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PREFACE 

It shall be the purpose of this paper to demonstrate a model 

consistent with postulates of  three-dimensional hyperbolic geometry. 

This model,   to be composed of  orthogonal spheres and therefore called 

an orthogonal-spheres model,  shall be an extension into three-space of 

the two dimensional Poincare model which is perhaps the most frequently- 

employed model of hyperbolic geometry, although the Klein model and the 

pseudosphere are also used. 

Verification of a model entails its presentation and a demonstration 

of tt.e validity of basic postulates of  the geometry in question for the 

particular model.    In order to develop the orthogonal-spheres model, 

some preliminary concepts of orthogonality for circles shall be intro- 

duced and extended to spheres.    Although this material in itself is not 

directly related to  the validity of the model,  the concepts presented 

will be essential to the presentation to follow. 

Ihe postulates of Euclidean space shall be accepted and shall be 

used without specific reference.    They shall be listed in the Appendix, 

along with other theorems from Euclidean geometry which shall be used 

from time to time. 

I cannot be generous enough with an expression of gratitude to my 

advisor, Mr. Donald Jones.    Without his assistance and encouragement, 

this work would not have been possible. 



I.     INTRODUCTION 

To contribute to the understanding of this paper,  it is necessary 

to make some statement  about notation to  be used as well as  various 

statements which  shall  consistently refer  to a specific  idea. 

When we say  "two points" it is  implied  that  the points  are distinct 

unless a statement is made to the contrary.    Likewise "two  lines" and 

"two planes" shall denote distinct lines and planes. 

With regard to  lines and subsets of  lines, the following notation 

shall be employed:    If we are given two points A and B, "ABM shall denote 

the Euclidean distance between A and B; "AB" shall denote the segment 

with endpoints A and B; "£3" shall denote the  line containing A and B; 

and "AB" shall denote the ray with A as endpoint and B any point thereof 

different from A. 

If C is a sphere, we shall use "1(C)" to denote the interior of the 

sphere; "IU-RST)" shall denote  the interior of the angle 4- Iff-    "C," 

will denote the center of  the sphere C. 

In general, when there is  to be an extension from Euclidean space 

to hyperbolic space, higher case letters shall denote the former, while 

lower case letters shall denote the latter.    For example, m will denote 

the measure of a hyperbolic angle, while M will denote the measure of 

the Euclidean angle associated with the given hyperbolic angle. 

Euclidean lines and planes shall be referred to as "E-lines" or 

"E-planes", and lines and planes in hyperbolic space shall be called 

"H-lines" or "H-planes". 



In addition,  we shall make use of   the following standard  symbols: 

«3» means "there exists";  "9", "such that"; "C", "is contained in; 

O", "contains";  "£", "is an element of"; "!_", "is perpendicular to"; 

■*», "is con5ruent to"; "*■", "angle"; "A", "triangle"; "?", "is 

orthogonal to"; "=",  "is equal to"; "U", "the union of" (with respect 

to sets); "H", "the intersection of (with respect to sets); ">", 

"is strictly greater than"; "<", "is strictly   less  than"; "2", "greater 

than or equal   to"; "^", "less  than or equal to". 

In order to develop a geometry, a number of primary postulates must 

be assumed on the basis of which the theorems of the system may be 

proved.    There are several equally logical successions in which these 

postulates may occur; we shall employ the order used by Moise   [4, p. 37, ff}. 

The postulates which are used for hyperbolic geometry are as follows: 

1.     Incidence Postulates 

1) Given two points,  there is exactly one line containing 

them. 

2) Given three non-collinear points,   there is exactly one 

plane containing them. 

3) If  two points  lie in a plane,   then the  line containing 

them lies in the plane. 

4) If two planes intersect,  then their intersection is a 

line. 

5) Every line contains at least  two points.    Every plane 

contains at  least three non-collinear points.    Space 

contains at least four non-coplanar points. 

2.      Distance Postulates 

1)    Distance is defined as a function associating with 



every pair of points P, Q in space, a non-negative 

real number R.    R is called the distance between the 

points* 

2) For every pair of points P, Q the distance between P 

and QiO. 

3) The distance between P and Q is 0 if and only if P ■ Q. 

4) The distance between P and Q equals the distance between 

Q and P for every P and Q in space. 

5) (the Ruler Postulate) Every line has a coordinate 

system. 

3. Space-Separation Postulate:    Given a plane in space.    The set 

of all points that do not  lie in the plane is the union of 

two sets H, and Ht such that each of  the sets is convex 

and such that if point P belongs to one of the sets and 

point Q to the other,   the segment PQ intersects the plane. 

4. Angle Measure Postulates 

1) There exists a function ml    fi—»R* where ft is the set 

of all angles and R+ is the set of positive real 

numbers,     l'he real number associated with each angle 

in this function is called the measure of the angle. 

2) For every angle A,  the measure of A is between 0 and 180. 

3) Let AB be a ray on the edge of the half-plane H.    For 

every number r between 0 and 180, there is exactly 

one ray A?, with P in H, such that the measure of 

angle   *PAB is r. 

4) If D is in the interior of angle * BAG, then the measure 

of angle *BAC equals the measure of angle 4 BAD 



plus the measure of angle £ DAC. 

5)     If two angles form a  linear pair, then they are supple- 

mentary* 

5. Congruence Postulate:    Given a correspondence between two 

triangles or between a triangle and itself.    If two sides 

and the included angle of the first triangle are congruent 

to the corresponding parts of the second triangle,  then the 

correspondence is a congruence. 

6. Parallel Postulate:    Given a   line and a point in a plane, 

there exist at least two  lines in the plane containing the 

point which are parallel  to the given line. 



II.     Properties of Orthogonality 

Definition 1_:    Two circles are said to be orthogonal if and only 

if Che lines tangent to each circle at a point of intersection intersect 

each other at right angles  (Figure I). 

The Poincare model is based on the concept of oithogonal circles. 

