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Abstract:

On the basis of the executive-attention theory of working memory capacity (WMC,; e.g., M. J. Kane, A. R. A.
Conway, D. Z. Hambrick, & R. W. Engle, 2007), the authors tested the relations among WMC, mind
wandering, and goal neglect in a sustained attention to response task (SART; a go/no-go task). In 3 SART
versions, making conceptual versus perceptual processing demands, subjects periodically indicated their
thought content when probed following rare no-go targets. SART processing demands did not affect mind-
wandering rates, but mind-wandering rates varied with WMC and predicted goal-neglect errors in the task;
furthermore, mind-wandering rates partially mediated the WMC-SART relation, indicating that WMC-related
differences in goal neglect were due, in part, to variation in the control of conscious thought.
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Article:

Why does working memory capacity (WMC), as measured by complex memory-span tasks, predict individual
differences in fluid cognitive abilities? Attentional theories argue that WMC tasks’ predictive power derives
largely from their tapping domain-general, executive-control capabilities, which are also widely important to
complex cognition (e.g., Hasher, Lustig, & Zacks, 2007; Kane, Conway, Hambrick, & Engle, 2007). Some
supporting evidence comes from correlations between WMC and simple attention tasks that make limited
memory demands, such as the anti-saccade task. Here, higher WMC subjects better restrain the habitual
response of orienting toward a visual-onset cue than do lower WMC subjects, allowing them to more
successfully act according to the task goal of looking in the opposite direction (e.g., Kane, Bleckley, Conway, &
Engle, 2001; Unsworth, Schrock, & Engle, 2004).

Some of the WMC-related variation in attention-task performance seems attributable to individual differences
in maintaining sufficient access to the current task goals so that they, rather than habit, control responding (see
Kane, Conway, et al., 2007). In the Stroop task, for example, which elicits habit—goal conflict (i.e., word
reading vs. color naming), Kane and Engle (2003) presented subjects with either many incongruent,
mismatching trials (the word BLUE in red) or many congruent, matching trials (the word RED in red). With
many incongruent trials, the context reinforced the color-naming goal because most trials presented word—color
conflict and thus demanded ignoring the words; active goal maintenance was thus aided (or supplanted) by
environmental support. In contrast, with many congruent trials, goals were not contextually reinforced. Word
reading allowed correct responses on most trials, so subjects had to actively maintain goal access to respond
appropriately to the rare incongruent trials. Indeed, WMC-related differences were strongest in high-congruent
conditions, where goal maintenance was most critical: Lower WMC subjects com-mitted 50-100% more errors
than did higher WMC subjects on incongruent trials, apparently maintaining less suitable access to goal-
relevant information.

We suggest that lower WMC subjects show frequent goal neglect (Duncan, 1995) because goal maintenance
fluctuates across trials depending, in part, on the ability to resist interference from task-unrelated thoughts
(TUTSs). Simply put, lower WMC subjects seem less able than higher WMC subjects to sustain attention to the
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demands of the ongoing task. This intuitive view is not universally accepted, however. Oberauer and colleagues
(e.g., Oberauer, Su™0, Wilhelm, & Sander, 2007; Wilhelm & Oberauer, 2006) instead attribute such goal-neglect
failures to insufficient binding of stimulus—response (S-R) mappings. At a broad level, Oberauer et al. claimed
that WMC variation reflects the ability to establish, maintain, and decouple mental bindings among a limited
number of activated representations, as in associating auditory stimuli with temporal sequences, visual stimuli
with locations, or novel responses with imperative stimuli. In tasks such as Stroop and antisaccade, then, lower
WMC subjects, as compared with higher WMC subjects, may respond slowly or more frequently in error
because they cannot as effectively bind incompatible S-R map-pings, not because their attention cannot be as
effectively maintained throughout the task. In fact, Wilhelm and Oberauer (2006) found that both WMC and
fluid intelligence correlated strongly with performance of choice-response-time tasks presenting arbitrary S-R
mappings.

