A SPHERICAL MODEL FOR HYPERBOLIC GEOMETRY
by
Ruth Anne Prince

Submitted as an Honors Paper
in the
Department of Mathematics

The University of North Carolina at Greensboro 1964

TABLE OF CONTENTS

PagePreface
I. Introduction 1
II. Properties of Orthogonality 5
III. Verification of Model 10
A. Definitions and Special Notation 10
B. Incidence Postulates 11
C. Distance Postulates 14
D. Space-Separation Postulate 16
E. Angle Measure Postulates 19
F. Congruence Postulate 25
G. Parallel Postulate 29
IV. Appendix 31
V. List of References 32

PREFACE

It shall be the purpose of this paper to demonstrate a model consistent with postulates of three-dimensional hyperbolic geometry. This model, to be composed of orthogonal spheres and therefore called an orthogonal-spheres model, shall be an extension into three-space of the two dimensional Poincaré model which is perhaps the most frequentlyemployed model of hyperbolic geometry, although the Klein model and the pseudosphere are also used.

Verification of a model entails its presentation and a demonstration of the validity of basic postulates of the geometry in question for the particular model. In order to develop the orthogonal-spheres model, some preliminary concepts of orthogonality for circles shall be introduced and extended to spheres. Although this material in itself is not directly related to the validity of the model, the concepts presented will be essential to the presentation to follow.

The postulates of Euclidean space shall be accepted and shall be used without specific reference. They shall be listed in the Appendix, along with other theorems from Euclidean geometry which shall be used from time to time.

I cannot be generous enough with an expression of gratitude to my advisor, Mr. Donald Jones. Without his assistance and encouragement, this work would not have been possible.

I. INTRODUCTION

To contribute to the understanding of this paper, it is necessary to make some statement about notation to be used as well as various statements which shall consistently refer to a specific idea.

When we say "two points" it is implied that the points are distinct unless a statement is made to the contrary. Likewise "two lines" and "two planes" shall denote distinct lines and planes.

With regard to lines and subsets of lines, the following notation shall be employed: If we are given two points A and B, "AB" shall denote the Euclidean distance between A and $B ; " \overline{A B}$ " shall denote the segment with endpoints A and $B ; "$ $\overparen{A B}$ " shall denote the line containing A and B; and $" \overrightarrow{A B}$ " shall denote the ray with A as endpoint and B any point thereof different from A.

If C is a sphere, we shall use "I(C)" to denote the interior of the sphere; "I(4RST)" shall denote the interior of the angle \&ST. "C," will denote the center of the sphere C.

In general, when there is to be an extension from Euclidean space to hyperbolic space, higher case letters shall denote the former, while lower case letters shall denote the latter. For example, \underline{m} will denote the measure of a hyperbolic angle, while \underline{M} will denote the measure of the Euclidean angle associated with the given hyperbolic angle.

Euclidean lines and planes shall be referred to as "E-lines" or "E-planes", and lines and planes in hyperbolic space shall be called "H-1ines" or "H-planes".

In addition，we shall make use of the following standard symbols： ＂ヨ＂means＂there exists＂；＂Э＂，＂such that＂；＂C＂，＂is contained in； ＂コ＂，＂contains＂；＂Є＂，＂is an element of＂；＂L＂，＂is perpendicular to＂； ＂ِ＂，＂is congruent to＂；＂孔＂，＂angle＂；＂Δ＂，＂triangle＂；＂Φ＂，＂is orthogonal to＂；＂＝＂，＂is equal to＂；＂U＂，＂the union of＂（with respect to sets）；＂\cap＂，＂the intersection of（with respect to sets）；＂＞＂， ＂is strictly greater than＂；＂＜＂，＂is strictly less than＂；＂\geq＂，＂greater than or equal to＂；＂\leq＂，＂less than or equal to＂．

In order to develop a geometry，a number of primary postulates must be assumed on the basis of which the theorems of the system may be proved．There are several equally logical successions in which these postulates may occur；we shall employ the order used by Moise［4，p．37，ff ］． The postulates which are used for hyperbolic geometry are as follows：

1．Incidence Postulates
1）Given two points，there is exactly one line containing them．

2）Given three non－collinear points，there is exactly one plane containing them．

3）If two points lie in a plane，then the line containing them lies in the plane．

4）If two planes intersect，then their intersection is a line．

5）Every line contains at least two points．Every plane contains at least three non－collinear points．Space contains at least four non－coplanar points．

2．Distance Postulates

1）Distance is defined as a function associating with
every pair of points P, Q in space, a non-negative real number R. R is called the distance between the points.
2) For every pair of points P, Q the distance between P and $Q \geq 0$.
3) The distance between P and Q is O if and only if $P=Q$.
4) The distance between P and Q equals the distance between Q and P for every P and Q in space.
5) (the Ruler Postulate) Every line has a coordinate system.
3. Space-Separation Postulate: Given a plane in space. The set of all points that do not lie in the plane is the union of two sets H_{1} and H_{2} such that each of the sets is convex and such that if point P belongs to one of the sets and point Q to the other, the segment $\overline{P Q}$ intersects the plane. 4. Angle Measure Postulates

1) There exists a function $m: ~ Q \rightarrow R^{*}$, where Q is the set of all angles and R^{+}is the set of positive real numbers. The real number associated with each angle in this function is called the measure of the angle.
2) For every angle A, the measure of A is between O and 180 .
3) Let $\overrightarrow{A B}$ be a ray on the edge of the half-plane H. For every number \underline{r} between 0 and 180 , there is exactly one ray $\overrightarrow{A P}$, with P in H, such that the measure of angle $\triangle P A B$ is \underline{r}.
4) If D is in the interior of angle $¥ B A C$, then the measure of angle $\triangle B A C$ equals the measure of angle $\triangle B A D$
plus the measure of angle $X D A C$.
5) If two angles form a linear pair, then they are supplementary.
5. Congruence Postulate: Given a correspondence between two triangles or between a triangle and itself. If two sides and the included angle of the first triangle are congruent to the corresponding parts of the second triangle, then the correspondence is a congruence.
6. Parallel Postulate: Given a line and a point in a plane, there exist at least two lines in the plane containing the point which are parallel to the given line.

II. Properties of Orthogonality

Definition 1: Two circles are said to be orthogonal if and only if the lines tangent to each circle at a point of intersection intersect each other at right angles (Figure I).

The Poincaré model is based on the concept of orthogonal circles. The plane in this model is the interior of a given circle C; lines in the model are either diameters of the circle less the endpoints or the intersection of circles orthogonal to C with the interior of C. In Figure II, the interior of C is the plane of the model, while diameter $A B-\{A, B\}$ is an example of a line as is arc $\widehat{R S}$ (of circle D, orthogonal to C$)$.

Definition 2: Consider the circle C with center C, and radius r. Let P be a point of $I(C)$. The point $P^{\prime} \in \overrightarrow{C_{1} P}$ in the exterior of C such that $C_{1} P \cdot C_{1} P^{\prime}=r^{2}$ is called the inverse point of P with respect to C. It is clear that if P lies on C, then $P=P^{\prime}$. The inverse of a point is unique since the real number associated with $C_{1} P^{\prime}$ is unique.

We shall state three theorems concerning orthogonal circles which will be fundamental to theorems concerning orthogonal spheres. Their proofs are given elsewhere [3, p. 98-99].

Theorem I: The angles between two intersecting circles are the same at both points of intersection.

Theorem 2: Two circles are orthogonal if and only if the tangent to each circle at a point of intersection passes through the center of

Figure I

figure II - Poincaré Model
the other.
Theorem 3: Two circles are orthogonal if and only if a line through the center of one, intersecting the other, intersects it in inverse points with respect to the first circle.