The plane in this model is  the interior of a given circle C; lines in 

the model are either diameters of the circle less the endpoints or the 

intersection of circles orthogonal to C with the interior of C.    In 

Figure II,  the interior of C is the plane of the model, while diameter 

AB.fM]  is an example of a line as is arc HS (of circle D, orthogonal 

to C). 

Definition 2: Consider the circle C with center C, and radius r. 

Let P be a point of 1(C).  The point P'feC^ in the exterior of C such 

that C,P-C,P'- r1 is called the Inverse point of P with respect to C. 

It is clear that if P lies on C, then P - P*. The inverse of a 

point is unique since the real number associated with C,P' is unique. 

Me shall state three theorems concerning orthogonal circles which 

will be fundamental to theorems concerning orthogonal spheres. Their 

proofs are given elsewhere [3, p. 98-99J. 

Theorem It    The angles between two intersecting circles are the 

same at both points of intersection. 

Theorem 2: Two circles are orthogonal if and only if the tangent 

to each circle at a point of intersection passes through the center of 
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toe other. 

Theorem  3_:     Two  circles  are orthogonal  if and  only  if a  line  through 

the center of one,   intersecting  the other,  intersects  it  in inverse 

points with respect to the first circle. 

Having established  these preliminary notions of orthogonality with 

respect to circles, we are able to develop the concepts with respect to 

spheres. 

Definition 3:    Two spheres intersect at right angles if and only 

if at a point of intersection, a plane tangent to one sphere is perpen- 

dicular to a plane tangent to the other sphere. 

Definition 4:    Spheres which intersect at right angles are said to 

be orthogonal.     (Figure III) 

Theorem 4:    Let C and D be intersecting spheres.    If C and D inter- 

sect at right angles at one point of their intersection,  then they inter- 

sect at right angles at each point of their intersection. 

Let C and D denote spheres intersecting at right angles and  let 

& be a point of  the intersection.    Let C,  be the center of C; B„ of D. 

Let S be any other point of  intersection.    Consider triangles   & RC,D, 

siwUSC.D,.     C.RlC.S.     D,*-D,S.    C.D,  -C,D,.     By  the side-side-side 

congruence theorem,   ^RC.D,* aC.SD,.    Since »*», is a right angle, 

corresponding  *C.SD, must be a right angle and hence the spheres inter- 

sect in right angles at each point of  intersection. 

Theorem 5: Two intersecting spheres are orthogonal if and only if 

a plane containing the center of one and intersecting the other in more 

than one point intersects the spheres in orthogonal circles. 

1)    Let C and D be orthogonal spheres.    Consider a plane F, 

containing C|. and intersecting D in more than one point.    CHF and DHF 
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are both circles since the intersection in each case contains more thanonepoint. 

FH(CUD) is two intersecting circles.    Let R be a point of intersection 

of Ffl(CUD).     Let G and H be unique tangent planes  to C and  D respectively 

at the point  K.     Gl K at I since  C?D.    Since ClD,   l\RlH at R; 

D"$J-G at R.    Since any plane perpendicular to a line at a point contains 

all lines perpendicular to the given line at the point,  CTRC-G and 

trltCH —>    CTRIDJR (a line perpendicular to a plane at a given point 

is perpendicular to any line in the plane through the given point). 

fll(l —>  CJI«  C7R1+ O^R*.     Let P be  the center of  F HD.    Then 0, 

must lie on a line through P perpendicular to FAD.    Therefore 

£liS"l —>    C7ii% £1% WM    *ince £* is perpendicular to any line 

in FHD through P,  D^PIPR —?    0^- C?* RP*"—* C>±FR.     Since R 

is • point of intersection of the circle and since C, R and PR are 

perpendicular tangents to CHF and DAF, by theorem 3, (CHFJftp AFl 

2)    Let C and I be intersecting spheres and let F be a plane con- 

taining C, such that C/1F and DAF are orthogonal circles in F.    Let R 

be a point of intersection of the two circles CflF and DAF.    Since 

COF and DOF are orthogonal, there exist tangent lines I, UCF,  tangent 

to C and D respectively.    There exists a line V, perpendicular to F 

at R.    I and V determine a plane G; U and V determine a plane H; 

HAG - V, since V is contained in both planes.    Since T and U are 

perpendicular, G and I are perpendicular planes.    I and H are tangent 

planes to C and 0, respectively, at the point R.    By definitions 4 and 

5, C and D are orthogonal. 

Theorem 6:    If L is a line through the center of C, of a sphere C, 

L intersects any sphere orthogonal to C in inverse points. 

Let C and D be orthogonal spheres, with line L containing C,  and 



intersecting D.     Let G be a plane containing L.    GO(CUD)  is  two 

orthogonal circles (Theorem 5).    Since L passes through C,,  L intersects 

GOD in inverse points.    If  L intersects D in only one point,  that 

point will be its own inverse.    Since L will not intersect D except 

in GOD, the points of  intersection of L with an orthogonal sphere are 

inverse points. 

Theorem 7:    Given a point J,   in the exterior of sphere C.    There 

is exactly one sphere J having J, as center and orthogonal to C. 

Consider a tangent plane T from J,   to C.    Let TflC - J.HU    J, , C,, 

and R determine a plane G.    TOG is J,R, which is tangent to CAG.    Then 

C\RlJ~R.     Therefore C (\G is a circle with J,  as center and J,B as radius. 

Using Theorem 5,  it may seem that there exists a sphere J orthogonal  to 

C with J,  as center and radius J,R. 

Io prove that this sphere is unique, assume that there are two 

spheres K and K^with J,   as center,  each orthogonal   to  C.     Consider a 

plane H containing G and J and  therefore  two points of  KOC and  two 

points of K^A C.    Under the above assumption,  H intersects C and K, 

as well as  C and Ka in orthogonal circles  (Figure IV).     Ut I and Rfc 

be the points of KHCOH; S and Sx are the points of Kjlonil.    By 

definition of orthogonal circles,  there exists a line through J,   tangent 

to COK at R and a similar  tangent at R*.    Also,  there are  tangents 

from J,   to CHH at S and £l    However, from a point outside a circle, 

only two  lines may be drawn  tangent  to  the circle,   leading  to a contra- 

diction of the assumption that there are two spheres orthogonal  to C 

with J,   as center. 