Here we tested the binding versus attentional views of WMC variation in goal neglect by probing subjects’
thoughts during an executive-control task. If insufficient binding or drift in its efficacy is responsible for goal-
neglect errors, then subjects’ TUT experiences and WMC-related variation in mind wandering should be
irrelevant. If, however, lapses of goal maintenance that accompany (or result from) slips of thought actually
contribute to goal-neglect errors and if WMC variation predicts subjects’ goal-maintenance efficacy, then TUT
intrusion rates should mediate (at least partially) the relation between WMC and goal neglect. Indeed, TUTs
often predict performance errors (Smallwood & Schooler, 2006) and lower WMC subjects experience more
mind wandering during effortful daily life activities than do higher WMC subjects (Kane, Brown, et al., 2007).
Indirect evidence thus supports our claim that individual differences in attention control and mind wandering
contribute to WMC’s association with goal maintenance and neglect.

Our more direct test here attempted to link goal-neglect errors to subjective experience within a task yielding
high rates of goal neglect and mind wandering. The sustained attention to response task (SART; Robertson,
Manly, Andrade, Baddeley, & Yiend, 1997) is a go/no-go task requiring responses to all stimuli except
infrequent targets. Whereas previous SART research has administered thought probes at least several seconds
(to half a minute) following critical target events (e.g., Smallwood et al., 2004; Smallwood, McSpadden, &
Schooler, 2007), we probed thoughts immediately after no-go targets to link in-the-moment subjective
experience to performance. We predicted that TUT reports would be accompanied by more errors than would
on-task thought reports and that higher WMC subjects would experience fewer TUTS and commit fewer
performance errors than would lower-WMC subjects (moreover, to the extent that response time [RT]
variability may also reflect more subtle slips of thought and goal neglect, we also predicted that WMC and TUT
rate would predict intra-individual RT variation). Of most importance, we hypothesized that TUT rate would
partially mediate the relation between WMC and SART performance (accuracy and RT variability), indicating
that attention control contributes to WMC’s influence on response-conflict tasks.

Of secondary interest, we adapted the SART to contrast the effects of different ongoing processing demands on
mind wandering, namely conceptual versus perceptual judgments (subjects either responded to words from one
semantic category and withheld responses to another category or responded to words in one font and withheld
responses to another font). This manipulation was motivated by research suggesting that TUT frequency
decreases when people engage in more conceptual versus perceptual processing. For example, subjects report
fewer TUTs when studying and recalling words according to conceptual versus orthographic dimensions (e.g.,
musical instruments vs. words beginning with P; Smallwood, Baracia, Lowe, & Obonsawin, 2003; Smallwood,
Obonsawin, & Heim, 2003). Most relevant here, Smallwood, Riby, Heim, and Davies (2006) reported lower
TUT rates for subjects completing a semantic SART, where subjects responded to words and withheld
responses to XXXXX strings, versus a perceptual SART that replaced all words with OOOOO strings. This
finding warrants further examination, however, because the semantic benefit only occurred for subjects
instructed to memorize the SART words for a subsequent test and not for subjects who encoded the words
incidentally. We therefore followed up this work by manipulating the SART’s conceptual demands while more
closely matching other task features.



Finally, we tested the association between in-the-moment TUT reports and general retrospective reports of
cognitive failures with the Cognitive Failures Questionnaire (CFQ; Broadbent, Cooper, FitzGerald, & Parkes,
1982). The CFQ assesses everyday attention, memory, and motor failures and modestly predicts SART errors
(Robertson et al., 1997) and TUT rates (Smallwood et al., 2004). We sought to replicate these findings while
pitting our objective WMC measures against the CFQ in predicting SART performance and TUTSs.

Method

Subjects

Two hundred forty-four undergraduates (aged 1835 years) completed WMC and SART sessions during one
semester. We dropped data from 1 subject who did not follow SART instructions.

