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The purpose of  this study was  to  investigate the effect of cortisol 

on uridine and leucine metabolism in cell line 1-407.     Experiments were 

performed to determine the early effects of  cortisol on the cells. 

Monolayered  cell cultures were exposed to cortisol,   labelled 

3 14 precursors such as    H-uridine and      C-leucine and metabolic  inhibitors. 

These cells were  then homogenized and subjected to trlchloroacetic acid 

(TCA)   separation.     Radioactive precursors  in the TCA-soluble and insoluble 

fractions  acted as  a measure of  precursor uptake and  incorporation. 

Preparatory experiments were performed to determine  the fetal bo- 

vine serum  (FBS)   concentration for optimal cell growth.    These experiments 

were also used to determine  the cortisol concentration which produced  the 

most consistent response.     It was observed  that cells grew best  in 10% 

FBS.     The lowest cortisol concentration which produced a consistently 

reproducible response in the cells was 0.05 ug/ml   (1.7 x 10      M). 

This study demonstrated,   for the first time,   the early and contin- 

uous parallel hormonal response  to uridine uptake and   incorporation in an 

in vitro cell  system.     Cortisol  stimulated an early  (15 minute)  increase 

in both uptake and  incorporation of    H-uridine followed by a rapid 

decrease at  30 minutes.    The results of longer hormone incubations  (2-4 

hours)   showed a decrease in  specific activity of    H-nucleoside in both 

TCA-soluble and TCA-insoluble fractions. 

Evidence is also presented showing early cortisol-induced inhibi- 

tion of      C-leucine uptake   (15 minute)   and  incorporation  (30 minute)   in 

an in vitro cell system.     Cycloheximide's effect on leucine uptake was 

similar to that of cortisol  in this time period.     The protein inhibitor 



also blocked cortisol effects on uridine and leucine incorporation. The 

possible biological implications of this inhibition of protein synthesis 

have been discussed  in  this study. 

Preliminary experiments were performed to investigate early  (15 

minute)  cortisol effects on different RNA species.     High molecular weight 

RNA was extracted  from whole cell homogenates and fractionated by poly- 

acrylamide-agarose gel  electrophoresis.     Cortisol shifted the rapid 
3 

incorporation of    H-uridine to a higher molecular weight RNA species. 

Synthesis of ribosomal   (rRNA) was  inhibited by low doses  (0.1 ug/ml)  of 

actinomycin D, blocking both    H-uridine uptake and  incorporation.    The 

simultaneous  addition of cortisol and  inhibitor produced  increased 

nucleoside uptake and  incorporation.    The preliminary data from these 

experiments   indicate high-weight,   non-rRNA metabolism was preferentially 

affected by  cortisol at 15 minutes. 

It was concluded  that:     a)   long  term  (2-4 hour)  cortisol treatment 

decreased uridine uptake and incorporation while short term  (15-60 min- 

ute)  treatments produced  a variable response;  b)  cortisol inhibited 

leucine uptake at  15 minutes and  its  incorporation at  30 minutes; 

c)   cycloheximide effects on leucine uptake were similar to that of 

cortisol;   d)   preliminary data indicated cortisol stimulated    H-uric 

incorporation into a high molecular non-rRNA species. 
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INTRODUCTION 

Hormones  act  as physiological modulators that  alter the metabolism 

of various tissues  in an organism.    These alterations are believed to be 

initiated by the "primary" action of hormones on a target tissue.    These 

primary activities are probably small  in themselves but  sufficient to 

cause changes   in cell metabolism that occur later.     Different   types of 

primary actions have been proposed and all hormones  are thought to ini- 

tiate changes  in target cells by one or more different mechanisms.    These 

include alterations  in cell  and organelle membrane permeability, stimula- 

tion of the formation of secondary messengers  such as  cyclic AMP and 

cyclic GMP and stimulation or inhibition of specific gene activity 

(Martin,   1976). 

Steroid hormones are a class of compounds that vary in their place 

of origin,  target tissue,  and the type of cellular activity.    However, 

they all have the same basic four-ring structure and appear to have a 

similar mechanism of activity.    This mechanism was first defined by the 

work of Jensen   (Jensen and Jacobson,   1962)   and Gorski  (Gorski,   et al., 

1968)  using radioactive estrogen.    The hormone was  found to bind to a 

specific cytoplasmic receptor protein which carried  it  from the cytoplasm 

to the nucleus.     Figure 1 is  a schematic drawing of  this mechanism. 

Later work by other investigators confirmed that a similar mech- 

anism holds for  the other classes of steroids:     glucocorticoids     (Beato 

et al.,   1969,  1970;  Gopalakrishnan and Sadgopal,   1972), mineralocorticoids 

and androgens  (King and Mainwaring,   1974).    Although the mode of action 
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FIGURE 1 

MODEL OF  STEROID HORMONE ACTION 

The model portrays the mechanism of action of most steroid 
hormones  in a responsive cell type.    The hormone   (H)   enters 
the cell and binds to a specific cytoplasmic receptor  (R). 
The hormone-receptor complex enters the nucleus, where it 
binds to chromatin acceptors.    Binding to chromatin initiates 
transcription of hnRNA and/or mRNA which alter cell metabolic 
processes.    Modified from Gorski and Gannon   (1976). 



portrayed in Figure 1 applies  to all  steroids with some modifications, 

the cytoplasmic receptors are highly specific for each class  of steroid 

hormone.    Receptor-steroid binding affinities even vary with the different 

hormones in each class.     For example,   in human liver,   the binding affinity 

of the glucocorticoid receptor  is greatest for the drug dexamethasone, 

decreases for cortisol and is  least for corticosterone. 

Glucocorticoids and cortisol in particular appear to differ from 

other classes of steroids  in that specific glucocorticoid receptors  seem 

to be present in many different  tissues  (Ballard et al.,   1974;   Lieung and 

Munck,   1975).    These include such diverse tissue as  liver,   thymus, kidney 

(Feldman and Funder,   1972)  and  fetal lung in rabbits   (Giannopoulous, 

1972).     In all these tissue,   cortisol's' mode of action appears   to follow 

closely the pattern shown in Figure 1.     However,  the ultimate effects of 

the glucocorticoids differ among tissue types.    There is an anabolic 

effect in the liver,   including increased ribonucleic acid  (RNA)   and pro- 

tein synthesis.     Stimulation of  enzyme systems  such as RNA polymerase 

(Jacob et al.,   1969;  Bottoms et  al.,   1972)  and enzymes of the gluconeogenic 

pathway (Martin,   1976)  have also been reported.     In the kidney,   glucocorti- 

coids increase Na -ion reabsorption from the distal tubules,  although not 

to the extent of mineralocorticoids such as aldosterone  (King and 

Malnwaring,  197A).     In other tissue,  cortisol produces a catabolic effect 

which may lead to eventual cell death.     This  is the case  for the thymus, 

skeletal muscle,  skin,   fibroblasts and HeLa cells   (Lieung and Munck, 

1975). 

No matter whether steroid hormones produce a catabolic or anabolic 

effect on a particular tissue,  one of their primary effects has  to be an 



alteration of  genetic activity.     This effect  is evident  in rat uterine 

tissue and chick oviduct where estrogen produces large increases in RNA, 

protein and DNA synthesis   (Munns  and Katzman,   1971; O'Malley and Means, 

1974;  Katzenellenbogen and Gorski,   1975).    A major problem to be solved 

in this field  is how steroid hormones interact with the genome to produce 

changes  in cellular metabolism.     Since steroids appear to alter transcrip- 

tion,   they must have an effect on the gene regulatory mechanism.    Thus, 

in order to understand how steroids affect eukaryotic genome regulation, 

one has to know something about the regulatory system itself. 

Eukaryotic Regulation 

Genome regulation  is  the stimulation or repression of the transcrip- 

tion of  particular structural genes.     Structural genes are defined as 

genes  that are coded  for  individual polypeptides or proteins.     The final 

result  is the control over synthesis of the diverse species of RNA.     The 

mechanism of eukaryotic regulation is not well known,  but  it   is thought 

that heterogeneous nuclear RNA  (hnRNA)  located in the nucleus is involved. 

Heterogeneous nuclear RNA has recently been the subject  of extensive 

investigation to determine its  function in gene regulation. 

The work of Darnell and his colleagues,   (Darnell et al.,   1973; 

Puckett and Darnell,   1977)   reflect one trend of thought concerning hnRNA 

function.    These authors  and  other investigators view hnRNA as a possible 

precursor to cytoplasmic messenger RNA (mRNA).    Lewin (1975a,   b)  has 

reviewed the evidence for  this mRNA precursor role.     Darnell and Lewin 

have presented the following evidence in favor of hnRNA acting as a pos- 

sible precursor for mRNA.     First,  the vast majority of hnRNA and mRNA 

species have a poly-adenosine  (poly   (A))  tail approximately 200 



nucleotides long at  the 3'   end of the molecule.    The poly  (A)   tall appears 

to be added enzymatically following transcription of the hnRNA molecule. 

Thus,   it has been argued that the hnRNA precursor is degraded from the 5' 

end until the mRNA molecule remains.     Second, when cells  are treated with 

antibiotic 3'-deoxyadenosine   (Cordycepin),  hnRNA transcription proceeds 

normally but no poly  (A)   tail is added to the molecule and no poly  (A) 

mRNA appears  in the cytoplasm  (Darnell  et al.,   1973).    This data would 

indicate that   the poly  (A)   tail was added to the 3'   end of hnRNA after its 

transcription  and this addition may be necessary for the movement of the 

precursor mRNA into  the cytoplasm.     It should be mentioned however,  that 

HeLa histone mRNAs   (Adesnick and Darnell,   1972)  and other species of 

eukaryotic messenger RNA  (Sonenshein et al.,   1976;   Greenberg,   1976) have 

been found  in  the cytoplasm without poly   (A)   tails.    Third,  the use by 

Imaizumi et al.   (1973)   of a complementary DNA (cDNA)   probe synthesized 

from duck globin mRNA has shown a similar message sequence  in hnRNA 

molecules of several sizes.    Although hnRNA has a large size distribution, 

its smallest sizes are comparable to those of mRNA (Lewin,   1975a).    The 

evidence cited  above has  led many investigators to speculate that a large 

hnRNA precursor  is transcribed from the genome with the ultimate mRNA 

sequence  located toward the 3'   end. 

Georgiev   (1969;   1974)  has proposed a model of a eukaryotic operon 

based on the above evidence.    He speculates that the transcriptional unit 

is composed of  acceptor sites located in a proximal   (51)  position with 

the actual structural gene at the distal  (3')  end of this unit.     The 

acceptor sites would be specific for various regulatory proteins  that 

could turn on the operon and subsequent  transcription.    After transcription 



the regulatory  5'  end of the hnRNA is gradually degraded until only the 

mRNA portion with its newly attached poly  (A)   tail is  left to enter the 

cytoplasm.     This model has the advantage of providing an acceptor site 

for the binding of  the steroid-protein receptor complex on the chromatin 

which could  then activate transcription of the whole unit.     It also has 

the additional advantage of having the structural gene adjacent to  its 

regulators.     Unfortunately,   the nature of  the processing steps and the 

necessity for a giant  precursor molecule are questions that still remain 

unanswered. 