Theorem 8:    Let C denote a sphere with center C,.    Let F denote a 

Plane a Fm(C) +* and cj F.    Ut M denote a circle in F^ni(C) * f 
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There exists a unique sphere D3MCD and Df C. 

Let P denote the center of M and L denote the perpendicular to F 

at P.    If L - C^P,   then consider a plane G containing L.    GHM consists 

of two points Q and T.    Q has a unique inverse Q'€ G with respect to C 

(Jefinition 2).    The points Q, X, and Q'   determine a unique circle 

NCG orthogonal to GOC    (Theorem 3).    N,   lies on L since L is perpen- 

dicular to F at P.    N,   is then the center of a unique sphere orthogonal 

to C (Theorem 7). 

If  L i  c|P,  then C,  and  L determine  plane G.     Let A,  BCQAN and 

let A'G.G denote the inverse of A with respect to C.    Then A,   B, and A' 

determine unique circle N orthogonal   to COG*    Since N  is equidistant 

from A and A',  N,£L.     N,   determines  exactly one  sphere orthogonal  to C 

(Theorem 7).    Since N,£L, N, is a distance M.A from all points of M; 

thus, KCN.    N,   is then the center of a sphere orthogonal to C (Theorem 5) 

which is unique (Theorem 7). 



III.    VERIFICATION OF MODEL 

A.     DEFINITION OF MODEL 

In order to define this model,   let C be a Euclidean sphere.    The set 

of all points in the interior of C shall constitute Hyperbolic space. 

This space shall be denoted by 1(C), and  E shall denote Euclidean 

space. 

H-points in the model shall be the Euclidean points in 1(C). 

H-lines in the model shall be of two types:    **i H-line of Type  I 

-nail be the intersection of a Euclidean   line containing C, and 1(C). 

lo define an H-line of Type II,  let D be a sphere orthogonal to C. 

An H-line of Type II is the intersection of  I(C)flD and an E-plane F 

containing C, .    FHD/11(C) shall be denoted by ty. 

H-planes of the model shall also be of two types:    An H-plane of 

Type I is the intersection of a Euclidean plane containing C, with 

1(C).    An H-plane of Type I may also be regarded as a Poincare model. 

An H-plane of   Type II is the intersection of a sphere D, orthogonal 

to C, with 1(C).    DHI(C) shall be denoted by D. 



B.     INCIDENCE POSTULATES 

Incidence  Postulate  1_:    Given  two points,   there  is  exactly one 

line containing them. 

Let A and B belong to  1(C).    A and B determine a unique E-line. 

If A§ contains C,,  then AB AI(C) is an H-line of Type I and from the 

Euclidean postulates, A and B are uniquely contained therein.     If AB 

does not contain C,,   then there is a unique ii-plane F containing A, B 

and C,.    This plane intersects C in a circle.    In the Poincare' model, 

two points in the model are uniquely contained in a line Dj, an arc of 

a circle orthogonal  to CflF.    This line Df is a  line of Type II, uniquely 

containing A and  B. 

Incidence Postulate 2:    Given three non-collinear points, there is 

exactly one plane containing them. 

Let non-collinear points A, B, and J belong to 1(C).    A, B, and J 

determine a unique E-plane F.    If F contains C, , then FH 1(C) is a 

plane of Type I, and from the Euclidean postulates, A, B, and J are 

uniquely contained therein.    If F does not contain C,, then A,  B, and J 

determine a unique circle MCF.    This circle may be contained in an 

infinite number of spheres, all of whose centers lie on an E-line L, 

perpendicular to F and passing through the center of M.     Exactly one 

of these points of L is the center of a sphere orthogonal to C (Theorem 8). 

The intersection of this unique sphere and 1(C) defines a plane of Type II 

containing  the three points A,  B,  and J. 

Incidence Postulate 3:    If two points lie in a plane, then the line 

containing them  lies  in  the plane. 

Consider a Type I plane containing A and B.    If A,  B, and C, are 
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collinCW,   Chen A,   B t an H-line of  Type  I, which  lies  in  the plane 

since i'ype I lines are subsets of Euclidean lines.    If A, B, and C, 

are non-col linear,   then they determine a unique E-plane F.    A and B are 

uniquely contained in a line L of Type II (Incidence Postulate 1).    By 

definition of H-lines, LCF.    There exists a circle R (containing A and B) 

3 KCF and l.JCflF.    Since the H-line containing A and B is unique, 

L - hfll(C) and is  therefore contained in F.    If A and B are contained 

in a plane of Type  II,  %,   then they determine an H-line AB.    By definition 

of H-lines AB must   lie  in D. 

Incidence Postulate 4;     If  two planes intersect,  their intersection 

is a line. 

If the intersection is of two Type I planes,  the intersection is a 

lint, since two Euclidean planes intersect in a line.    Since all Type I 

planes contain C.,  one point of   the  intersection must  be  the center.    The 

line of intersection must  therefore be a line of Type I. 

If  the intersection is of a Type I plane F, and a Type II plane D, 

it may be seen that FOD (the Euclidean sphere determining D) is a 

circle orthogonal  to CrtF (Theorem 5).    0 is then an H-line of Type II 

by definition. 

If the intersection is of  two Type II planes, we consider the 

spheres B and D, each orthogonal to C.    BOD is a circle.    Let R be a 

point of BAD.    Then the E-line t$ will intersect B in inverse point. 

