


ABSTRACT 

DOUGLAS LANE MILLS.  A Comparison of Multiple Regression 
Computer Programs and Their Usefulness in Analysis of 
Variance.  (1977) 
Directed by:  Dr. William A. Powers.  Pp. 79. 

This research will examine the multiple regression 

programs from major statistical packages and document for 

each the statistical procedure used, the cost, the diffi- 

culty of use, and the output.  Lach program will be uti- 

lized for analyses of variance in balanced and unbalanced 

designs with an interest in determining the accuracy of 

and the statistical techniques employed by each package. 

The regression procedures, while using dummy variables, 

are superior to the ANOVA subroutines for the solution to 

ANOVA.  All four packages studied have regression programs 

that can be used in an unbalanced ANOVA.  The REGR pro- 

cedure in SAS is best for the standard form of regression, 

while SPSS and BMD are best for stepwise regression. 

All packages have the limitation of not giving all 

types of correct analyses.  Therefore, Appendix 4 gives 

an ANOVA program written for the Programming Language 

One Optimizing Compiler for a two factor design that will 

give five correct analyses. 
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CHAPTER 1 

Introduction 

In recent years the development of statistical computer 

package programs has revolutionized the analysis of data in 

the social and natural sciences as well as in mathematics. 

With these packages it is no longer necessary to write indi- 

vidual computer programs for each researcher. However, this 

methodology raises the fundamental problem: How does one go 

about choosing a statistical program? 

Kith the wide range of statistical programs available 

to researchers, choosing the appropriate statistical program 

package for a given study has become an art.  Frequently, 

the experienced programmer or statistician is unaware of the 

computational algorithms employed by each package.  Other 

items of interest to the data analyst would be the capa- 

bilities for liabilities), the cost, the difficulty of use, 

and the statistics that are available in the output generated 

by each package. 

Recognizing the importance of this issue, the American 

Statistical Association formed the Committee on Evaluation 

of Programs Packages with the assignment of establishing 

criteria for selecting a computer package.  In August 1974, 

the committee submitted a proposal (Francis, Heiberger, 5 
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V'elleman, 1974] on tlic standards that statisticians list as 

criteria to be used when selecting a computer package.  To 

date such standards have yet to be systematically applied 

(sec Appendix i lor a summary of these standards). 

F.arly studies concentrated on the efficiency of the 

computer itself and the effect the hardware had on program 

accuracy (Longley, 196").  As the interest changed to soft- 

ware, abstracts of the available packages became available 

to the user (Schucany, Minton, § Shannon, 1972).  One of 

these brief surveys did follow up with analyses of the 

packaged programs fSlysz, 1974).  Slysz concentrated on the 

cost, available procedures, and options within these sub- 

programs.  However, the first detailed analysis of particular 

program packages subroutines came when Ivor Francis (1973) 

studied the analysis of variance (AN'OVA) programs. 

This research will specifically examine packages with 

multiple regression capabilities with respect to their imple- 

mentation in general multiple regression problems and for 

analysis of variance.  Throughout it will be assumed that 

the reader has a basic knowledge of statistics and familiarity 

with ANOVA and multiple regression.  Therefore, the reader 

will not receive a detailed discussion in triese areas. 

Purpose 

Multiple regression analysis is a general term which 

refers to a statistical method of investigating the mutual 
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and individual contributions of one or more independent 

variables to the variability of a dependent variable. 

Multiple regression is commonly considered a technique by 

which the linear dependence of a variable to one or more 

variables can be detected.  This examination allows the 

researcher to infer relationships that may exist among the 

variables analyzed.  In application, regression analysis is 

a procedure by which one can derive the least squares fit, 

and appraise the contribution of each variable or group of 

variables to this fit. 

This study of regression analysis will examine the 

various algorithms by which a multiple regression analysis 

is commonly performed.  Since multiple regression analysis 

is now done universally by statistical packaged programs, 

an examination will be made of how each of the selected 

packages approaches multiple regression. 

Stepwise regression is a process in which the inde- 

pendent variables are taken into the regression that best 

improves the predictor equation.  It should be noted that 

any subset of those independent variables specified can be 

chosen.  The regular form of regression is derived Lf all the 

independent variables are forced into the analysis in a 

prescribed order.  Both types of regression procedures will 

be examined to determine how well they detect singular and 

near singular matrices. 

The relationship between regression and analysis of 

variance will be discussed.  In regression the best linear 



predictor  equation   is   of  primary   interest,   while   in 

analysis   of  variance   the   concern   is   the  proportion  of 

variability   in   the   dependent   variable  which   can  be   attri- 

buted   to   each   of   the   independent   variables. 

An   ANOVA  may   be   performed within   the  multiple   re- 

gression   framework,   and,   therefore,   may  be   solved by  mani- 

pulating   regression  procedures.     This   approach   is  noteworthy 

when   dealing  with   an  ANOVA   for  an  unbalanced   design.     The  un- 

balanced  design,   in   ANOVA,   arises  when   there   is   an   unequal 

number  of  observations   in  each   cell   and   is  of  particular 

interest  because   of   the   frequency  of occurrence  in  applied 

research.      The   mathematician   is   concerned because  of  the 

various   methods   of   computation,   each   theoretically   sound, 

which   can   be   implemented  to  give   different  numerical   results 

and,   therefore,   different   interpretations.     The   social  or 

natural   scientist   is   interested  because   the   disciplines 

often  yield   data   which   fit   these  situations.     Moreover, 

there   is   some   difficulty   in   using   traditional   formulas   since 

they   do   not   give   correct   answers   when   there   is   an   unequal 

number  of  observations   in  each   cell. 

The  ANOVA  procedures   and  the   ANOVA  options   of   regression 

programs  will   be   examined  to   document   their  capabilities 

and   limitations.      Additionally,   the  program packages  will 

be   examined with   respect   to  balanced  and  unbalanced  designs 

to   determine   the  accuracy  of   the   solutions   generated by   the 

statistical   techniques   that   the  package   implements. 



The  major   criteria   for   choosing   the   statistical   packages 

were   their   availability   and  popularity.     With   these   standards 

in  mind,   the   programs   chosen  were:      (1)   Biomcdical   Computer 

Programs   (BMDj   developed  at   the  University  of California  at 

Los  Angeles;    (JJ   Statistical   Analysis   System   (SAS)   at  North 

Carolina   State   University;   (3)   Statistical  Package   for   the 

social   Sciences   (SPSS)   now   located  at   the   University  of 

Chicago;   and   (4)   Tele-Storage   and  Retrieval   System   (TSAR) 

developed  at   Duke   University. 

Finally,   an  original   computer  program will   be  presented 

that   i> i 1 1   give   a  generalized  solution   to  both  balanced  and 

unbalanced  designs   in   an   ANOVA. 
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Multiple Regression 

Multiple regression is a method of deriving a linear 

combination of independent variables X,, X£, ..., Xn which 

give a prediction equation for some dependent variable Y. 

This technique finds the linear combination which minimizes 

the squared prediction error (residual). 

A general form of the linear combination of the X's 

may be denoted by 

Y=b0*b1X1+b2X2+...*bnXn. (1) 

The  prediction  error,   e,   for  a  single   observation   is 

defined  as 

e=Y-Y. 

The coefficients in the linear combination are determined 

so that they will yield the "best" equation.  For this 

research, the "best" equation is taken to be the "least- 

squares" equation which minimizes the total squared error 

in prediction over all subjects.  This process can be 

demonstrated with one independent variable so that 

! 



Y-bQ+b1X. 

Using   subscript   i=l,...m   to   denote   the m   observations,   the 

regression   equation   for   the   ith   subject   would be 

Y.    =bn+b,X. 
1        Oli 

and   the  error   tor   the   ith   subject  would  be   denoted by 

ei=Yi-vi=vi-Vbixi- 

Then   the   total   square   error  is 

Moreover, 

in m 

1=1     1=1 

ir. m 

.*  •ia-.I1<Yi-b0-b1X1)". i=l i=l 

I   (Y1«-2b0Yi-2b1YiXi*2b0b1X1*bo,+brXi  5 
i = l 

ihc   coefficients  b«  and  b.   which  minimize   the   total  squared 

error  are   the  solutions   to   the   two  equations 

~a5~; 



iii m in 
-£-   [   I   e:2) = -:    !   V-+2b,   Z   X.+2rnbn = 0   implies 

1:1 m 

i = 1 i = l 
(2) 

;.: m 

TFT  '.-  ei2J--.2^ixi + 2b0 .*  *i*»l  * V"0   impU 
i     i=l i=l i=l i=l 

es 

n> m in 
b0.z1V

bl-I,Xi''.I,YiXi- 1=1 1=1        1=1 
(3) 

By   substitution   of  b,|   from   (2)   into   (3), 

in m m m 

V1
xi"blx.I1

xi*bl.I,XiI'.I,YiXi' 1=1 1=1 1=1 1=1 

in m 
bi(   .    Xj;-mX2J=   Z   V^X.-mXY     implies 

i=l i=l       1 

m 

" 1        i = l        *         "   cov(X,VJ 

in X °X 
(4) 

Now  substituting   this   result   into  equation   (2), 

T   v   v     n YV m _ 
b0=Y-X(i^]

Ai'i   "A  )        mox2Y+mX2Y-(   Z   X-Y^X 
— = i = l 

mc 
X inO' 

in n 
V   I   X2-X   I   XV 
i=l i=l 

(5) 

mo j, 2 



Thus,   the  error  is   at   a  minimum and  the   coefficients   are 

"best"  when 

m m 
Y Z   X2-X  I   X- Y. 

>0   "     i=l i"l   '   1     and    bi =   i=l 
Z   X4Y--mXY 

1   1 

mOy 2 mox2 

The  problem  of  finding bg  and b^  can  also  be   approached 

from  the  matrix  algebra  viewpoint. 

Let     Y= Yl , x= 1  Xj 

• 1 x2 
> •      • 

Y m 

i y 

,   and  E= 

2x1 

mx2 mxl 

Then  Y=XB+E,   which  corresponds   to   (1)   and  implies   E=Y-XS. 

So,   E'E=(Y-X3)'(Y-XB)=Y'Y-26'X'Y+6'X'Xe. 

Now,   minimize  E'E with   respect   to  6. 

oS E'E= 3E'L 
ab0 

SE'E 
3b, 

= -2X'Y+2X'X6 which corresponds to (2) and (3) 

Setting -2X'Y+2X,X0=O gives X'X6=X'Y or 3=(X'X)"1X*Y. 
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rhus, 

31 

1 
1110   y 2 

zx2 

in 

-X 

-x 

l J 

[lY 

EXi 

_1  
mo ..2 

Y:X
2
-XEXY" 

-7EY+ :XY 
~ 

YZX
2
-XZXY 

max2 

ZXY   - m 

ma   2 

which   gives   values   of  6Q   and  3j   equivalent  to   those   in 

equations   (4)   and   (5). 

Note   that,   in  general,   with  n   independent  variables 

the   solution   is   also   3=(X'Xj":X'Y.     Since   X'X   is  positive 

definite,   the   solution  (J-(X'X) ^X'Y   minimizes   the   total 

squared  error   (Graybill,   19b9) . 

Lquivalently,   by   the  geometric   approach   to   least 

squares   we  wish   to  minimize 

Q-SCY.-Cb.+bjX^)2 

with respect to bn and b1  with l:.(e)=0 and E(ee*)=o I 

Therefore, we show that 
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Q-||Y-X6||2   where   X- 1 h 
1 X2 

1 X, 

• • 

1 xn 

and  3 = 

Since  Q   is   the   square   distance   from  Y   to x3,   it   is   clear 

from  figure   1   that   this   distance   is   minimum when  X3=XfJ 

and  X6   is   the   perpendicular projection  of  YmR^,   the   space 

spanned  by  Xr.      That   is,    | |y-X3|12 = I Iy-PyI I2   where   Py   is 

the  perpendicular  projection   of  y  on   R^ . 

Proof:     Since   y-PyjRx   and  l'y-XScRx,   then   y-Py[Py-X3. 

||y-X3| |2=||y-Py+Py-X6||2 = |I(y-Py)+(Py-XB)||2   = 

(y-Py)•(y-Py)+2(y-Py)'(Py-XB)+(Py-XB)'(Py-XB). 

But   (y-Py)'(Py-X   )-0,   therefore    ||y-XB||2-||y-PyI I2+I|Py-XB 

With   PyeRv,   Py-X8   for some  8,   then 

I |y-XS||2>| Iy-Pyj |2   for   any   3. 

To   find  6,   y-Py+(I-P)y-X$+(I-P)y,   so  X 'y-X'XB+X'(I-P)y. 