Having established these preliminary notions of orthogonality with respect to circles, we are able to develop the concepts with respect to spheres.

Definition 3: Two spheres intersect at right angles if and only if at a point of intersection, a plane tangent to one sphere is perpendicular to a plane tangent to the other sphere.

Definition 4: Spheres which intersect at right angles are said to be orthogonal. (Figure III)

Theorem 4: Let C and D be intersecting spheres. If C and D intersect at right angles at one point of their intersection, then they intersect at right angles at each point of their intersection.

Let C and D denote spheres intersecting at right angles and let R be a point of the intersection. Let C, be the center of $C ; D_{1}$, of $D_{\text {. }}$ Let S be any other point of intersection. Consider triangles $\triangle R C_{1} D_{1}$ and $A S C_{1} D_{1} . \quad C_{1} R \cong C_{1} S . \quad D_{1} R \cong D_{1} S . \quad C_{1} D_{1} \cong C_{1} D_{1}$. By the side-side-side congruence theorem, $\Delta R C_{1} D_{1} \approx \Delta C_{1} S D_{1}$. Since $\left\{C_{1} R D_{1}\right.$ is a right angle, corresponding $\Varangle C, S D$, must be a right angle and hence the spheres intersect in right angles at each point of intersection.

Theorem 5: Two intersecting spheres are orthogonal if and only if a plane containing the center of one and intersecting the other in more than one point intersects the spheres in orthogonal circles.

1) Let C and D be orthogonal spheres. Consider a plane F, containing C_{1}, and intersecting D in more than one point. $C \cap F$ and $D \cap F$

Figure III
are both circles since the intersection in each case contains more than one point.
$F \cap(C \cup D)$ is two intersecting circles. Let R be a point of intersection of $F \cap(C \cup D)$. Let G and H be unique tangent planes to C and D respectively at the point R. $G \perp H$ at R since $C \Phi D$. Since $C \Phi D, \overleftrightarrow{C}, R \perp H$ at R; $\overleftrightarrow{D_{1} R} \perp G$ at R. Since any plane perpendicular to a line at a point contains all lines perpendicular to the given line at the point, $\overleftrightarrow{C, R \subset G}$ and $\overleftrightarrow{D_{1} R} C_{H} \Rightarrow \overleftrightarrow{C_{1} R} \perp \overleftrightarrow{D_{1} R}$ (a line perpendicular to a plane at a given point is perpendicular to any line in the plane through the given point). $\overleftrightarrow{C_{1} R} \perp \overleftrightarrow{D_{1} R} \Longrightarrow{\overrightarrow{C_{1} D}}^{2}={\overline{C_{1} R}}^{2}+{\overrightarrow{D_{1} R}}^{2}$. Let P be the center of $E \cap D_{\text {. Then }}^{D_{1}}$ must lie on a line through P perpendicular to $F \cap D$. Therefore $\overleftrightarrow{C_{1} P} \perp \overleftrightarrow{D_{1} P} \Rightarrow \vec{C}_{1} D_{1}^{2}={\overrightarrow{C_{1} P}}^{2}+\overrightarrow{P D}_{1}^{2}$. Since $\overleftrightarrow{D_{1} P}$ is perpendicular to any line in $F \cap D$ through $P, \overline{D_{1} P} \perp \overline{P R} \Rightarrow{\overline{D_{1} R}}^{2}={\overline{C_{1} R}}^{2}+\overline{R P}^{2}=\overline{C_{1} R} \perp \overline{P R}$. Since R is a point of intersection of the circle and since $\overline{C_{1} R}$ and $\overline{P R}$ are perpendicular tangents to $C \cap F$ and $D \cap F$, by theorem 3, ($C \cap \mathrm{~F}) \Phi(D \cap \mathrm{~F})$
2) Let C and D be intersecting spheres and let F be a plane containing C, such that $C \cap F$ and $D \cap F$ are orthogonal circles in F. Let R be a point of intersection of the two circles $C \cap F$ and $D \cap F$. Since $C \cap F$ and $D \cap F$ are orthogonal, there exist tangent lines $T, U C F$, tangent to C and D respectively. There exists a line V, perpendicular to F at R. T and V determine a plane $G ; U$ and V determine a plane H; $H \cap G=V$, since V is contained in both planes. Since T and U are perpendicular, G and H are perpendicular planes. G and H are tangent planes to C and D, respectively, at the point R. By definitions 4 and 5, C and D are orthogonal.

Theorem 6: If L is a line through the center of C, of a sphere C, L intersects any sphere orthogonal to C in inverse points.

Let C and D be orthogonal spheres, with line L containing C, and
intersecting D. Let G be a plane containing L. $G \cap(C U D)$ is two orthogonal circles (Theorem 5). Since L passes through C_{1}, L intersects $G \cap D$ in inverse points. If L intersects D in only one point, that point will be its own inverse. Since L will not intersect D except in $G \cap D$, the points of intersection of L with an orthogonal sphere are inverse points.

Theorem 7: Given a point J, in the exterior of sphere C. There is exactly one sphere J having J_{1} as center and orthogonal to C.

Consider a tangent plane T from J_{1} to C. Let $T \cap C=\{R\}$. J_{1}, C_{1}, and R determine a plane G. $T \cap G$ is J, R, which is tangent to $C \cap G$. Then $\overline{C_{1} R} \perp \overline{J_{1} R}$. Therefore $C \cap G$ is a circle with J_{1} as center and $J_{1} R$ as radius. Using Theorem 5, it may seem that there exists a sphere J orthogonal to C with J_{1} as center and radius $J_{1} R$.

To prove that this sphere is unique, assume that there are two spheres K and K_{2} with J_{1} as center, each orthogonal to C. Consider a plane H containing G and J and therefore two points of $K \cap C$ and two points of $K_{2} \cap C$. Under the above assumption, H intersects C and K, as well as C and K_{2} in orthogonal circles (Figure IV). Let R and R_{2} be the points of $\mathrm{K} \cap \mathrm{C} \cap \mathrm{H} ; \mathrm{S}$ and S_{2} are the points of $\mathrm{K}_{2} \cap_{\mathrm{D}} \cap_{H}$. By definition of orthogonal circles, there exists a line through J_{1} tangent to $C \cap H$ at R and a similar tangent at R_{2}. Also, there are tangents from J_{1} to $C \cap H$ at S and S_{2}. However, from a point outside a circle, only two lines may be drawn tangent to the circle, leading to a contradiction of the assumption that there are two spheres orthogonal to C with J_{1} as center.

Theorem 8: Let C denote a sphere with center G. Let F denote a plane $\ni F \cap I(C) \notin \phi$ and $C \notin F$. Let M denote a circle in $F \ni M \cap I(C) \nmid \phi$.

Figure IV

There exists a unique sphere $D \ni M C D$ and $D \Phi C$.
Let P denote the center of M and L denote the perpendicular to F at P. If $L=\overleftrightarrow{C} \vec{P}$, then consider a plane G containing L. $G \cap M$ consists of two points Q and $T . Q$ has a unique inverse $Q^{\prime} \in G$ with respect to C (Definition 2). The points Q, T, and Q^{\prime} determine a unique circle $N C G$ orthogonal to $G \cap C$ (Theorem 3). N, lies on L since L is perpendicular to F at P. N, is then the center of a unique sphere orthogonal to C (Theorem 7).