R and R,'; C^ will intersect D in inverse points ■ and Rx'.    ****** 

since the inverse of a point is unique.    l\ then must be a point 

Let G be the plane containing aOD.    C,   lies in G since C„ R, and R' 

are collinear.    Since BHD is then in G, BO DO 1(C) is a line of Type II 

(Theorem 5). 
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Incidence Postulate 5:    Every line contains at least two points. 

Every plane contains at least three non-collinear points.    Space contains 

at least four non-coplanar points. 

Since this model is a subset of Euclidean space, lines whether of 

'i'ype  I or  II must  contain at  least  two points.     A plane of  Type  I, 

being a subset of a Euclidean plane necessarily contains at least three 

non-collinear points.    A Euclidean sphere,  forming a plane of lype II, 

also contains at least three non-collinear points.    The interior of a 

Euclidean sphere contains at  least four  non-coplanar points  and hence 

1(C) contains at least four non-coplanar points. 



C.    DISTANCE POSTULATES 

Definition 5: Let fs L ---^R be a one-to-one correspondence 

between a line L and the real numbers. If for all points, P, QfcL 

we have PQ -  If(P)  - f(Q)l,  then f is a coordinate system for L. 

Distance  Postulate   1_:     Distance  is defined as a  function associating 

with every pair of points.Q, T in space, a non-negative real number r. 

r is called the distance between the points. 

If  u is a  sphere orthogonal  to  C and G  is a plane containing C,and 

intersecting 1(D), DPCflG - {R,SJ.    For each point QiBy  let us define 

f(^) - In Qll/QS.    Q ■ 4* —>    QR - Q*R and QS - Q«S =--> 

QR/ .;S - Q'R/Q'S —>  In QR/QS -  In Q'R/Q'S, which demonstrates  that f 

is a function.    For each real number S,  there exists a ijositive real 

number t such that In t - S —=>3a point Q€DJ9QR/QS - t —> 

f is an "onto" mapping.    If In QR/qS - In QM/Q'S, then Q - Q' —> 

f is one-to-one. 

Let us define a function d:    1(C) X 1(C) —*   R+.    Let Q and 

rCI(C).    Q and T determine a unique H-line intersecting C at U and V. 

rfe will define d(Q,T) -   lln QU/QV -  In TU/Tvl-   lln qUV^V I. 
' I       TU/TV| 

Distance Postulate 2:    For every Q, T, d(Q,T)— 0. 

since d(Q,T) is expressed as an absolute value, d(Q,T) must be 

positive or zero. 

Distance Postulate 3:    d(Q,T) - 0,  if and only  if Q - I. 
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1) Assume d(Q,T) - 0 

then\In QR/QS\- 0 
\  TR/TSI 

■*   ln SBZS§ ■ M1 ■—> 
TR/TS 

fri/QS - l —>   g - 1 
TR/TS 

2)    Assume Q - I 

thenjln QR/^sl-   \ln    l|=lo|-»=>   d(Q,T) = 0 

Distance Postulate 4:    d(Q,X) - d(T,Q) for every Q and I in S. 

d(Q,T)  -   lln QR/QSl-lln QR/QS -     ln  XR/Ts|- 
l       TR/TSI 

(in TR/TS - QR/QSl-lln XR/IS 1 - d(T,Q) 
1    oTCsl 

By the transitive law, d(Q,T) - d(T,^) 

Distance 1'ostulate 5_: Every line has a coordinate system 

(Rultr Postulate). 

From the definition of the distance function, we have 

d(Q,T) - |ln QR/QS - ln TR/Tsl-\f(Q) - f(T)| . By definition 5, 

QT nas a coordinate system. 

A primary consequence of the distance postulates and especially of 

the Ruler Postulate is the concept of betweenness. 

Definition 6: If points A, B, and C are collinear and if 

d(A,B) -f d(B,C) - d(A,C), then B is between A and C, 



D.     SPACE SEPARATION 

definition 7:    A set S is called convex if for every two points 

P Qea, the entire segment PQ lies in S. 

Space Separation Postulate!    Given a plane in Space (H-space). 

The set of all points that do not lie in the plane is the union of two 

sets such that Death of the sets is convex and 2)  if P belongs to one of 

the sets and Q to the other, then the segment PQ intersects the plane. 

In H-space, both types of planes must be considered.    Let F be an 

H-plane of Type I.    FCE-plane G.     (F - GA 1(C). 

Let H, and H*. denote the E-half-spaces determined by G.    We shall 

make the following definitions:    H-half-space h,   - H.flKO 

H-half-space hfc - HJlKC) 

By definition of the model as the set of points in the interior of 

a Euclidean sphere, neither h, nor hz is empty.    1(C) - h,U hxU F 

which implies 1(C)  - F * h,U h*,. 

10 prove that each of the sets is convex,  let us consider the 

points A, B 6h(   (the case for h„ is identical).    Let A,  B, and C, be 

collinear.    Since A, B6h„ A, BSH,   -» »*-,.    Since a unique H-line 

in 1(C) determines AB and since ABCH,, AB must belong to h, . 

If A, B.C. are non-col linear, then A, B, and ^determine a unique 

E-Plane J.    JO 1(C) is a Poincare'model; therefore AB must belong to 

JAh,, which  implies rtBCh,. 

»ov let A€h,  and Bfeh,,    If A, .. and C, are collinear,   then 

8 is a line of Type I,  therefore a aohaet of an a-line.    Sinoe ICO 

la an E.space and AM,. ••»• * ~« '"""«< °'    "~ * "* ' 

are clearly in I,  and H„ the point of  interaection ia ',<£ 
If A, ., and C, are non-collinear, then A. t, and C, determine 
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a unique E-plane J.    JOI(C)  is a Poincare' model, with FflJ dividing 

the model  into two half-planes:    Jflh, and JOh^.    A and B determine 

a line of Type II in J.    Since Afeh,, B€hx, aB must intersect F f\J 

from the plane separation properties of  the Poincare model.    AB 

intersects FflJ implies AB intersects F. 