WMC Screening

In 90-min sessions, we tested 3—6 subjects using three automated complex-span tasks: operation span (OSPAN),
symmetry span (SSPAN), and reading span (RSPAN). The tasks required subjects to maintain access to
memory items while completing an unrelated processing task with an individualized response deadline (M + 2.5
SDs), calculated during 15 processing-task-only items (Unsworth, Heitz, Schrock, & Engle, 2005). In OSPAN,
subjects verified solutions to compound equations. In RSPAN, subjects verified the meaningfulness of
sentences. In SSPAN, subjects verified the symmetry of black-and-white matrix patterns. In OSPAN and
RSPAN, a capital letter (randomly selected among 12) appeared for 250 ms, 200 ms after either operation—
reading verification or response deadline. After 3—7 verification-letter pairs, all 12 letters appeared onscreen and
subjects identified, via mouse click, the presented letters in serial order. In SSPAN, one square of a 4 X 4 grid
was shaded red for 650 ms, 200 ms after either symmetry verification or response deadline. After 2-5
verification— grid pairs, subjects recalled the locations of the colored squares in serial order by mouse clicking
on an empty grid. The tasks presented each set length (3—7 in OSPAN and RSPAN; 2-5 in SSPAN) three times,
randomly ordered for each subject.

The span score was the sum of items recalled in serial position (Conway et al., 2005). We converted span scores
to z scores and averaged them into a WMC composite. Scores correlated.65 (RSPAN X OSPAN), .56 (OSPAN
X SSPAN), and .53 (SSPAN X RSPAN). The WMC composite was normally distributed (skew = -0.64;
kurtosis = 0.07).

SART

Design and Materials

The design was a 3 X 2 mixed-model factorial, with SART type (semantic, perceptual, perceptual-semantic)
manipulated between subjects and stimulus type (target, nontarget) manipulated within subjects. We defined
targets as the no-go trials presenting an infrequent stimulus type and requiring restraint of the prepotent “go”
response.

In semantic SART, nontarget words came from one category (e.g., animals) and no-go targets from another
(e.g., foods), counterbalanced across subjects. In perceptual SART, nontarget words appeared in lowercase type
and no-go targets in uppercase. In a third condition, perceptual-semantic, subjects made perceptual decisions
but targets and nontargets differed on both dimensions (e.g., animals vs. foods). Animal and food names
(excluding animals commonly eaten) for semantic and perceptual-semantic SARTs came from Battig and
Montague (1969). We drew words for the perceptual SART quasi-randomly from all Battig-Montague
categories. Stimuli appeared in black against a white background, in 18-point Courier-New font, via CRT or
LCD monitors.

Procedure
We tested subjects individually in sound-attenuated rooms with white noise machines. Subjects completed a
modified CFQ and then the SART.



CFQ-Memory and Attention Lapses (CFQ-MAL). We modified the CFQ to present only its items about
memory and attention lapses; we also created new items and drew others from similar questionnaires (Brown &
Ryan, 2003; Reason & Mycielska, 1982; Sunderland, Harris, & Baddeley, 1983; for the full scale, see
http://www.uncg.edu/—mjkane/memlab.html). This computerized CFQ-MAL presented 40 questions (with
responses on a 1-5 scale: 1 = never, 2 = rarely, 3 = once in a while, 4 = often, 5 = very often); subjects
responded via keypress. Total score reflected the item sum. For our sample (N = 242; data from 1 subject were
lost), principal-components analysis yielded a first component (eigen-value = 11.5) accounting for 29% of the
variance; the second (eigenvalue = 2. 1) accounted for only 5.3 %, so we calculated one score for each subject
(M =111.5,SD =19. 1, skewness = 0.64, kurtosis = 0.67).

SART. An experimenter read aloud onscreen instructions. Subjects were to press the space bar as quickly as
possible for non-targets and withhold responses to targets. Subjects completed 10 practice trials before seeing
thought-probe instructions, which included a thought-probe screen with the question, “What were you just
thinking about?” and seven response options. We instructed subjects to report what they were thinking just
before the probe, and the experimenter elaborated on these choices:

(a) task, that is, thinking about the stimulus words or appropriate response;

(b) task performance, that is, evaluating one’s own performance;

(c) everyday stuff, that is, thinking about recent or impending life events or tasks;

(d) current state of being, that is, thinking about conditions such as hunger or sleepiness;
) personal worries, that is, thinking about concerns, troubles, or fears;

(H daydreams, that is, having fantasies disconnected from reality; or

(@) other, that is, other thought types. During the task, thought probes presented the italicized category names;
subjects then pressed the corresponding number key.