If $L \neq \overleftrightarrow{C, P}$, then C, and L determine plane G. Let $A, B \in G \cap M$ and let $A^{\prime} \in G$ denote the inverse of A with respect to C. Then A, B, and A^{\prime} determine unique circle N orthogonal to $C \cap G$. Since N is equidistant from A and $A^{\prime}, N_{1} \in L$. N_{1} determines exactly one sphere orthogonal to C (Theorem 7). Since $N_{1} \in L, N_{1}$ is a distance $N_{1} A$ from all points of M; thus, MCN. N, is then the center of a sphere orthogonal to C (Theorem 5) which is unique (Theorem 7).

III. VERIFICATION OF MODEL

A. DEFINITION OF MODEL

In order to define this model, let C be a Euclidean sphere. The set of all points in the interior of C shall constitute Hyperbolic space. This space shall be denoted by $I(C)$, and E shall denote Euclidean space.

H-points in the model shall be the Euclidean points in I(C). H-lines in the model shall be of two types: An H-line of Type I saall be the intersection of a Euclidean line containing C, and $I(C)$. To define an H-line of Type II, let D be a sphere orthogonal to C. An H-line of Type II is the intersection of $I(C) \cap D$ and an E-plane F containing C_{1}. $F \cap D \cap I(C)$ shall be denoted by D_{f}.

H-planes of the model shall also be of two types: An H-plane of Type I is the intersection of a Euclidean plane containing C, with $I(C)$. An H-plane of Type I may also be regarded as a Poincaré model. An H-plane of Type II is the intersection of a sphere D, orthogonal to C, with $I(C)$. $D \cap I(C)$ shall be denoted by \tilde{D}.

B. INCIDENCE POSTULATES

Incidence Postulate 1: Given two points, there is exactly one line containing them.

Let A and B belong to $I(C)$. A and B determine a unique E-line. If $\overleftrightarrow{A B}$ contains C_{1}, then $\overleftrightarrow{A B} \cap I(C)$ is an H-1ine of Type I and from the Euclidean postulates, A and B are uniquely contained therein. If $\overleftrightarrow{A B}$ does not contain C_{1}, then there is a unique E-plane F containing A, B and C_{1}. This plane intersects C in a circle. In the Poincaré model, two points in the model are uniquely contained in a line D_{f}, an arc of a circle orthogonal to $C \cap F$. This line D_{f} is a line of Type II, uniquely containing A and B.

Incidence Postulate 2: Given three non-collinear points, there is exactly one plane containing them.

Let non-collinear points A, B, and J belong to $I(C)$. A, B, and J determine a unique E-plane F. If F contains C_{1}, then $F \cap I(C)$ is a plane of Type I, and from the Euclidean postulates, A, B, and J are uniquely contained therein. If F does not contain C_{1}, then A, B, and J determine a unique circle MCF. This circle may be contained in an infinite number of spheres, all of whose centers lie on an E-1ine L, perpendicular to F and passing through the center of M. Exactly one of these points of L is the center of a sphere orthogonal to C (Theorem 8). The intersection of this unique sphere and $I(C)$ defines a plane of Type II containing the three points A, B, and J.

Incidence Postulate 3: If two points lie in a plane, then the line containing them lies in the plane.

Consider a Type I plane containing A and B. If A, B, and C, are
collinear, then $A, B \in$ an H-line of Type I, which lies in the plane since Type I lines are subsets of Euclidean lines. If A, B, and C_{1} are non-collinear, then they determine a unique E-plane F. A and B are uniquely contained in a line L of Type II (Incidence Postulate 1). By definition of H-lines, LCF. There exists a circle M (containing A and B) $\ni M C F$ and $M \Phi \subset \cap F$. Since the $H-1$ ine containing A and B is unique, $L=M \cap I(C)$ and is therefore contained in F. If A and B are contained in a plane of Type II, D_{f}, then they determine an H-line $\overleftrightarrow{A B}$. By definition of H-lines $\overleftrightarrow{A B}$ must lie in D.

Incidence Postulate 4: If two planes intersect, their intersection is a line.

If the intersection is of two Type I planes, the intersection is a line, since two Euclidean planes intersect in a line. Since all Type I planes contain C_{1}, one point of the intersection must be the center. The line of intersection must therefore be a line of Type I.

If the intersection is of a Type I plane F, and a Type II plane \tilde{D}, it may be seen that $F \cap D$ (the Euclidean sphere determining \tilde{D}) is a circle orthogonal to $C \cap_{F}$ (Theorem 5). D is then an H-1ine of Type II by definition.

If the intersection is of two Type II planes, we consider the spheres B and D, each orthogonal to C. $B \cap D$ is a circle. Let R be a point of $B \cap D$. Then the $E-1$ ine $\overleftrightarrow{C_{1} R}$ will intersect B in inverse points R and $R_{1}{ }^{\prime} ; \overleftrightarrow{C} C_{1}$ will intersect D in inverse points R and $R_{2}{ }^{\prime}, R_{1}{ }^{\prime}=R_{2}^{\prime}$ since the inverse of a point is unique. R^{\prime}, then must be a point of $B \cap D$. Let G be the plane containing $B \cap D$. C_{1} lies in G since C_{1}, R, and R^{\prime} are collinear. Since $B \cap D$ is then in $G, B \cap D \cap I(C)$ is a line of Type II (Theorem 5).

Incidence Postulate 5: Every line contains at least two points. Every plane contains at least three non-collinear points. Space contains at least four non-coplanar points.

Since this model is a subset of Euclidean space, lines whether of Type I or II must contain at least two points. A plane of Type I, being a subset of a Euclidean plane necessarily contains at least three non-collinear points. A Euclidean sphere, forming a plane of Type II, also contains at least three non-collinear points. The interior of a Euclidean sphere contains at least four non-coplanar points and hence $I(C)$ contains at least four non-coplanar points.

C. DISTANCE POSTULATES

Definition 5: Let $f: L \rightarrow R$ be a one-to-one correspondence between a line L and the real numbers. If for all points, $P, Q \in L$ we have $P Q=|f(P)-f(Q)|$, then f is a coordinate system for L.

Distance Postulate 1: Distance is defined as a function associating with every pair of points, Q, T in space, a non-negative real number r. r is called the distance between the points.

If D is a sphere orthogonal to C and G is a plane containing C, and intersecting $I(D), D \cap C \cap G=\{R, S\}$. For each point $Q \in D_{g}$, let us define $f(Q)=\ln Q R / Q S . Q=Q^{\prime} \Rightarrow Q^{\prime}=Q^{\prime} R$ and $Q S=Q^{\prime} S \Rightarrow$ $Q^{R} / Q S=Q^{\prime} R / Q^{\prime} S \Rightarrow \ln Q R / Q S=\ln Q^{\prime} R / Q^{\prime} S$, which demonstrates that f is a function. For each real number S, there exists a positive real number t such that $\ln t=S=m a$ point $Q \in D_{g} \Rightarrow Q R / Q S=t \Rightarrow$ f is an "onto" mapping. If $\ln Q R / Q S=\ln Q^{\prime} R / Q^{\prime} S$, then $Q=Q^{\prime}=m$ f is one-to-one.

Let us define a function $d: I(C) X I(C) \rightarrow R^{+}$. Let Q and $T \in I(C) . Q$ and T determine a unique H-line intersecting C at U and V. We will define $d(Q, T)=|\ln Q U / Q V-\ln T U / T V|=\left|\ln \frac{Q U / Q V}{T U / T V}\right|$.

Distance Postulate 2: For every $Q, T, d(Q, T) \geq 0$.
Since $d(Q, T)$ is expressed as an absolute value, $d(Q, T)$ must be positive or zero.

Distance Postulate 3: $d(Q, T)=0$, if and only if $Q=T$.