An alternate regulatory scheme has been proposed by Britten and 

Davidson   (Britten and Davidson,   1969;   Davidson et al.,   1977).     Using data 

obtained  from sea urchin embryos,   the authors have proposed a model based 

on the organization of the chromatin in the eukaryotic genome.     In most 

eukaryotes,   the genome consists of "families" of  short,   repetitive DNA 

sequences  several hundred nucleotides  long which are  interspersed among 

single copy sequences up to several thousand nucleotides  long.     They pro- 

pose that a relatively small proportion of  the single copy genome func- 

tions  as  the structural gene complement, while the great majority of 

these sequences act as a non-transcribed spacer.     The repetitive sequences 

are proposed as the regulatory genes.     In contrast to Georgiev's model 

these authors  propose that regulatory hnRNA molecules are transcribed 

apart from the structural gene and move through the nucleus to a control 

region on the structural gene.    A specific structural gene would be reg- 

ulated by hnRNA transcribed from certain repetitive sequence "families" 

which would be the sites of regulatory changes caused by hormones,   cAMP 

or other substances. 



7 

Evidence for this model is based primarily on  studies of genome 

complexity.    The authors have calculated that the single-copy DNA is much 

more abundant than necessary for the number of  structural genes expressed. 

The non-transcribed portion of this single-copy DNA would act as spacers 

and binding sites  for endonucleolytic RNase activity  that   remove  the 

regulatory hnRNA transcribed from the repetitive DNA template.    Hormonal 

evidence that indirectly supports this hypothesis has been reported by 

Szego   (1972) who has shown that estrogen  increased nuclear acid RNase 

activity.    The regulatory RNA transcripts might then move to the struc- 

tural gene(s)   and alter transcription. 

The major advantage of this mechanism is that  it accounts for the 

expression of new genes during different  stages  of development or  in 

response to environmental  changes.     A large over-abundance of hnRNA is 

made   (Davidson et al.,  1977)   and its fast  turnover would allow a positive 

regulatory  control by a steady stream of  regulatory transcripts. 

Shutting off this stream of stimulatory transcripts would allow 

differentiation or reaction to environmental change.     However,   this model 

tends  to  ignore experimental evidence showing similarities between hnRNA 

and mRNA including identical poly  (A)  tails,  inhibitor studies and 

hybridization studies   (see above). 

Obviously,  the origin and regulation of mRNA is still unknown. 

Intensive investigation still leads  to equivocal results such as the 

kinetic studies performed by Perry and Kelly (1973a,  b)   and Puckett  and 

Darnell   (1975;  1977).    The  former failed to  find evidence for a precursor 

relationship between hnRNA and mRNA while the latter have reported ev- 

idence supporting this  precursor relationship.    Obviously more work needs 

to be done  in this area. 



Steroid-Genome  Interaction 

Since the regulatory system of  the eukaryotic genome is not well 

understood,   the mechanism of  steroid-genome interaction also remains 

relatively unexplained.     Investigators of steroid action often compare 

data resulting  from work with several different hormones.    This is  espe- 

cially true when comparing the similarity of the early action of all 

steroid hormones   (see Figure 1). 

The apparent initial genome effect of all steroids is the binding 

of the hormone-receptor complex to the nuclear chromatin.    This step in 

the mechanism of steroid hormone action has been found to occur for 

estrogen  (Gorski et al.,   1968;  Yamamoto and Alberts,   1975 and others), 

glucocorticoids   (Beato et al.,   1970;   Dastague et  al.,  1971;  Gopalakrishnan 

and Sadgopal,   1972)   and mineralocorticoids   (Wilce et al.,   1976).    Davidson 

et al.   (1977)  have presented evidence that  the structure of eukaryotic 

chromatin is similar in all systems  they have studied.    Therefore,   it is 

possible that each class of steroids might  cause similar initial changes 

in the genome,   although the ultimate effects to the cells could be quite 

different. 

O'Malley and his  collaborators have intensively studied  the effect 

of estrogen on the genome of  the chick oviduct.    Using rifampicin, an 

inhibitor of reinitiation of E.   coli RNA polymerase,   they have  found  that 

an 8 hour estrogen treatment  increased the number of initiation-sites 

where E.   coli RNA polymerase starts transcription of the genome   (Schwartz 

et al.,   1975).    They calculated the rate of chain elongation and ultimate 

chain length of the RNA synthesized to be similar to controls.     Thus, 

according to these investigators,   the estrogen made more sites available 
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for initiation, but did not appear  to change enzyme activity nor the type 

of  chain  that was formed.     One objection to this assay is that rifampicin 

only inhibits E_.   coli RNA polymerase.    Thus,   in conducting this investiga- 

tion,   the authors did not use the native oviduct RNA polymerase.     Although 

comparison tests by the O'Malley group showed little difference between 

chick oviduct polymerase  and E_.   coli polymerase using oviduct chromatin 

template   (Tsai  et al.,   1976),   other  investigators have  found that E.   coli 

polymerase has many more  initiation sites on a calf thymus chromatin 

template  than  the natural thymus polymerase  (Cedar,   1975).    Also,  Barry 

and Gorski   (1971)   have reported that estrogen stimulated an increase in 

rate of RNA chain lengthening in rat uterus.    Thus,   it   is still uncertain 

if  the increase in number of initiation-sites  is  caused by the estrogen, 

or  the type of  RNA polymerase used,   or if estrogen stimulates RNA 

synthesis   in a different manner. 

Evidence  for  increased RNA synthesis has been found by measuring 

steroid effects  on RNA polymerase activity.     In contrast  to prokaryotes, 

whose RNA polymerase enzymes synthesize all types of RNA,  there are  three 

different classes  of RNA polymerase found  in eukaryotes.    Excellent 

reviews by Chambon   (1974,   1975)   and Roeder   (1976)   summarize the current 

knowledge  concerning these enzymes.    Originally named RNA polymerase I, 

II,   and III,   they are often classified A,  B,  and C respectively.    This 

latter system is based on their sensitivity to the toxin,  a-amanitin. 

RNA polymerase A,   located primarily in the nucleolus,  synthesizes ribo- 

somal RNA   (rRNA)   and  is  resistant to extremely high concentrations of 

a-amanitin.     RNA polymerase B,   located in the extranucleolar regions of 

the nucleus,   synthesizes hnRNA and/or mRNA.    This enzyme  is sensitive to 
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low concentrations of  a-amanitin.    Finally,  RNA polymerase C, which is 

believed to synthesize both 5S RNA and transfer RNA (tRNA) ,   is also found 

in the nucleus.     Polymerase C is sensitive to intermediate amounts of 

a-amanitin. 

Measurements of  steroid effects on RNA polymerase have been 

reported using both estrogen   (Gorski,   1964;  Knowler and Smellie,  1971; 

Barry and Gorski,   1971;   Glasser et al.,  1972;  Borthwick and Smellie,   1975; 

Courvalin et  al.,   1976)   and cortisol  (Jacob et al.,  1969;   Sajdel and 

Jacob,  1971;   Schmid and Sekeris,   1972; Borthwick and Bell,   1975).    This 

work was based primarily on assays of RNA polymerase activity.    Assays of 

this  type are usually made by measuring incorporation of a labelled 
3 

nucleotide   (usually    H-uridine triphosphate)   into RNA in a reaction 

mixture with nuclei isolated from pre-treated tissue.    Although steroid- 

induced alterations in RNA polymerase activity have been reported,  this 

technique does  not determine their nature.     It  is possible the changes 

were due to changes  in the number of initiation sites, but  it  is also 

conceivable the hormones  alter the activity of polymerase molecules 

already present or  the number of RNA polymerase molecules available for 

transcription processes. 

Investigations of the various RNA polymerases using either estrogen 

(Glasser et al.,   1972;  Borthwick and Smellie,  1975)  or cortisol  (Schmid 

and Sekeris,   1972;   Borthwick and Bell,   1975)  have shown an interesting 

sequence of  events  apparently stimulated by  these steroids.     Both hormones 

stimulate an early   (15-30 min.)   increase in RNA polymerase B activity 

which would indicate the early synthesis of hnRNA (mRNA).     Polymerase B 

activity drops  almost to control levels by 30-60 minutes.    Although this 
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early increase in enzyme activity is  found in all the investigations 

cited,  changes  in the later activity of RNA polymerase B and that of RNA 

polymerase A are dependent upon the type tissue studied.     In the case of 

tissue with anabolic response to hormone,   such as the estrogen-uterus 

system,   (Glasser et  al.,   1972;  Borthwick and Smellie,   1975)  and cortisol- 

liver system (Schmid and Sekeris,   1972),   there is a sustained increase in 

RNA polymerase A activity about 30 minutes after hormone treatment.    This 

is  coupled with a second rise  in RNA polymerase B activity.    On the other 

hand,   in the  case of a catabolic response,  such as the cortisol-thymus 

system (Borthwick and Bell,   1975),   the small early peak in RNA polymerase 

B activity  is   followed by a sustained decrease in both RNA polymerase B 

and RNA polymerase A activity. 

These studies   implied the early action of steroid hormones on the 

genome appeared to stimulate the early synthesis of a small number of 

mRNAs or hnRNAs.    One would expect a commensurate number of early proteins 

to be translated from these mRNAs.    The new proteins might  then produce 

either an increase  (anabolic response)  or decrease  (catabolic response) 

in subsequent RNA polymerase activity.    An alternative possibility is the 

newly synthesized proteins might stimulate   (anabolic)   or repress  (catabolic) 

the transport of new mRNAs  from the nucleus.    The former would enable RNA 

synthesis  to continue while the latter would stop RNA synthesis through 

feedback inhibition   (Lichtenstein and Shapot,  1976).     It  is also conceiv- 

able the new synthesized hnRNA acts  to directly control the later increases 

or decreases  in rRNA and mRNA synthesis. 

There is some evidence to support the concept of protein influenced 

steroid action.     Estrogen in the uterus has been found to induce the early 
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(20-60 min.)   synthesis of a protein or small group of proteins   (Gorski 

and DeAngelo,   1970;   Gorski and Barnea,   1970; Katzenellenbogen and Gorski, 

1975;   Cohen and Hamilton,   1975).     Induced uterine proteins appear several 

hours  prior to the  larger  increase in protein synthesis found in  later 

stages of estrogen response.     Although a search of the literature has 

failed to show direct   evidence of a similar protein induced by cortisol, 

there is  some  indirect evidence of the importance of early protein 

synthesis.    Munck et  al.   (1972)   found that cycloheximide blocked  the nor- 

mal cortisol induced  inhibition of glucose uptake in thymus cells only  if 

given 15-25 minutes after the hormone.    This implied that ultimate thymic 

response to cortisol was dependent upon early protein synthesis. 

Evidence that  this pattern of RNA synthesis  is not confined  to 

cortisol and estrogen has been reported by I.S.  Edelman and his colleagues 

(Wilce et al.,   1976a,  b).     The mineralocorticoid,   aldosterone,   increased 

Na    transport  in toad bladder after a lag period of  60-90 minutes.     During 

this  lag period a rise in poly   (A)  RNA synthesis  (presumably mRNA - see 

above)  was detected at  30 minutes followed by a later rise in rRNA 

synthesis and increased Na    transport at 90 minutes.    This would imply a 

similar anabolic pattern occurs with early aldosterone induction of mRNA 

transcription followed by increase in rRNA as was seen above with estrogen 

in the uterus. 

There appears  to be an emerging pattern of early steroid action in 

the nuclei of responsive cells.     Steroid hormones act to stimulate the 

early transcription of a small number of messenger RNAs which induce the 

production of a limited number of  early proteins.     Some early proteins 

may enter the nucleus and,   depending on the hormone and tissue,  either 
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stimulate or inhibit first RNA polymerase A and then RNA polymerase B. 

Indirect evidence for such early protein action was presented by 

Borthwick and Smellie  (1975).    They demonstrated that cytosol from rat 

uteri  treated for  15 minutes with estrogen stimulated RNA polymerase A 

activity in untreated uterine nuclei.     In a separate series of  experiments, 

they found that uteri treated with cycloheximide 30 minutes before estrogen 

was  administered  prevented the rise in RNA polymerase A activity. 