Since   P=X(X'XJ"1\',   we  have 

X'(i-X(X'X)-1X')=X'-X'X(X,X)-1X'=X,-X,=0 

2y   substitution,   we   have   X'y=X'X6   and  thus   p-(X'X)"   X'y. 

Now that we have shown that if X6=Py then X'y=X'X8, 

we need to show that if X'y=X'X3, then X8 = Py (i.e., show 

that  y-X$|R«) . 



FIGURE 1 

DIAGRAM OF GENERAL LINEAR MODEL 

12 
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X'(y-X6)=X'y-X'X3=0. 

So,   y-X6j_Rx   and,   therefore,   X2=Py. 

We have shown that there is a minimum and that we 

can find it algebraically for all the X's.  Consider the 

problem the best equation where not all the X's are used; 

this technique is called stepwise regression and will be 

discussed as it relates to the packaged programs. 

.Stepwise Regression 

Stepwise regression is a popular modification of 

multiple regression analysis which not only generates a 

least squares equation, but does this by allowing the user to 

choose the optimum independent variables while minimizing 

the error in prediction.  The computations of stepwise 

regression are done by choosing at each step from the inde- 

pendent variables not in the equation the independent variable 

that has the largest partial correlation with the dependent 

variable.  Partial correlations are correlations between 

the independent variables and dependent variable that are 

adjusted for those independent variables already entered 

into the equation.  This iterative process ends when none 

of the remaining variables improves the prediction equation 

by a predetermined amount or all variables are entered into 

the equation. 

An immediate problem is determining the point at which 

the variables should no longer be added to the equation. 
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AJI easy but non-statistical method is to specify a priori 

that only a certain number of variables will be included 

regardless of the contribution they make.  The "best few" 

variables method limits the number of independent variables 

that can be entered into an equation.  Although this pro- 

cedure can easily be done, it is statistically weak.  It 

is conceivable that some significantly influencing variable 

would be missing from the supposedly optimal equation. 

A method of controlling admission of independent variables 

for which there is a statistical basis involves the use of 

the F statistic.  The F value of the chosen variables are 

checked at each step for its significant contribution in 

the prediction of the independent variable.  At each step, 

the variable that makes a significant contribution to those 

already chosen is selected for use in the equation.  Further, 

at each step there is a test for those variables already 

chosen to insure that they have not become superfluous.  If 

a variable has become unnecessary, it will be deleted from 

the selected list.  For information on another less widely 

used technique for controlling the inclusion and deletion 

the reader is referred to Nie, 1975. 

Regardless of the technique used for controlling the 

admission of the independent variables, both the information 

concerning each intermediate step and the results at the 

final step arc printed. 
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Choosing   a  Package 

The   first  problem when  beginning  a   computer  analysis 

is   the  general   one   of   choosing  a  package.      For  a  good 

analysis,   certain   results   arc   required  to provide   accurate 

representations   and   interpretations   of   the  multiple   re- 

gression  analysis. 

A  good   regression  program  should be   able   to  give   simple 

statistics    (means,   standard  deviations,   etc.)   for  each 

classification   variable   and  correlation   coefficients   among 

the  variables   involved.     Further  essentials   are  an  ANOVA 

table   that   has   the   sum  of  squares,   degrees   of   freedom  and 

mean  square,   along  with   an   F  test  so   that   the   statisticians 

can   have   a  probability  level   for  a   test  of possible  signi- 

ficance.     Finally,   the  package   should  have   a  multiple 

correlation   coefficient   R  or  R Square.     Multiple   R  is   the 

correlation   between  V   and  V.      As   an   alternative,   the  package 

could  have   R  Squared,   that  shows   the  quality  of  the   least 

squares   approximation  by   giving  the   amount  of  variance   in 

the   dependent   variable   that   is   accounted  for by  the   inde- 

pendent   variable. 

The   regression  analysis   must   also   include   the   regular 

coefficient   of  the   regression   equation   as   well   as   the 

standardized  B   coefficient.     The  standardized  regression 

coefficients   are   important   because   they  are   uncontaminated 

by   the  magnitude  of  the  corresponding   independent   variable; 

they  weight  each  variable   in   common   units   (z-scores   or 

standardized   units).     The  programs   must  also  give   the   standard 
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error of the coefficients and the standard error of the 

estimates.  \lso, there should be a test of hypothesis to 

check if the B values are significant.  For the independent 

variables involved, the program should have partial and 

sequential sums of squares along with a test of signifi- 

cance for each variable.  Partial sums of squares are sums 

of squares that each variable uniquely contributes to the 

total sums of squares.  Sequential sums of squares arc sums 

of squares that each variable contributes at the time that 

it is entered into the equation. 

Some procedures which are only occasionally needed 

ought to he considered optional.  Among them are sum of 

squares and cross products along with the covariance matrix. 

As for the residuals, there could be a method of retrieving 

the estimates of the Y values and a method of plotting 

residuals. 

For stepwisc regression, the same rules hold lor the 

final equation.  However, at each iteration there should 

be an evaluation of the independent variable and the in- 

formation it adds at that particular step. 

Procedure for l.valuating the Packages 

Each of the packages evaluated was run with specially 

prepared sets of test data (Appendix 2).  These sets include 

data from actual studies as well as data to test the package's 

ability to detect and handle singular and near singular 

matrices.  These test sets of data included independent 
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variables in which all but one of the observations were 

identical.  This one observation differed by 10   (the 

two decimal place test) and 10"^ (the four decimal place 

test) in the two test situations.  Also, tests were done 

for data that contained independent variables that were 

exact linear combinations of each other. 

When making test runs, as many options and statistics 

were requested as possible.  All options could not be used 

since some of these are mutually exclusive.  The object of 

these tests was to determine the completeness of the out- 

put, the accuracy of the computations, ease of use of these 

packages, and the cost. 

The four packages used in this study (BMD, SAS, SPSS, 

and TSAR) were selected on the basis of their availability 

and popularity at Triangle Universities Computation Center 

(TUCC).  A careful examination of the regression capabilities 

was conducted to more objectively appraise each packaged 

program.  Tables 1 through 5 indicate the output (some of 

which must be requested) that is available from the re- 

gression programs.  These tables include the acquirable 

output of both regression (Table 1) and stepwise regression 

(Tables 2 and 3).  Table 2 gives information on the final 

equation only and Table 3 shows what data is available for 

the intermediate steps. 

When evaluating these four packages, it is noteworthy 

that only SAS has a separate procedure for both regression 



TABLE 1 

REGRESSION OUTPUT AVAILABLE 
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Simple   Statistics 

Regression   Coefficients 

Correlation  Matrix 

Sum  of  Squares   (Regression) 

Sum  of  Squares   (Error) 

Sum of  Squares   (Total) 

Mean  Square 

I Value for Regression 

Covariance Matrix 

Multiple R 

Adjusted R 

R Square 

Standard F.rror of Estimate 

Summary Table 

List of Residuals 

Plot of Residuals 

iHirbin-Watson P 

Coefficient of Variability 

Significance of F Value 

Sequential S.S. for 
each Ind. V. 

Partial S.S. for 
each Ind. V. 

Test for H(): B=0 

Zero Intercept Option 

BMP SAS SPSS TSAR 

* * * * 

* * * * 

* * * * 

* * * 

* * 

* 

* 

* * * 

* * * * 

* * * 

* * * 

* 

* 

* * * 

* * * * 

* * 

* * * 

* 

* * 

* 

* 

* 

* 
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STEPWISE   REGRESSION:     OUTPUT   FOR  FINAL   EQUATION 

Simple   Statistics 

Regression  Coefficients 

Correlation  Matrix 

Mu11iple  R 

R   Square 

Standard Error of 
Estimate 

Sum of  Squares (Regression) 

Sum of Squares (Error) 

Sum of Squares (Total) 

Mean Square 

F  Value   for   Regression 

Covariance Matrix 

Summary Table 

List   of  Residuals 

riot   of  Residuals 

Durbin-Watson   I) 

Coefficient   of Variability 

Significance of F Value 

Sequential   S.S.    for 
each   Ind.   V. 

Partial   S.S.   for 
each   Ind.   V. 

Test   for  HQ:   B=0 

Zero   Intercept   Option 

BMD SAS SPSS TSAR 

* * * 

* * * * 

* * * 

* * * 

* * * 

* * * * 

* * * 

* * 

* 

* 

* * * 

* * * * 

* 

* * * 

* * 

* 

* 

* 

* 

It 



TABLE 3 

STEPKISE REGRESSION:  OUTPUT OF INTERMEDIATE STEPS 

2d 

BMD 

* 

* 

* 

* 

Sun of Squares (Regression) 

Sun of Squares (Frror) 

Sum of Squares (Total) 

'lean Square 

! Value for Regression 

Significance of F 

Multiple R fR Square)        * 

Sequential S.S. for 
each Ind. V. 

Partial S.S. for 
each Ind. V. 

Variables in Equation 

Regression Coefficients      * 

F Value to Remove * 

Significance of F Value 

Standard B Value (Beta) 

Standard Frror Beta 

standard Error Estimate 

Normali zed B 

Standard Frror B * 

Test HQ: B=0 

Variables Not in liquation 

Partial Correlation * 

Tolerance * 

F Value to Enter * 

Beta In 

SAS 

* 

* 

* 

* 

* 

* 

* 

SPSS 

* 

* 

* 

* 

TSAR 

* 

* 

* 

* 

* 

* 

* 
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and  stepwise   regression.      It   is  possible   to  use   HMD,   SPSS, 

and TSAR  in   regular  regression  even  though  they   are  written 

for  stepwise   regression  by   forcing  the   independent   variables 

in  a  specified  order. 

When   considering   the   output  available   from   the  programs 

for  standard   regression,   SAS   stands  out.      It   is   the  only 

package  written   for  this   type  of  regression,   and   therefore 

SAS  gives   the  most  complete  output   for  any  regression 

analysis   (Table   1).     While   SAS  has   the   largest  number  of   the 

suggested   results   previously  mentioned,   it   does  have   some 

shortcomings.     SAS  does  not   have   a  method of plotting   resi- 

duals   directly   in   the   regression  procedure.     Although   SAS 

does   have   a   separate  plotting  procedure,   it   is  somewhat 

awkward   to   use   since   it   is  necessary   to   create   a  separate 

data  set  with   only   those  variables   and  residuals   to  be 

plot ted. 

The   stepwise   regression  procedure   in   SAS   fares   less 

.veil   than   the   regression  program.     The  output   is   less 

complete   since   it   lacks  a  summary   table  as  well   as   other 

essentials   [Table   2).     Further,   SAS   lacks   information  on 

the   variables   not   in   the   equation   at  each   iteration 

(Table   3). 

HMD and SPSS are about equal with respect to options 

available. While SPSS does not have an option for a zero 

intercept   (no   constant   in   the   regression  equation),   BMD 



has   this   alternative.     However,   SPSS  allows   the   plotting  of 

residuals   directly   in   the   regression  procedure,   and  it   is 

the   only  package   to  have   this   capability.     Finally,   TSAR 

generates   the   least   information.     It   does   not   give   the   sum 

of  squares,   a   covariance  matrix,   or  a   list  of  residuals. 

The   accuracy   involved  in   the   computations   is   of  impor- 

tance   in  any   research  study.     All  packages  provide   accurate 

results   for   data  with   singular  or near  singular  matrices. 

Both   SPSS   and SAS  have   the  capability   to  detect  singular 

and near  singular  matrices  even when   tested  to  four  decimal 

places,   an   extreme   in  most   applications.     BMD was   unable   to 

detect  a  near  singular  matrix   in   the  two  decimal  place   test. 

However,   it   did  detect   the   singular matrix.     TSAR was   able 

to   recognize   singular  matrices   and was  superior  to  BMD  in 

checking  near  singular  matrices   as   it  passed  the   two   decimal 

place   test.      TSAR  does   not  have   the  proficiency  of  SAS  and 

SPSS  with   respect   to   the   higher   level  of  accuracy.     There- 

fore,   it  was   concluded  on   this   basis   that  BMD02R and 

possibly  TSAR   are   written   in  single  precision  while  SAS 

and  SPSS  are   written   in   double  precision. 

In  addition   to   the  problem  of  accuracy,   an  important 

but  significant   characteristic   is   its  efficiency.     TSAR 

is   the   most   inexpensive  package   (Table   4)   and has   the 

quickest  execution   time.     It   is   easy  to   conclude   that  while 

TSAR  does   not   have   as   many  capabilities   as   the   other pro- 

grams,   its   computations,   however  limited,   are  well   done 



when   considering   its  accuracy with   respect   to  its   cost. 

BMD  is   relatively   inexpensive,   but   it   is   the  most  difficult 

to   use  because   of  the  precise  card preparation   required. 