Now  let G be an H-plane of  Type  II,   called D.    D - Dni(C) where 

D is orthogonal to C.    In H-space we shall take the following definitions: 

H-half-space h, = I(C)DEx(D) 

H-half-space hj, - 1(C) f\ 1(D) 

Therefore  1(C) - D - h, 0 hx.    Neither h, nor hj_is empty because 1(C) 

must contain the Euclidean points of the interior of a sphere and 

I(C)fl 1(D) must contain at  least one point if D is orthogonal  to C. 

To show that each of  the sets is convex, consider points A, BCh,. 

If A,  B, and C, are collinear,   then the Type  I segment AB is contained 

in h, by virtue of  its being a Euclidean  line.    If A, B and C,  are non- 

collinear,  then A, B, and C, determine a unique E-plane, F.    Ffll(C) 

is a Poincare model.    A and B determine an H-line of Type II in F. 

From the properties of the Poincare model, AB must lie in Fflh,---> ABCh, 

Now consider A, Bfeh^.    If A, B, and C, are collinear., any plane 

containing the segment AB of the Type I  line intersects C in a Poincare" 

model, whose plane separation properties assure that ABCh^     If A, B, 

and C, are non-collinear,  then A, B, and C, determine a unique plane F. 

FA C is a Poincare"model, with FOD separating the planes into two 

half-planes, Fflh,   and F rth^.    A and B determine a unique U-line of 

Type II, AB in F.    From the plane separation properties of the Poincare 

model, ABCFflh,   —>ABCh,. 

Now let A£h, and Bfeh^.    If A, B, and C, are collinear,  then c" 

is a line of Type I.    Consider any E-plane J containing C,B.    Since 

f 
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B£I(0), J cuts C and D in orthogonal circles.    J/1C is a Poincare 

model, Jf)D separating the model into two half-planes,    since «fcj/)h, 

and Bfi Jfl h^, from plane separation properties of  the Poincare model, 

AB intersects J/1D, —W *B intersects D. 

If A, fl, and C, are not collinear, they determine the E-plane J. 

J 01(C)  is a Poincare model.    A and B determine a unique  line of  Type  II. 

jHo is a   line in the model separating the Poincare" plane into two half 

planes, Dflh,, and J/1hx.    By plane separation properties of this model, 

ABmust intersect J fl D.    Since AB is unique in 1(C), this statement 

implies  that AB  intersects  D. 

i 



E.    ANGLE MEASURE 

Definition 8:    Let L be an H-line in an H-plane c.    Let the H-line 

K intersecting L in one point A divide F into two half-planes.    An H-ray 

If is defined as the point A and all points BfcL which lie in one half 

plane.    A ray is of Type 1 if L is a line of Type I and is a ray of 

Type II if  L is a line of Type II. 

Definition 9:    An H-angle is the union of two non-collinear H-rays 

having a common endpoint. 

Definition 10:    Let AB*denote a ray of Type II.    A, B, and C, 

determine an H-plane of Type 1, F.    FCE-Plane G.    Let E-line C,A 

divide G into two E-half-planes.    Let LCG be the unique E-line tangent 

to arc AB at A,    Let B€L in the same half-plane as B.    Then E-ray A? 

is called the tangent ray_ to H-ray A?.    A tangent ray to the H-ray SS 

is denoted by AT.     If * is a ray of Type I, t,e tangent ray to g will 

be the E-ray AB containing ATT. 

Definition  111     If   *K5T is an H-anSle, then E-angle   * M («*«* 

2 is the tangent ray to St and st is the tangent ray to ft shall be 

called the associated E-angle to    * RSI. 

It may be shown that for each H-angle the associated E-angle is 

unique.    If both rays % and & are of Type I.  then A and fi determine 

a unique E-plane F.    £ ^CE determine the E-angle   * ^unique 

because any other rays containing A and j| «e subset, of >R and $ 

If one ray is of Type I (say ft and the other, ft is of iype H, 

3 and a determine a unique E-plane containing the E-angle fe|rf, as 

above, which is uniquely associated with H-angle *RST, since a tangent 

to a curve at a point in a plane is unique.    If both rays g and sT 
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are of Type II, then each has a unique tangent ray, determining as 

above, the unique E-angle * RST. 

Measure Postulate 1_:    There exists a function  n :    A—y   R-*", 

where &■ is  the set of all angles and A* is  the  set of  all positive  real 

numbers,    This real number shall be called the measure of the angle. 

We shall define m(4 RST) - M(fRiT) where M is the angle function 

for E-space.    Jince M uniquely associates a positive real number with each 

E-ancle, m will associate with each H-angle a unique positive real number 

determined by  the function M of   the associated  E-angle. 

Measure Postulate 2:    For every angle 9- RST, m( 4- RaT) is between 

0 and  180. 

By the unique association of every H-angle with an E-angle, 

(■( ^ RST) - M(» is*)), and since 0*M( 4 RST)* 180,  then 0<-m(4- RST)*180. 

Measure Postulate 3:    Let SR* be a ray on the edge of the H-half- 

plane H.    For every number r between 0 and 180, there is exactly one 

ray il with I in H such that m( 4 |S*) " r« 

If SR* is a ray of Type I with 5 - C,, then let F be the H-plane 

containing this H-half-plane.    Then there exists an E-plane 0*f - Gfll(C). 

oince »Cf,  iTcG and there exists a unique ray STCG3M(*RSl) - r, 

which  implies 3uiique ray  S?C F9 m<2>-RST) - M(4-  W* - r. 

If it is a ray of Type I with M C, , then let F be the H-plane 

containing this H-half-plane.    Then there exists an E-Plane G9F - G /11(C). 

oince ^CF, iTcG and there exists a unique ray J?CG3M(*RSl) - r. 

which implies! unique ray STCF3m( *- RST) - M( | RST) - r. 

If 3 is a ray of Type I with SfC,  then 4 **■ °" the ^ °f \ 

Type 1 half-plane,H.    HCFCG as above and there exists S?CG3M(*RST) - r. 