Many  questions still remain unanswered concerning steroid-genome 

interaction.     Since the general eukaryotic regulatory mechanism is 

virtually unknown,   it is not known how the steroids act to initiate or 

alter  the rate of  transcription of certain genes.    One possible model has 

been presented by Yamamoto and Alberts   (1976).    They have found that most 

binding of estrogen-receptor complex to chromatin  is non-specific 

(Yamamoto and Alberts,  1975).    They hypothesize that this non-specific 

binding masks specific binding of steroid-receptor complexes to clusters 

of specific  chromatin-acceptors on the regulatory portion of  the transcrip- 

tion unit.     This cluster would act to open the gene to RNA polymerase B 

activity. 

A second model has been proposed by O'Malley and Means   (1974). 

They have developed evidence that  the progesterone cytoplasmic receptor 

consists  of two  entities.     Part B of the receptor binds the progesterone- 

receptor complex to gene-specific non-histone chromatin proteins.    Part A 

binds to DNA opening the gene(s)   to RNA polymerase activity.    Unfortunately, 

this type of  cytoplasmic receptor has been found only for progesterone and 

this model might not hold for other steroids.     Further research  is nec- 

essary to determine what  is  the actual mechanism of steroid action. 

_ 
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Many of  the recent investigations into early cortisol effects on 

RNA have used cell-free RNA polymerase assays   (see above).     These assays 

were performed on  isolated nuclei removed from target  tissue after hormone 

treatment.     The general purpose of  the present  study was to investigate 

cortisol's  action on RNA and protein precursor uptake and   incorporation 

into whole cells.    The use of intact cells  from a known cell type confers 

certain benefits  over either cell-free or whole organ studies.     First, we 

were able to observe changes in total uridine metabolism rather than only 

effects on RNA synthesis.    This included measurements  of steroid effects 

on nucleoside transport,  an area that has undergone comparatively little 

investigation  (Oliver,   1971;  Munns and Katzman,   1971;  Wilce et al.,   1976). 

The use of cell-free systems  can result in artifactual changes that could 

possibly distort the actual hormone effects   (Gorski and Gannon,   1976). 

Second,  this system takes  into account possible nuclear-cytoplasmic 

interactions that might be affecting RNA metabolism.     Finally, using an 

established  tissue culture line grown in a consistent,   controlled envi- 

ronment enabled us to study cortisol's  effect without the interference of 

other tissue types and their metabolites. 

Culture of a single cell type also conferred some methodological 

advantages over in vivo studies.    For instance,   growth of  cells in flasks 

allowed quick addition of compounds such as hormones,  nucleosides,   amino 

acids  and inhibitors to the cells.     It also permitted  fast  termination of 

experiments   (see Methods).    Thus,   it was possible to perform short-term 

incubation studies  that would not have been feasible with in vivo 

techniques. 
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Another technical advantage was the fact that the monolayered 

cells all had equal  exposure to the cortlsol, nucleosldes,   amino acids 

and inhibitors.     The use of cell culturing technique also eliminated the 

possible artifactual effect that extracellular spaces may have on uptake 

studies. 

The present study of cell line 1-407 was undertaken to: 

1. determine cortisol's early effect on RNA synthesis by 
3 

measuring    H-uridine uptake and incorporation; 

2. discover  if cortisol affected facilitated  nucleoside 

transport  through the cell membrane; 

3. test  the effect of cortisol on early amino acid uptake 

and  incorporation; 

4. determine  if inhibition of protein synthesis changed 

cortisol's effect on RNA metabolism; 

5. attempt the separation of  different RNA species  from 

the total RNA of  hormone-treated and control cells 

using polyacrylamide-agarose gel electrophoresis 

techniques. 
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METHODS  AND MATERIALS 

Sterile Techniques 

The growth of a cell line such as 1-407 requires  that the utmost 

attention be given to  the maintenance of sterile conditions.     This involves 

all phases of work in the laboratory including the use and care of equip- 

ment.     This  section of Chapter II illustrates the procedures used to 

maintain sterile conditions in the laboratory. 

Preparation of Tissue Culture Glassware 

Glassware used  in the tissue culture laboratory can be divided  into 

two categories:     a)   serological and pasteur pipets,  and b)  glass bottles. 

These two classes were treated somewhat differently to obtain the desired 

sterile condition. 

All used pipets were placed in a 1% 7x Solution   (Microbiological 

Products,  Bethesda, Maryland)  until ready for sterilization.     One Alconox 

detergent  tablet   (Alconox Detergent, Inc., New York, N.Y.)  was added,   and 

pipets were washed in a Nalgene pipet washer for one hour in continuous 

running warm water followed by a second hour in running cold water.     The 

pipets were rinsed three times   in a distilled water tank and dried in an 

oven at  250°C.     Pipets were allowed to cool,   plugged with cotton,  and 

autoclaved under 15  lbs./in.     pressure at 121°C for 30-35 minutes. 

Used glass bottles were rinsed four times  in tap water,   filled with 

tap water and stored until washed.    Filling bottles with water acts to 

prevent the build up of dried media,  salts or other types  of film. 

The first step of sterilization consisted of  completely submerging 

bottles in a boiling 1%  7x solution for five minutes.     Care was  taken to 
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prevent the formation of any bubbles on  insides of  the bottles.     This 

insured that  the entire inner surface of  the bottle was  in contact with 

the detergent solution while it was boiling.     After boiling,  the bottles 

and caps were scrubbed in the 7x solution with brushes set aside exclu- 

sively for this purpose.    The bottles were rinsed ten times in tap water, 

twice in distilled water and dried at 250°C. 

Prior to autoclaving the caps were loosely applied   to the bottles 

to allow venting  of vapor.    All glassware was  autoclaved at 121 C for 

30-35 minutes,   then removed to a 150°C drying oven,   and gradually brought 

to room temperature. 

Media 

Cells were maintained  in a medium based  on sterile Eagle's Minimal 

Essential Medium   (MEM).     All medium components, with the exception of 

those purchased as sterile, were autoclaved at   121 C  for 30-35 minutes 

at 15 lbs./in.     pressure prior to mixing  them into the medium solution. 

Fifty milliliters  of sterile  lOx MEM was  added   to 450 ml of autoclaved 

glass distilled water.     A 25-50 ml portion of medium was removed,  mixed 

with 0.77  grams of  autoclaved  sodium bicarbonate until dissolved,   and 

returned to the remainder of  the medium.     Sodium bicarbonate in a 5% C02 

atmosphere acts to buffer the medium at pH 7.4. 

The medium volume was then reduced to 425 ml.     Five ml each of 

L-glutamine  (146 mg),   penicillin (50,000 units)   and streptomycin  (50,000 

ug)   added together,  fungizone   (1250 ug),   sodium pyruvate  (25 mg)   and 

Non-Essential Amino Acid solution  (NEAA) were added  in order.    Fifty ml 

of virus screened Fetal Bovine Serum (FBS)  was added to make 500 ml of a 

10%   (v/v)   FBS solution.     Finally,  2 ml of   autoclaved  IN HC1 was added to 
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maintain an approximate pH of  7.4.     Later,   it was found that two drops of 

the IN HC1 was sufficient to maintain pH.    The 10% FBS medium was stored 

at 4 C and warmed to 37 C when added to the cells.    In later experiments, 

gentamicin sulfate   (Schering Corp.,  Kenilworth, N.J.)   (25 mg)   replaced 

penicillin and  streptomycin.     Except for gentamicin sulfate,  all medium 

components were purchased from Grand Island Biological Company,   Buffalo, 

New York. 

Cell Culture Procedure 

The cell line Intestine 407   (1-407,  CCL6, Henle) was obtained from 

the American Type Tissue Culture Collection (ATTC) Baltimore, Maryland. 

These cells were originally cultured from human embryonic intestine. 

Recent  evidence indicates that  these cells probably have been contaminated 

with HeLa cells   (Garther,   1968; Nelson-Rees and Flandermeyer,   1976). 

Cells sealed in glass ampules   arrived from ATTC frozen in dry ice.     Prior 

to thawing  the cells,  a triangular file,   pasteur pipet,  and a clean cloth 

were autoclaved at 121°C  for  30-35 minutes then dried in an oven as 

described for autoclaved glassware.     The ampule was thawed in a 37 C water 

bath,   scored with the sterile file and wrapped  in the cloth.    The ampule 
2 

was opened and the cells were pipeted into 25 cm    sterile plastic tissue 

culture flasks  to which 5 ml of 20% FBS in MEM was added.    The flasks 

were then placed in a 5% CO. atmosphere incubator at 37 C.    Twenty-four 

hours later the culture media was then removed and 3 ml fresh media added 

to  the cells. 

Subculturing and Maintenance of Cell Cultures 

Subculturing of cells is the removal of attached cells  from the 

tissue culture flask and the subsequent transfer of these cells to new 
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flasks.     This procedure enables the investigator to increase the number 

of tissue-containing flasks by dividing the contents of one monolayered 

flask between two or more new flasks. 

At least  8 hours and preferably the night before subculturing, 

loosely  capped flasks were incubated at 37 C,  5% CO    atmosphere and 

constant humidity.     Preincubation allowed the flasks to equilibrate to 

the same 5% C0„  atmosphere in which the cells were maintained.    This 

procedure prevented the need for additional gassing of newly subcultured 

cells in order to maintain pH 7.4. 

To  initiate subculturing,   the medium was first removed and the 
I i i i 

cells washed three times in sterile Ca      and Mg      free phosphate buffered 

saline pH  7.4  (PBS).     Following the PBS washes,  the cells were incubated 

at 37°C for  3-8 minutes  in a 0.25% trypsin solution.    Trypsin acts to 

loosen the  cells  from the bottom of the culture flask by digesting extra- 

cellular proteins holding cells to the flask and each other.     Shaking of 

flask completed  the dissociation and left the cells  floating in the 

trypsin solution.     The cell solutions from all the flasks were pooled in 

one flask and an equal volume plus 0.5 ml of MEM was added. 

A 0.5 ml aliquot of  the cell-medium mixture was pipetted into a 

1.0 ml solution of 0.5%  trypan blue, a vital stain which diffuses  into 

dead cells but is  excluded from live cells  (Yip and Auersperg,   1972). 

The cells were counted using a white blood cell hemocytometer and the 

number of  live cells per ml was calculated according to the formula: 

cells/ml 
no.   of live cells counted      ,      1Q4 

5 

where 5 is  the number of large squares counted,  three is the dilution 

factor and 104 is  the multiplier that converts area of counted space into 
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volume.     Percent viability of the cells was determined by keeping separate 

tallies of  live and dead cells and dividing the number of live cells by 

the total number of cells counted. 

After calculating the number of cells/ml,   equal volumes of cells 

were pipeted   into new flasks.    The number of cells planted varied depend- 

ing on the size of  the flasks used.    Cells were maintained by changing 

the growth medium every two or three days until a monolayer had formed, 

at which point they were either subcultured or used in experiments. 

Table I  shows   the number of cells planted and the amount of medium added 

for each size  flask utilized throughout this study. 

Flask Size in Area 

25 cm 

75 cm 

150 cm 

TABLE  I 

Cell Culture Inoculation 

Avg. No. Cells Planted 

1.5 x 106 

4.5 x 106 

5.0 x 106 

Amt. Medium Added 

2.5- 3.0 ml 

9.0-10.0 ml 

17.0-22.0 ml 

Different size flasks were used for growing 1-407 cells in 
culture.    Table I shows the average number of cells planted 
in each size  flask.    Procedures were  identical for all size 
flasks. 