1) Assume $d(Q, T)=0$

$$
\begin{aligned}
& \text { then }\left|\ln \frac{Q R / Q S}{T R / T S}\right|=0 \Rightarrow \ln \frac{Q R / Q S}{T R / T S}=\ln 1 \Rightarrow \\
& \frac{Q R / Q S}{T R / T S}=1 \Rightarrow Q
\end{aligned}
$$

2) Assume $Q=T$
then $\left|\ln \frac{Q R / Q S}{T R / T S}\right|=|\ln \quad 1|=|0|=m d(Q, T)=0$
Distance Postulate 4: $d(Q, T)=d(T, Q)$ for every Q and T in S.

$$
\begin{gathered}
d(Q, T)=\left|\ln \frac{Q R / Q S}{T R / T S}\right|=|\ln Q R / Q S-\ln T R / T S|= \\
|\ln T R / T S-Q R / Q S|=\left|\ln \frac{T R / T S}{Q R / Q S}\right|=d(T, Q)
\end{gathered}
$$

By the transitive law, $d(Q, T)=d(T, Q)$
Distance Postulate 5: Every line has a coordinate system (Ruler Postulate).

From the definition of the distance function, we have $d(Q, T)=|\ln Q R / Q S-\ln T R / T S|=|f(Q)-f(T)|$. By definition 5, $\overleftrightarrow{\text { QI }}$ has a coordinate system.

A primary consequence of the distance postulates and especially of the Ruler Postulate is the concept of betweenness.

Definition 6: If points A, B, and C are collinear and if $d(A, B)+d(B, C)=d(A, C)$, then B is between A and C.

D. SPACE SEPARATION

Definition 7: A set S is called convex if for every two points $P, Q \in S$, the entire segment $\overline{P Q}$ lies in S.

Space Separation Postulate: Given a plane in Space (H-space). The set of all points that do not lie in the plane is the union of two sets such that Deach of the sets is convex and 2) if P belongs to one of the sets and Q to the other, then the segment $\overline{P Q}$ intersects the plane.

In H-space, both types of planes must be considered. Let F be an H-plane of Type I. FCE-plane G. ($F=G \cap I(C)$.

Let H_{1} and H_{2} denote the E-half-spaces determined by G_{0}. We shall make the following definitions: H-half-space $h_{1}=H_{1} \cap I(C)$

$$
\text { H-half-space } h_{2}=H_{2} \cap I(C)
$$

By definition of the model as the set of points in the interior of a Euclidean sphere, neither h_{1} nor h_{2} is empty. $I(C)=h_{1} U h_{2} U F$ which implies $I(C)$ - $F=h_{1} \cup h_{2}$.

To prove that each of the sets is convex, let us consider the points $A, B \in h_{1}$ (the case for h_{2} is identical). Let A, B, and C, be collinear. Since $A, B \in h_{1}, A, B \in H_{1} \Rightarrow \overline{A B} \in H_{1}$. Since a unique H-line in $I(C)$ determines $A B$ and since $\overline{A B} C H_{1}, \overline{A B}$ must belong to h_{1}.

If A, B, C, are non-collinear, then A, B, and C, determine a unique E-plane J. $J \cap I(C)$ is a Poincaré model; therefore $\overline{A B}$ must belong to $J \cap h_{1}$, which implies $\overline{A B} C_{h_{1}}$.

Now let $A \in h_{1}$ and $B \in h_{2}$. If A, B, and C_{1} are collinear, then $\overleftrightarrow{A B}$ is a line of Type I, therefore a subset of an E-line. Since $I(C)$ is an E-space and $A \in H_{1}, B \in H_{2}, \overline{A B}$ must intersect G. Since A and B are clearly in H_{1} and H_{2}, the point of intersection is $C_{1} \in F$. If A, B, and C_{1} are non-collinear, then A, B, and C_{1} determine
a unique E-plane J. $\mathrm{J} \cap \mathrm{I}(\mathrm{C})$ is a Poincaré model, with $\mathrm{F} \cap \mathrm{J}$ dividing the model into two half-planes: $\mathrm{J} \cap \mathrm{h}_{1}$ and $\mathrm{J} \cap \mathrm{h}_{2} . \mathrm{A}$ and B determine a line of Type II in J. Since $A \in h_{1}, B \in h_{2}, \overleftrightarrow{A B}$ must intersect $F \cap_{J}$ from the plane separation properties of the Poincaré model. $\overline{\mathrm{AB}}$ intersects $F \cap J$ implies $\overline{A B}$ intersects F.

Now let G be an H-plane of Type II, called $\tilde{D} . \tilde{D}=D \cap I(C)$ where D is orthogonal to C. In H-space we shall take the following definitions:

$$
\begin{aligned}
& \text { H-half-space } h_{1}=I(C) \cap E x(D) \\
& \text { H-half-space } h_{2}=I(C) \cap I(D)
\end{aligned}
$$

Therefore $I(C)-\tilde{D}=h_{1} U h_{\mathbf{2}^{\prime}}$. Neither h_{1}, nor h_{2} is empty because $I(C)$ must contain the Euclidean points of the interior of a sphere and $I(C) \cap I(D)$ must contain at least one point if D is orthogonal to C. To show that each of the sets is convex, consider points $A, B \in h_{1}$. If A, B, and C, are collinear, then the Type I segment $\overline{A B}$ is contained in h_{1} by virtue of its being a Euclidean line. If A, B and C, are noncollinear, then A, B, and C_{1} determine a unique E-plane, $F_{\text {. }} F \cap I(C)$ is a Poincaré model. A and B determine an H-line of Type II in F. From the properties of the Poincaré model, $\overline{A B}$ must lie in $F \cap h_{1} \Rightarrow \overline{A B} C_{h_{1}}$. Now consider $A, B \in h_{2}$. If A, B, and C, are collinear, any plane containing the segment $\overline{A B}$ of the Type I line intersects C in a Poincare model, whose plane separation properties assure that $\overline{A B} C h_{2^{\circ}}$ If A, B, and C_{1} are non-collinear, then A, B, and C_{1} determine a unique plane F. $F \cap C$ is a Poincaré model, with $F \cap D$ separating the planes into two half-planes, $F \cap h_{1}$ and $F \cap h_{2} . A$ and B determine a unique H-line of Type II, $\overline{A B}$ in F. From the plane separation properties of the Poincaré model, $\overline{A B} C F \cap_{h_{1}} \Rightarrow \overline{A B} C h_{1}$.

Now let $A \in h_{1}$ and $B \in h_{2}$. If A, B, and C_{1} are collinear, then $\longleftrightarrow C_{1} B$ is a line of Type I. Consider any E-plane J containing $\overleftrightarrow{C_{1} B}$. Since
$B \in I(D), J$ cuts C and D in orthogonal circles. $J \cap C$ is a Poincare model, $J \cap D$ separating the model into two half-planes. Since $A \in J \cap h$, and $B \in J \cap h_{2}$, from plane separation properties of the Poincare model, $\overline{A B}$ intersects $\mathrm{J} \cap \tilde{D}, \Rightarrow \overline{\mathrm{AB}}$ intersects $\tilde{\mathrm{D}}$.

If A, B, and C, are not collinear, they determine the E-plane J. $\mathrm{J} \cap \mathrm{I}(\mathrm{C})$ is a Poincaré model. A and B determine a unique line of Type II. $J \cap \tilde{D}$ is a line in the model separating the Poincaré plane into two half planes, $\mathrm{D} \cap \mathrm{h}_{1}$, and $\mathrm{J} \cap \mathrm{h}_{2}$. By plane separation properties of this model, $\overline{A B}$ must intersect $J \cap \tilde{D}_{0}$. Since $\overline{A B}$ is unique in $I(C)$, this statement implies that $\overline{A B}$ intersects \tilde{D}.