SAS   is   the   most,   expensive  package  and has   the   slowest 

execution   time.      Because   of  its   excellent  manual   and  easy 

deck   preparation,   SPSS  stands   out   in   its   case  of  use. 

This   feature,   along  with   a  moderate   cost,   makes   it  an 

attractive  package   for  stepwise   regression.     Appendix   3 

contains   subjective   ratings  of  experienced  users  with   respect 

to   the  manuals,   case   of  use,   and  completeness   of  output. 

TABLE   4 

PROGRAM EFFICIENCY  ON'  TEST  DATA SET 

REGRESSION  PROCEDURES 

30   Cases,   6   Independent  Variables 

Cost 
CPU 
Time Priority Region 

3MD 
(BMD0 2R) 1.15 .0 0 114K 

SAS 
(RegressionJ 1.69 1.5 0 108K 

SAS 
(Stepwise .96 .9 0 108K 

SPSS .86 .6 0 184K 

TSAR .34 .2 0 100K 
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For standard regression, SAS has the necessary attri- 

butes in giving complete information that make it the best 

package for this type of analysis.  For stepwise regression, 

SPSS is favored because of good output for each step and its 

summary table.  Further, both packages are accurate (as 

shown by the test for near singular matrices) and are easy 

to use.  Thus, on both objective and subjective bases, 

SAS and SPSS are the programs best suited for regression. 



CHAPTER   3 

Analysis   of  Variance 

An  ANOVA   is   a   statistical  method  by  which   it   is  possible 

to   control   separate   factors   which  may  affect  a  measured  ob- 

servation   and   to  observe   the  measurable  quantity  at  each 

level   and,   therefore,   to  evaluate   the  effect  of   the  factors. 

Consequently,   through  experimental   design,   the   researcher  can 

infer   the   relationship  between   the  measured observations   and 

the  separate   factors. 

Computer  ANOVA  Procedures 

bach   package  has   unique   algorithms   for   the  ANOVA  calcu- 

lations.     These  algorithms   differ with   respect   to   the   design 

complexity   (i.e.,   number  of  factors,   number  of  levels, 

nesting)   permitted.     However, when used properly all  packages 

should  arrive   at   the   same   results.     Many packages   are   so 

limited   in   the   type  of  designs   permitted  that   they  are   diffi- 

cult   to  compare.     Attempts   to  use   a  package   unsuited  for  the 

analysis  will   usually  give   an  appropriate   diagnostic  error 

message.     Yet,   in   the   recurring  situation  of  unequal   cell 

size,   some   of  the  packages   produce   erroneous   results  without 

warning   the   user   in   the  manual  or   through  messages   in   the 

output. 



21- 

Even   those   pro-rams  which   correctly  perform  an  ANOVA 

for   unequal   cell   sizes   must  be   used with  care   since  at 

least   five   different   correct  analyses  are  possible.     The 

user  must   then  decide  which   type  of  analysis   is   appropriate 

and   select   the   package   that   has   the   corresponding  algorithm; 

this   is   difficult,   since  not  all  packages   identify   the 

algorithm   they   use. 

Most  packages   also  have   separate  procedures   for ANOVA 

and   regression.     These   ANOVA  subroutines   do  not  necessarily 

give   a  correct   analysis   for   an  unbalanced ANOVA.     The  problem 

is   that   the   procedures   use   formulae  and  algorithms   for  sums 

of  squares   dependent   upon  an  equal  number  of  observations   in 

each   cell.     Had  the  developers   of  these  packages   used   the 

regression   viewpoint,  which   is   a   correct  way   to  approach   an 

unbalanced  ANOVA   (see   Chapter  4),   this   problem  could have 

been   alleviated.     Therefore,   only  data  with  an  equal   number 

of observations   in  each   cell  will  be  considered  to  evaluate 

the  performance   of each  ANOVA  package. 

Selecting   an  ANOVA  Program 

For   this   ANOVA  phase   of   research,   the  same   four program 

packages   were   selected.     The   programs   or  subroutines   used 

were   the   BMD08V  program,   the  ANOVA procedure   in  SAS,   the 

SPSS  ANOVA,   and   the   TFA0V3  procedure  in  TSAR. 

As   in   regression,   the   selection  of  ANOVA procedure 

generates   the   question:     What   is   available?     The  designs 



Maximum Number 
of factors 

Maximum Number 
of Levels 

Nesting (Repeated 
Measures) 

Analysis of 
Covariance 

Mixed Models 

Regression 
Approach Option 

TABLE 5 

ANALYSIS OF VARIANCE LIMITATIONS 

BMD SAS SPSS TSAR 

10    unlimited 

100 unlimited unlimited 12 columns, unlimited 
rows, layers 

-•4 
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that   these   four  programs   can  accommodate   are   given  in 

Table   5.     The  output   available  with   these  ANOVA procedures 

is   shown   in   Table  6.     The   data  used  in  testing  the procedures 

is   in  Appendix   2. 

TABLE  6 

ANALYSIS  OF VARIANCE OUTPUT AVAILABLE 

Simple  Statistics 

Sum of Squares    (Effects) 

Sum  of  Squares    (Error) 

Sum of  Squares   (Total) 

Mean  Square 

F Value 

Multiple   R 

Significance  of  F  Value 

Coefficient   of  Variability 

Expected Mean  Square 

BMD SAS SPSS TSAR 

* * * 

* it * * 

* * * 

* 

* 

* 

* 

The  ANOVA  procedures   of   the   four packages   fare   less 

well   than   their   regression   counterparts.     When  considering 

both  options   and  output   available,   the   BMD package   is  best. 

BMD  allows   a   reasonable  number  of   factors   and  enough   levels 

within   each   factor  for  most   analyses.     Further,   it   can 
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perform analysis of covariance and handle nested designs. 

dMD is the only package that can directly utilize a mixed 

model. 

All  other packages   show  severe   limitations.     SAS  can 

handle   neither  an  analysis   of  covariance  nor  a  mixed  model, 

although   it   gives   the  best  output.     SPSS  cannot   handle 

either   repeated  measures  nor  mixed models.     Although  the 

SPSS  manual   is   generally  good,   the   section  on ANOVA  is 

ambiguous   and  requires   a  great  amount  of statistical 

expertise   to   choose   the   correct  options   for  an  analysis. 

The  problem has   even   caused  confusion   among  the writers   of 

SPSS.     In   their  September   1976  newsletter,   they  admit   to 

the  problem  and  plan  to  remedy  the  problem  in  Version   7.0 

of SPSS.      Therefore,   one  should not  use   the  SPSS  ANOVA 

procedure   unless  he  knows   the  option  he  needs   and  that   this 

option   is   correct.     For   this   reason,   SPSS  ANOVA  was   not   used 

in   the   test  on   cost  and efficiency   (Table   7).     TSAR has 

the  most   limitations.      It   does   not   include  an  analysis   of 

covariance,   repeated measures,   nor mixed models   and  is 

limited  to  at  most   a  three-factor  design. 
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TABLE   7 

PROGRAM  COST  AND EFFICIENCY  ON  TEST  DATA 

ANOVA  PROCEDURES 

18   Cases,   2   Independent  Variables 

30 

BMD0 8V SAS TSAR 

Cost .53 1.43 .54 

CPU Time (Seconds) .4 .8 .2 

Priori ty 1 1 1 

Region 140K 200k 200K 
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CHAPTER   4 

Regression   as   ANOVA 

The most   general  way   to   think  of  an  ANOVA  is   as   a 

special   form of  regression.     When  using  multiple   regression 

for ANOVA,   the   independent   variables  will  not  be   continuous 

variables   but   discrete  dummy  variables   that   indicate  an 

observation's   cell   location  within  the  design.     The  theory 

of  dummy  variables   can best  be  shown by  their  generation 

and  use. 

Generating   Dummy  Variables 

Consider  the   case  of  a   two  by  three  ANOVA   (i.e.,   the 

first  variable   has   two   levels   and  the   second  variable  has 

three   levels).     A  convenient  mathematical   model   for  the 

observations   in  ANOVA  is 

Yijk   "   M   +  *i   +   Bj    +  Tlj    +   eijk     where 

i   =   1,2;   j   =   1,2,3;   k  =   1,2,...n 

which   is   denoted  as   the  general   linear  model.     The  Yi;jk   is 

the  k   th   observation   in  the   i   th   level   (row)   of   the  first 

effect  and  the   j   th   level   (column)   of  the  second  effect. 

The  arrangement  of  rows   and  columns   in  a  balanced design 



3 2 

with  n  observations   per  cell   is   shown   in  Figure  2.     The   u 

term   is   attributed  to   all   observations.     The  a  term   is   the 

effect   of  the   first   variable   and  the  g   term   is   the  effect   of 

the  second.     The  Y   term   is   the   effect   of  the   interaction  of 

the   first   and  second  variables.     The   e   term   is   the  error. 

It  is   usually   assumed  that 

£   -.:    =   0,   5   6.    =   0,   and  Z   Y; •    =  Z   Yi . ■   0 (6) 

(see Searle, 1971, or Winer, 1971, for a more detailed dis- 

cussion of the general linear model). 

FIGURE 2 

TWO BY THREE ANALYSIS OF VARIANCE 

Ai 

A2 

Bi B2 Bs 

Vi l l Yl2 1 Yl  3 1 
Vl 12 Y122 Yl  32 

V I in Yi2n Y 1  311 

Y2   1  1 Y2 2  1 Y2 3 1 

V2  12 Y2 2 2 Y2 32 

\ 2 i n Y2 2n Y2 3n 
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In   the   two-way  analysis  with   two   levels   of A  and 

tiirce   levels   of  H,   this  model   can  be   rewritten  as 

y. .,   ■  u  +  a w    + a w    +  S  x    *   6 x     +   :'■   x    + y    w  x     * 
1JK 1! 22 11 22 33 1111 

W    X       +    Y       W    X       +    Y       W   X       +    Y       W   X       +    Y       W   X       +    C ( 7) 
1212 1313 2121 2222 2323 1JK 

where   w-    is   one   if   the   observation   is   in   row   i,   otherwise 

it   is   zero;   similarly,   x .   is   one   if   the  observation  is   in 

column   j,   otherwise   it   is   zero.     Therefore,   by   taking   the 

information  given  by   the   x's   along with  w's   the exact 

location   of   the   observation   can be   determined.     Consider  the 

first   observation   of   the   first   level   of  A  and  the   third 

level   of   B,    then 

Y -u+o.l+a«0+e*0+B*0+6«l+ 
1311 2 ' 2 3 

YM'0   ♦   Yi2-0   *  Yi3'l   *   Y21'0   ♦   Y22'0   ♦   Y^'O  ♦   e^ 

'■■.Inch  becomes 

1  3 1 "     »     +    a,     +     33     +     Y13     +     «l.l 

An  entire   analysis   could be   set   up  with   dummy   variables   as 

in  Table   8.     This   procedure   is   exactly   the   same   for   the  un- 

balanced  design. 
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TABLE   8 

VALUES   OF   DUMMY   VARIABLES   USING   ZERO-ONE 

CODING--BALANCED DESIGN 

o 
u 

2 
2 
2 

2 
2 
2 

c 
£ 
3 
i-H 
O 
u 

2 
2 
2 

3 
3 
3 

(J 

P. 

1 
2 
3 

1 
2 
3 

1 
2 
3 

w 

2 1 1 
2 1 2 
2      1      3 

1 
2 
3 

1 
2 
3 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
1 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 

0 
0 
0 

0 
0 
0 

1 
1 
1 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
1 
1 

0 
0 
0 

0 
0 
0 

1 
1 
1 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
1 
1 

0 
0 
0 

0 
0 
0 

1 
1 
1 

W    X 
1    1 

W   X 
1      2 

0 
0 
0 

1 
1 
1 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

W    X 
1      3 

0 
0 
0 

0 
0 
0 

1 
1 
1 

0 
0 
0 

0 
0 
0 

0 
0 
0 

W   X 
2      1 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
1 
1 

0 
0 
0 

0 
0 
0 

W    X 
2      ? 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
1 
1 

0 
0 
0 

W    X 
2      3 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
1 
1 1st 
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Observe   that   the  arrangement   in  Table   8   carries  more 

information   than   necessary.     Certainly,   if an  observation 

is   in   the   first   level  of A,   then   it   cannot  be   in   the   second 

level.     The  same   logic  holds   for   the   levels   of  B. 