The SART presented 1,810 words: Each was centered for 300 ms and then followed by a 900-ms mask (12
capitalized Xs, the length of the longest word). The first 10 (unanalyzed) buffer trials presented nontargets. The
remaining trials comprised eight blocks, each presenting 225 trials consisting of 45 words repeated five times in
a different random order. Within each set of 45, five targets appeared randomly among 40 nontargets (11 % of
trials). The same five targets appeared across all blocks. Thought probes followed 60% of the targets within
each block. After the first four blocks, subjects took a 30-s break. Because there were only five target events per
block, our analyses collapsed the eight task blocks into four task-quarter blocks.

Results
We report nondirectional null-hypothesis significance tests with an alpha of .05 and partial eta-squared (npz) as
an effect-size estimate.

SART Performance

Accuracy

Mean accuracy rates for target (no-go) and nontarget (go) trials were .49 and .95, respectively. For each subject,
we calculated signal-detection sensitivity (d.) and bias (C\) scores, using formulas for logistic distributions
(Snodgrass & Corwin, 1988) and adjusting individual hit or false-alarm rates of 0 and 1 by .01. Negative C.
scores reflect a “go” bias. Figures 1A and 1B present d_and C_ scores by task and block.

A 3 (SART type) X 4 (block) mixed-model analysis of variance (ANOVA) on d,_ confirmed a main effect of
only block, F(3, 720) = 35.52, np2: .13, modified by an interaction, F(6, 720) = 3.64, npz = .03, indicating a



more shallow sensitivity decrease for the semantic than the perceptual SARTS. Repeated- measures ANOVAsS
for each SART, however, |nd|cated significant block effects: semantic, F(3 249) = 4.76, np .05; perceptual—
semantic, F(3, 231) = 15.79, np =.17; and perceptual, F(3,240) = 25.32, np = 24 A 3 (SART type) X 4 (block)
mixed-model ANOVA on C_ indicated only a block effect, F(3, 720) = 6.135, np = .03, and no interaction, F(6,
720) = 1.22, p = .30, corresponding to a slight decrease in go bias over blocks.
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Figure 1. Signal-detection indices from the semantic, perceptual-semantic, and perceptual SARTSs (sustained
attention to response tasks), across task blocks (N = 243). A: Mean sensitivity (dL) estimates. B: Mean bias
(CL) estimates. Error bars represent standard errors.

RT
Figures 2A and 2B present two nontarget (go-trial) RT indices: means of individual subjects’ means, reflecting
central tendency, and means of individual subjects’ standard deviations, reflecting intraindividual variability.



We were particularly interested in RT variability because it may reflect slight attentional fluctuations over the
course of the task and thus might be sensitive to WMC and TUT-rate variation.

Semantic-based responses were slower than perceptually based responses, with stable RTs over blocks: A 3
(SART type) X 4 (block) mixed ANOVA on mean RT indicated only a main effect of SART type, F(2, 240) =
21.98, np2: .15, and no interaction, F(6, 720) = 1.17, p = .32. In contrast, RT variability increased over blocks,
but similarly across tasks: A 3 (SART type) X 4 (block) mixed ANOVA confirmed only a block effect, F(3,
720) = 74.28, an: .24, and an interaction that approached conventional significance, F(6, 720) = 1.94, p = .07.
Subjects thus became more variable with time on task on all SART types.
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Figure 2. Response time (RT) measures from the semantic, perceptual-semantic, and perceptual SARTs
(sustained attention to response tasks), across task blocks (N = 243). A: Means of individual subjects’ mean
RTs. B: Means of individual subjects’ RT standard deviations. Error bars represent standard errors.
subjects’ performance, sometimes labeled task-related interference (e.g., Smallwood et al., 2006), composed
24% of responses. As task-related interference represents an ambiguous intermediary between on- and off-
task thought, we do not analyze it further.