E. ANGLE MEASURE

Definition 8: Let L be an H-line in an H-plane F. Let the H-line K intersecting L in one point A divide F into two half-planes. An H-ray $\overrightarrow{A B}$ is defined as the point A and all points $B \in L$ which lie in one half plane. A ray is of Type I if L is a line of Type I and is a ray of Type II if L is a line of Type II.

Definition 9: An H-angle is the union of two non-collinear H-rays having a conmon endpoint.

Definition 10: Let $\overrightarrow{A B}$ denote a ray of Type II. A, B, and C, determine an H-plane of Type I, F. FCE-plane G. Let E-line $\overleftrightarrow{C, A}$ divide G into two E-half-planes. Let $L C G$ be the unique E-line tangent to $\operatorname{arc} \widehat{A B}$ at A. Let $\hat{B} \in L$ in the same half-plane as B. Then E-ray $\overrightarrow{A B}$ is called the tangent ray to $H-r a y ~ \overrightarrow{A B}$. A tangent ray to the $H-$ ray $\overrightarrow{A B}$ is denoted by $\overrightarrow{A B}$. If $\overrightarrow{A B}$ is a ray of Type I, the tangent ray to $\overrightarrow{A B}$ will be the E-ray $\overrightarrow{A B}$ containing $\overrightarrow{A B}$.

Definition 11: If \notin RST is an H-angle, then E-angle $\Varangle \hat{R} S \hat{I}$ (where $\overrightarrow{S R}$ is the tangent ray to $\overrightarrow{S R}$ and $\overrightarrow{S T}$ is the tangent ray to $\overrightarrow{S I}$) shall be called the associated E-angle to \neq RST.

It may be shown that for each H-angle the associated E-angle is unique. If both rays $\overrightarrow{S R}$ and $\overrightarrow{S T}$ are of Type I, then $\overrightarrow{S R}$ and $\overrightarrow{S I}$ determine a unique E-plane F. $\overrightarrow{S R}, \overrightarrow{S I} C E$ determine the E-angle $\Varangle \hat{R} \hat{S}$, unique because any other rays containing $\overrightarrow{S R}$ and $\overrightarrow{S I}$ are subsets of $\overrightarrow{S R}$ and $\overrightarrow{S I}$. If one ray is of Type I (say $\overrightarrow{S R}$) and the other, $\overrightarrow{S T}$, is of Type II, $\overrightarrow{S R}$ and $\overrightarrow{S T}$ determine a unique E-plane containing the E-angle $子 \hat{R} S \hat{T}$, as above, which is uniquely associated with H-angle \Varangle RST, since a tangent to a curve at a point in a plane is unique. If both rays $\overrightarrow{S R}$ and $\overrightarrow{S I}$
are of Type II, then each has a unique tangent ray, determining as above, the unique E-angle $\Varangle \hat{R} S \hat{T}$. Measure Postulate 1: There exists a function $m: ~ a \rightarrow R^{+}$, where $a_{\text {is }}$ the set of all angles and R^{+}is the set of all positive real numbers, This real number shall be called the measure of the angle. We shall define $m(\underset{X S S}{ })=M(\Varangle \hat{R} S \hat{I})$ where M is the angle function for E-space. Since M uniquely associates a positive real number with each E-angle, m will associate with each H-angle a unique positive real number determined by the function M of the associated E-angle.

Measure Postulate 2: For every angle \Varangle RST, $m(4 \mathrm{RST})$ is between 0 and 180.

By the unique association of every H-angle with an E-angle, $(\mathrm{m}(\Varangle \mathrm{RST})=\mathrm{M}(\Varangle \hat{\mathrm{R} S} \hat{\mathrm{I}}))$, and since $0<\mathrm{M}(\Varangle \mathrm{RST})<180$, then $0<\mathrm{m}(\not \underset{\mathrm{RST}}{ })<180$.

Neasure Postulate 3: Let $\overrightarrow{S R}$ be a ray on the edge of the H-halfplane H_{0}. For every number \underline{r} between 0 and 180 , there is exactly one ray $\overrightarrow{S I}$ with T in H such that $m(4 R S T)=r$.

If $\overrightarrow{S R}$ is a ray of Type I with $S=C_{1}$, then let F be the H-plane containing this H-half-plane. Then there exists an E-plane $G \ni F=G \cap I(C)$. Since $\overrightarrow{S R} C F, \overrightarrow{S R} \subset G$ and there exists a unique ray $\overrightarrow{S T} \subset G \ni M(\Varangle \hat{R} S \hat{T})=r$, which implies \exists unique ray $\overrightarrow{S I} C F \ni m(\Varangle R S T)=M(\Varangle \hat{R} S \hat{T})=r$.

If $\overrightarrow{S R}$ is a ray of Type I with $S \notin C_{1}$, then let F be the H-plane containing this H-half-plane. Then there exists an E-plane $G \ni F=G \cap I(C)$. Since $\overrightarrow{S R} C F, \overrightarrow{S R} C G$ and there exists a unique ray $\overrightarrow{S T} C G \ni M(\Varangle \hat{R} S \hat{I})=r$, which implies \exists unique ray $\overrightarrow{S T C F} \Rightarrow \mathrm{~m}(\boldsymbol{\chi}, \mathrm{RST})=\mathrm{M}(\Varangle \hat{\mathrm{R} S} \hat{\mathrm{~T}})=\mathrm{r}$.

If $\overrightarrow{S R}$ is a ray of Type I with $S \notin G$, then $\overrightarrow{S R}$ lies on the edge of a Type I half-plane, H. HCFCG as above and there exists $\overrightarrow{S I} C G \ni M(\forall \hat{R} S \hat{I})=r$. Consider the line LCG and perpendicular to $\overrightarrow{S I}$ at S. Consider also the

E-ray $\overrightarrow{C_{1} S}$. Let S^{\prime} be the inverse point of S with respect to C. The perpendicular bisector of $\overline{S S}{ }^{\prime}$ intersects L in a point D_{1}, which must be the center of a unique circle D tangent to $\stackrel{\leftrightarrow}{T S}$ and orthogonal to $C \cap G$. Let T be any point of $D \cap G \cap I(C)$ and note that the ray $\overrightarrow{S T}$ is uniquely determined by this construction. Since by definition, $\hat{R} S \hat{T}$ is uniquely associated with \Varangle RST, $M(\Varangle \hat{R} S \hat{T})=r=m(\Varangle R S T)=r_{\text {. }}$

If $\overrightarrow{S R}$ is a ray of Type $I I, \overrightarrow{S R}$ may lie on the edge of a Type I H-half-plane H. HCFCG, as above. Consider the tangent ray $\overrightarrow{S R} C G$. There exists a unique ray $\overrightarrow{S T} \ni \hat{T} \in G_{R}$, where $M(\hat{R} \hat{R} \hat{I})=r$. As above, $\overrightarrow{S I}$ is a unique tangent ray to an H-ray of Type II, $\overrightarrow{S I} \ni \mathrm{~m}(\boldsymbol{4}$ RST $)=r$.
$\overrightarrow{S R}$ may also lie on the edge of a Type II H-half-plane h. h is contained in the Type II H-plane $\tilde{D_{0}}$. Consider E-plane $\overleftrightarrow{C_{1} R S}$ which divides \tilde{D} into two half-planes h_{1}, and h_{2}. By definition of tangent ray, $\overrightarrow{S R} \subset \overleftrightarrow{C_{1} R S}$. Now consider the E-plane $G \perp \stackrel{\leftrightarrow}{C_{1} R S}$ and containing $\stackrel{\leftrightarrow}{\text { SRA}}$. . On the h_{1} side of $\overleftrightarrow{C, R S}$ there exists a unique ray $\overrightarrow{S T} C G \ni M(\Varangle R S T)=r$. Now consider the plane $\overleftrightarrow{C, S T}$. \overleftrightarrow{C} tangent. Then since $\overrightarrow{S T}$ must be the tangent ray to $\overrightarrow{S T}, M(\boldsymbol{X} R S T)=r$ $\Rightarrow m(\neq R S T)=r$.