Recall   the  assumptions   of  the  model   from   (6).     For   the 

example  of   the   two  by  three   analysis 

o    *   a     ■  0 implies       a    =   -a 
12 2 1 

6     +6     +   P     =0 implies 
1 2 3 

-6   -B 
1 2 

Y       +   Y       +  Y       
=   0        implies       y 

11 12 13 13 
-Y      -Y 

11 12 

Y       +   v       =0 implies       Y       =   "Y 
12 22 22 1 2 

Y        +   Y        =   0 
13 2 3 

implies       Y       
=   ~Y r 23 13 

Now,   substitution   of  these   results   into   (7)   gives 

vtjk ■ » + V. ' W + V« + V* + ("VV xa + YxxVS + 

>,2V\   +    C-YM-Yia)    V.   MuV,    -   Yi2w2x2   ♦    (Yil+Yi2)   WaX3 

- V + a     (w   -w  )   ♦   6.   (x  -x  )   ♦   I     Cx -x 1   * V^tw.-w^x,-^) 
1 1       2 1 3 

+   Y        (w   -w   )(x   -x   )   +   e . 
12 1        2 2        3 
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However,   these   dummy   variables   can be   reduced  in  number  by 

letting  Uj   =  w^-WjJ   u,   =   Xj-X-J   u^  =   x2-x5;   u4   =   (w,^) 

,xl"x2-);   u5   =   Cwi-W2)(x2-X3) . (8) 

Ihe  equation   then  becomes 

Y • . k  -  v * ot u u    +   3   u     +  y     u     +y     u    +  e. 
12 2      3 11     * 1 2      5 

Therefore,   the   number of   terms   in   the   equation  can be 

reduced  by   changing   from  the   zero-one  coding   to   zero-one- 

negative  one   coding   (see  Table   9).     This   reduced  format   can 

be  obtained  by  using  the   five   u.   substitutions   into  Table   7. 

In  a  design   with   a   levels   of   factor  A and  b   levels   of  factor 

B,   this   process   reduces   the  number  of dummy   variables   from 

2ab-l   to   ab-1,   a   decrease  of  ab.     This   reduction   in   the 

number  of  dummy  variables   is   of  great  importance   in   the   actual 

computational   process.     Recalling   the   idea  of  regression, 

one   independent   variable   is  equivalent  to  one   dummy  variable 

and  the   computer  builds   a  matrix  of  size   a+b+1   x  a+b+1 

rather   than   the  unreduced  size   2ab   x   2ab.     This   smaller 

matrix,   which   is   half  of  the  original   size   in   the   two  by 

three  example,   is   much   more  efficient   to  use  with   respect   to 

both   core   allocation  and,   more   importantly,   the   time   required 

lor  expensive   matrix   inversion  computations   necessary   to  solve 

the   regression   problem.      Consequently,   these   two  advantages 

cause   important  savings   on  extensive   research  projects. 



TABU: 9 

DUMMY VARIABLES FOR MODEL AFTER REDUCTION 

ZERO-ONE-NEGATIVE ONE CODING--BALANCED DESIGN 

u 

1   1 1                      ] 1 0 1 0 
1    1 2                      1 1 0 1 0 
1    1 3 1 0 1 0 

1     2 1                        ] 0 1 0 1 
1     2 2                      ] 0 1 0 1 1           ? X                  4. 3                  : 0 1 0 1 

1      3 1                        ] L                -1 -1 -1 -1 
1      3 2                      ] L                -1 -1 -1 -1 
1     3 3 L              -1 -1 -1 -1 

2      1 1 L                1 0 -1 0 
2      1 2 L                 1 0 -1 0 
2      1 3 1 0 -1 0 

2      2 1 I                  0 1 0 -1 
2      2 2 I                0 1 0 -1 
2      2 3 L                0 1 0 -1 

2      3 1 I              -1 -1 1 1 
2      3 2 1              -1 -1 1 1 
2     3 3 1              -1 -1 1 1 
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Using   Dummy  Variables 

FIGURE   3 

ARRANGEMENT   OF  DATA   FOR TWO   BY   THREE  ANOVA 

8 B B 

8 10 8 
1 8 6 
0 6 4 

14 4 15 
10 j 12 

6 0 9 

Consider the data collected for the two by three analysis 

(see Figure 3).  The matrix generated for this data would be 

similar to Table 9 and thus the problem would become 

8 
■ 

1 
0 

10 
8 
6 
8 
6 
4 

14 1         " 1 
10 -1 

6 - 1 
■1 1         ■ 1 
) 

0 -1 
IS 1         " 1 
12 1         ' 1 9J 1         "1 

1 0 1 0 
1 0 1 0 
1 0 1 0 
0 1 0 
0 1 0 
0 1 0 
1 -1 -1 -1 
1 -1 -1 -1 
1 -1 -1 -1 
1 1 -1 0 
1 1 -1 0 
1 1 -1 0 
0 0 0 -1 
0 0 0 -1 
0 0 0 -1 
1 -1 1 
1 -1 1 
1 -1 1 

p 

B> 

Yi l 
Yl2 

111 

112 

113 

12 1 

1 2 2 

1 2 3 

13 1 

132 

'2  1 1 

2 12 

2 2 1 

2 2 2 

2 2 3 

2 31 

2 32 

2 33 
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This   analysis   performed  by   a   regression program will  give 

the   results   shown   in  Table   10.     Note   that   the  sums   of  squares 

due   to   each   u-    gives   the  variability  in Y  explained by   that 

Source DF 

Total 5 

u 1 

u 
2 

1 

U 
3 

1 

U 1 

U 
5 

1 

l.rror 12 

TABLE   10 

RESULTS   OF   TWO   BY   THREE   DATA 

Sum of  Squares Mean  Square 

516.000 

18.000 

12.000 

36.000 

0.000 

144.000 

106.000 

63.200 

18.000 

12.000 

36.000 

0.000 

144.000 

8.333 

F Value 

2.038 

1.358 

4.075 

0.000 

16.302 

Therefore,   the   sum   of  squares   for  Uj   is   the  measure  of  the 

variability   due   to   the   difference   in  0j   and  cxz .     Recalling 

the  change   of  variables   from   (8)   that  gave   the  u  terms,   the 

researcher   can   infer  the   relationship   among   the  variables, 

for example,   u    was   the   difference  between Wj   and »a   in 

Table   8.      Further,   Wj   was   associated with  0j   and «2   was 

associated  with   «f .    "Therefore,   the   researcher  can   assess   the 

difference   between   a     and  «   ,   which   is  equivalent   to  assess 
1 2 

ing   the  effect   of   factor  A.     Similarly,   for  the   levels 
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within  B,   recall   the   change   of  variables   from   (8)   that  gave 

the   u   terms.      Recall   u     =  x     -   x     and  u    =   x     -   x^.     Also, 

v    was   associated  with   6   ,   x    with   6   ,   and  x    with   B   . 
*, ' 12 2 3 3 

Therefore,   the   difference  u     is   the   contrast  between  Bj   and 

■■     while   the  difference   u     is   the   contrast   between  62   and 
3 3 

When u  and u  are taken together, they give the statis- 
V 2        3 
tician information desired on the effect of the levels within 

B.  Finally, u  and u  together give the information on the 
<t 5 

possible interaction of the levels of A with those of B. 

To change this regression form of Table 9 to the ANOVA form, 

u  is the sum of squares of A, U£ ♦ U}   is equal to the sum 

of squares due to factor B, and u^ ♦ u^   is equal to the sum 

of squares of the interaction of A and B.  Hence, Table 10 

would be rewritten into an ANOVA form as Table 11.  Remember 

that if dummy variables are used, it makes no difference 

whether the data is balanced or not. 

TABLE 11 

ANOVA RESULTS OF TWO BY THREE DESIGN 

Source DF Sum of Squares Me an Square F Value 

Total 5 316.000 63.200 

A 1 18.000 18.000 2.038 

B 2 48.000 24.000 2.717 

A*B 2 144.000 144.000 16.302 

Error 12 106.000 8.833 
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Five   Correct   Analyses 

When  a   research   study  calls   for  a   two-way  ANOVA,   three 

hypotheses   are   commonly   stated.     These  hypotheses  are   (1)   no 

difference   in   the   row  effects,    (2)   no  difference   in   the   column 

effects,   and   (5)   no   interaction  between   the   rows   and  columns. 

In   an  unbalanced  design,   there   are   several  ways   of 

specifying   the   meaning  of  "no  difference   in   row  effects." 

Table   12   (llerr   5   Powers,   1976)   gives   the  hypothesis   for  each 

of  the  corresponding   correct  analyses.      In  a  balanced  design, 

all   such  methods   are   equivalent;   that   is,   they  are  reduced  to 

the  same  parametric   statement   and  they yield  the   same   sums   of 

squares   due   to   row  effect.     However,   in  unbalanced designs, 

the  various   methods  yield  different  analyses.     F.ach  analysis 

is   a   correct   analysis  within   the   context   of  the  specified 

meaning  of   "no   difference   in   row  effect."     But  each   analysis 

will   result   in   a   different  sum of  squares   due   to   row  effects 

and  possibly  a   different   interpretation  of  significant  effects. 

The   five   correct   analyses   for  an  unbalanced design   are: 

(1)   hierarchical--first   A   then  B,   (2)   hierarchical--first  B 

then  A,    (3)   adjusting  each  main  effect   for  each  other, 

(4)   a  weighted  means   analysis,   and   (5)   the   standard para- 

metric   analysis   (weighted  squares   of  means).     Each   of  these 

methods   will   give   different  sums   of squares   for one   or more 

of  the   factors,   therefore   a  different  mean  square  and  F 

value. 



Abb revi- 
Subspaces        Identifying  Phrase ation 

TABLE   12 

IIYPOTHliS IS   FOR  EACH   OF  THE   FIVE   CORRECT   ANALYSES 

Parametric  Hypothesis  Tested 

Hypothesis   (Rows) Hypothesis   (Columns) 

A|j       BIJ       Standard parametric STP 

A|B       B|A       Each  adjusted   for EAD 
the  other 

b a 

q=l "kq^kq-^q) = °   p=l "pk^pk^p*) = ° 
k = 1 a-1 k = 1, . . . ,b-l 

A|J   B|A 

AIB  B J 

Hierarchical--A 
first, then B 
adjusted for A 

Hierarchical--B 
first, then A 
adjusted for B 

HAB 

HBA 

H* =  ■••-»** as above 

q=l nkq^kq"W*q^ ' °    v*l   ~    ■ • •""•b 

k = 1 a-1 

A|J  B|J  Weighted means WTM Pi* = •••=va* »•! = ^*b 

IN) 
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In the hierarchical method--first A then B--the compu- 

tations are first done for the A effect and then for the B 

effect.  Only that information not given by the A sum of 

squares will be given in the B effect (i.e., B is adjusted 

for A).  With this, some variability is attributed to A (the 

rows) that is caused by column variability.  This concept is 

similar to that of stepwise regression, when only unique in- 

formation is entered in the equation by the process of partial 

correlation.  However, that variability attributed to B (the 

columns) has no row variability.  Similarly, in the hier- 

archical method--first B then A--the computations are done 

for B and then for A (i.e., A is adjusted for B). 

There are two methods that are combinations of the two 

hierarchical approaches.  When each main effect is adjusted 

for the other, the sums of squares are:  A adjusted for B 

and B adjusted for A.  The other "fusion" method is the 

weighted means analysis, in which neither main effect is 

adjusted for the other.  Finally, the standard parametric 

analysis, using the weighted squares of means, gives an 

exact analysis for a balanced design.  This approach tests 

the hypothesis of equal cell means. 

There is a sixth method which is an approximation that 

has been almost outdated by digital computers.  The un- 

weighted means analysis (Winer, 1971, pp. 402-404) uses cell 

means in a balanced design with one observation per cell. 
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Since   it   is   an   approximation,   this  method's  effectiveness 

is   dependent   upon   the   degree   to which   the  data  is   unbalanced. 

Rarely   do   the   manuals   or  output  of  computer  program 

packages   identify  which   of  the  methods   is  used.     All   four 

regression  programs   use   the   hierarchical  method when   used 

with   the   user  supplying  dummy  variables   and  specifying   the 

order  of   adjustment. 

in   the  ANOVA  programs,   BMD08V will   not  perform  correctly 

for   unbalanced  designs,   while  BMD10V will perform  the  hier- 

archical  method.      SAS  uses   the weighted means   analysis. 

SPSS  has   options   that   allow   the  user  to  choose   the   analysis 

he   desires.     The   default   is   the weighted  squares   of  means 

while  OPTION   10   gives   the   hierarchical-- first  A  then  B- 

approach.     As   previously  mentioned,   the   SPSS  ANOVA  options 

may   give  erroneous   results   for  unbalanced  data.     Finally, 

TSAR  uses   the   unwei6hted  means   analysis. 