Consider the line LCG and perpendicular to S?at U    Consider also th. 
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E-ray C, S.    Let S1 be the inverse point of S with respect to C.    The 

perpendicular bisector of SS' intersects  L in a point D/, which must be 

the center of a unique circle 0 tangent to TS and orthogonal to COG. 

Let T be any point of DflGfU(C) and note that the ray ST is uniquely 

determined by this construction.    Since by definition, JP- RSI is uniquely 

associated with   f RSX, M(f RST) - r -«» m(4-KST) - r. 

If SiT is a ray of Type II,   SR may lie on the edge of a Type  I 

H-half-plane H.    HCFCG, as above.    Consider the tangent ray SRCG. 

There exists a unique ray 3T3T£GA, where M(* IsT) - r.    4l above,  ST 

is a unique tangent ray to an H-ray of Type II, ST^m(*KoT) - r. 

& may also  lie on the edge of a Type II H-half-plane h.    h is 

contained in the Type II H-plane D.     Consider E-plane %*£ which divides 

IS into two half-planes h, and ha.    By definition of  tangent ray, SRCC.KS. 

Now consider the E-plane Gi-C^3 and containing S*.    On the h, side of 

C7R? there exists a unique ray S?CG3H(*KoT) - r.    Now consider the 

plane S^f.    tsT must intersect D in the ray if by definition of the 

tangent,    Then since sTnmst be the tangent ray to S?, M(# RSI) - r 

—>   m(* nsl) - r. 

Notation: If h is a half-plane; L, the edge of h; and m a point 

of hi "h1"' denotes the half-plane determined by L, containing m. 

V-" denotes the half plane determined by L not containing.™. 

Measure Postulate 4: If U is in the interior of *R$Tf then 

S 
mC^MsT) - m(4 RSU) + m(4 UST). 

m  must show that if U lies in the interior of * *ST, then 

lies in the interior of the associated angle 4 Mi 

If S - C, then Si and 3 are rays of Type I and * -u.t also be 

a ray of Type I. Associated with each of these rays is an E-ray 
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sf ST, and Su, respectively. Since the H-rays are Euclidean lines, 

with U6K4-RST), U6I(*-RS?), SU* lies in 1(4- RST). Then M(* &S&) - 

M(4-RS0) + MtUS$) which implies m(4 RST) - m(4-RSU)  - m(4UST). 

If S f C,, and SR* is a ray of Type I (Slfo. E-ray SS«), then ST 

is a ray of Type II.    ST is contained in a sphere D orthogonal to C 

with center Q, •    (Figure V.) 

SR and §f are contained in an H-plane of Type I, F, which is 

contained in E-plane G.    GH(CUD) is two intersecting circles, G (\Q 

and GAD.     If  U6I(*RST)  then  ft? - [s])CI(* RST).    SUCB,.     Let L 

be the tangent line to G/ID containing If;    likewi.e let N be the tangent 

to B? containing SU*.     (i>-is$)ChJ;    (B- W><^? 

Every ray between SR and stmust intersect GflDina point other 

than S.    Since J*kJ. every ray contained in U fU) with endpoint S 

intersects GHD.    Also every ray contained in &C» USR) with endpoint g 

intersects GflDas well as GAD.    Assume that s7ch_\f.    Then there are 

some rays of * RST which do not intersect D (namely those in 1(4 fsfl)> 

which is a contradiction of the assumption that SU lies in hj.    There- 

fore we have SUCl(* RST)--> M(*Ul> - H(» «) ♦ *•«•*> ~> 

m(4RST) - m(*RSU)   + m(*UST). 

The proofs for other angles formed by one ray of Type I and the 

other of Type II proceed in a similar manner. 

If S 4 C„ and tf and H are rays of Type  II lying in the same 

Type I plane G, then consider the angle • RST.     Let U* I«-RST).    Let 

to SR, ST*, and sU, respectively.    Let 

 of circle GO A; 2, of circle GOD, and st, of circle GOB. 

»T „  r nn.  all  in h*!   intersect  B and all  in 
Then all peinti of h*. intersect GAD, all in ns. 

SR, ST, and SU be tangent rays 

-9 
SR be an arc 
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h**   intersect A.     Then all  E-rays  of   [(£ RST) must  intersect  circle D. 
Ay 

jince  U is  in  the  interior of   * .i/r,  h5   must  intersect  B.    Assume  that 

oU lies in  h*I .     Then  there are some rays of 4 RST which do not  inter- 

sect D, namely   those  in * TSO.     ihis  is a contradiction of  the assump- 

tion that   SU  lies  in h*    because all  rays   in  1(4 TSU) with endpoint 

S must  intersect  D.    4e  therefore  have  SUCI(*RST)  —>    M(* RST)  - 

M(4RSU) + M(*UST) —>    m(¥ RST) - m(* RSU) + m(* UST). 

If  S * C,   and  JK and Jt are  Type  II rays not contained in the 

same Xype   I plane,  consider  two  E-planes:    one,  F,  contains C,   and SRj 

other,  G,   contains  C,   and   §!.     ^ince U6I(*RSXX,  D also belongs to 

the interior of  the dihedral angle formed by F and  G, which intersect 

in the  line tjl.     By definition of   tan3ent rays,  SR  and  Si   lie  in F 

G,  respectively.     The  tangent  ray  to SO must   lie  in  the  interior of 

this ciihedrsl angle, as E-plane H contains C, and §6\ therefore also SU. 

3ci(«RST)  ~->  N(« *s3)   ♦ N(»*f)  - M(*RS*)  —•>«(* RSU)  ♦ «(*USI)' 

m(^RST). 

Definition 12 s    Let  ^ be a  ray.     If  I  is  a point of tt such  that 

sfySl,  then  St and S? are  called opposite ra^s. 