Notation: If \underline{h} is a half-plane; L, the edge of \underline{h}; and \underline{m} a point of h ; " $\mathrm{h}_{\mathrm{m}}^{\mathrm{L}}$ " denotes the half-plane determined by L , containing \underline{m}. " $\mathrm{h}_{\mathrm{m}}{ }^{\mathrm{m}}$ " denotes the half plane determined by L not containing. m -

Measure Postulate 4: If U is in the interior of \Varangle RST, then $m(\boldsymbol{Y} R S T)=m(\Varangle$ RSU $)+m(\Varangle U S T)$.

We must show that if U lies in the interior of \triangle RST, then $\overrightarrow{S U}$ lies in the interior of the associated angle $\Varangle \hat{R} S \hat{T}$.

If $S=G$, then $\overrightarrow{S R}$ and $\overrightarrow{S I}$ are rays of Type I and $\overrightarrow{S U}$ must also be a ray of Type I. Associated with each of these rays is an E-ray
$\overrightarrow{S R}, \overrightarrow{S T}$, and $\overrightarrow{S U}$, respectively. Since the H-rays are Euclidean lines, with $U \in I(\notin R S T), U \in I(\nmid \hat{R} S \hat{T}), \overrightarrow{S U}$ lies in $I(\Varangle R S T)$. Then $M(\Varangle \hat{R} S \hat{I})=$ $M(4 \hat{R} S \hat{U})+M(\hat{U} S \hat{T})$ which implies $m(\nmid$ RST $)=m(4$ RSU $)=m(\Varangle$ UST $)$.

If $S \nmid C_{1}$, and $\overrightarrow{S R}$ is a ray of Type $I\left(\overrightarrow{S R} C\right.$ E-ray $\left.\overrightarrow{S S^{\prime}}\right)$, then $\overrightarrow{S T}$ is a ray of Type II. $\overrightarrow{S T}$ is contained in a sphere D orthogonal to C with center D_{1}. (Figure V_{0})
$\overrightarrow{S R}$ and $\overrightarrow{S T}$ are contained in an H-plane of Type I, F, which is contained in E-plane G. $G \cap(C \cup D)$ is two intersecting circles, $G \cap C$ and $G \cap D$. If $U \in I(\xi R S T)$ then $(\overrightarrow{S U}-\{S\}) C I(\not) R S T)$. SUCBg. Let L be the tangent line to $G \cap D$ containing $\overrightarrow{S T}$; likewise let M be the tangent to B_{g} containing $\overrightarrow{S U}$. (D $\left.-\{s\}\right) C h_{s}^{L} ; \quad(B-\{S\}) C h_{s^{*}}^{m}$

Every ray between $\overrightarrow{S R}$ and $\overrightarrow{S T}$ must intersect $G \cap D$ in a point other than S. Since $T \in h_{\mu}^{R S}$, every ray contained in $I(\xi \hat{T} S \hat{R})$ with endpoint S intersects $G \cap D$. Also every ray contained in $I(x, \hat{U S} \hat{R})$ with endpoint S intersects $G \cap B$ as well as $G \cap D$. Assume that $\overrightarrow{S U U} C_{-S}^{s \hat{p}}$. Then there are some rays of $\Varangle \hat{R} S \hat{T}$ which do not intersect D (namely those in I($4 \hat{T} S \hat{U})$) which is a contradiction of the assumption that $\overrightarrow{S U}$ lies in $h_{-S}^{s T}$. Therefore we have $\hat{S U C} C(\Varangle \hat{R} S \hat{T}) \Rightarrow M(\Varangle \hat{R} S \hat{T})=M(\Varangle \hat{R} S \hat{U})+M(\Varangle \hat{U} S \hat{S}) \Rightarrow$ $m(\nmid R S T)=m(\xi R S U)+m(\psi U S T)$.

The proofs for other angles formed by one ray of Type I and the other of Type II proceed in a similar manner.

If $S \neq C_{1}$, and $\overrightarrow{S R}$ and $\overrightarrow{S T}$ are rays of Type II lying in the same Type I plane G, then consider the angle RST. Let $U \in I(\boldsymbol{\gamma}$-RST). Let $\overrightarrow{S R}, \overrightarrow{S T}$, and $\overrightarrow{S U}$ be tangent rays to $\overrightarrow{S R}, \overrightarrow{S T}$, and $\overrightarrow{S U}$, respectively. Let $\overrightarrow{S R}$ be an arc of circle $G \cap A$; $\overrightarrow{S T}$, of circle $G \cap D$, and $\overrightarrow{S U}$, of circle $G \cap B$. Then all points of $h_{S^{\prime}}^{s T}$ intersect $G \cap D$; all in $h_{s^{\prime}}^{S 0}$ intersect B and all in

Figure \mathbb{V}
$h_{B}^{s s^{\prime}}$ intersect A. Then all E-rays of $I\left(\mathcal{R S O}^{\prime}\right)$ must intersect circle $D_{\text {. }}$ Since U is in the interior of $R_{S T}, h_{s}^{s U}$ must intersect B. Assume that $\overrightarrow{S U}$ lies in $h_{-s}^{s \hat{s}}$. Then there are some rays of \Varangle RST which do not intersect D, namely those in $\Varangle \hat{T} S \hat{U}$. This is a contradiction of the assumption that $\overrightarrow{S U}$ lies in ${\underset{\sim}{s}}_{\substack{\text { sरे }}}$ because all rays in $I(\forall \hat{I} S \hat{U})$ with endpoint S must intersect D. We therefore have $\overrightarrow{S U C} C I(A R S I) \Rightarrow N(4 R S T)=$ $M(4 \mathrm{RSU})+M(X U S T) \Rightarrow m(\Varangle \mathrm{RST})=m(\Varangle \mathrm{RSU})+m(\Varangle \mathrm{XSI})$.

If $S \neq C$, and $\overrightarrow{S R}$ and $\overrightarrow{S I}$ are Type II rays not contained in the same Type I plane, consider two E-planes: one, F, contains C, and $\overrightarrow{3 k}$; the other, G, contains C, and $\overrightarrow{S I}$. Since $U \in I(\mathcal{R S T}), U$ also belongs to the interior of the dihedral angle formed by F and G, which intersect in the line $\overleftrightarrow{C_{1} \text {. }}$. By definition of tangent rays, $\overrightarrow{A R}$ and $\overrightarrow{S I}$ lie in F and G, respectively. The tangent ray to $\overrightarrow{S U}$ must lie in the interior of this cihedral angle, as E-plane H contains C, and $\overrightarrow{S U}$, therefore also $\overrightarrow{S U}$.
 $m(4$ RST $)$.

Definition 12: Let $\overrightarrow{\mathrm{SR}}$ be a ray. If T is a point of $\overleftrightarrow{\mathrm{Sk}}$ such that $\overrightarrow{S I} \not \subset \overrightarrow{S R}$, then $\overrightarrow{S R}$ and $\overrightarrow{S I}$ are called opposite rays.

Definition 13: If $\overrightarrow{S R}$ and $\overrightarrow{S I}$ are opposite H-rays and $\overrightarrow{S U}$ is any third H-ray, then \Varangle RSU and \Varangle UST form a linear pair.