Unfortunately,   the   analyst   usually   is  unaware   of  the 

approach  of  the   individual  procedures.     However,   an  even 

greater  problem  is   that   the   researcher has   only  one   analysis 

for  each   computer   run.      It   is  quite  posstble   that  if  he  had 

a  variety   of  analyses   for  his   project,   he  would have   a 

better  understanding  of   the  effects   involved. 
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CHAPTER   S 

Conclusions   on   the   Regression   Programs 

The   regression  procedures,   while   using  dummy  variables, 

arc   superior   to   the  ANOVA  subroutines   for  the  solution   to 

ANOVA.      All   four  packages   studied have   regression  programs 

tuat   can   be   used   in  an  unbalanced  ANOVA.     The   REGR procedure 

in   SAS   is   best   for   the   standard  form of  regression,   while 

SPSS   and  HMD  are   best   for  stepwise   regression. 

However,   all   packages   have   the   limitation  of not   giving 

all   types   of   correct  analyses.     Therefore,   the   analyst,   is 

confined when   other  analyses   are  needed.     Appendix  4   gives 

an  ANOVA   program,   written   for  the   Programming  Language  One 

(PL/I)   Optimizing   Compiler,   for  a   two   factor  design   that 

will   give   all   five   correct   analyses   discussed  in  Chapter  4. 

Additionally,   the  program  gives   main  effect  and  interaction 

means.      Appendix   S   gives   the   sample  output  of  the  analyses. 

Using   the  ANOVA  l'rogram 

Using   this   ANOVA program   requires   little   control   card 

preparation.     Onl)    two   cards   are   required  before   the  obser- 

vations;   these   include   the  Levels   card  and  Input  card. 

The   Levels   card  gives   the  number of   levels   for  the 

row  and   column  effects.     This   card  is   free   field,   that   is, 

no  special   card  columns   are   used.     Only  one   space   is  needed 



between the number of the rows and the number of columns 

in tne design.  For example, suppose a 4 X .3 design is 

desired; the Levels card would be: 

4 b 

Example of Levels Card 

/71 

This program has no limit to the number of rows and 

columns. 

Next, the Input card gives the card columns in which 

the observations are punched.  At the same time, the user 

must specify variable names (up to eight characters) for 

the rows, columns and dependent variables.  (A requirement 

is that all variable names must be set off by apostrophes.) 

The user specifies his row variable name followed by the 

card column in which the row cell is punched.  Next, the 

user specifies the variable name for the column and its 

card column.  Finally, the user specifies observation name, 

the card column in which the observation starts, and the 

card column in which the observation terminates.  After 

skipping another space, the user gives the number of places 

to the right of decimal for the observation.  (Note:  A 

zero is not assumed; you must punch the number even if the 

number is zero.) 



An example of the Input card is: 

Example of Input Card 

(V 1 B1   2 'OBS' 3 4 0 

This example gives the row classification in card column 

1, the column classification in card column 2, and the 

observation in columns 3 through 4 with zero places to the 

right of the decimal. 

Data cards must include row and column classification 

codes preceding the actual observation. The decimal point 

lor the observation may be cither implicit or explicit in 

the data. 

An  example   of  an  entire   deck   set  up   for   the   data  sug- 

gested by   Kutner   (1974)   (sec  Appendix  2)   could  give   the 

control   cards   in   Figure   4.     This   analysis  will  generate 

five  pages   of   the  printout   found  in Appendix   4. 

It   should  be  noted  that   there   arc   limitations   for   any 

two-way  ANOVA.     There  must  be  at   least   one   observation   in 

each   cell   (there   is   a   check   for  empty  cells).     There   can 

be   at  most   50  observations,   unless   the   user  changes   the 

DECLARE  statement.     All   the   user  needs   to   do   is   change   the 

space   allocation   for  variable   V   in   the  DECLARE   to 

Y(II ,JJ,n) 

where  n  is   the  maximum  number  of observations   in  each   cell. 

This  program  shows   that   the   regression   approach   can 

be   used  effectively   for  the  solution   to ANOVA. 
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FIGURE   4 

EXAMPLE  OF  ENTIRE   DECK   SET UP 

//        JOB 
//  EXEC  PLOCG 

II   ]  (Additional   JCL   if   required  system) 

//C.SYSIN no * 

Program Deck (Appendix 3) 

//G.SYS IN DD * 
4 3 
•A' 1 'B' 5 'TREAT' 5 6 0 
1 1 42 
1 1 44 
1 1 36 
1 1 15 
1 1 19 
1 1 22 
1 2 53 
1 2 26 
1 2 53 

4 3 25 
4 5 5 
4 5 12 
II 
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APPENDIX 1 

Report and Proposal 
of the 

Committee on Evaluation of Program Packages 
August 1974 

by 

Ivor Francis* and Richard M. Heiberger,** Co-Chairmen 
and Paul F. Velleman*** 

Section 4 

Criteria anJ Considerations 

A program package consists of a front end plus a set of 
procedures".  The front end is that part of the package used 
to prepare the data, and select a particular procedure to 
which it delegates specific tasks.  The front end is what 
nakes a package a package, as distinct from a set of subrou- 
tines.  A stand-alone program is a degenerate package with 
only one procedure. 

Package featur 
user interface, sta 
The first includes 
user, such as form 
hi 1ity. The second 
ties and capabiliti 
puter-science featu 

Package design 
demands. In choosi 
turn, personally de 
able features.  The 

es fall into three broad categories: 
t i s t i c a 1 effectiveness, and implementat iuji 
features of immediate interest to the 
of control cards and manual comprehensi- 
includes a package's statistical proper- 

es, and the third set includes the com- 
rcs of a package. 

ers have to balance many conflicting 
ng a package, individual users must, in 
termine the relative importance of avail- 
major compromise to be made is between 

* Cornell University 
** Universitv of Pennsylvania, support provided by a 

Faculty Summer Research Fellowship 
*** Princeton University 
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handiness   (ease  of  use,   convenience,   versatility,   etc.)   and 
cost   ; computing  efficiency,   size,   etc.) 

As   responses   from  contributors  made  clear,   there   is   no 
general  agreement   on   the  definition  of ease  of use.     To 
achieve   handiness  designers  must  balance  the  versatility 
(and  attendant   complexity)   wanted  by  regular  users,   the 
extensiveness   desired  by  the   statistically  sophisticated, 
the  mnemonic   command   structure   needed by  occasional   users, 
and  pedagogical  extras   suitable   for  the  statistically  naive. 

J.1     User   Interface 

4.11     User's   documentation 

A   key  determinant  of  the  usefulness  of  a  statistical 
package   is   its'user's  documentation.     The  documentation  will 
be  most   effective   if   it   has  been  thoroughly  edited   for 
technical   and   literary  accuracy. 

The   complete   documentation  which  accompanies   a 
package   is   required   to  meet  several   distinct  needs,   and 
includes: 

a) 

b) 

c) 

d) 

Novice's manual - a clear introduction to the 
package which would permit an inexperienced 
user to run simple jobs with minimum effort. 

User's reference manual - everything the user 
needs to know about the package. 

Printed output - partial documentation within 
each run. 

Installation instructions - detailed descrip- 
tion of the steps a computer installation 
must follow to get the package running. 

e) Programmer's manual - description of the 
structure of the package. 

f) Source listing of the package. 

The first three items constitute user's documentation and of 
these the printed output is discussed in Section 4.14 
remaining three items are discussed in Section 4.3, on 
implementation. 

A novice's manual is judged by its concisenes| and 
clarity.  Elementary examples should be illustrated Derore 
complications are introduced, and each should  c 
statement of the problem, and complete input and output 
listings. 
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The reference manual is judged by its accuracy, 
completeness, and organization.  It must documenFTxactly 
what the package does.  It should be organized for ease of 
use, and include a table of contents and an index.  A high 
quality of printing and binding of the manual also adds to 
its usefulness and permanence under constant reference. 
Interactive packages can provide additional reference docu- 
mentation on-line. 

Language syntax conventions should be documented, 
and potential errors described.  For each procedure, the 
reference manual must include:  a complete and accurate 
description of the procedure used; references to the litera- 
ture for both the statistical and numerical techniques 
employed; complete documentation of examples used in illus- 
tration; a specification of default values; and a list and 
explanation of error messages.  Additional desirable features 
include:  clear and accurate descriptions of the control 
statements, and of the available options; documentation of 
size limitations and estimates of execution time, and pre- 
cision (single or double).  A user who wishes to use only 
one procedure will prefer that the documentation of each 
procedure be self-contained.  For interactive packages, a 
list of choices should be available on request at any decision 
point.  If greater depth is desired, lengthy explanations, 
perhaps quoting directly from the reference manual, may be 
provided. 

4.12  User's Environment 

All packages create a computing environment which 
can affect the user's approach to his analysis much as 
architecture can affect our moods and thoughts.  The key 
determinant of this environment is the package's command 
language. 

The most computationally efficient languages 
usually employ code numbers in fixed card columns to specify 
procedures, variables, and options.  This can force the user 
to refer regularly to a code book both for issuing commands 
and for interpreting output.  Confusion can occur if a 
variable is assigned different numbers in different runs. 
Nevertheless, when similar calculations are repeated, the 
simplicity of this format can make control card preparation 
and checking routine.  Some packages allow the specification 
of variable labels and translate procedure and option numbers 
into descriptive terms to produce more readable output. 
Others relax the fixed column requirements. 

Kith the added expense of a command translator, a 
anguage ca 

terms descriptive of 
mnemonic language can be used, and procedures named witn 

: their function.  Often options are al so 
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given   names.      Provision  may  be  made   for  assigning  names   to 
variables   and  variable  categories   to   be  used   in  commands  as 
well   as   in  output   labeling.     These  names  can  be   included   in 
an  on-line  data  archive.      The   resulting  commands  arc  easier 
to  write   and   check   since   they  are   immediately  understandable. 
Free   format   input,   in  which delimiting  punctuation  separates 
the   terms,   may  be   available,   especially  on   interactive 
systems  where  column   counting   is   awkward. 

The  specification  of  variable   transformations   can 
be  made   in   any  of  the   above ways.     An  algebraic  syntax   is 
concise,   although   it   requires   a   language   interpreter of 
greater  complexity   (and  cost),   since   several  operations   can 
be  specified   in  a   single   command  and   function  hierarchy  must 
be  recognized.      Some  packages   also  allow user-defined macros 
of  elementary  operations. 

The   computer's  operating  system  can  significantly 
affect   the  user's   environment.      It   should  be  easy   for  a  user 
to  gain   access   to   the  package.      Whether   it   is  in  batch or 
interactive  operating  mode   is   also   important. 

The   user's   environment   consists  of  not  merely  the 
vocabulary   and   syntax  of  the  control   language,   but   also   the 
varietv  and  completeness  of   the   available  procedures  and   the 
case  of  access   to   them.     Experience  has   shown  that  what  a 
user  can  do  with  his  data   in  a   chosen  package   frequently 
limits  what   he   considers  doing   in  his   analysis,    (v.   Section 
4.21.) 

ide   some   protection   for  the 
assumptions   (e.g.,   singular 
reported,   as   should any 

nteractive  packages   syntax 
batch  packages   the  control 
before   the   job   is  abandoned   if 
packages should generate 

are sufficiently specific 
RECOGNIZED",   is  better  than 
SPECIFICATION"). 

Packages   should pro\ 
user.      Violations  of  standard 
covariance   matrices)   should  be 
corrective  action  taken.      In   i 
errors   must   not   be   fatal.      In 
card   scan  should  be   completed 
any   error   is   encountered.     All 
readable  error  messages   which 
(e.g.,   "COMMAND   'OPTIONS'   NOT 
"OPTIONS  MUST   FOLLOW   PROCEDURE 

4.13     Missing  Values 

In   the   analysis  of  multivariate  data  sets  collected 
in   survevs     or   experiments,   it   is   seldom  true   that  values 
Kr  all   the   variables   have  been  recorded   for  every  individual. 
If  a  package   is   to  be   useful   for   such  analyses,   it  must  be 
able   to  handle   data   with  missing  values. 

The  manual   must   state  whether more   than  one  mis- 
sing-value   code  can  be   specified,   and what   the  codes  are, 
whether  missing  values   can  be   selectively   included  or  excluded 
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from specific analyses; whether they can be replaced (e.g. 
by the mean, median, or mode of that variable, or in more 
sophisticated ways), and whether transformations of [missing] 
produce [missing]. 

Missing values pres 
many of which remain unsolved 
that the ad hoc methods used 
data with missing values are 
told at least what individual 
missing values.  Are missing 
(e.g. in the computation of c 
routines allow for this (e.g. 
then used in a regression pro 
only for complete data)?  Doe 
clear?  How are missing value 

4.14  Printed Output 

ent thorny statist 
, and so it is not 
by some procedures 
inadequate.  The u 
routines do when 

values automatical 
orrelations) and d 
, is the correlati 
cedure with algori 
s the documentatio 
s reported in the 

ical problems, 
surprising 
in analyzing 

ser must be 
they encounter 
ly excluded 
o other 
on matrix 
thms valid 
n make this 
output? 