Definition  13:     If  S* and  gt are opposite  H-ray. and  55  is any 

third  H-ray,   then   4RSU end 9- OST  form a  linear £air* 

Definition 14:     If -<*KSU)  ♦ »(»"■»<> "  180'   6h*° "' an8lGS ^ 

called supplementary* 

..easure  Postulate  5:     If   two  anCles form a  linear pair,   then  they 

are supplementary* 

If S - C, ,  the union of opposite  li-rays 3 and i? must be . Ita. 

of Type  I.    These  rays  are contained  in opposite E-rays  if.!* if 

through C,.     If  U  is  any other point of  the  li-space.  ray  tf U  also 
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—» 
contained in an E-ray C,U.    Then, M(* RsO) + M(* uST) - 180, since 

SA and ST are opposite  E-rays, which  implies m(9 RSU)  + m(4 UST)  - 180. 

If  S -   v   then opposite H-rays  SR and ST may  be  contained in 

either a line of Type I or a line of Type II.    Suppose both rays belong 

to a Type  I  line.    Then,  associated with each ray  is a unique  ray, SR 

and ST respectively.    These rays lie on the E-line If,    By hypothesis, 

we have a third ray of Type  II,  SU, with which SU is associated.    Since 

M(*ftS0) + M(*US'b - 180, by definition m($ RSU) ♦ nfcUST)- 180. 

Suppose both rays SR and ST are contained in a  line of Type II. 

Associated with  each ray   is a unique   tangent ray,   SR and  ST.     fhe union 

of these tangent rays must be an E-line because a circle has a unique 

tangent at a given point.    We are also given a third ray SU which forms 

a linear pair with si and ST*.    Associated with SU* is SU.    Then because 

gl is an E-line, K(*RSU) + N(9 UST) - 180, which implies m(4RSU)+ »(#BST) 

- 180. 



F.    CONGRUENCE POSTULATE 

Definition 15:    If A, B, and C are three non-collinear points, 

then the set ABUBCUAC is called a  triangle. 

Definition  1£:     Let AB and AD be segments.     If AB - CD,  then 

the segments  are  called congruent and we write A"B~ CD, 

Definition   17_:     If m(* ABC)  - m(fDEF),   then the angles are called 

congruent and we write   4ABC ** 4. DEF. 

Definition  18;    Given  A ABC,   a DEF and a one-to-one correspondence 

ABC <;--> DEF between their vertices.     If  every pair of corresponding 

sides  is    congruent and every pair of corresponding angles   is   congruent 

then the correspondence is a congruence, 

aide-Angle-aide Congruence  Postulate;     Given a correspondence 

between  two  triangles.     If  two sides and  the  included  angle of  the  first 

trir.ngle are congruent  to the corresponding parts of   the  second  triangle, 

then  the correspondence  is a congruence. 

Given  two  triangles  ^ABC  and ^A'B'C  with the correspondence 

ABC<—>   A'B'C.     In addition AB -A«B«,   BC »B»C»,    *B**B«. 

Each triangle    a ABC and  a   A^B'C* determines a unique plane G and G',- 

respectively.    When G is a plane of Type I and G - G«, then the two 

triangles lie in an example of a Poincare model  in which the SAa postu- 

late holds.     [2, p. 364];  therefore   aABC * A A'B'C 

If   AABCCG and A'B*C'CG*, both G and G« being planes of Type I, 

then G and G' must intersect in a Type I line L through C,.    Suppose the 

dihedral angle between G and G« is G .     Since G and G' are subsets of 

E-planes,  the rigid motion of G« about L of 6 degrees, will map 
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A A'B'C  to   AA»B»C»€G,  preserving distance and angle measure. 

Clearly   AA»B»C  * AA"B"C".    AS above,   d^BC Sf AA"B»C".    by the 

transitive property of  the equivalence relation,   AHBC -   AA'B'C. 

When one triangle with the above correspondence is in a plane of 

lype I and the other is in a plane of Type II, we shall define a mapping 

from the plane of Type II onto a plane of Type I so that one of the 

above situations will exist.    Consider the intersection of orthogonal 

spheres  C and D with a plane  G,  containing centers  C,  and D,   respectively 

(Figure  VI).     Let  C, D^^HGJ  -{AJ.     Let  L be a  line perpendicular 

to C*73   at A.    LflC - {K,S}.     Let K be a   line  tangent  to  CflG at R. 

i^t KnC,D,   = [tti}»    ty tn*s construction, B,   is the inverse of A with 

respect  to  C     [3,  p.  87J.     By  Theorem 3,   u,   must  be  contained in 0.    B, 

is MISO the center of a sphere B orthogonal to C with radius B, rt. 

The mapping shall be defined as follows:    Let F be the Type II 

plane D described above and let til* - GHI(CJ where G is an E-plane 

perpendicular  to  ^Dt  at C,.     Let f:     (E  -  [B,J )  —^       (E -   [B ,]) 

where f(Q)  - Q'  and Q'   is  the  inverse of  Q with respect to B.    f  is 

therefore one-to-one and  onto. 

We wish to show that f(F) - F«:    Let [TJ - B.qrtF' where q€F, 

V*->.     Then the correspondence AB,^ —-> A B,C,Q' exists such that the 

three correspoading angles are equal, since the hypotenuse of A B«QA is 

a diameter of D.     Therefore,   AB.^A ^AB(C,Q'.    Then B,Q/B,C - ii,A/B,T 

which implies B,Q • B,l - B,A»B*C,.    From the construction of B,, C, and 

n are inverse points with  respect  to B.     Therefore B,A« B,C,- (B,K). 

iince Q and   <? are inverse points with respect to B,  B,Q»B,Q« - (B,i<) . 

We have then B,Q • B,Q* - B.Q -B,T, which implies Q» - T.    ^ince Q«  lies 

on F',  we know that f(F)CF'. 



