opposite  to that  of OY'.     If Of  coincides 

with 0Y\   then the  trihedral O-XYZ has  been rotated into 
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the trihedral O-X'YV.  If (H is oppoaitely directed to 

0£%     the rotation must be followed by a reflection, that 

is  the preceding planar rotation must be increased by 

180", and OT* replaced by -Of'.  The angular orientation 

of the X'Y' plane is thus restored. 

This proves that there are three planar rotations with 

the corresponding matrices L,,L, ,L_, so that the product of 

these three rotations is a rotation of axes.  In matrix 

form, we have 

r L. L 

where N=L(L^,  U">   Tj\   f%    f,   and W"   is  a point on a 

line  through 0 perpendicular to the X',Y!   plane.    W'^W" 

where 
*±i 

and   4t.Ah,A  I %s%>^*+,   >W  are directlon C08in6S  °f 

three mutually perpendicular lines. 

After the  rotation,   if the  trihedrals  coincide,  we have 

Ar-Vv-^ - l'   the  other  c08lnea  belng °'  making    t'~ 'h1' 
In the orthogonal  transformation defined by 

x; lM 11 

x1 -^ x" , y'-y'', *' = (r «"•    T*1611 we nave 

and 

R = L*N ^ 

L=-HRJ \\\ 

M*L, N^L 

I 

m 

I 1! 
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where,   as  before, IiL^lj.     However,   IN/- 1;   therefore, 

|L| -) ■) .   ^d   (r * |L).     Only when    Kl,   and therefore 

R*I,   is  the matrix 1 the matrix of a  rotation of axes. 

Also,   only when L is the matrix of rotation of axes  is R 

one  since Rr L*N,   and L is  one  if and only if  £ - m -  41 • 

If the  case is j I) =   -1,   then L ^NR is   the product  of  the 

matrix N  of a rotation of axes  and the matrix R of a re- 

flection of axes.     Hence,   the  complete  theorem is  proved. 

In the preceding theorem let the  coordinates  of a 

point P referred to O-XZZ be  (x,y,z),   referred to MS, Z 

be  (x  ,y, ,z   ),   referred to 0-NXvZ be   (xw,y^zfc)  and re- 

ferred to O-xVz'   be  (x\y',zM.    Then,   in the  rotation 

through   L   0,   z  remains  fixed,  and from plane  analytic 

geometry, 

x- x,cos 0 -y.sin g 
y= x.sin p +y, cos \f 
z. z, 

in the rotation through the    U,x,  remains  fixed and we 

have 
x, i  xv 
y   = y cos  © -ZvSin © 
z, = y^sin © +z_cos ©  . 

If we  can obtain O-X'Y'Z'   from O-XXZ  by rotation,  z^will 

remain fixed,   and we have 
sin # xxsx«   cos t -y'   »ln E 

y   : x'   sin $ fy'   cos JJ 
«;,• 

Eliminating x^,y^,z» J * ,7, »«, »  we ***** 

x ,x'(sin t cos « - sin *, sin * cos ©)  -y'(cos * sin $ r  - 
sin 0 cos Jif cos ©)  -  z'   sin 0 sin ©. 

cos ©) -fT (LJJB0 sin # - y_- x'(sin 0  cos jf * cos j7,sin ^.cos 
cos 0 cos p cos ©) - z'cos 9  »in e- 

r.i 
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a-x' sin # sin © f y' cos $  sin © ♦• z' cos ©. 

If we cannot obtain O-X'Y'Z' from O-XfZ by rotation, the 

sign of y' must be changed.  These last three formulas 

are what are known as Euler's formulas. 

The rotation of axes by an orthogonal transformation 

is a fundamental idea in the orthogonal reduction of a real 

quadratic form.  For, if we are given a real quadratic form 

in x,y,z as the polynomial 

(1)  f(x,y,z)- axxf by* + cz*> 2dxy ♦ 2exz t 2gyz, 

with a,b,c,d,e,g real numbers, we know from analytic 

geometry that the axes of the conic represented by equation 

(1) is at an angle with the rectangular axes.  It is only 

when we eliminate the cross product terms that we have a 

conic which is not at an angle with its axes of reference. 

This elimination of the cross product terms leads to a 

rotation of axes. 

Considering the quadric (1), we have 

f(x,y,z)r PAP* 

where P- (x,y,z) and A is the real symmetric matrix 

By the previous theorem, we have shown that the rotation 

of axes is a linear transformation from which we have 

P*=LQ* 

where L is a real orthogonal matrix whose determinant is 1 

and **(»'•>'»•«')•  Taking the conjugate transpose of both 

sides, we have 

'I 
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P=QL*. 

By a rotation of axes, we have replaced f(x,y,z) by 

pf(*' ,y' ,z,) = a,x'% b'y" + c'z'% 2d«x'y'* 2e'x«z't 2f'y'z' 

where g(x\y\z')-- f (x,y,z) . QL*AI£* c QBQ*. 