Sterile Technique 

Since cultured cells must be maintained under very rigorous 

sterile conditions,   several techniques were used to reduce the chance of 

contamination.     Prior to any work with the cells,  the floor of the tissue 

culture hood was washed with 47.5% ethanol   (one volume 95% ethanol plus 

one volume of  distilled water).    After all materials had been assembled 
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in the hood,   the investigator washed his hands  in a germicidal soap   (if 

available)  or ordinary hand soap,   returned to hood and waited  from 30-60 

seconds with hands  in the hood before starting any operation.     This wait 

allowed the cessation of air currents created by the  investigator.     It 

has been demonstrated that various biological contaminants such as bacte- 

ria,   fungi, viruses and other cell  types can be carried  from one culture 

to another by these air currents   (Chatigny,   1975). 

The neck of each glass bottle was passed through a low bunsen 

burner flame just after opening and just before closing.     The tips of 

pipets were also "flamed" and each pipet was used only once.     Care was 

taken to insure that  the pipets touched neither the hood nor any bottles 

or o'ther materials.     If such an accident did happen,   the pipet plus  its 

contents was immediately discarded.     Bottle caps were never dropped or 

placed on the hood counter but were hand-held as  long as the bottle was 

open.    After all operations were completed,   the hood floor was  again 

wiped with the above ethanol solution. 

These techniques were developed over a two to three year period 

and were vital to the consistent culturing of  these cells.     It was 

imperative that  they be used as any mistakes  invariably resulted in 

contaminated cultures. 

Experimental Procedures 

TCA Fractionation 

Exposure of tissue or cells  to trichloroacetic acid   (TCA)   causes 

the precipitation of macromolecules  such as RNA,  DNA and protein.    This 

facilitates the separation of these macromolecules from their acid-soluble 

precursors.     By measuring radioactivity in TCA-soluble and insoluble 
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fractions,  it  is  possible to determine labelled precursor uptake and 

incorporation in the cell.    Various hormonal experiments were performed 

to measure uptake and  incorporation of    H-uridine and      C-leucine after 

exposure to cortisol    and/or inhibitors. 

Upon formation of a cellular monolayer the medium was  changed 

12-24 hours before hormonal treatment.    Cortisol  (3 mg/ml     95% ethanol 

stock solution) was  added to  the cell medium in varying concentrations 

and  incubated  for predetermined amounts of time.     Either 15 or  30 minutes 

before the end of hormone incubation 1.25 uCi of    H-uridine   (25.7-29.6 

Ci/mmol)   (New England Nuclear, Albany, Mass.) was added to the  flasks 

bringing total medium concentration to 3 ml.     In later experiments 

designed to study early effects of  cortisol,   the labelled uridine was 

added 15 minutes before the experiment was terminated.    Cycloheximide 

14 experiments required  the addition of 0.95 uCi      C-leucine   (320 mCi/mmol, 

New England Nuclear)   to each flask 15 minutes before termination. 

Upon termination of the experiment  the treatment medium was 

removed and the cell monolayers washed three times with ice cold PBS. 

In earlier experiments,   cells were incubated  for 2-5 minutes at  37 C in 

0.25% trypsin solution to loosen the cells from the  flask surface   (see 

above).     Cells were then pipetted into cold centrifuge tubes which were 

placed immediately on ice.     In later experiments which did not use trypsin, 

the cellular removal procedure was altered to scraping the cell monolayer 

from the flask surface by use of a rubber policeman.     This procedure 

reduced exogenous  RNase contamination found in trypsin.    The flasks were 

placed on an ice-filled tray in order to rapidly lower the cellular tem- 

perature and slow metabolic activity that might have continued after 
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removal of the medium.    This alteration  in cell removal technique had  an 

added advantage in that the cells were removed from flasks to the centri- 

fuge tubes more rapidly.    This helped to decrease variability in results 

between   individual experiments. 

Free cells were washed in 3 ml ice-cold PBS,  vortexed 5-10 seconds 

and centrifuged at 1500 x g at 4°C using an IEC Model B20A centrifuge 

with No.   870 head.    This procedure was repeated 3 more times to  remove 

exogenous   labelled material from the cells.    Following the fourth 

centrifugation,   a 100 ul aliquot of wash was removed,  solubilized in 

0.5 ml Nuclear Chicago Solubizer  (NCS)   (Amersham/Searle,  Chicago,   111.) 

and counted  in a Beckman Scintillation Counter,  Model LS-100 in order to 

monitor the intercellular precursor radioactivity.     When studying 

facilitated diffusion of uridine into or out of the cell,   100 ul aliquots 

were removed from each wash and counted  in a similar fashion. 

One milliliter of PBS was added to above cell pellet, vortexed, 

transferred to a glass Duall homogenizer size 21 (Kontes,  Vineland, N.J.), 

and ground with  20 strokes of the homogenizer.     In later experiments, 

homogenizations were done on ice to lower any possible RNase activity. 

Upon removal of homogenate,   the homogenizer was rinsed in 1 ml PBS for 

10 additional strokes.     An equal volume of  10% TCA was added to the 

combined cell homogenate and rinse,  making 4 ml  of a 5% TCA solution. 

The homogenate was centrifuged at 1440 x g for 8 minutes at room tem- 

perature using an IEC clinical centrifuge with No.   221 head.    A 100 yl 

acid soluble aliquot was removed and mixed with 0.5 ml NCS to determine 

labelled uridine present  in the TCA soluble fraction.    NCS allowed 

homogeneous mixing of the polar aliquot with non-polar counting cocktail. 
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The acid insoluble pellet was then washed  in fresh cold  5% TCA, 

vortexed,  and centrifuged at 1440 x g for 3 minutes.    This process was 

repeated two more times to remove any labelled TCA-soluble contamination 

from TCA-insoluble fraction.    Aliquots taken from the final wash showed 

counts to be at background levels. 

Following the final TCA wash,   the acid insoluble fraction was 

washed once in absolute ethanol to remove phospholipids.     Aliquots counted 

from this wash were at background levels.    After the ethanol wash,   the 

TCA-insoluble pellets were dried at 37°C overnight. 

The dried pellets were divided  into two portions and weighed.     One 

portion placed  in scintillation vial was moistened with 0.1 ml distilled 

water for 24 hours.     The moisture accelerates  the sblubilizing action of 

NCS.    NCS   (0.5 ml) was then added to the pellet and incubated at  37°C 

for  24 hours to digest the pellet.    Ten milliliters  of a liquid scintilla- 

tion cocktail containing 5.0 g of  2,5-diphenyloxazole  (POP) and 0.1 g of 

l,4-bis-[2-(4-methyl-5-phenoxazolyl)]-benzene   (M-POP)  per  liter of toluene 

was  added  to each vial.    Simultaneously 10 ml of the cocktail was added 

to each scintillation vial containing aliquots of either the final PBS 

wash or the TCA-soluble fraction.     The samples were counted at 2% error 

with a maximum counting time of 10 minutes. 

The second portion of the dried TCA-insoluble fraction was 

colorimetrically assayed for deoxyribonucleic  acid   (DNA)  by a modification 

of the Burton assay  (Burton,   1956).    The pellet was washed and centrifuged 

at 1440 x g three times in a 1-3 ml alcohol and ether   (3:1)   solution to 

remove lipids.     Pellets were allowed to drain,  one ml of  0.86 M perchloric 

acid was added to each sample and placed in a 90°C water bath for  15 
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minutes to hydrolyze the DNA.     Simultaneously two 1 ml blank aliquots of 

perchloric acid and a DNA standard solution  (200 ug/ml) were also in- 

cubated  in the same 90 C water bath. 

The hydrolized nucleic acid solutions were pipeted into clean 

graduated centrifuge tubes and adjusted to 1.0 ml volume if necessary 

with perchloric acid.    Two milliliters of diphenylamine reagent   [0.1 ml 

of 16 mg/ml acetaldahyde to 20 ml diphenylamine solution   (1.5 g dipheny- 

lamine completely dissolved  in 100 ml glacial acetic acid plus 1.5 ml 

concentrated sulfuric acid)] was added to each of  the samples.    These 

were covered with aluminum foil,   incubated with blanks and DNA standards 

in a 37 C water bath for 18 hours.    Optical absorbance was determined at 

600 nm by a Spectronic 20 spectrophotometer  (Bauch and Lomb,  Rochester, 

New York)   equipped with red filter and red sensitive phototube. 

Calculations and Statistics 

In presenting the data,   one problem that had to be solved was the 

adjustment of counts per minute   (CPM)   to account for differences  in cell 

number  in each flask.    Thus,   the number of counts  for each TCA-soluble 

fraction was divided by the amount of DNA that would have been present in 

0.5 mg of TCA-insoluble pellet   (CPM/ug DNA/0.5 mg).    This latter calcula- 

tion created an artificial number,  but also standardized the raw counts 

of the TCA-soluble  fraction to  the approximate number of cells in each 

pellet.     TCA-insoluble pellets were standardized by dividing the recorded 

CPM by the amount of DNA in the vial as determined by the DNA assay 

described above.     Basic to the rationale for these calculations was the 

assumption that  the range of DNA/cell is approximately the same throughout 

the cell population of each flask. 
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The Student  t-test was used to evaluate the significance of 

variability  in the results of  these experiments.     It measures whether the 

data varies because of   chance alone or because of variation in treatment 

during the experiment.     Thus,   this procedure helped determine the 

significance of variations  in cell metabolism caused by cortisol.    A 

significance of 5% would mean there was a less  than 5% probability 

(p<0.05)   that variability  in data was due to chance alone and greater 

than 95% probability it was due to the variations  in the experiment. 

Procedures for RNA Extraction and Isolation 

Glassware 

During RNA extraction extra care must be taken to prevent glass- 

ware contamination by exogenous RNase.    This enzyme is apparently 

ubiquitous and can easily degrade the RNA extracted regardless of  the 

procedure used.    All glassware used  in these experiments was especially 

treated according  to the method of  Rosen and Monahan  (1977)   to reduce 

RNase activity. 

All clean glassware was washed once in a IN NaOH followed by six 

rinses  in distilled water.    The glassware was dried at 200-250 C   for at 

least one hour to denature any remaining exogenous RNase activity. 

Treatment of Cell Cultures 

Cells  cultured for early RNA extraction experiments   (see above 

method)  were  grown either  in 75 cm    flasks (Falcon,  Oxnard,  California) 

or later 150 cm2 flasks   (Corning,  Corning, New York)   in order to obtain 

a greater number of  cells.     Medium was changed 12-24 hours before the 

experiment was started.     Hormone and inhibitors were added  as required 

and double labelled uridine,   (5,6-3H)-uridine   (30.7 uCi/mmol)   (ICN 



27 

Pharmaceuticals,   Irvine,  California) was added 15  or 30 minutes before 

the experiment was  terminated.    At termination of  experiment,  medium, 

labelled uridine,   hormone and  inhibitor  (if present)  totaled  20 ml  in 

the Corning flasks and 10 ml in Falcon flasks.    The RNA extraction exper- 

iments were terminated in a similar manner to the TCA-fractionation 

experiments  as described above. 

RNA Extraction Procedures 

RNA was extracted at 55 C using a modified phenol extraction 

procedure of Kirby (1968). Extraction at this temperature retains a 

greater proportion of A-U rich (non-ribosomal) RNA while most DNA is 

discarded in the phenol (Georgiev et al., 1974). The cells were washed 

and centrifuged in 3 ml PBS similar to cells used in TCA experiments 

(see above) . Cells from each treatment were pooled into appropriate 

centrifuge  tubes. 

Following  the last PBS wash,  1 ml ice cold homogenizing medium 

[1 volume 6% p-aminosalisylic acid and polyvinylsulfate   (PVS)   (10 ug/ml) 

+ 1 volume 0.9% NaCl]  was added  to  the pooled cells.     PVS was used to 

inhibit RNase activity   (Cheng et al.,   1974;  Catelli and Baulieu, 1976). 