FIGURE   HI 
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To show  that  F'Cf(F),  choose  point   Q*£F*«     let   the point  U 

be the  intersection of  B,^'   and  B.     Then  we have a correspondence between 

A B.UA and  A .,-,<'   such  that corresponding  angles are congruent which 

implies   AB^A^A   ,C(Q'.     Then     ,0/   ,C - B,A/B(Q'  which implies 

• i .'   =  B.A#B,C«     -• and  C,   are  inverse with  respect  to  i5 as above, 

so B.A • B,C,"(B,!.li    Again,   B,Q#B(Q'   -Cr0.     From these  two  conclusions, 

• ,Q'  ■  B,U»B,Q'  which  implies  Q ■  U.     Since ^  lies on F,   we know 

that  F' C f(F).     Combining  this  result with the one above,   it may  be 

.   that f(F) = V*. 

ihis mapping  f preserves distance as  follows:     ..e have from 

Coxeter   [l,  p.  92^,    t.iat  the cross-ratio of  any  four  point!  is pre- 

served by any  inversion.     In this  inversion with  respect  to B,   if we 

take points,   o,  I,   U,   ^€D where  fa,v) - uf\C(\G  (G    an B-planc containing 

C|)  and  T,  U6^-,   then IS/TV - T'S'/I'V.    By the definition of distance 
US/UV       U'S'/U'V* 

function,  d(T,U)  -lln  IS/IvL   ^ince  the  ratio  is  preserved, 
I    us/uvl 

d (T,V)  =  lln   >:,/iA-°   lln  i'.,'/T'V'|- d(T'.U')  —>    by transitive  pro- 
I      Us7uvi     \     U'.'/U'V'I 

parties,  distance   is  preserved  under f. 

.ingle measure  is  also preserved under  f.     Consider angle * NNO 

in  F,  both rays of which are necessarily of  Type  II.     (ri„ure  VII) 

iider plane  L determined  by S3 and  -,, and plane K determined by 
-a 

tons 

MO    ad  -,.    MNCL is   the unique  tangent  ray  to MN,  a., .lOCK is  the 

un 
n 

ique tangent  ray to H$.    n(*  NMO)  - «*  **).    Now consider the plane 

H,  determined  by  B,  and KN;  and J,  determined by B,   and ...      I  inter- 

ts  r   in a   line lift  as  J intersects  F>   in fitf   (here W  and 0'   are sec 

not inverse points of any po int of KK or MO , respectively) 



FIGURE    W 
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[2, p.   13lJ.     Since HflJ contains B,,  by  the above mapping linjflF' 

is the point M'.     By consideration of  perpendiculars  to HflJ at M and M', 

we are able  to determine through a  sequence of  congruent  triangles  that 

angle *> NMO -   Jf-N'fo^O'.    Thus angle measure  is preserved under f. 

With distance and angle measure preserved,   4A,B,C   ■ aA" B"C" 

where 4A*B*C' C F and A A"B"C"CF'.    This plane of  Type I, F', may be 

rotated about  an axis  formed by F'f\G  (the plane of   /iABC) so as  to map 

F'  into G as above. 

Jhen both  triangles     AABC and  AA'B'C  are contained  in planes of 

Type II,  each may be mapped to a plane of Type I in the above manner. 

Then,   if  necessary,   these Type  I planes may be  rotated about  their 

line of  intersection  in order  to bring  them  into coincidence as above* 



G.    PARALLELISM 

definition  19:     Two co-planar  lines are said  to be parallel  if  they 

do not  intersect. 

nypcrbolic  Parallel Postulate;     Given a  line  and a point in a 

plane, there exist at least two  lines in the plane containing the point 

which are parallel to the given line. 

Given a plane F of Type I,  let us consider a line of Type 1, L, 

in F and any point AfeF  (A^L).     All  Type II  lines  through A will have 

centers on the perpendicular bisector fl of HA«.    Clearly the circle 

with center at the midpoint M of AA* will not intersect L, for 

d(M,A)<d(M,C, ).    By choosing a point PfcB outside the circle d d(^A) 

<d(P^,), we can get an infinite number of circles with center P 

forming Type II lines through A parallel to L. 

If  L is a line of Type II, we can choose a point AfeF, A^L.    Then 

there are an infinite number of Type  I lines not containing L.    A 

Type I line D will be parallel to L if all points of D are a greater 

distance from  the center L, of circle L than is any point of L.    There 

are  also an  infinite number of  Type  II  lines parallel  to  L.    A Type  II 

line K will be parallel to t if all points of K are a greater distance 

from  L, than  is any point of  L. 

If  L lies in a plane G of Type II,   there exist an infinite number 

of linesKCGSK is parallel to L.    Since L is a line of Type II, 

L - GO.  (an  .-plane containing  C,).    Any  line KCG will be parallel  to 

L if  KCE-plane  B  (C,*ll) 3  iiAFflG - 9. 
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Having established that the postulates of hyperbolic geometry are 

satisfied by this model, we  have  shown that this orthogonal-spheres model 

is a valid representation of  hyperbolic space. 



V.     APPENDIX 

Euclidean Theorems used in this Paper 

1. If a plane and a sphere intersect in more than one point, then 

Che intersection is a circle. 

2. If two spheres intersect in more than one point then they 

intersect in a circle. 

3. Three non-collinear points determine a unique circle. 

4. Four non-coplanar    points determine a unique sphere. 

5. If two lines  intersect a sphere in exactly one point, the plane 

determined by the   lines is  tangent to the sphere at that point. 

6. A plane perpendicular to a given line at a given point of the 

line contains all   lines perpendicular to the given line at the given 

point. 

7. From a point in a plane in the exterior of a circle in the same 

plane, exactly two tangents may be drawn to the circle. 

Postulates of Euclidean Geometry 

Tae postulates for Euclidean geometry with the exception of the 

parallel postulate are the same as those listed in the introduction for 

hyperbolic geometry. The Euclidean parallel postulate is as follows: 

Given a line and a point not on the line, there is exactly one line which 

passes through the given point and is parallel to the line. 
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