In previous SART studies, RTs were shorter preceding target errors than preceding accurate responses, which
some investigators have interpreted as habitual, mindless responding (Robertson et al., 1997; Smallwood et al.,
2004). Here, too, RTs for the four non-target trials preceding target errors were significantly faster (M = 382
ms) than those preceding correct responses (M = 455 ms), t(242) = —25.22.

Thought Reports

Subjects reported task-related and task-unrelated thoughts on 21% and 55% of thought probes, respectively;
TUTSs were defined as reports of current state (28.4%), daydreams (8.6%), everyday stuff (8.2%), worries
(4.7%), and other (5.5%). Thoughts about

Figure 3 illustrates that TUTSs increased and on-task thoughts decreased over blocks. For TUTs, a 3 (SART
type) X 4 (block) mixed ANOVA indicated a main effect of only block, F(3, 720) = 223.45, an: .48, and no
interaction, F(3, 720) < 1. For on-task thoughts, a parallel ANOVA indicated, again, only a block effect,
F(3,720) =44.20, npzz .16, and no interaction, F(3, 720) = 1.49, p =.18. Because thought reports did not vary by
SART type, subsequent analyses collapse over this variable.

We expected RTs to trials preceding a TUT to be shorter than those preceding an on-task thought, indicating
attentional lapses and nonreflective responding. Indeed, responses to the four non-target trials preceding TUTs
were significantly faster (M = 415 ms) than those preceding on-task thoughts (M = 426 ms), t(235) = -2.73.
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Figure 3. Mean proportion of thought reports by thought category across task blocks (N = 243). Error bars
represent standard errors. TUT = task-unrelated thought; on-task = on-task thought, SART = sustained
attention to response task.

Performance by Thought Report

No-go accuracy was lower for targets during TUTs (M = .42) than during on-task thoughts (M = .66), t(23 1) =
-13.83; a 2 (thought report) X 4 (block) repeated-measures ANOVA indicated that this effect’s magnitude
persisted across blocks, F(3, 390) = 1.535, p = .21. At the level of intratask individual differences, subjects’
overall TUT rate predicted d_ (r = -.37) and nontarget RT standard deviation (r = .40) but not C, (r =. 11).
Moreover, TUT—d. correlations increased significantly from Block 1 to Block 2 to Block 3 (rs =-.17, -.28, -.39,
and -.39 for Blocks 1-4, respectively), as indicated by Williams’s t test (Steiger, 1980). Correlations between
TUT rate and nontarget RT standard deviations increased significantly from Blocks 1 to 2 only (rs = .19, .35,



.37, and .43 for Blocks 1-4, respectively). SART performance thus became more linked to mind wandering as
the task progressed.

Intertask Individual Differences

Table 1 presents correlations among all the task variables, along with their reliability estimates. WMC and
CFQ-MAL were uncorrelated, and neither score differed among SART groups (Fs < 1). As expected, WMC
variation predicted SART performance and thought, correlating significantly with d,, RT variability, and TUT
rate but not with C.. CFQ-MAL scores showed significant but apparently weaker correlations with SART
variables.

Table 2 presents hierarchical-regression analyses predicting SART d. with WMC, CFQ-MAL, and TUT rate.
Considering first WMC and TUTSs, each accounted for shared and unique d, variance: WMC accounted for
8.2%, with about half shared by TUT rate. TUTs predicted 9.8% of the variance independent of WMC (total R?
=.180). Moreover, WMC, TUT rate, and CFQ-MAL all predicted unique d, variance, but the three together
accounted for little more variance than did WMC and TUT rate alone (total R? = .198). Table 3 presents parallel
regressions for intrasubject RT variability, where WMC accounted for about 12.3% of the variance, with almost
half shared with TUT rate; TUT rate accounted for 10.7% of the variance beyond WMC (total R? = .230). Here,
WMC and TUT rate again predicted unique variance beyond CFQ-MAL scores, but CFQ-MAL predicted RT
variability only beyond WMC, not TUT rate (total R* = .240).

Discussion
Subjects who differed in WMC, as measured by complex-span tasks, also varied in SART performance and
subjective experience.