Definition 14: If $m(\Varangle$ RSU $)+m(\Varangle$ UST $)=180$, then the angles are called supplementary.

Measure Postulate 5: If two angles form a linear pair, then they are supplementary.

If $S=C_{1}$, the union of opposite H-rays $\overrightarrow{S R}$ and $\overrightarrow{S I}$ must be a line of Type I. These rays are contained in opposite E-rays $\vec{S} \vec{R}$ and $\vec{S} \vec{R}$ through C_{1}. If U is any other point of the H-space, ray $\overrightarrow{C_{1} U}$ is also
contained in an E-ray $\overrightarrow{C, H}$. Then, $M(\Varangle \hat{R} S \hat{U})+M(\Varangle \hat{U} S \hat{S})=180$, since $\overrightarrow{S \mathbb{R}}$ and $\overrightarrow{S I}$ are opposite E-rays, which implies $m(\xi$ RSV $)+m(\Varangle$ USS $)=180$. If $S=G$, then opposite H-rays $\overrightarrow{S R}$ and $\overrightarrow{S I}$ may be contained in either a line of Type I or a line of Type II. Suppose both rays belong to a Type I line. Then, associated with each ray is a unique ray, $\overrightarrow{S R}$ and $\overrightarrow{S T}$ respectively. These rays lie on the E-line $\stackrel{\leftrightarrow}{\mathbb{R} \tilde{T}}$. By hypothesis, we have a third ray of Type II, $\overrightarrow{S U}$, with which $\overrightarrow{S U}$ is associated. Since $M(\nmid \hat{R} S \hat{U})+M(\nmid \hat{U} S \hat{I})=180$, by definition $m(\Varangle$ RU $)+m(\not) U S T)=180$. Suppose both rays $\overrightarrow{S R}$ and $\overrightarrow{S T}$ are contained in a line of Type II. Associated with each ray is a unique tangent ray, $\overrightarrow{S R}$ and $\overrightarrow{S T}$. The union of these tangent rays must be an E-line because a circle has a unique tangent at a given point. We are also given a third ray $\overrightarrow{S U}$ which forms a linear pair with $\overrightarrow{S R}$ and $\overrightarrow{S T}$. Associated with $\overrightarrow{S U}$ is $\overrightarrow{U U}$. Then because $\hat{X} \hat{I}$ is an E-line, $M(4 \hat{R} S \hat{U})+M(4 \hat{U S T})=180$, which implies $m(4$ RSV $)+m(4$ USS $)$ $=180$.

F. CONGRUENCE POSTULATE

Definition 15: If A, B, and C are three non-collinear points, then the set $\overline{A B} U \overline{B C} \cup \overline{A C}$ is called a triangle.

Definition 16: Let $\overline{A B}$ and $\overline{A D}$ be segments. If $A B=C D$, then the segments are called congruent and we write $\overline{A B} \cong \overline{C D}$.

Definition 17: If $m(\Varangle A B C)=m(\nmid D E F)$, then the angles are called congruent and we write $\Varangle \mathrm{ABC} \approx \not \subset \mathrm{DEF}$.

Definition 18: Given $\triangle A B C, \triangle D E F$ and a one-to-one correspondence $\mathrm{ABC} \leftrightarrow \rightarrow$ DEF between their vertices. If every pair of corresponding sides is congruent and every pair of corresponding angles is congruent then the correspondence is a congruence.

Side-Angle-Side Congruence Postulate: Given a correspondence between two triangles. If two sides and the included angle of the first triangle are congruent to the corresponding parts of the second triangle, then the correspondence is a congruence.

Given two triangles $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ with the correspondence $A B C \leftrightarrow A^{\prime} B^{\prime} C^{\prime} . \quad$ In addition $\overline{A B} \cong \overline{A^{\prime} B^{\prime}}, \overline{B C} \cong \overline{B^{\prime} C^{\prime}}, \notin B \cong \not \subset B^{\prime}$. Each triangle $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ determines a unique plane G and G^{\prime}, respectively. When G is a plane of Type I and $G=G^{\prime}$, then the two triangles lie in an example of a Poincaré model in which the SAS postulate holds. $[2$, p. 364$]$; therefore $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$.

If $\triangle A B C C G$ and $A^{\prime} B^{\prime} C^{\prime} C G^{\prime}$, both G and G^{\prime} being planes of Type I, then G and G^{\prime} must intersect in a Type I line L through C. Suppose the dihedral angle between G and G^{\prime} is θ. Since G and G^{\prime} are subsets of E-planes, the rigid motion of $G \prime$ about L of Θ degrees, will map
$\triangle A^{\prime} B^{\prime} C^{\prime}$ to $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} \in G$, preserving distance and angle measure. Clearly $\triangle^{\prime} A^{\prime} C^{\prime} \cong \triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. As above, $\triangle A B C \cong A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. By the transitive property of the equivalence relation, $\triangle A B C \cong \triangle_{A^{\prime}} B^{\prime} C^{\prime}$. When one triangle with the above correspondence is in a plane of Type I and the other is in a plane of Type II, we shall define a mapping from the plane of Type II onto a plane of Type I so that one of the above situations will exist. Consider the intersection of orthogonal spheres C and D with a plane G, containing centers C, and D, respectively (Figure VI). Let $\overrightarrow{C_{1} D_{1}} \cap\left[D \cap_{G}\right]=\{A\}$. Let L be a line perpendicular to $\overrightarrow{C_{1} D_{1}}$ at A. $L \cap C=\{R, S\}$. Let K be a line tangent to $C \cap G$ at R. Let $K \cap \vec{C}_{1} D_{1}=\left\{B_{1}\right\}$. By this construction, B_{1} is the inverse of A with respect to $C[3, p .87]$. By Theorem $3, B_{1}$ must be contained in D. B_{1} is also the center of a sphere B orthogonal to C with radius $B_{1} R$.

The mapping shall be defined as follows: Let F be the Type II plane \tilde{D} described above and let $F^{\prime}=G \cap I(C)$ where G is an E-plane perpendicular to $\overleftrightarrow{C_{1} D_{1}}$ at C_{1}. Let $f:\left(E-\left\{B_{1}\right\}\right) \rightarrow\left(E-\left\{B_{1}\right\}\right)$ where $f(Q)=Q^{\prime}$ and Q^{\prime} is the inverse of Q with respect to B. f is therefore one-to-one and onto.

We wish to show that $f(F)=F^{\prime}$: Let $\{T\}=\overrightarrow{B_{1} Q \cap F^{\prime}}$ where $Q \in F$, $Q \neq A$. Then the correspondence $\Delta B, Q A \rightarrow \Delta B, C, Q^{\prime}$ exists such that the three correspoiding angles are equal, since the hypotenuse of $\triangle B_{1} Q A$ is a diameter of D. Therefore, $\triangle B_{1} Q A \sim \Delta B_{1} C Q_{1}$. Then $B_{1} Q / B_{1} C=B_{1} A / B_{1} T$ which implies $B_{1} Q \cdot B_{1} T=B_{1} A \cdot B_{1} C_{1}$. From the construction of B_{1}, C_{1} and A are inverse points with respect to B. Therefore $B_{1} A \cdot B_{1} C_{1}=\left(B_{1} R\right)^{2}$. Since Q and Q^{\prime} are inverse points with respect to $B, B, Q \cdot B, Q^{\prime}=(B, R)^{2}$. We have then $B_{1} Q^{\cdot} \cdot B_{1} Q^{\prime}=B_{1} Q \cdot B_{1} T$, which implies $Q^{\prime}=T$. Since Q^{\prime} lies on F^{\prime}, we know that $f(F) \subset F^{\prime}$.