The printed output is the visible end product of a 
package.  It must provide the user's results in readable 
form and ought to include additional identification and 
documentation. 

The visual impact of the printed output greatly 
affects the true usefulness of a package.  While a package 
must print all necessary information, it should not burden 
the user with unwanted output.  Some provisions to suppress 
standard output or request additional output are common and 
useful.  Output should be succinct but not cluttered, complete 
but not voluminous. 

is often the only permanent 
it should include all informa- 

th user and package bugs.  A 
cards (with translations of 

help to document what was 
dentifiers as the date, system, 
dentify package bugs. 

ividual statistical procedures 
ation.  Particularly with newer 
antageous to include references 
ted output. 

The  printed  output 
record  of  the   run  and  as   such 
tion  necessary   for  tracing  bo 
listing  of   the  user's   control 
any  non-mnemonic   codes)  will 
actually  done.      Such  common  i 
and package  version  help   to  i 

Output   from  the   ind 
can  also   function  as  document 
statistical  methods   it   is   adv 
to  the   literature   in  the  prin 

4.15     Graphics 
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plots,   histograms,   principal  components  plots   for  clusters, 
and  contour  plots   have  only poor  non-graphical   substitutes. 
We  think  that  plotting  capabilities  are  necessary   for  statis- 
tical   completeness. 

Any  output   device  can  be  used  for plotting.     Full- 
page   scatter-plots   are  commonly  generated  on non-graphical 
devices   such  as   line  printers   and  occasionally  on  time- 
sharing   terminals.      Recently more   sophisticated  techniques 
(e.g.     Andrews-Tukey  6-line  plots  have  been  proposed  for 
plotting  on  such  devices. 

The evaluation of g 
cated by the recent prolifera 
Despite this diversity, there 
graphics can be evaluated: A 
labelled? How are the scalin 
residuals plotted on the same 
expanded scale? Will a few o 
large as to dwarf the importa 
points at the same coordinate 
falling outside the plotting 
information be stored for lat 
Are special grids and axes (e 
available? Can the user over 
the  above   features? 

raphical capabil 
tion of graphics 
are several are 

re all plots cle 
g decisions made 
scale as the da 
utliers force a 
nt patterns?  Ho 
handled?  How a 
"window" indicat 
er use or use on 
.g. log scales, 
ride the default 

ities   is  compli- 
devices. 

as   in  which 
ar  and well 
?     Are   the 
ta  or on  an 
"window"  so 
w  are  multiple 
re  points 
ed?    Can plotting 
other  devices? 

calendar  axes) 
decisions   for 

4.16     Cost 

The  usefulness  of  a  package  also depends  on  the 
cost   of   running   a  job.     A package  that   is  most  desirable   in 
terms  of  its  control   language,   capabilities,   and  accuracy, 
may  be   too  expensive   to  use   regularly.     But   is   the  program 
that   costs   least  per   run  necessarily  cheapest?     Not   if  it 
takes  more  user  time  or  additional   runs   to  debug  control 
cards. 

Different  computer   centers'   charging  algorithms 
assign  different   relative  weights   to  core  storage,   CPU  time, 
and   I/O.     A package   designed   for  an  installation  with   cheap 
core  and  expensive   I/O will   run  at  a  disadvantage   at  a 
center  with  different   weights.      Large  or  long-running  programs 
are  often  disproportionately  penalized  by  schedulers,   result- 
ing   in  a   slow  response  or   turnaround.      Procedure  documentation 
should  include  a   formula   for  estimating  components  of  running 
cost   in   terms  of  the  dimensions  of  the  problem. 

4.17     Audience 

Usually  a  package   is   designed with  a particular 
audience   in  mind   (e.g.   agricultural  experimenters,   economists, 
social   scientists).     The   capabilities  of  the  package  and 
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even   the  vocabulary  and   form  of  the  control   language  may  be 
specialized.      Some  designers   intentionally  expect   users   to 
have  considerable   technical   knowledge,   while  others  assume 
the  defaults   commonly  wanted  by  their  audience.      Packages 
designed  primarily   for  teaching  may  prevent   actions  which 
uould  be  errors   for  naive  users   but  may  be  desired by   the 
experienced.     A  package's   reference  manual   should   identify 
its   intended   audience  and,   recognizing  that   widely  distributed 
packages   are   frequently  used  by  others,   provide  warnings  of 
uliosvnerac ics. 

4.18     Pedagogy 

Many packages are intended to be used in teaching 
and all may be so used at times.  Some aspects of package 
design may be of particular importance to students and to 
teachers selecting a package for their classes, and these 
ought to be noted by reviewers. 

Even a clear and well-written user's manual may be 
unsuitable as a text for statistically naive users, although 
examples and explanations of the value of different options 
will help.  Output designed for the student may be more 
verbose than that desired bv an experienced researcher, 
ie.g. "CHI SQUARED = 98 ON 24 DF:  SEX = MALE TENDS WITH 
INCOME = HIGH; SMALLEST CELL COUNT = 19") 

4.2  Statistical Effectiveness 

In Section 4.1 we examined package features from the 
point of view of handiness.  In this section we shall discuss 
generally those features not already mentioned in Section 
4.1, that are of particular interest to a practicing statis- 
tician, namely the available statistical tools, capabilities, 
and accuracy.  In the planned reviews these would be discussed 
in detail. 

4.21  Versatility 

Seldom, if ever, does data analysis consist simply 
of choosing the one correct statistical technique to analyze 
some data.  Statistical analysis, in practice, is a more 
continuous or dvnamic process, consisting of a sequence oi 
procedures.  After each procedure one is likely to pause to 
review the results to that point and consider the next step. 
A package of statistical programs, either batch or interactive, 
should facilitate such analyses. 

The first step in an analysis is the preparation 
of the data.  This is facilitated by a convenient file 
svstem.  The data might be screened for outliers, and missing 
values; plots might be made, frequency distributions, and 



various univariate statistics computed; departures from 
normality, or other assumptions might be noted, and transfor- 
mations applied. 

When the data have been prepared, the user will 
choose some of the procedures.  In many cases, the output 
from the first procedure will be needed as input to another. 
For example, the residuals from a regression program might 
be plotted, or used in another regression, or coefficients 
from a discriminant analysis might be used to classify new 
observations. 

A package designed for a particular audience 
should be able to compute the statistics needed by that 
audience from the data commonly collected by that audience. 
It should contain a full range of procedures, and each 
procedure should compute and print all the necessary statis- 
tics, with sufficient description to make them understandable. 

No package can remain up-to-date, nor incorporate 
every new statistical technique invented.  If a package does 
not offer a particular statistical procedure, the package 
can do one of two things:  it can either make available, in 
machine-readable form, the results to that point, or it can 
offer a front-end structure that makes it convenient for the 
user to add his own program into the system (v. Section 
4.33). 

4. 22 Accuracy 

Accuracy,   as   applied   to  statistical  programs, 
means   statistical   accuracy.     Several  kinds  of accuracy  are 
required  in  order  to  achieve  statistical  accuracy. 

First,   the   literature   source   used  by  the  designer 
of  the  program  must   correctly  describe   the  statistical 
technique   to  be  programmed.     Second,   the programmer  must 
follow  the  directions   correctly.     Third,   the  algorithms  used 
for potentially  difficult  computations,   for  example  matrix 
inversion,   must   be   accurate.      Fourth,   statistics  to  evaluate 
the  accuracy  of   the  data,   the  statistical  method,   and  the 
numerical  method,   must  be   computed  and  printed.     Finally, 
the  user's  documentation  and  the  printed output   should  make 
it  absolutely   clear  what  has  been  done.     Warnings  and  error 
messages   should  be  clear,   and  any   fix-ups documented clearly. 

To  document   the   first   kind  of  accuracy,   specific 
references   to   the  statistical   literature,   perhaps   to  standard 
textbooks,   should  be  made  in   the   reference manual,   if not   m 
the  output.      Precise  definition  of  terminology must  fie 
given.      For   the   second,   a  source   listing   following  standard 
stylistic   conventions  provides  the  ultimate  documentation, 
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although a flow chart would help.  For the third, published 
algorithms should be used, and appropriate references given. 
If a new algorithm is used it should be published.  The 
manual should comment on any machine differences in accuracy 
ic.g. the effects of word length on a particular algorithm). 

Examples of statistics required for the fourth 
kind of accuracy are standard errors, coefficients of varia- 
tion, condition number of a matrix, multiple correlations of 
each variable with the other variables.  Also, the robustness 
of a procedure to input errors or outliers could be judged 
by removing outliers.  Robustness of a procedure to departures 
from common assumptions about the data could be evaluated. 
The sensitivity of the analysis to rounding in the original 
data should be evaluated. 

4.3  Implementation 

4.31  Programmer's documentation 

Programmer's documentation consists of the program- 
mer's manual and the source listing of the package.  The 
source listing is the primary documentation of what the 
package does and how it does it.  As such it will be most 
useful if it follows standard stylistic conventions.  While 
it is helpful for a source listing to be available tor 
reference at all installations using the package, developers 
of proprietary packages may not be willing to distribute 
their code -- a potential disadvantage to the users of their 
packages. 

The source listing is useful for two purposes. 
One is to determine exactly what the package does:  new 
statistical techniques can often be better understood if an 
implementation guide is available for study along with an 
algebraic description of the calculations  The other is to 
lo?ate and correct bugs in the package  A bug can soetimes 
be found more rapidly by a user bitten by it than by a 
package designer who is interested in the whole package 
Designers of large packages understandably do not want buts 
locanv fixed attach installation. They do want to know of 
bugs and suggested fixes for them which can then be distrib 
uted in later releases of the package. 

4-32 Pac'kaSes'd&loped at one installation are. often 

coal:  ?or example'^Sstand^d FORTRAN.  Even here there 

. 
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arc   difficulties   since   the  standard  leaves   some   serious 
ambiguities   which  have  been  resolved  differently  by  different 
computer  manufacturers.     This  problem  can  be  met,   at   some 
programming  expense,   by writing   in  a  pure,   unambiguous 
subset  of  ANSI   FORTRAN,   by   isolating  system  dependencies   in 
a   few   subroutines   which  must   then  be  rewritten   for  each 
installation,   or  by  preprocessing  to  select   statements 
appropriate   to   the  object   system. 

Few   interactive  packages   are   transferrable   across 
svstems   since   such   things  as  program  segmenting  and  terminal 
I/O  conventions  are   highly  system-dependent.     Nevertheless, 
the   growth  of  computer  networks  and  the   tendency  of   large 
time-sharing   svstems   to   reach  wide   areas  with  multiplexor 
lines  has,   to   some  extent,   replaced  problems   of  transporta- 
bility  with   those   of  access.      Several   time-sharing  environ- 
ments' now  run  at   installations   across   the  country,   and   thus 
access   to   them   is   growing  easier. 

4.33     Front   End 

Some packages make provision for the addition of 
procedures which were not provided by the designer, but 
rather are supplied by the user.  There are two ways m 
which this can be done.  Data processed by the front end of 
the package can be made available to the user by outputting 
it  so that it can then he read into another program.  This 
method is quick but forces the user out of the package s 
working environment.  Alternatively the user can ad   new 
procedure which appears to be part of the package, and can 
he called through the package control language in the same 
manner as any other procedure. 

Packages which make this provision have the advan- 
tage of allowing the user to concentrate his efforts on the 
programming of the   analysis technique, and relieving him ol 
the tribulations of data handling. 

The structure of the package determines whether it 
is feasible to add a special-purpose routine with low antici- 
pated usage.  If the package is a singJ« •JJcJt;jiJ0JJK- 
module, the new procedure must be written a a su^°^'^ion 
with access to the COMMON areas of the package.  In ^dition, 
the main program in the package must be modified to include 

linked together by the computer s operating sysi  , 
are more easily made with less user difficult).  Ihe new 



61 

procedure   is  written  as   an   independent   routine  which  makes 
specified  subroutines   calls   for  control   information.     These 
subroutines   (but  not   the  whole package)   are   linked  to  the 
new  procedure.      There   is  no  need  to  modify   the  main  program 
since   the  new  procedure   is   located  by  the  operating  system 
and  not   by  the  main  program.     This  method   is  dependent  on 
the  operating   system  and   therefore  not  portable   to  computer 
svstcms   other   than   the  one  on  which   it  was  written. 