Table 1
Correlations Among WMC, Mind Wandering, and Performance
Measures
Variable 1 2 3 4 5
1. WMC —
2. TUT 217 885
34 287 —.368** 948
4, RT variation -.351* 396 —.599* 927
5. CFQ-MAL 014 J44* -.179* .146* 930

Note: N = 243. Values on the diagonal reflect Cronbach’s alpha for each measure as a reliability estimate;
alphas were calculated over task blocks for sustained attention to response task (SART) measures and over
items for the CFQ-MAL. WMC = working memory capacity; TUT = proportion self-reported task-unrelated
thoughts; d, = signal-detection sensitivity measure on SART; RT variation = intra-individual standard
deviation for nontarget reaction times on SART; CFQ-MAL = Cognitive Failures Questionnaire— Memory
and Attention Lapses. N = 242 for CFQ-MAL analyses.

.p<.05.**p<.0l

Thus, WMC predicted not only attention-task errors and RT variability (see also Kane et al., 2001; Kane &
Engle, 2003) but also mind-wandering rates (see also Kane, Brown, et al., 2007); indeed, our objective WMC
measure better predicted subjective TUT experiences than did the CFQ-MAL, a subjective self-report measure
of everyday attentional failures (ruling out demand characteristics in our WMC effects and attesting to the
validity of probed thought reports). Of most importance, however, individual differences in TUT rate accounted
for half of WMC'’s shared variance with SART performance, suggesting that much of WMC’s predictive power
is attributable to its reflecting people’s ability to simply keep their thoughts focused on the task at hand, a notion
consistent with our executive-attention view.



Table 2
Hierarchical Regression Analyses on Sustained Attention to Response Task Signal-Detection

Sensitivity Estimate (d;)

Variable B SE B t R

Predictors: WMC, TUT

Step 1: WMC 0.550 0.118 287 4.651* .082

Step 2: WMC, TUT —-2.591 0.484 -.321 —5.358* .180
Predictors: TUT, WMC

Step 1: TUT —2.973 0.484 —.368 —6.142" 135

Step 2: TUT, WMC 0.417 0.115 217 3.631* .180
Predictors: CFQ-MAL, TUT

Step 1: CFQ-MAL —0.016 0.006 -.179 -2.815* 032

Step 2: CFQ-MAL, TUT —2.805 0.487 —.347 —5.762" 150
Predictors: TUT, CFQ-MAL

Step 1: TUT —2.955 0.485 —.366 —6.090" 134

Step 2: TUT, CFQ-MAL -0.012 0.006 -.129 -2.136* 150
Predictors: WMC, CFQ-MAL, TUT

Step 1: WMC 0.548 0.118 287 4.636* .082

Step 2: WMC, CFQ-MAL —-0.017 0.006 —.183 —3.007* 116

Step 3: WMC, CFQ-MAL, TUT —-2.400 0.486 —.297 —4,941* .198
Predictors: CFQ-MAL, WMC, TUT

Step 1: CFQ-MAL —-0.016 0.118 -.179 —-2.185* 032

Step 2: CFQ-MAL, WMC 0.553 0.485 .289 4.755* 116

Step 3: CFQ-MAL, WMC, TUT —2.400 0.005 —.297 —4.491* .198

Note: N = 243. WMC = working memory capacity; TUT = proportion self-reported task-unrelated thoughts;
CFQ-MAL = Cognitive Failures Questionnaire—-Memory and Attention Lapses. N = 242 for CFQ-MAL analyses.
*p < .05,

Table 3
Hierarchical Regression Analyses on Sustained Attention to Response Task Intraindividual Reaction
Time Variation

Variable B SE B t R?