Figure II

To show that $F^{\prime} C f(F)$, choose point $Q^{\prime} \in F^{\prime}$. Let the point U be the intersection of $\overrightarrow{B_{1} Q^{\prime}}$ and B. Then we have a correspondence between $\Delta B_{1} U A$ and $\Delta B_{1} C_{1} Q^{\prime}$ such that corresponding angles are congruent which implies $\triangle B_{1} U A \sim A_{1} C_{1} Q^{\prime}$. Then $B_{1} U / B_{1} C=B_{1} A / B_{1} Q^{\prime}$ which implies $B_{1} U \cdot B_{1} Q^{\prime}=B_{1} A \cdot B_{1} C . A$ and C_{1} are inverse with respect to B as above, so $B_{1} A \cdot B_{1} C_{1}=\left(B_{1} R\right)^{2}$. Again, $B_{1} Q \cdot B_{1} Q^{\prime}=\left(B_{1} R\right)^{2}$. From these two conclusions, $B_{1} Q \cdot B_{1} Q^{\prime}=B_{1} U \bullet B_{1} Q^{\prime}$ which implies $Q=U$. Since Q lies on F, we know that $F^{\prime} \subset f(F)$. Combining this result with the one above, it may be seen that $f(F)=F^{\prime}$.

This mapping f preserves distance as follows: We have from Coxeter $[1, p .92]$, that the cross-ratio of any four points is preserved by any inversion. In this inversion with respect to B, if we take points, $S, T, U, V \in D$ where $\{S, V\}=D \cap C \cap G(G$ an $E-p l a n e$ containing C_{1}) and $T, U \in D_{g}$, then $\frac{T S / I V}{U S / U V}=\frac{T^{\prime} S^{\prime} / I^{\prime} V^{\prime}}{U^{\prime} S^{\prime} / U^{\prime} V^{\prime}}$. By the definition of distance function, $d(T, U)=\left|\ln \frac{T S / T V}{U S / U V}\right|$. Since the ratio is preserved, $d(T, W)=\left|\ln \frac{T S / T V}{U S / U V}\right|=\left|\ln \frac{T^{\prime} S^{\prime} / T^{\prime} V^{\prime}}{U^{\prime} S^{\prime} / U^{\prime} V^{\prime}}\right|=d\left(T^{\prime}, U^{\prime}\right) \Rightarrow m$ by transitive properties, distance is preserved under f.

Angle measure is also preserved under f. Consider angle \Varangle MO in F , both rays of which are necessarily of Type II. (Figure VII) Consider plane L determined by $\overrightarrow{M N}$ and C_{1}, and plane K determined by $\overrightarrow{M O}$ and $C_{1} . \overrightarrow{M N C I}$ is the unique tangent ray to $\overrightarrow{M N}$, as $\overrightarrow{M O C K}$ is the unique tangent ray to $\overrightarrow{M O} . m(\Varangle N M O)=M(\nmid \hat{N} M \hat{O})$. Now consider the plane H, determined by B_{1} and $\overrightarrow{M N}$; and J, determined by B_{1} and $\overrightarrow{M O}$. H intersects F^{\prime} in a line $\overleftrightarrow{M^{\prime} N^{\prime}}$ as J intersects F^{\prime} in $\overleftrightarrow{M^{\prime}}$ (here N^{\prime} and O^{\prime} are not inverse points of any point of $\overrightarrow{M N}$ or $\overrightarrow{M O}$, respectively)

Figure VII
[2, p. 151]. Since $H \cap J$ contains B_{1}, by the above mapping $H \cap J \cap F^{\prime}$ is the point M^{\prime}. By consideration of perpendiculars to $\mathrm{H} \cap \mathrm{J}$ at M and M^{\prime}, we are able to determine through a sequence of congruent triangles that angle \Varangle NMO $\cong \not N^{\prime} M^{\prime} O^{\prime}$. Thus angle measure is preserved under f.

With distance and angle measure preserved, $\triangle A^{\prime} B^{\prime} C 1 \cong \triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ where $\triangle A^{\prime} B^{\prime} C^{\prime} C F$ and $\triangle A^{\prime \prime \prime} B^{\prime \prime} C^{\prime \prime} C F^{\prime}$. This plane of Type I, F^{\prime}, may be rotated about an axis formed by $F^{\prime} \cap G$ (the plane of $\triangle A B C$) so as to map F^{\prime} into G as above.

When both triangles $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ are contained in planes of Type II, each may be mapped to a plane of Type I in the above manner. Then, if necessary, these Type I planes may be rotated about their line of intersection in order to bring them into coincidence as above.

G. PARALLELISM

Definition 19: Two co-planar lines are said to be parallel if they do not intersect.

Hyperbolic Parallel Postulate: Given a line and a point in a plane, there exist at least two lines in the plane containing the point which are parallel to the given line.

Given a plane F of Type I, let us consider a line of Type I, L, in F and any point $A \in F(A \notin L)$. All Type II lines through A will have centers on the perpendicular bisector B of $\overline{A A}^{\prime}$. Clearly the circle with center at the midpoint M of $\overline{A^{\prime}}$, will not intersect L, for $d(M, A)<d(M, C$,$) . By choosing a point P \in B$ outside the circle $\partial d(P A)$ $<d\left(P_{f}\right)$, we can get an infinite number of circles with center P forming Type II lines through A parallel to L.

If L is a line of Type II, we can choose a point $A \in F, A \notin L$. Then there are an infinite number of Type I lines not containing L. A Type I line D will be parallel to L if all points of D are a greater distance from the center L, of circle L than is any point of L. There are also an infinite number of Type II lines parallel to L. A Type II line K will be parallel to L if all points of K are a greater distance from L, than is any point of L.

If L lies in a plane G of Type II, there exist an infinite number of lines KCG 9 K is parallel to L. Since L is a line of Type II, $L=G \cap F$ (an E-plane containing C_{1}). Any line KCG will be parallel to 1 if $K C E$-plane $H(C, \in H) \ni H \cap F \cap G=\phi$.

Having established that the postulates of hyperbolic geometry are satisfied by this model, we have shown that this orthogonal-spheres model is a valid representation of hyperbolic space.

V. APPENDIX

Euclidean Theorems used in this Paper

1. If a plane and a sphere intersect in more than one point, then the intersection is a circle.
2. If two spheres intersect in more than one point then they intersect in a circle.
3. Three non-collinear points determine a unique circle.
4. Four non-coplanar points determine a unique sphere.
5. If two lines intersect a sphere in exactly one point, the plane determined by the lines is tangent to the sphere at that point.
6. A plane perpendicular to a given line at a given point of the line contains all lines perpendicular to the given line at the given point.
7. From a point in a plane in the exterior of a circle in the same plane, exactly two tangents may be drawn to the circle. Postulates of Euclidean Geometry

The postulates for Euclidean geometry with the exception of the parallel postulate are the same as those listed in the introduction for hyperbolic geometry. The Euclidean parallel postulate is as follows: Given a line and a point not on the line, there is exactly one line which passes through the given point and is parallel to the line.

LIST OF REFERENCES

1. H. S. M. Coxeter, Introduction to Geometry, John Wiley \& Sons, Inc., New York, 1961.
2. Howard Eves, A Survey of Geometry, Allyn \& Bacon, Inc., Boston, 1963,
3. Leslie H. Miller, College Geometry, Appleton-Century, Crofts, Inc., New York, 1957.
4. Edwin E. Moise, Elementary Geometry from an Advanced Standpoint, Addison Wesley Publishing Company, Inc., Reading, Massachusetts, 1963.