Therefore, 

Now If we let ^,@, r be the characteristic roots of 

the real symmetric matrix A, by our theorem on the ortho- 

gonal reduction of a real symmetric matrix to diagonal 

form, there will be an orthogonal matrix L such that 

/A 0 0 
L*AL.r 0 AO 

V° ° *> 
If (L IS 1, let L^L, and the orthogonal transformation 

with matrix L will be a rotation of axes.  If (&,)« -** 

change the sign of one column of L, and replace L, by an 

orthogonal matrix L so that )l|* - lL,)= l'     Then 

L*AL. L*AL,.  Prom this we see that the rotation of axes 

with matrix L replaces f(x,y,z) by 

^(x',y,zM-Q(L-AL)Q*,(x.,y.,z.k(o J oJl^W^ 

We have then, by the rotation of axes, reduced the given 

quadratic form to one involving only square terms. 

Let us close this section and this paper by two illus- 

trative problems:  one, the orthogonal reduction of a 

given real quadratic form; two, a problem relating this 

orthogonal reduction of a real quadratic form to the various 

■ 
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conies  in plane analytic geometry. 

For problem one, we are  to  reduce the  quadratic form 

1+3 ♦ 55"  - z  "  12xy f 1+xz  - 8yz  to diagonal  form by  a rota- 

tion of axes,   and to give  the equation of  this  rotation. 

The matrix of the given form is 

A    -6      2 

A=f-6     3    -k 

\2   -1+   -: 

Prom the  characteristic  determinant  of the  characteristic 

function of A,  we have,   x being a characteristic root of A 

k-x      -6 2 

-6    3-*      ~k 

2 -U -1-x 

f(x)=  (l4.-x)(3-x)(-l-x)   f  96-12 + kx-6k t  l6x i 36 + 36x, 

f(x)-   (x  *   l)(x  +  1|)(X-11). 

Then, the diagonal is llx' -y' -l+z' . 

We now find the characteristic vectors of A. 

Corresponding to the root 11, we solve the three equations 

-7x-6y ♦ 2z:0 
-6x-f 

/A-xIj = = f(x), 

_ -8y - i+z -- 0 
2x-l+y -12z = 0 

and find the invariant  vector  (2,-2,1). 

Corresponding to  the  root  -1,  we  solve the  three equations 

C$x -6y <■ 2z = 0 
<-tx fUy -1^2:0 
/ 2x -J+y - 0 

and find the invariant  vector  (2,1,-2). 

Corresponding to the root -k,  *e solve the  three equations 

,'§x -6y + 2z-0 

2x -4y t3* * ° 
• 
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and find the invariant vector (1,2,2). 

On normalizing the three invariant vectors obtained and 

using them as columns, we obtain the real orthogonal matrix 

L, which is the matrix of a rotation of axes. 

2 2 1 
L_- 1/5 (-212 

1 -2 2, 

The equations of rotation given by the form 

(x\y',z') = U,y,z)L, 

are ,3x'= 2x -2y * z 
5y' -- 2x + y -2z 
Jz' = 2x t2y f2z  . 

In relating the orthogonal  reduction of a real  quad- 

ratic  form to plane  analytic geometry,   consider the  locus 

in real two-dimensional  space of the equation X'AX=1, 

where  X'AX is  a  quadratic form over the  field R and 

X'=  (x,y).     Let A    and fi    denote the  characteristic  roots 

of the  real,   symmetric matrix A.     Our problem is  to  show 

that  the locus is  an ellipse if +   and fi    are positive;   a 

hyperbola if J    and  (*   have  opposite signs;  nonexistent if 

X.  and   P   are negative;  a  circle if  <*■   and (5   are positive 

and equal;  that  there is no  locus if /   and£     are  zero  or 

if one  root is  zero and the  other is negative;  and,   that 

the  locus  is  two  straight  lines  if one  root is   zero  and  the 

other is  positive. 

We have 

X'AX=(x,y)(b ./(jr) =   l = ax% 2bxy ♦  cy". 

We  can reduce  the  real symmetric matrix A to the diagonal 

(A,&).    Then 



-1+2- 

P'AP rP' 
a     b 

b     c 
? = 

rJL   0 

where P is a real  orthogonal matrix. 

Then (x1,y') 

rx. 
fi 

= 1. 

The rotation of axes with the matrix P replaces  f(x,y) 

by 0(x' ,y')  so that 

(1)    Ax'"*- (iy'*"* 1. 

Prom this  equation,  we  can see the  following conditions 

verified: 

1. If A   equal fi   and both have positive  signs,   (1)  is 

the  locus  of a circle. 

2. If A does not  equal <3    and both have positive  signs, 

(1)   is  the  locus  of an ellipse. 

J.   If A   and   £   have  opposite  signs,   (1)  is   the  locus  of 

a hyperbola. 

1+.   If ^ and   Z5   have negative  signs,   (1)  is nonexistent. 

5. If A   and /5   are  zero,   (1)  does not represent  a locus. 

6. If A  is negative  and (3    is  zero,   (1)  does not repre- 

sent a locus. 

7. If  A is positive and £   is  zero,   (1)  is  the  locus  of 

two  straight  lines. 
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