Cells were homogenized on ice in an identical manner to TCA fractionation 

procedure.     The homogenate was immediately added  to 3 ml  stirring phenol 

solution,   (250 grams phenol,  0.25 grams  8-hydroxyquinoline,   35 ml m-cresol, 

27.5 ml water).     The glass homogenizer was rinsed with 1 ml  ice cold 

homogenizing medium and this plus an additional 4 ml of the medium added 

to the  stirring phenol.    The combined emulsion was stirred constantly  in 

a water bath at 55°C for 20 minutes. 

The phenol-homogenate mixture was centrifuged at 800 x g,  -5 C for 

30 minutes.     The aqueous top phase and interphase were removed and 3 grams 
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NaCl was added  to each 100 ml of  these  phases  to precipitate unwanted 

proteins.     The top phase was then added  to one-half volume stirring phenol- 

solution.     This mixture continued stirring for 10 minutes  at  55°C. 

The emulsion mixture was centrifuged at  13,000 x g,  -5°C  for 20 

minutes.     Only  the  top aqueous phase was  removed into 2 volumes ethanol 

m-cresol   (9:1 v/v)   and stored overnight  at -20°C  to precipitate the RNA. 

After overnight  storage,   the ethanol m-cresol RNA solution was 

centrifuged at  13,000 x g for 20 minutes at -5°C,   the top phase was 

discarded and the bottom phase, which was  identified by differences  in 

light refraction,   contained the RNA.    This phase was transferred to 5 ml 

ethanol-salt solution   (75 ml absolute ethanol,   25 ml H.0,   1 gram NaCl) 

stirred by microspatula and centrifuged  1550 x g at  -5 C   for 15 minutes. 

The ethanol acts to precipitate the RNA while  the NaCl stabilizes  the 

RNA structure. 

After centrifugation,   the RNA was washed first  in 75% ethanol, 

then two successive washes  in absolute ethanol.     Following each wash,  the 

RNA was stirred and centrifuged identically as  in the ethanol-salt wash. 

The last three washes acted  to remove the excess NaCl and water  from the 

precipitated RNA.     The final precipitate was dried under vacuum and 

stored at -20°C. 

RNA Separation by Electrophoresis 

RNA extracted at 55°C was separated on 2.4% polyacrylamide - 0.5% 

agarose gels using a modified method of Cattolico and Jones   (1975).     This 

method  involves  the casting of flat bed gels with the polyacrylamide- 

agarose mixture.     This procedure eliminates the necessity of pre-gel 

formation.     The flat bed aids in dissipation of heat   from the electro- 

phoresis  gel. 
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Preparation of Ribosomal RNA Markers 

Ribosomal RNA  (18S and 28S) markers were prepared from rat  liver 

ribosomes according  to the method of Wettstein et al.   (1963).    These 

ribosomal RNA   (rRNA)  markers along with 4S soluble brewer's yeast   (tRNA) 

(Schwarz/Mann, Orangeburg, N.Y.) were used to calibrate gel electro- 

phoresis analysis.     In order to reduce possible liver glycogen contamina- 

tion of  rRNA,   all rats were starved 2A hours prior to extraction. 

Animals were decapitated,  livers were immediately excised and 

placed  in ice-cold isotonic saline.     The  tissue was blotted  to remove 

excess   fluids  and placed in 15 ml ice cold extraction medium contained 

in the pre-weighed beaker  (0.25M RNase-free sucrose   (Sigma), O.025M KC1, 

0.001*1 MgCl  ,   0.05M tris-HCl  pH 7.6 to which was added 10 ug/ml PVS just 

prior  to extraction).     The livers were weighed and extraction medium was 

added  to a final concentration of 2.5 ml/gm liver  tissue.    The tissue 

was homogenized on ice with a Virtis  23 homogenizer at 23,000 rpm for 

1 minute.    The homogenate volume was measured with a graduated cylinder, 

pipetted in equal volumes into centrifuged tubes,   and centrifuged at 

12,000 x g for 15 minutes at 4°C. 

The supernatant was filtered through four  layers  of gauze to  remove 

glycogen and fat and  the filtrate again centrifuged at 12,000 x g for 15 

minutes  at 4°C.     Finally the supernatant was centrifuged at 100,000 x g 

for one hour using a Beckman Model L-2 ultracentrifuge equipped with a 

model 40 head.     The pellet consisted of  liver polysomes containing the 

desired rRNA markers.     Polysome fraction was subjected to a 24-26 C   (room 

temperature)  phenol extraction otherwise identical  to the procedure 

described  in above methods.     Extraction at room temperature allows 

preferential extraction of rRNA  (Georgiev et al.,   1974). 
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Electrophoresis Reagents 

Acrylamide stock solution was prepared by mixing 4.8 g acrylami.de 

and 0.25 g bisacrylamide  (Eastman Kodak,  Rochester, N.Y.)   in 58.6 ml 1M 

tris-HCl pH 8.7.    This solution was then diluted up to 86 ml with 

distilled water and stored at  A C for a maximum of seven days.     Tank 

buffer consisted of a 0.036M tris-0.03MNaH.PO,   buffer pH 7.9,  0.001M 

Na.EDTA.    This was  stored at  4 C and used no more than six times.     Buffer 4 

used in the upper tank was discarded after one use. 

Preparation of Gel 

The acrylamide solution for a single cell was prepared by mixing 

17.2 ml stock acrylamide with 2.5 ml  3.2% N,N,N'.N'-tetra-raethylethylene- 

diamine  (TEMED)   (Eastman)   and  degassing by heating in a 54 C water bath 

for 15 minutes.    Twenty milliliters of 1% agarose   (Nutritional Biochem., 

Cleveland,  Ohio) which had been refluxed to degas  and cooled  to 54 C were 

added  to degassed acrylamide solution.    One ml of  1.4% ammonium persulfate 

(Eastman) was added  to acrylamide-agarose solution in order to initiate 

gel polymerization. 

The acrylamide-agarose solution was poured  into  the preleveled 

Ortec electrophoresis  cells.    A well  former was placed in the gel  imme- 

diately after pouring.     The gel was allowed to stand at   room temperature 

for 20 minutes,   4°C  for 15 minutes,  and again at   room temperature for 

40 minutes.     The well former was removed after the refrigeration period. 

Removal was facilitated by applying distilled water around the well 

former before refrigeration. 
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Electrophoresis Procedure 

Electrophoretic separation of the RNA was performed using an 

ORTEC 4100 Constant  Pulse Power Supply System  (Oak Ridge, Tenn.).     RNA 

was dissolved  in buffer  (0.01M Tris-HCl pH 7.6,   20% Sucrose)   and 50 |il 

aliquots were added   to each well in the gel.     Ribosomal RNA and transfer 

RNA markers  or a combined marker solution were added  to at least  one 

well of each gel.     Prior to starting the electrophoresis,  frozen tank 

buffer in form of  ice cubes was added  to upper and lower tanks  followed 

by the buffer  solution.     The frozen buffer helped maintain low tem- 

peratures   throughout  the electrophoretic run allowing  the heat of 

electrophoresis  to  dissipate from the gel.     Upon termination of electro- 

phoresis   tank buffer  temperatures  ranged  from 3-12 C. 

Running  times  and voltage varied depending on whether one or  two 

cells were being used.     Table II shows the time regimes  used. 

Immediately after electrophoresis,   the gel(s) was removed  from 

the cell and fixed  in 1M acetic acid for 15 minutes.     If it was to be 

stained,   the gel was  placed  in toluidine blue stain for  one hour then 

washed and stored in  tap water.     Several changes with tap water were 

required over a 2 day period to remove the stain from the gel. 

If   the radioactive RNA was to be counted,   the gel slab was sliced 

on a special microtome  into 1 mm sections,  placed in 0.5 ml NCS and 

stored overnight at  37°C.     The NCS solubilized RNA from each gel section. 

Ten ml of scintillation cocktail was added to each gel section and 

counted in scintillation counter. 
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TABLE  II 

Electrophoresis Time Regime 

Cell No.                  Time           Pulse/Min           Capac.           Voltage mAmp 

1                        5 min                    50               1.0 mfd               140 13 

60 min                    75               1.0 mfd               140 20 

120 min                  150               1.0 mfd               140 37.5 

5  min 

60 min 

150 min 

50 

75 

150 

1.0 mfd 

1.0 mfd 

1.0 mfd 

170 

170 

170 

16 

25 
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Table II depicts  the settings  for each variable  in the 
ORTEC 4100 Constant Power Supply.    All settings were 
kept  constant  except mAmp.     A record of  changing mAmp 
values was made  and never varied more than ± 1 from the 
average figures. 
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RESULTS 

Facilitated Diffusion of    H-Urldine 

Uridine  is believed  to enter cells by facilitated diffusion 

(Plageman and Richey,   1974).    Although  the exact nature of the carrier 

molecule has yet   to be determined,  some investigators believe its struc- 

ture and binding affinity with a substrate,  such as uridine,   can be 

altered by hormones,  amino acids  and various chemicals   (Eilam and 

Cabantchick,   1977). 

The possibility arose that  the radioactivity measured   in the 

series of phosphate-buffered saline  (PBS) washes employed  to remove 

excess exogenous   labelled uridine from the extracellular environment 

might also reflect  the effect of hormonal treatment on the outward 

facilitated diffusion of nucleoside already taken up by the cells. 

Experiments were  performed to determine  first,   if there was  a major out- 

ward diffusion of     H-uridine  from the cells and second,   did hormone 

treatment alter this diffusion rate?    One hundred microliter aliquots 

were taken from each of  the four PBS washes,   and labelled uridine levels 

monitored with the scintillation counter   (see Methods). 
3 

Results of   these studies   (Table III)   showed    H-uridine from the 

TCA-soluble  fractions was  in much higher concentration than the labelled 

uridine from the  final PBS wash.     This was the  case for both control  and 

hormone-treated cells up to 60 minutes.     Due to  the large differences 

between the TCA-soluble counts and  the corresponding final PBS wash,   it 

appeared  the  former was not greatly decreased by  the loss of  intracellular 
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TABLE  III 

Comparison of Final PBS Wash With 
TCA-Soluble Aliquots 

Treatment N 

12 

11 

% Difference 

665±89 

627+76 

30 min 782±65 

785152 

60 min 2 

2 

8121121 

972+37 

Cells were pulsed with    H-uridine  for 15 or 30 minute time 
periods.     One hundred ul aliquots of  the final PBS cellular 
wash were  compared  to equal aliquots of   the corresponding 
TCA-soluble fraction from each flask.    The percent dif- 
ference reflects  the 3H-uridine radioactivity in the TCA- 
soluble fraction as  compared  to the final PBS wash.     Both 
aliquots were measured in CPM.    N equals  the number of 
flasks measured.     Figures  are mean 1 SEM except  for 60 
minutes which is mean 1 range.     (+)   signifies 0.05 ug/ml 
cortisol-acetate added to medium.     (-)   signifies only 
hormone vehicle was added  to medium. 
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3 
H-uridine  through facilitated diffusion during PBS washing.     The 

"outward" diffusion is probably prevented by the rapid conversion of the 

nucleoside   into the nucleotide    UTP.       These data also indicated cortisol 

had no noticeable effect on the outward diffusion of labelled uridine. 

This is shown in Table III by  the similarity between hormone-treated and 

control flasks in each  time period. 

Table IV shows  the    H-uridine specific activity measured  in the 

PBS washes.     In  this Table, wash one  represents the PBS solution used to 

remove the  cells   from the flask  (see Methods).     A sharp drop was  dem- 

onstrated  between washes one and two with a smaller decrease between two 
3 

and three  caused by   the  continued removal of the exogenous    H-uridine. 

The radioactive nucleoside  in the succeeding washes  leveled off but 

stayed  above background levels at 100-300 CPM which might reflect a 

slight, but  continuous outward facilitated diffusion of labelled uridine 

from the cell.    This pattern was consistent for each of the six exper- 

iments following  this protocol. 