4.34     Source   Language 
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APPENDIX 2 

DATA USED IN TESTING THE FOUR PACKAGES 

ANOVA 
Data Set 1 

8 10 8 
4 8 6 
0 6 4 

14 4 15 
10 2 12 
6 0 9 

ANOVA 
Oata Set 2 

Data Manufactured to Conform to That 
of Snedecor and Cochran (p. 472) 

31 
29 

27    23 
25    25 
24 26 
25 25 

20   22 
18    23 
16    21 
23    17 

17 
13 

> 
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AN OVA 
Data  Set  3 

Kutner's   Data  For   4X3   Design   (Kutner,   1974' 

4 2  5b  19 
44  15  22 

55  55 
26  21 

51  25  24 
-5  25 

28  54  15 
25  42 

54 36 
55 51 

5  32  26 
4  28  16 

1  19  29 11   7  -6 
9   1 

21   9   1 
3 

24  22  15 
9  -2 

27  12  16 
12  -5  15 

22  25  12 
7   5 

REGRESSION 
Data  Set   4 

Data Used For Two and Four Decimal Place Tests 

lata Point XI X2 X3 

1 50.71 10.19 10.19 
7 49.80 1S . 8 7 18.87 

3 35.91 31.01 31.01 
4 76.31 17.00 17.00 

5 43.47 13.81 13.81 

6 88.01 19.75 19.75 
- 63.50 14.92 14.92 

8 59.81 12.15 12.15 

9 81.08 10.88 10.88 

*10 53.27 19.00 19.01 

*Data point for 4 decimal place test 

10        53.27    19.00    19.0001 

Y (Dependent Variable) 

5.01 
10.00 
18.65 
19.51 
17.76 
20.01 
19. 21 
25.25 
35.10 
16.10 

16.10 



REGRESSION 
Data Set 5 

Data Suggested by Alder 5 Rossler (1972) 

64 

XI X2 

124 85 
115 109 
108 111 
140 79 
111 115 
109 120 
119 101 
119 87 
108 106 
131 100 
118 99 
96 119 

148 66 
132 77 
118 104 
125 89 
106 126 
109 83 
150 64 
113 96 
117 91 
114 118 
106 140 
114 120 
154 93 
115 116 
109 125 
109 105 
111 111 
114 105 

X3 

13 
7 
6 
8 

10 
5 
6 

10 
7 
6 
4 
7 

10 
5 
9 
6 

11 
6 
6 
4 
6 
9 

13 
12 
9 

15 
10 
11 
8 

13 

X4 

12 
26 
17 
28 
20 
26 
24 
8 

10 
21 
26 
20 
16 
27 
IS 
13 
29 
16 
11 
25 
30 
24 
40 
17 
17 
41 
34 
22 
25 
44 

X5 

15 
27 
21 
23 
26 
19 
14 
14 
16 
20 
16 
17 
11 
19 
23 
19 
30 
23 
7 

26 
19 
19 
31 
21 
24 
33 
24 
25 
19 
20 

X6 

13 
13 
20 
11 
4 

10 
20 
17 
5 
8 

10 
12 
9 

21 
21 
13 
18 
15 
7 

19 
2 

10 
10 
18 
12 
22 
23 
13 
12 
24 

4 
4 
3 
3 
8 
5 
4 
5 
7 
5 
4 
7 
2 
3 
4 
5 

11 
3 
1 
4 
4 
3 
9 
9 
3 
5 
4 
5 
4 
3 
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APPENDIX  3 

SURVEY  OF  STATISTICAL  PACKAGE  USERS 

A survey of attitudes  toward the   four packaged programs 

was  taken among users of  these packages.     The sample was 

limited  to  experienced users   of program packages   in  the 

North  Carolina  Educational  Computing  Service   (NCECS) 

community.     The  members  of NCECS  use   the  Triangle  Universities 

Computational  Center   (TUCC)   as   their source of computer 

packages. 

These users were asked to  rank the  regression pro- 

cedures   of  BMD,   SAS,   SPSS,   and TSAR on  three  bases--the 

program manual,   output,   and ease  of use.     The  packages  were 

ranked  on  a  4-3-2-1 basis  where   4 was   the   top   rating  and  1 

the   lowest.     The   overall   rankings  and  their mean  ranking 

are given   in  Table   13. 

Tne  number  of qualified  respondents  was   disappointing. 

Since   the   major  packages   are  constantly  improving with 

respect   to   flexibility,   the   researcher  is  no   longer  required 

to be   familiar  with  five   to  eight  packages   to  analyze  his 

data,   but   can  now   do   so  with   two  or  three.     Therefore,   of 

those   contacted only  eight  users   felt   they  had  the  expertise 

to  evaluate   all   four packages. 

The  SPSS manual  was   rated best by  all  respondents. 

The   raters   considered  the  SAS  (1972)   and TSAR manuals   about 

equal   in  helpfulness,   while  BMD was  considered  the   least  helpful 
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TABLE   13 

MEAN   RANKINGS  OF  REGRESSION  PROCEDURES 

Manual Outpu t Ease of Use 

Package X Package X Package X 

SPSS 4.0 SAS72 3.4 SPSS 3.8 

TSAR 2.3 SPSS 3.4 SAS72 2.6 

SAS72 2.1 BMD 1.7 TSAR 2.6 

BMD 1.6 TSAR 1.5 BMD 1.1 

When  considering  the   completeness  of  the   output  of 

the  packages,   SAS  and SPSS  appeared  to be   comparable   since 

they had  the  same  mean   rating.     BMD  and TSAR were   thought 

to  be  about   equal  but  well  below SPSS.     Finally,   BMD was 

perceived  to  be   the   most   difficult   to  use  by   85  percent   of 

the   respondents.     A  package's   ease   of  use   is   apparently 

related   to   the   amount  of  documentation  available. 
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APPENDIX  4 

PROGRAM  LISTING FOR THE 
ANALYSIS OF VARIANCE 

ANOVA: PROCEDURE  OPTIONSIMAIN)    PEORDEPI 
/•THIS   PROGRAM   WILL   COMPUTE   AN   ANALYSIS   OF   VARIANCE   FOR   AN 

UNEALANCED   DESIGN   USINC   FIVE   DIFFE°ENT  'IETH0DS  OF   ADJMSTI"~ 
TME   DEPENDENT   VARIABLES.      IT   ALLOWS   LABELTI'-   OF   VARIA3Lr'. 
THE   CODE   WILL   CHECK   FOR   EM»TY   CELLS,    IF   ANY   CELL   IS   EM"T" 
THE   "POGPAM   VILL   TERMINATE.*/ 

DECLn°E<Al.A2»A3)CHARACTER<8)   VARYING, 
<FI,F2.F3.F4.FS.F6>FIXED   BINJ 

/.READ   IN   NUMBER  OF   LEVELS,LABELS, F0»MAT!NG./ 
GET   LISTCII.JJ)! 
GET   SKIP  LIST<AI,F1,A2.F2,A3.F3.F4,F5); 
F6"F«-F3*IJ 

DECLARE<N(II,JJ),(NIDXII).(NDJ)tJJ>)FIXED  B'N<3«)' 
<<YIJD.YIJDS><II.JJ>.(YIDD>(1I>.CSSA8.SSASB 
FL0AT(.6>,(YDJD)(JJ>»    FLOAKH),."..,      - H. 
,<V,V,XBARI.XBARJ><S)FL0ATC16>.(SSA,SSAA,SSB>FLOAT<IS> 
, <<T.X)(S,S>.UC5).C2<5>>FL0AT   BIN<S3>. 
<C3,SPT   ,SPT2,SPT3,X8AR1.XBAR2.YDDD,-'S0P,Y2,FL0AT<I6>, 
<TITLE)CHAR<AO)VAPYING-    < SSTOT, SSBSA, SSE. FLOATC    6), 

(D)   FLOAT   BINCS3),<OP>FIXED   BIN.<SVI.SVJ)FLOATt16). 
DECLARE   MINV   ENTRY((.,.)    FLOAT   BIN(53),FIXED   BIN, 

FLOAT   BIN<53>.FLOAT   BIN(53>>; 

DECLARE(AI.A2.A3>CHARACTER<8)VAPYING. 
(TITLE)CHARACTER(«0>VA»YING, 
<SSI.SS2,SSAB, SSTOT. SSE.MSTOT,MSA,MSB,MSAB,MSE) 

F0PMAT<«L<l6!,6A.'c0L<3S»,FC2,.C0L<«8.,FfM.8.,C0L(71>. 

F<I2.6).C0L(90).F<8,5)); 

PUT   EDIT(TITLE)    <COL<«0).A>    SKIP   <^ SWARE-. 

A.C0L(90).A)   SKIPC3>> 
K-NDD-1I 
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Lll 

L2l 
L3l 

Dll 

L5l 

L*l 
L7| 

KA-KI-II 
KB-K2-II 
KAU-KA.KBJ 
KERR«NDD-CII»JJ)I 
HSTOT-SSTOT/K) 
MSA-SSI/KA; 
MSB-SS2/KBI 
MSAB-SSAB/KAB; 
MSE»SSE/KERR; r#.v 
PUT   EDIT< •TOTAL'. K,SSTOT.MSTOT)<COL< 16). A.COLC35).F( 2). 

C0LC«8).F<I4.8).C0LC7 1>.F(12.6))SKIP(2>! 
PUT   EDIT<AI,KA.SS1,MSA.MSA/MSE>(R<FI>>SKIP<2>I 
PUT   EDIT<A2.KB.SS2.MSB.NSB/MSE><R<FI>>SKIP(2>f 
PUT   £DIT(AI.-.-.A2.KA8.SSAB.MSAB.MSAB/MSE   (C0L(   61.(3)   A. 

C0L<3S>.F<2>.C0L<4S).F< 14.8),COL<7l),F( 12.6). 

C0L(9O>.F(8.5))SKIP<2)> 
PUT   EDIT<-ERR0R-.KERR.SSE.HSE><C0L<I6>,A.C0LC3S>.F<2>. 

C0L<4S>.F(l4.8>,C0L<7l>.F<l2.6>>SKtPC2>I 

END PPINTX; 
N»OI 
Y-OI 
ON ENDFILECSYSIN) GO TO L2I 
/.READ OBSERVATIONS AND ASSIGN 

DO   WHILE   tJ<-JJ>! 
GET   EDIT(I.J.OBS)CCOL<FI)»F(l). 

F<F6.F5))) 
tl( I.J>-NtI.J).W 
Y(I,J.N<I.J>>-OBS; 

END   Lll 
DO   I-l   TO   III 

DO   J-I   TO   JJ1 
IF  N(I,J>-0   THEN 

^PUT   SKIPC2)   LIST<-W»RNING--Di»TY  CELL   RECHECK   DATA"), 

STOPI 
END   Dll 

END   L31 
END   L2I 
NDD-OI 
NI D-OI 

^COMPUTE   ROW   AND   COLUMN   COUNTS   FOR  OBSERVATIONS./ 

DO   I-l   TO    III 
DO   J" I   TO   JJ1 

NIDI I )«N1D<I)*N(I.J)I 
END   LSI 

END  LAI 
DO   J* 1   TO   JJI 

DO   I ■ I   TO   III 
NDJ(J)-NDJ(J)*N(I.J>I 

TO   PROPER   CELL'/ 

C0L(F2).    F(l).    COHF3). 
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1.1: 

L9l 
LI 0: 

LI?! 
L13. 

ML3l 
ML«I 

END   L7I 
END  L6; 
DO    1-1    TO   IIJ 

NDD-NDD.NIDC 1)1 
END  1.81 
YDDD.Y2,YSQR-0I 
YIJDS.YIJD-01 
YIDD-O; 
YDJD"OJ 
DO   1 ■ I    TO   III 

DO   J-l   TO   JJI 
L-N<I,J)> 
DO   K" 1   TO   LI 

YDDD"YDDD»Y< I,J,K>I 
Y2«YCI/J.K>.YU. J.K1I 
YS0R"YS0R*Y2I 
YIJDS(I»J>"Y1JDS<I.J>*Y2I 
Y1JD<I/J>"YIJDCI,J>«Y<I, J.K1I 

END   LI II 
YIDD(I)"YIDD<I)»Y1JD(I,J)1 

END   LI 01 
END  L91 
DO   J- I   TO   JJI 

DO   1-1   TO   III 
YDJD(J)"YDJD( J)»Y1JD( l,J)t 

END   LI 31 

/.CALCULATE  MEAN   VITHIN   EACH   LEVEL   OF   ANALYSIS./ 
PUT   EDITC -MEANS  VITH   EACH   LEVEL   OF   THE   ANALYSIS   ) 

<C0L<«2>»A>SK1P(3)1 
PUT   EDI T< 'INDEPENDENT   VARIABLE-. -LEVEL -. -MEAN ■ > 

CC0L<28>,A,C0L<58).A,C0L<7S>.A>SKIP<2)I 

PUT   SKI PI 
D0pUTlEDIT<Ai.I.YlDD<I)/NID<I))<C0L<3S).A.C0L<60).F(l>. 