Predictors: WMC, TUT

Step 1: WMC —25.750 4430 -.351 —5.813" 123

Step 2: WMC, TUT 104.000 17.962 336 5.790* 230
Predictors: TUT, WMC

Step 1: TUT 122.665 18.314 396 6.698" 157

Step 2: TUT, WMC —20.397 4,260 —-.278 —4,788" 230
Predictors: CFQ-MAL, TUT

Step 1: CFQ-MAL 0.510 0.224 146 2.281* 021

Step 2: CFQ-MAL, TUT 118.368 18.520 382 6.391" .164
Predictors: TUT, CFQ-MAL

Step 1: TUT 122.417 18.376 395 6.662" 156

Step 2: TUT, CFQ-MAL 0.317 0.209 .091 1.516 164
Predictors: WMC, CFQ-MAL, TUT

Step 1: WMC —-25.717 4.437 -.350 —5.796* 123

Step 2: WMC, CFQ-MAL 0.528 0.209 151 2.520" 145

Step 3: WMC, CFQ-MAL, TUT 98.79¢% 18.143 319 5.446* 240
Predictors: CFQ-MAL, WMC, TUT

Step 1: CFQ-MAL 0.510 0.224 146 2.281* 021

Step 2: CFQ-MAL, WMC —25.874 4.389 -.353 —5.895* 145

Step 3: CFQ-MAL, WMC, TUT 98.79¢% 18.143 319 5.446* 240

Note. N = 243. WMC = working memory capacity; TUT = proportion self-reported task-unrelated thoughts;
CFQ-MAL = Cognitive Failures Questionnaire-Memory and Attention Lapses. N = 242 for CFQ-MAL analyses.
*p < .05,



WMC and Executive Attention

Our individual-differences findings confirm key hypotheses from the executive-attention theory of WMC (e.g.,
Kane, Conway, et al., 2007), which holds that WMC’s predictive power derives primarily from its tapping
attention-control mechanisms that, among other functions, keep novel goals readily maintained to regulate
ongoing behavior amid conflict. If goal-neglect errors arise through attention-control failures, and if many
attention-control failures are complete enough to result in TUT experiences, then WMC-related variation in
TUT rate should partially mediate WMC-related variation in performance. It did, and these findings seem
inconsistent with a binding explanation of WMC-related variation in goal neglect (e.g., Wilhelm & Oberauer,
2006). If lower WMC subjects more often fail to act according to goals because they less effectively bind
response productions to stimulus classes (e.g., “press key for animals™), then performance differences between
lower and higher WMC subjects need not have anything to do with mind wandering, nor should WMC even
predict TUT rates during cognitive tasks.

Important questions remain, however, regarding the SART variance explained by WMC independent of TUT
rate. Kane and Engle (2003) concluded that (a) WMC predicts attention-task performance via goal-maintenance
and competition-resolution mechanisms, the latter of which only engages subsequent to the former (e.g., in
Stroop, resolving conflict between color and word dimensions only proceeds if the color-naming goal is
accessible), and (b) higher WMC subjects are superior to lower WMC subjects in both processes. In the SART,
subjects must not only keep the no-go goal in mind throughout long sequences of go trials but also successfully
inhibit this prepotent response when required. Indeed, go-trial RTs preceding errors were 73 ms faster here than
those preceding correct responses, whereas RTs preceding TUT reports were only 11 ms faster than those
preceding on-task thoughts. Fast, erroneous responding clearly occurs even when subjects are reportedly task
focused, presumably reflecting within- and between-subject variation in competition resolution.

We therefore suggest that WMC’s TUT-independent prediction of SART performance is largely due to its
relation to competition resolution. If so, two predictions follow: (a) A SART that induces weaker prepotencies
to overcome should correlate less strongly with WMC (due to a minimization of competition-resolution
variance) and (b) SART variance that is predicted by WMC should be more fully mediated by TUT rate, as
subjects must maintain goal activation that is not externally reinforced. We are currently testing these
predictions with SARTS that present mostly no-go trials—requiring no overt responses—so the “go” goal
requires active maintenance but accurate responding requires little competition resolution. We believe that this
experiment also tests further the binding theory (Oberauer et al., 2007). If WMC’s non-TUT prediction of
SART performance derives from S-R binding effectiveness instead of reflecting competition-resolution
processes (Wilhelm & Oberauer, 2006), then a SART with weak prepotencies should still correlate substantially
with WMC, because subjects must still bind no-go and go responses to stimulus categories. Moreover, SART
variance predicted by WMC should not be mediated by TUT rate.