The  combined results  from Tables III and IV would indicate that 

much of  the    H-uridine taken up by the cells was  retained after the first 

PBS wash.     As seen in Table IV,   the addition of cortisol for either 15 

or 30 minutes  to the flasks did not appreciably alter the    H-uridine 

profile in relation to control flasks.    Thus,  comparisons of nucleoside 

uptake and incorporation,   as measured by TCA fractionation,   did not seem 

to be affected by differences  in outward facilitated diffusion of    H- 

uridine caused by  the hormone. 
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TABLE  IV 

Radioactivity in PBS Washes 

Wash Treatment 

+ 

Time 

15 13 

CPM/yg  DNA/ 
0.5 mg 

1 93.1±1A.3 
+ 30 5 97.A±12.7 

- 15 7 106.1±36.7 

- 30 A 93.9111.5 

2 + 15 13 16.0+2.6 

+ 30 5 15.8±3.2 

- 15 8 23.517.A 

- 30 A 20.115.6 

3 + 15 13 8.612.4 

+ 30 5 12.2±A.0 

- 15 8 11.0+2.9 

- 30 A 17.417.0 

A + 15 13 8.012.2 

+ 30 5 1A.2±5.6 

- 15 8 8.3+2.3 

- 30 A 16.416.7 

5 + 15 13 7.511.9 

+ 30 5 12.91A.1 

- 15 8 8.0±2.6 

- 30 A 13.31A.8 

One hundred ul aliquots were  removed from each PBS wash, 
digested and counted as described  in Methods.    Counts are 
expressed as CPM/ug DNA/0.5 mg in each flask to adjust for 
the varying number of cells  in each flask.     Figures are 
mean 1 SEM.    N equals the number of  flasks measured. 
(+)   signifies  0.05 ug/ml cortisol-acetate added to medium. 
(-)   signifies only hormone vehicle was  added to medium. 
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FBS Concentrations 

During early  stages of this  investigation,   the question arose as 

to the optimal  fetal bovine serum (FBS)  concentration needed to both grow 

the cells and perform experiments.     FBS is vital to maintenance of the 

cell line, but  the serum is  also known to contain cortico-binding globin 

(CBG),   a protein known to bind corticosteroids of which cortlsol is the 

most abundant   (Catt,   1970;  Amaral et al.,   1974).     Therefore,   the problem 

was  to determine an FBS concentration low enough to prevent excessive 

steroid binding, but high enough to allow long-term maintenance of the 

cell line.     Trichloroacetic acid   (TCA)   fractionation experiments were 

carried out with various cortisol doses at both 5  and 10% FBS concentra- 

tions  for a  treatment period of 2 hours.    Table V shows results obtained 

for each dose in TCA-soluble and TCA-insoluble fractions at both 5 and 

10% FBS concentrations.    There seemed  to be no difference  in TCA-insoluble 

radioactivity caused  by changes  in FBS concentration.     However,   uridine 

uptake,  as measured by TCA-soluble fractions,  although not significant, 

ranged up to 20% higher in 5% FBS medium.    A review of the literature has 

failed to show studies comparing the effects  of different  serum concentra- 

tions on uridine metabolism. 

Throughout  the  remainder of this study,  the cells were grown in 

10% FBS medium as described under Methods and Materials.     Over a three 

year period,   it was  found that cell cultures were consistently sustained 

at this serum concentration,   possibly because of better adherence to the 

plastic flask surface   (Temin et al.,   1972).     Using a radioimmunoassay 

technique,   an independent laboratory analyzed our 10% FBS medium and found 

no trace of cortisol  to a 0.1 ug/ml sensitivity  (R.  Patty,   Personal 

Communication). 
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TABLE V 

Combined Effect of FBS Concentration and Cortisol Dose 
Response on 3H-Uridine Uptake and Incorporation 

Hormone 
Dose 

(yg/ral) 
FBS 

Concentration N 

CPM of    H-uridine/ 
pg DNA/0.5  mg  as 

% of Control 

CPM of    H-uridine/ 
100 yg DNA as 
% of Control 

TCA-SOLUBLE TCA-INSOLUBLE 

0.005 5% 5 87.2±12.2 77.9*11.1 

10% 4 86.8121.9 79.4±16.5 

0.01 5% 6 103.2±10.1 90.1±13.1 

10% 4 84.5±12.1 89.6±11.3 

0.05 5% 5 85.5± 5.0 69.9± 3.8 

10% 4 72.6± 3.9 70.2± 4.8 

Cells were pulsed with 1.25 yCi    H-uridine/flask for 
30 min.     3H-uridine uptake   (TCA-soluble)   and  incorporation 
(TCA-insoluble) were measured  for both 5 and 10% FBS 
concentration as described  in Methods.    Hormone dose was 
expressed in ug/ml.     N is  the number of duplicate exper- 
iments.     Results are expressed as percent control  (mean 
±  SEM). 
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Dose Response 

Since only limited   information was available on the effect  of 

cortisol on cell line 1-407   (Melnykovich and Bishop,   1967),   it was 

necessary  to perform a series of dose response experiments to determine 

the concentration of cortisol which would have a consistent effect on 

uridine uptake and  incorporation.    Table V shows the results of these 

experiments.    There was no significant difference between the low 0.005 

—ft A 
yg/ml  (1.7  x 10    M)   and 0.01 yg/ml   (3.4 x 10" M)   cortisol doses in either 

TCA-soluble or TCA-insoluble fractions.     The higher 0.05 yg/ml  (1.7 x 

10    M)  hormone dose  inhibited both uridine uptake and incorporation by 

approximately 30%.     As measured by Student t-test,   the difference between 

0.05 yg/ml  and  lower doses  appeared  to be due to the difference in dose. 

This dose has been reported  as the minimum level found in the human 

peripheral blood   (Mountcastle,  1974;   Schulster et al.,   1976)  and  thus 

seemed to be an appropriate concentration to use for in vitro experiments. 

This  in vitro hormone dose is lower by a factor of ten than those reported 

by some other recent  investigators   (Munck et al.,   1972;  Borthwick and 

Bell,  1975).    This  finding in itself is  interesting, but more importantly 

assures  that cortisol's effects on the cell are caused by metabolic 

alterations  rather than a possible steroid detergent  effect  found at 

higher doses   (Munck,   1965). 

Time Course 

Experiments were performed  to determine the effects of cortisol 

over a 4 hour period.     Hormone was added  to each of  the flasks and in- 

cubated with the cells  for the appropriate time period.     Either fifteen 

minutes or  thirty minutes before the end of incubation,    H-uridine was 
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added to  the medium.    At  the end of  the treatment period,   the hormone and 

labelled nucleoside were removed by repeated washing,   cells homogenized, 

and  separated into TCA acid soluble and insoluble  fractions as  described 

in  the Methods. 

It  should be mentioned that Munns and Katzman   (1971)   have reported 
3 

that differences   in    H-uridine incubation times can result  in  changes  in 

TCA-soluble and TCA-insoluble radioactivity.     Shorter pulse times were 

shown to produce  greater uptake and incorporation of labelled  precursor. 

However,   in this  study,   there was no difference in uridine uptake and 

incorporation observed between 15 and  30 minute    H-uridine pulse times. 

Cortisol's   initial effect appears to be a small, but definite 

increase in both uridine uptake and incorporation at  15 minutes followed 

by a decrease to below control values at 30 minutes   (Figures 2  and  3). 

Uridine incorporation returned to control values at   60 minutes while up- 

take returned to slightly above control.    Thereafter,  both the nucleoside 

uptake and   incorporation remained below control values for the next 3 

hours.    A similar  time  course pattern of uridine incorporation has been 

demonstrated by Borthwick and Bell   (1975),  assaying for RNA polymerase B 

activity in cortisol treated rat  thymus nuclei. 

Protein Inhibition 

In order  to  further investigate the nature of  the cortisol effect 

on 3H-uridine metabolism in cell  line  1-407,   additional experiments were 

carried out with cortisol and the protein synthesis   inhibitor cyclo- 

heximide.     The object of this series of experiments was to  study the 

effects of   inhibited protein synthesis on both normal and hormone-mediated 

uptake and   incorporation of    H-uridine into this cell system. 
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FIGURE 2.  EFFECT OF CORTISOL ON 3H-URIDINE UPTAKE AS A FUNCTION OF TIME.  Cortisol (0.05 pg/ml) was 
incubated with cells for various periods of time.  Cells were pulsed with 1.25 pCi 3H- 
uridine/flask for 15 or 30 minutes,  ^H-uridine uptake was measured as described in Methods. 
Results are expressed as percent control (mean ± SEM).  Data were calculated as CPM/ug DNA/ 
0.5 mg cell pellet. Typical CPM for 3H-uridine controls ranged from 810 to 1080 CPM. 
Differences between each time studied were significant to p<0.05. 
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Prior to combined  inhibitor and hormone experiments,  dose response 

studies were performed  to determine the cycloheximide concentration 

necessary  to inhibit  cellular protein synthesis.    Table VI  shows the 

results of the  two separate duplicate experiments.     Cells were incubated 

14 3 for 30 minutes with both      C-leucine and    H-uridine.     Leucine and uridine 

uptake  (TCA-soluble fraction)  and incorporation  (TCA-insoluble  fraction) 

were measured using the procedures as outlined in the Methods section. 

The results showed that cycloheximide concentrations in the range  100- 

200 ug/ml have greater  than 90%  inhibitory effect on protein synthesis 

as measured by       C-leucine incorporation into the macromolecular acid 

insoluble  fraction.     Consequently,   100 ug/ml was used as  the concentration 

for cycloheximide in subsequent  experiments  in order to avoid possible 

side effects higher concentrations of the inhibitor might produce. 

Upon  initiation of hormone and cycloheximide studies,   the double- 

labelled precursor procedure was continued.     The reasons  for utilizing 

this  technique were to: 

1. determine if cortisol had an effect on early protein 

metabolism by measuring      C-leucine uptake and 

incorporation; 

2. discover if inhibition of protein synthesis affected 

H-uridine uptake and  incorporation; 

3. utilize 14C-leucine as  a check to ensure the cyclo- 

heximide was actually inhibiting protein synthesis. 

Cells were  treated  simultaneously with the hormone and/or cyclo- 

heximide  for 15 and 30 minute time periods.     Each experiment consisted 

of four variables:     cortisol,   cortisol plus cycloheximide,   cycloheximide 

and control. 
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TABLE VI 

Dose of 
Cycloheximlde   (yig/ml) 

CPM/ug DNA/0.5 mg as 
% of Control 

TCA-SOLUBLE 
14 3 C-leucine      H-uridine 

CPM/100 ug DNA as % 
 of Control 

TCA-INSOLUBLE 
14 3 C-leucine      H-uridine 

100 

150 

200 

90.6 82.5 

105.7 82.2 

99.6 86.2 

8.9 80.9 

7.3 71.2 

7.8 77.0 

14 3 C-leucine and    H-uridine uptake and  incorporation into 
cells was measured as a function of cycloheximide dosage. 
Cells were exposed to cycloheximide,  1.25 uCi/flask of 
3H-uridine and 0.95 uCi/flask 14C-leucine for  30 minutes. 
Data are in percent control as the average of two exper- 
iments.    Typical 1Z|C-leucine datum was  10 CPM/ug DNA/0.5 
mg and 20,000 CPM/100 yg DNA for TCA-soluble and TCA- 
insoluble controls,  respectively.    Typical  3H-uridine 
datum was  62.5 CPM/ug DNA/0.5 mg for TCA-soluble and 
46,670 CPM/100 yg DNA for TCA-insoluble controls, 
respectively. 
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The data would  indicate that cortisol has more than one immediate 

effect.     As mentioned above,  there appears  to be increased uridine uptake 

(20%)   and  incorporation   (15%)  at 15 minutes  (Table VIII).     Although 14C- 

leucine incorporation remains at or near control levels,   cortisol rapidly 

inhibited amino acid transport into the cell by 30% at 15 minutes   (Table 

VII).    This was   followed by a 20% decrease in leucine incorporation at 

30 minutes.     Cortisol  has been found to inhibit amino acid uptake into 

cells of skeletal muscle,   spleen and thymus tissue.     Additional evidence 

has been reported   to show cortisol inhibits amino acid uptake in HeLa, 

JTC-4 and L-929  cell lines  (reviewed by Riggs,   1970),  but   this appears 

to be the first  report  showing leucine uptake inhibition to occur as 

rapidly as  15 minutes.     Cycloheximide appears to mimic cortisol by 

inhibiting amino acid uptake to a similar extent both at  15 and 30 min- 

utes after treatment   (Table VII).    The inhibitor also stopped      C-leucine 

incorporation by approximately 95% with or without the presence of 

cortisol. 