C0L<73).F( I0.4))SKIP1 

END  ML1J 
DOpUTlErj^A2.J.YDJD(J)/NDJ(J>)CCOL<35).A.C0LC60>.F<.). 

C0L(73)/F<I0.«))SKIPI 

END  ML21 
DO   I" I   TO    III 

END   ML41 
END  ML31 
/.COMPUTE   SUM   OF   SOUAPES   FOP.   A./ 
TITLE--HIERARCHICAL,   FIRST   A  THEN   B-l 
SPtla SPT8.C3"0I 
T-Oi_ 
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D2l 
LISl 

Lib: 

LI7l 

LISl 
LI9l 
L20: 

L2I I 

L22l 

L23l 
L2«: 

L25l 

D3l 
L26l 

L27l 

U.C2-0J 
M  i ■ i TO 11; 

SPT1-SPTI»<(YIDD<I>»Y1DD<I>>/NID(I >>) 
END   Ll«> 
S SA- SPTI - ( <YDDD'YDDD) /NDD) I 
/•COMPUTE   SUM   OF   SQUAPES   FOP   B  ADJUSTED  TOP   A«/ 
IF   1I<JJ   THEN 

DO) 
DO   J-1    TO   JJI 

SPT2" SPT2* ( < YDJDt J) »YDJD( J))/NDJ (J) > ; 
END   L 15; 
DO   I»l   TO    II-1* 

SPT3-OJ 
DO   J"l   TO  JJ; 

SPT3-SPT3»C(N(I»J>"N<I.J>>/NDJ<J>>I 
END  L17; 
TCI*1)"NID(I)-SPT3I 

END   L16; 
DO   !■ I   TO   II-M 

DO   K"I*I   TO   It*II 
DO J»1   TO JJI 

T<I.K>-T<I.K>-<N<I.J)«N<K,J>>/NDJ<J>> 

END   L20J 
T<K,I>-T<I.K>I 
END   LI9J 

END  LIB! 
0R"II-1J 
CALL   MINVCT.OH. D. 0>J 
DO   I-I   TO   11-II 

U(I)»YIDD(I>J 
DO   J" I    TO   JJ' U<I)-U{I)-N<I.J>«<YDJD(J)/NDJ(J))« 
END   L22' 

END  L?l; 
DO   J-l   TO   II-II 

DO    I"I   TO    II-II 
C2<J>-C2CJ)»<U<l>»TU.J>>» 

END  L2*» 
END  L23; 
DO   I-I   TO    II-II 

C3-C3*<C2<I)»U(I))J 
END   L25J 
SSBSA-SPT2-SPTI»C3I 

END   D2I 
ELSE 

DO) 
DO   J-l   TO   JJ-II 

SPT3-0I 
DO   I" I   TO   III 

S-NID<I>I 
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L2Bl 
L29l 
L30i 

1.3 11 

L32l 

L33: 
L31: 

L3Sl 

L36l 
L37l 

L38I 
L39i 

L«Ol 

SPT3-SPT3»<(NU,J>»N<I.J>>/S>» 
END   L27J 
T<J»J>-NDJCJ>-SPT3I 

END   L26; 
DO  J» I   TO  JJ- I ; 

DO   K-J»l   TO   JJ-IJ 
DO   I"l   TO   II J 

S=NID(I>; 
T(J,K)-T(J.K)-<N(I,J)«N(1,K))/S; 

END  L30; 
T<K.J)«T(J.K)I 
END  L29J 

END   L2S; 
OR-JJ-II 
CALL   MlNV<T,OR, D. 0)1 
DO   J» I   TO   JJ-IJ 

U<J>-YDJD(J)J 
DO    1-1   TO   III 

U(J>-UCJ>-<N<I,J>«YIDDCI)>/NID<I>I 

END   L32I 
END   L3l: 
DO    I" I    TO   JJ-II 

DO   J- I   TO   JJ-II 
C8(I>"C8CI>»CU(J)»T<I»J>>! 

END   L3«l 
END   L33; 
SSBSA'OI 
DO   J" I   TO   JJ-I! 

SSBSA»SSBSA»(C2<J>«IKJ>)I 
END   L3S; 

END   D3I 
DO    I■I    TO    II) 

DO   J-l    TO   JJI 
C3-C3MYIJDU.J>»YIJD(I,J>>/N<I,J>! 

END  L37; 
END  L36I 
SSE-YS0S-C3I 
SST0T-YS<3R-(YDDD«YDDD)/NDDI 

ssr sis™ sarassL m sSA. SSBSA, ?SAB. «.»,«. 
NDD>I 

TITLE-'THE   STANDARD  PARAMETRIC   ANALYSIS^ 

U.OJ 
v-o; 

DO   I ■ I   TO    I I J 
DO   J» 1   TO   JJJ ..... 

VCI)-W(!)♦< I/<(JJ«JJ>"N<I.J>>>* 
END  L39I 
W(I)-I/V<I)I 

END  L38; 
DO   J" I    TO   JJI 
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Lai i 

L42I 

L43l 

L44i 
L4Sl 

L46l 
L47I 

L48l 
L49. 

L50l 

LSI I 

L52l 

LS3l 

L5«i 

DO    I"l   TO    III 
vcj>-vcj>*(i/u::«n>»N(i.J>>>» 

END  LOI; 
V(j)« !/V( j>; 

END   L40I 
SVI,SVJ«OI 
DO I"I TO III 

svi-svi»v<i>; 
END  L42I 
DO   J- I    TO   JJI 

5VJ-SVJ»V<J>J 
END   L43I 
XBARI-O) 
XBARJ-o; 
DO    I•I   TO   III 

DO   J-l   TO   JJI 
XCI.J>"YIJD<I.J>/N<I.J>J 

END  L45I 
END  L44; 
DO   I" I    TO   III 

DO   J" I   TO   J J1 
XBARI<I>-XBABI<I>♦*(I,JI/JJ1 

END   L47I 
END   L461 
DO   J' 1   TO   JJI 

DO    |a |   TO    III 
XBARJ(J>-XBA«>J<J>*X<I.J>/1I! 

END   L49I 
END  L48I 
XBAR1. XBAR2. SSAA. SSB- 01 
DO    I-l   TO   III 

XBARl'XBARUVUJ'XBARKIH 
END   L501 
XBARI-XBARI/SVII 
DO   J" I    TO   JJI 

XBAR2-XBAR2*V(J)«XBARJ(J >I 
END  LSI I 
XBAR2-XBAR2/SVJI 
D0

SSAA.rSAAi!v<I..<<XBAR«U.-XBAR.>..2,.. 

END   L52I 
DrVsBlSrB.<v'<J,.<<XBARJ<J»-XBAR2>..*>>' 
^LPR'.NTX<A..A2. A3.TITLE.SST0T.SSAA.SSB.SSAB.SSE.il, 

JJ.NDD)! 

D0
Ss"BisrB.(YDJD<J>.rDJD(J../NDJ(J»l 

fslr SSB- < YDDD.YDDD) /N DDI 
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SSASB-SSTOT-SSAB-SSB-SSEJ 
TITLE-'HIERARCHICAL.    FIRST   B  THEN   AW 
CALL   PRINTX<A2. Al. A3.TITLE. SSTOT, SSB. SSASB. SSAB, SSE, JJ. 

II.NDDX 
TITLE-'EACH   MAIN   EFFECT   ADJUSTED   FOR   EACH   OTHER'I 
CALL   PRINTTCA1.A2. A3. TITLE, SSTOT, SSASB, SSBSA, SSAB, SSE, 

II.JJ.NDDH 
TITLE-'A   WEIGHTED  MEANS   ANALYSIS'; 
CALL   PPINTXCAI.A2,A3.TITLE,SST0T.SSA,SS».SSAB.SSE.I1,JJ, 

NDD)I 
END   BII 

END ANOVA; 
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OUTPU'l   OF   COMPUTER  PROGRAM   FOR 
THE   ANALYSIS   OF  VARIANCE 
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TANS   WITH   EAO   LEVFL   OF   THE   ANALYSIS 

INDEPENDENT   VARIABLE 

A 
A 
A 
A 
B 
B 
R 
A«D 
A*n 
A«R 

A*B 
A*.l 
A«p 
A*o 

A*n 
fl*n 
A*q 
A*3 
A*p 

LEVEL 

1 
2 
3 
1 
1 
2 
3 
1 
1 
1 
2 
2 
2 
3 
3 
3 
<+ 
t 
if 

MEAN 

26.0667 
25.5333 

8.7500 
13.5000 
22.7895 
18.2105 
15.8000 
29.3333 
28.2500 
20.H000 
28.0000 
33.5000 
18.1667 
16.3333 

«t.*»000 
8.5000 

13.6000 
12.8333 
1<«.2000 



t - 

ANALYSTS      OF      V   A   R   I   A   t-'   C   E FIVE      K   E   T   H  0  fl   S 

SOURCE 

TOTAL 

A 

B 

A«B 

ERROR 

A'-IALYMS   OF   VAr'lA'JCF    TABLE    FOR   DEPENDENT    VARlAfiLF    TREAT    TWO   WAY   DESIGN 

HirRAROICAlt    FIRST    A    THfN   fi 

DF 

57 

3 

? 

6 

SU"   OF   SQUARES 

9340.1S5l7?4l 

31**.?3f>50c57*i 

41P.533*1901 

707.26618099 

■5080.3166f.667 

MEAN SQUARE 

163.96P171 

lOt't.tl'flJ'i 

209.416910 

117.877697 

110.452536 

F VALUE 

9.4SR76 

1.89599 

1.06722 



£ 

ANALYSIS  OF  VARIANCE  --  FIVE  METHODS 

ANALYSIS OF VARIANCE TABLE FOR DEPENDENT VARIABLE TREAT TWO WAY DESIGN 

SOURCE 

TOTAL 

A 

B 

A*B 

ERROR 

OF 

57 

3 

2 

6 

THE STANDARD PARAMETRIC ANALYSIS 

SUM OF SQUARES 

9340. 155172m 

2997.47238751 

415.87332193 

707.26618099 

5080.81666667 

MEAN SQUARE 

163.862371 

999.157463 

207.936661 

117.877697 

110.'♦52536 

F VALUE 

9.04603 

1.88259 

1.06722 

L 



ANALYSTS  OF  VARIANCE  --  FIVE  METHODS 

ANALYSIS OF VARIANCE TABLE FOR DEPENDENT VARIABLE TREAT TWO WAY DESIGN 

SOURCE 

TOTAL 

P 

A 

B*A 

ERROR 

HIERARCHICAL. FIRST B THEN A 

DF SUM OF SQUARES 

57 9340.1551721*1 

? <*efi.63938294 

3 3063.43294182 

6 707,26618099 

**6 5060.81666667 

MEAN SOUARE 

163.862371 

244.319691 

1021.144314 

117.877697 

110. "452536 

F   VALUE 

2.2H99 

9.21*510 

1.06722 



ANALYSIS      OF      VARIANCE      --      FIVE      METHODS 

ANALYSIS   OF    V^RIANCE   TABLE   FOR    DEPENDENT   VARIABLE    TREAT    TWO    WAY   DESIGN 

SOURCE 

TTTAL 

A 

n 

A*B 

ERROR 

EACH   MAIN   EFFECT   ADJUSTED   FOR   EACH   OTHER 

DF 

57 

3 

"»6 

SUM CF SQUARES 

9340.15517241 

3063.43294192 

41P .R33<U901 

707.2661P099 

50P0.P1666667 

MEAN SCLARE 

163.B62371 

1021.144314 

209.416910 

117.877697 

110.45253* 

F VALUE 

9.24510 

1.89599 

1.06722 



«   N    «    L    r   S    I    S      OF      VARIANCE       --      FIVE      I*    E   T   H   0   0   S 

SOURCE 

TCTflL 

A 

P 

fl*n 

FRRPR 

ANALYSIS OF VARIANCE TARLF FOR DEPENDENT VARIABLE TREAT TWO WAY DESIGN 

A WEIGHTED MEANS ANALYSIS 

OF 

57 

3 

2 

6 

16 

SU" OF SQUARES 

9340.15517211 

3133.23850575 

188.63938291 

707.26618099 

5fl80.°1666667 

fEAN SCUARF 

163.862371 

1044.112835 

214.319691 

117.877697 

110.152536 

F VALUE 

9.15576 

2.21199 

1.06722 