Theoretical and Methodological Issues in Mind Wandering

Our results not only inform WMC theory, but they also raise concerns about current theoretical and
methodological approaches to mind wandering. Of most importance, a major theory of mind wandering seems
to predict the reverse of our central WMC finding. Smallwood and Schooler (2006) argued that mind wandering
draws heavily on WMC and executive resources, largely on the basis of findings that TUTs decrease during
demanding tasks and that performance errors increase during TUTSs. By this view, as primary tasks consume
more resources, fewer remain to support mind wandering and vice versa. Moreover, subjects who have more
resources available (e.g., higher WMC) should be able to mind wander more during ongoing tasks than should
subjects with fewer resources (e.g., lower WMC).

Of course, we found the opposite: Lower WMC subjects mind wandered more during a demanding primary task
than did higher WMC subjects (see also Kane, Brown, et al., 2007). We therefore suggest that TUTSs represent
an executive-control failure to maintain on-task thoughts and that the generation and persistence of TUTs do not
require executive resources. Rather, TUTs are automatically and continually generated as part of the thought
stream (e.g., Bar, 2007; James, 1890) in response to internal and external cues (e.g., Klinger, 197 1), and



executive-control processes keep these thoughts out of the focus of attention during resource-demanding tasks.
Neuroscience research connecting TUTSs to a default-mode network of the brain (e.g., Mason et al., 2007)
suggests that mind wandering may be a return of attention to the type of thoughts produced while subjects are at
rest. By this provisional view (which requires further refinement and test), TUTSs either cause performance
errors by displacing stimulus and goal representations from attentional focus or correlate with errors as a signal
(or side effect) of failed attention control. Difficult tasks minimize TUTs because to meet task demands, they
stimulate engagement of control processes, one function of which is to sustain conscious focus and actively
prevent TUTs from occurring.

Regarding a secondary motivation for the present study, we failed to replicate prior findings that mind
wandering varies with the conceptual-processing demands of ongoing tasks: TUT rates were equivalent for
semantic and perceptual SARTS, rather than being reduced in the semantic task. It may be important that most
experiments showing reduced TUTs during conceptual processing have involved intentional memory encoding,
retrieval, or both (e.g., Small-wood, Baracia, et al., 2003). Such task requirements may encourage integration or
associations across conceptually related items and thus provide a scaffold for maintaining on-task thought. The
SART, in contrast, neither requires nor promotes such mental organization, as individual stimuli require
independent judgments. Indeed, Smallwood et al. (2006) observed a reduced TUT rate for the semantic versus
nonsemantic SARTSs only for subjects instructed to commit the stimuli to memory, who therefore may have
thought more elaboratively and cohesively about the stimuli.

Although our findings generally support the notion that variation in conscious thoughts predict (if not cause)
some variation in task performance, they also indicate that mind wandering and performance errors are not
interchangeable indices of attentional lapses, as some researchers have suggested (e.g., Smallwood,
McSpadden, Luus, & Schooler, 2008; Smallwood et al., 2007). Responses to targets were appropriately
withheld 42% of the time that subjects’ thoughts were off task and inappropriately committed 34% of the time
that subjects’ thoughts were on task. Moreover, as noted previously, RTs preceding errors were much faster
than those preceding accurate responses, but RTs preceding TUTs were only slightly faster than those preceding
on-task reports. Thus, there is more to executive-task performance than just goal neglect and mind wandering,
and habit-based errors need not reflect only lapses of sustained attention (Kane & Engle, 2003; Logan &
Cowan, 1984).

Conclusion

Our findings demonstrate the utility of subjective mind-wandering reports to the experimental and differential
study of executive functions (see also Kane, Brown, et al., 2007; Small-wood & Schooler, 2006). Goal-neglect
errors and some WMC-related differences in attention-task performance appear to stem in part from momentary
failures of conscious thought control. As in the present experiment, further assessment of subjective experience
during cognitive tasks (and especially off-task thoughts) should provide evidence for or against particular
mechanistic views of executive control and its variation.
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