Cycloheximide also blocked cortisol's early effect on uridine 

metabolism by   inhibiting uridine uptake at  15 minutes while simultaneously 

decreasing nucleoside   incorporation to below control levels   (Table VIII). 

At 30 minutes,   the  inhibition of uridine uptake by cycloheximide contin- 

ued.     It appeared uridine incorporation remained below control levels 

after 30 minute cortisol  treatment,  although wide variations made analysis 

difficult.     These inhibitor effects appeared to be similar in the presence 

or in the absence of hormone at 30 minutes. 

Throughout  the above series of inhibitor and hormone experiments, 

100 ul aliquots were removed from each PBS wash.    Aliquots were counted 
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Effects of Cortisol and Cycloheximide 
on ^C-Leucine Uptake and  Incorporation 
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CPM of 1AC-leucine/ 
pg DNA/0.5 mg as % 

of Control 

CPM of 1AC-leucine/ 
100 ug DNA as % of 

Control 

Time N Treatment TCA-Soluble TCA-Insoluble 

15 min. 4 Hormone 69.3± 3.5 107.8±6.8* 

4 Hormone & 
Cycloheximide 

73.9± 5.6 5.810.8 

4 Cycloheximide 69.0+ 1.8 5.610.6 

30 min. 3 Hormone 58.7± 8.9 81.515.1* 

3 Hormone & 
Cycloheximide 

70.2+ 6.6 2.410.4 

3 Cycloheximide 52.5+11.8 1.910.4 

Either cortisol   (0.05 ug/ml),   cycloheximide  (100 pg/ml) 
or a combination of both was    added and  incubated for 
indicated  times.     Cells were pulsed with 0.95 uCi l C- 
leucine/flask for 15 minutes.    Results are expressed as 
percent  control   (mean 1 SEM).    N  is number of duplicate 
samples.     In a typical experiment,  control TCA-soluble 
and TCA-insoluble data were 220 CPM/ug DNA/0.5 mg and 
318 CPM/100 pg DNA,   respectively. 

*Difference between these two values was significant 
p<0.05. 
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Effects of Cortisol and Cycloheximide 
on JH-Uridine Uptake and Incorporation 
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CPM of    H-uridine/ 
ug DNA/0.5 mg as 

% of Control 

CPM of H-uridine/ 
100 pg DNA as % of 

Control 

Time N Treatment TCA-Soluble TCA-Insoluble 

15 min. 7 Hormone 121.1+13.3*+ 115.8± 8.0** 

A Hormone & 
Cycloheximide 

78.7± 8.0* 90.7±  7.4 

A Cycloheximide 84.7*11.6 101.0± 5.1 

30 min. 9 Hormone 80.7± A.0+ 89.0± A.3** 

3 Hormone & 
Cycloheximide 

77.8113.9 9A.3±17.3 

3 Cycloheximide 61.2*14.5 70.3120.A 

Either  cortisol   (0.05 ug/ml),   cycloheximide  (100 ug/ml) 
or  a combination of both was    added and  incubated for 
indicated times.    Cells were pulsed with 1.25 uCi    H- 
uridine  for 15 minutes.    Results are expressed as per- 
cent control   (mean ± SEM).    N is number of duplicate 
samples.     In a typical experiment,  control TCA-soluble 
and TCA-insoluble data were 75.5 CPM/ug DNA/0.5 mg and 
58,630 CPM/100 pg DNA,   respectively. 

(*, +,   **)  Differences between these paired values were 
significant p<0.05. 
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in the same manner as mentioned in Methods with the time course exper- 

iments.     The samples were counted to determine if the cycloheximide had 

an effect on facilitated uridine transport out of the cell.    This was 

necessary to monitor any changes that occurred in uridine transport which 

might be brought about by a cycloheximide effect on the cell membrane. 

The data   (Table IX)   indicate that the cycloheximide had no effect 

on uridine facilitated transport out of the cell.     In a typical exper- 

iment,   the 100 ul TCA-soluble aliquot from each flask had counts 3-5 

times higher than the corresponding final wash.    Both the TCA-soluble 

and wash  aliquots were measured in CPM/ug DNA/0.5 mg.    As shown in 

Table IX,   there  appears to be no significant differences in the wash 

data that result  from differences in treatment. 

A preliminary experiment was performed  testing how selective 

inhibition of rRNA synthesis would affect cortisol action on 1-407  cells. 

Low doses  of approximately 0.042% actinomycin D have been found to 

preferentially  inhibit  rRNA transcription in HeLa  (Derman and Darnell, 

1974).     A dose close to 0.042%   (0.1 yg/ml) was incubated with the 1-407 

cells   for 15 minutes.     Incubations were performed with and without 

cortisol.     The results  are shown in Table X.     Although decisive conclu- 

sions cannot be made on the basis of one experiment,   it is interesting 

to note that the inhibitor failed  to halt the hormone stimulated rise in 

H-uridine uptake  and  incorporation.     In the absence of cortisol,   low 

doses of actinomycin D   inhibited precursor uptake and  incorporation 35 

and 55% respectively.     This would suggest the early 15 minute hormone 

stimulated   increase in uridine incorporation does not involve synthesis 

of new rRNA. 
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TABLE IX 

Effect  of Cortisol and Cycloheximide 
on Radioactivity in PBS Washes 

CPM/  g DNA/0.5 mg 

Wash Hormone Hormone & 
Cycloheximide 

Cycloheximide Control 

PBS 423±102 3751108 407+111 325±95 

1 54±15 50±15 52±17 52±16 

2 20± 5 20+ 6 20± 5 21± 6 

3 14±  3 154 4 13+ 4 13± 4 

4 11± 3 124 4 11± 4 lit 3 

3 
Cells were exposed   to    H-uridine and either hormone, 
cycloheximide,   hormone and cycloheximide or control for 
15 minutes.    One hundred ul aliquots were solublized in 
0.5 ml NCS,  combined with liquid scintillation fluor and 
their radioactivity measured in a liquid scintillation 
counter.    Results are expressed as CPM/ug DNA/0.5 mg 
(mean ±  SEM)   of 10 flasks. 
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TABLE X 

Effect of Low Dose Actinomycin D and Cortisol on 
3H-Uridine Uptake and  Incorporation 

CPM of    H-uridine/ 
tig DNA/0.5 mg 

as % of Control 

CPM of    H-uridine/ 
100  pg  DNA as  % of 

Control 

Treatment TCA-Soluble TCA-Insoluble 

Hormone 121.1 115.8 

Hormone & 
Actinomycin D 

Actinomycin D 

125.8 

66.7 

109.5 

45.5 

Low doses  of actinomycin D  (0.1 ug/ml) were incubated 
simultaneously with hormone  (0.05 pg/ml)  or hormone 
vehicle for  15 minutes.     Results are expressed as per- 
cent  control.     Control TCA-soluble and TCA-insoluble 
data averaged 12.75 CPM/yg DNA/0.5 mg and 8840 CPM/100 ug 
DNA,   respectively. 
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Electrophoresis 

A preliminary experiment was performed  to separate labelled RNA 

from both hormone-treated and control cells on polyacrylamide-agarose 

gels   (see Methods).     RNA was extracted using a hot   (55°)  phenol procedure 

that  selectively  retains high molecular weight nuclear A-U rich RNA  (see 

Methods).     Figure 4 shows cortisol's apparent  shift   to higher molecular 

weight RNA  species after 15 minutes.    This would indicate cortisol 

induced changes  in hnRNA synthesis.    This RNA species has been suggested 

as being the source of mRNA precursors   (see Introduction). 
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DISCUSSION 

The discussion of  this study requires a short review of the system 

and techniques  employed.     The use of a cultured cell line allowed the 

effects of cortisol  to be measured  in a controlled environment without 

interaction with other  tissues  or compounds.     Intact cells made it pos- 

sible to measure total cellular reaction to cortisol incubation.    This 

included hormonal alterations in both precursor uptake and incorporation. 

The TCA separation technique, while allowing the measurement of nucleo- 

side and amino  acid  transport   (see Methods),   could only measure non- 

specific macromolecular  changes.     No specific RNA species was measured 

as  a separate entity using this  technique.    However,  specific metabolic 

inhibitors and electrophoretic separation of RNA allowed  the study of 

hormone effects  on particular RNA species.     Consequently,   it was possible 

to analyze the results obtained  from the TCA studies.    These results were 

similar to data reported  in the steroid literature.     In the following 

discussion,  references were often made to other steroids,   especially 

estrogen,   as their early actions seem to follow a pathway similar to 

cortisol. 

Preliminary Experiments 

Experiments were first performed to find the lowest dose at which 

1-407 cells would consistently respond to cortisol.     Cortisol doses below 

0.05 ug/ml   (1.7   x 10_7M)   failed to elicit a statistically consistent 

negative response  in terms  of 3H-uridine uptake and  incorporation 

(Table V)   as evidenced by the relatively large standard error of  the 
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mean   (SEM).    The reasons  for this were not readily discernable,  but 

possibly the  lower hormone concentrations were not sufficient to activate 

the number of receptors needed to stimulate a cortisol response in all 

the cells.     The reasons  for the lack of response must remain speculative 

since little work has been performed  in the area of  suboptimal steroid 

hormone response. 

Studies were  also conducted  to determine a fetal bovine serum 

(FBS)   concentration which would allow normal cell growth.    There were no 

statistically significant differences in dose response between cells grown 

at 5 and  10% with the three hormone concentrations studied  (Table V). 

The experiments yielded similar results  in both the TCA-soluble and TCA- 

insoluble  fractions.     The higher serum concentration was selected since 

it enabled  the cells  to grow in a more rapid and consistent manner, 

possibly by increasing the cells'  ability to attach to the surface of 

the culture flask  (Temin et al.,  1972).    All cells were grown in 10% FBS 

for later experiments. 

Time Course of  Cortisol Action 

Figures  2 and   3 show the effects of cortisol over time in both 

TCA-soluble and TCA-insoluble fractions of  1-407 cells.    The former 

measured  3H-uridine uptake,   the  latter 3H-uridine incorporation (see 

Methods).     At 15 minutes,  both uridine uptake and  incorporation increased 

20 and 15%  respectively.    This was followed by a rapid decrease of 40% 

(uptake)  and 25%   (incorporation)   at 30 minutes.    A similar decrease for 

both parameters was also found at  2 and 4 hours after cortisol treatment. 

An interesting  hormone effect observed was the increase in uridine 

uptake   (30%)   and  incorporation  (15%)  between 30 and 60 minutes.    This may 
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reflect either the synthesis of mRNA that produced the later inhibition 

found  at 2 and A hours  or an alteration in uridine transport.    The 

available data fail to clarify the cause of this second increase to 

control levels.     A review of the literature failed to show a similar 

temporary increase during a general  inhibitory effect in any other system. 

This inhibitory pattern of cortisol action was similar to that 

reported by Borthwick and Bell   (1975) .    Using cortisol-treated isolated 

thymus nuclei,   the authors  found cortisol elicited a small, early (15 

minute)   increase in RNA polymerase B activity followed by a drop to 

control lvels .     Treatments longer than 60 minutes caused decreases in 

both RNA polymerase A and B activity to below control levels.    Thus,   the 

pattern of cortisol stimulated RNA polymerase activity in isolated thymus 

nuclei  appears to be similar but not   identical to the pattern of RNA 

synthesis found  in  intact  1-407 cells. 

Early  temporary  increases in RNA polymerase B activity have been 

found also in uterine and liver nuclei after estrogen and cortisol 

treatment,   respectively   (Glasser et al., 1972; Schmid and Sekeris,  1972; 

Borthwick and Smellie,   1975).     In both systems, the temporary increase 

was followed by a sustained  increase in both RNA polymerase A and B 

activity.    The  above investigators are in agreement that one of the 

early steroid  actions  in target cells  is the stimulation of a temporary 

rise in RNA polymerase B activity which leads to sustained changes in 

both RNA polymerase A and B activity.     Although the above polymerase 

assays were performed in  cell-free systems,   the general early pattern is 

similar to data obtained  in this study using intact tissue. 

* 
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An alternate mode of  cortisol action in 1-407 cells is suggested 

by the similarity between Figure  2 and 3.     It  is possible that early 

cortisol action alters  the rate of nucleoside transport through the 

membrane,   thus controlling the amount of labelled nucleoside available 

for incorporation.     This  argument has been advanced for estrogen by 

Billings et al.   (1969a,   b)   and for cortisol by Waddell et al.   (1976). 

Waddell and his colleagues have presented evidence that large 

doses  (500 ug/ml)  of the cortisol analog 6a-methylprednisolone caused an 
3 

immediate   (3 minute)   90%  inhibition of    H-uridine uptake into human 

leukemic lymphoblastoid cells.    This is  in contrast to the 20% increase 

above control levels reported here  (Figure 2).     However,   the dosage used 

by Waddell's group  is 10    times  larger'than used in this investigation 

and at this high concentration the steroid hormone could have a detergent 

effect on membrane  lipids   (Munck,   1965) . 

While studying the in vitro effect of estrogen on uterine RNA 

metabolism,  Billings and his colleagues   (1969a, b)   found the nucleotide 

pool specific activity seemed  to increase 1-2 hours before any increases 

in RNA specific activity.    This increase was evident after actinomycin D 

inhibited uridine incorporation.    The authors surmised that the increase 

in RNA radioactivity was  caused by estrogen-stimulated nucleoside uptake 

into the uterus.     However,  Oliver  (1971)   found no difference in uptake 

and incorporation times after separating nucleoside transport from its 

incorporation.     She has attributed the increases  in nucleoside activity 

to increased utilization of nucleoside pools by RNA synthesizing processes. 

A similar conclusion was also reached by Hagenbuckle et al.   (1976)  using 

thyroxine,   a hormone thought  to be similar in action to steroids   (Gorski 

and Ganon,   1976). 
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Most available evidence would indicate the early action of steroids 

is to alter RNA synthesis.    The use of the acid separation technique to 

study hormone-mediated nucleoside transport   (Oliver,  1971; Hagenbuckle 

et al.,   1976)   support   this concept.    The same technique,   used in this 

study   (see Methods),  yields a pattern of uridine uptake and incorporation 

similar  to  that  seen  for cortisol-activated thymus RNA polymerase B 

activity   (Borthwick and Bell,   1975).     The significance of this work was 

the demonstration,   for the first time,  of the early  (15 minute)  and 

continuous  parallel hormonal response of uridine uptake and incorporation 

in an in vitro cell system. 

Inhibitor  Studies 

14 Treatment of 1-407 tissue with cycloheximide and      C-leucine 

produced  interesting results.    Table VII showed the effect of cortisol on 

C-leucine metabolism.    One definite result was a 30% decrease in amino 

acid uptake observed when cells were treated  for 15 minutes with either 

hormone,   cycloheximide or a combination of the two.     As previously 

mentioned   in the Results,   inhibition of amino acid uptake has been 

reported to  occur  in many tissues treated with cortisol including HeLa 

cells   (Mohri,   1967).     However,  a    search of  the literature has failed to 

show other reports  to this effect as early as 15 minutes after exposure 

to hormone.     The lack of significant differences at both 15 and 30 min- 

utes among  the three experimental variables would suggest the possibility 

that cortisol and cycloheximide work independently to inhibit amino acid 

uptake.    Cycloheximide inhibition of protein synthesis may block the 

formation of a labile leucine amino acid transport protein, while cortisol 

may induce  the synthesis of a protein that interferes with amino acid 

. 
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transport.     After 30 minutes incubation, the hormone-cycloheximlde treat- 

ment appeared to result  in higher amino acid uptake than the separate 

hormone or inhibitor  treatments.     However,  this  increase was not found to 

be statistically significant. 

Although  the cortisol-induced decrease in amino acid uptake did 

not appear to affect protein synthesis after 15 minutes,  there was a 

significant 25% decrease in leucine incorporation by 30 minutes.    This 

decrease may have been caused by hormonal inhibition of amino acid uptake 

first seen at the 15 minute time period, although the  inhibition of 

leucine uptake and subsequent  incorporation have been reported to be 

independent  events   (Munro,   1970). 

Cycloheximide inhibition of protein synthesis appears  to block the 

cortisol-induced  increase of    H-uridine uptake at 15 minutes  (Table VIII). 

The protein inhibitor reduced nucleoside uptake to 78% of control which 

continued  through the 30 minute hormone treatment.     It would appear from 

the above 1AC-leucine incorporation data (Table VII)   that cycloheximide 

acts to block translation of a protein or group of proteins necessary for 

uridine uptake.    The fact that this decrease occurs so quickly after 

exposure  to inhibitor would  indicate this transport protein is labile and 

its continuous  translation is necessary to maintain uridine uptake at 

control levels. 

Cycloheximide alone also acted to eliminate the cortisol-induced 

increase in uridine incorporation at 15 minutes.    One possible explana- 

tion for  this  is  the decrease in uridine uptake discussed above may lower 

the supply of substrate necessary for RNA synthesis.    An alternate 

possibility  is  that cycloheximide may prevent cortisol-induced translation 
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of proteins  that  increase RNA synthesis.    A similar response to cyclo- 

heximide is  found   in cortisol-treated thymus cells.    Cycloheximide has 

been found to block the hormone-induced inhibition of glucose uptake in 

thymus  cells which would  indicate new protein synthesis was necessary for 

thymus response to cortisol  (Mosher et al.,   1971; Munck et al.,   1972). 

Although there is direct  evidence for an early steroid-induced protein in 

the uterus   (Gorski  and  Barnea,   1970; Gorski and DeAngelo,   1970;  Cohen and 

Hamilton,  1975;  Katzenellenbogen and Gorski,   1975),   this  is the first 

report  that  indicates a relation between early protein synthesis and 

uridine  incorporation in  a catabolic system. 

A preliminary experiment was performed to investigate how selective 

inhibition of   rRNA  synthesis affected cortisol action in 1-407 cells.    Low 

doses   (0.1 ug/ml)   of  actinomycin D used in this experiment have been 

reported  to block rRNA,  but not hnRNA synthesis   (Derman and Darnell, 

1974).     Table X shows that cortisol1s effect  on labelled uridine uptake 

and incorporation was not  impaired by the inhibitor.     Cells treated only 

with actinomycin D  showed a 35% decrease in nucleoside uptake and 55% 

inhibition in uridine  incorporation.    Although valid conclusions cannot 

be based  on a preliminary  experiment,   the results would suggest cortisol 

stimulated uridine  incorporation despite a general inhibition of 

than 50%.     This would  indicate that at  15 minutes,   the increased uridine 

incorporation  in cortisol-treated cells was not entering the rRNA fraction. 

Electrophoresis 

A preliminary experiment was performed  to separate labelled RNA 

from both hormone-treated  and control cells on polyacrylamide-agarose 

gels     (see Methods).     RNA was extracted using a hot   (55°C)   phenol procedure 



60 

that selectively retains A-U rich nuclear RNA (see Methods).     High molec- 

ular weight nuclear  RNA   (hnRNA)  has been shown to be rich in adenine and 

uridine.    A 15 minute cortisol treatment produced an apparent  shift  to 

higher molecular weight RNA   (Figure 4).    This,   in conjunction with the 

actinomycin D data  (Table X), would suggest cortisol induced changes in 

hnRNA synthesis.    This RNA species has been reported as being the source 

of mRNA precursors   (see Introduction). 

General Conclusions 

From the data obtained it was concluded that: 

1. The  longer  term  (2-4 hours)  effect of  cortisol on 1-407 

cells was   inhibitory in regards  to uridine uptake and 

incorporation,  but shorter term studies   (15-60 minutes) 

produced variations in response to the hormone. 

2. The general pattern of    H-uridine uptake and   incorpora- 

tion showed  a rise above control levels after 15 minutes 

followed by a decrease at 30 minutes.     Since both frac- 

tions  followed a similar pattern,   it is difficult to 

conclude from this evidence alone whether short-term 

changes were due  to cortisol alterations in uridine 

uptake or  incorporation processes. 

3. Cortisol inhibited 14C-leucine uptake by 30% at 15 min- 

utes  and 40% at 30 minutes.    Leucine incorporation 

remained near control values at 15 minutes but  showed 

an 18% decrease at 30 minutes.    This suggests cortisol 

inhibited protein synthesis possibly by blocking amino 

acid uptake. 
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4.     Inhibition of translation by cycloheximide mimiced 

the effect of cortisol on amino acid uptake causing 

a 30% decrease in leucine transport   into the cells. 

This suggests protein synthesis is necessary to 

maintain amino acid transport  in 1-407 cells. 

5.     In a preliminary experiment,  hormone-treated and 

control cells were exposed to low doses of actinomycin 

D which selectively inhibit rRNA synthesis.     At 15 

minutes,   hormone treated cultures showed a 25% in- 

crease in uridine uptake while incorporation was 

slightly above control levels.    Untreated cells 

showed  substantial decreases  in both parameters 

indicating cortisol affects synthesis of one or more 

species of non-rRNA.     Possibly affected is hnRNA, 

thought    by some investigators to contain precursors 

of mRNA   (see Introduction). 

6.    hnRNA was preferentially extracted from hormone- 

treated and control cells and separated by poly- 

acrylamide-agarose electrophoresis.     This preliminary 

experiment showed a shift  in synthesis to higher 

molecular weight RNA in cells treated with cortisol 

for 15 minutes.    This evidence in conjunction with 

the actinomycin D data, would indicate a possible 

early cortisol effect on hnRNA of 1-407 cells. 



Future Experiments 

The following  is a list of  some of the most pertinent  problems 

left unanswered by  the present study: 

1.     One problem is determining whether cortisol has a 

direct  effect on uridine transport.     Experiments 

similar  to  those of Oliver  (1971) might be performed 

using a non-metabolized but transported nucleoside 

analog such as cytosine arabinoside.    Also specific 

inhibitors of nucleoside transport  such as thio- 

guanosine,   thioinosine or 4-Nitrobenzyl-6-mercapto- 

inosine   (NBMI)   could be utilized to block uridine 

uptake   (Eilam and Cabantchick,   1977).    This would 

allow transport  to be studied as a separate entity. 

2. Labelled uridine might be administered to the cells 

three to  four hours before cortisol administration. 

This would establish a steady-state of uridine both 

inside and outside the cell and would eliminate pos- 

sible changes  in specific activity caused by a 

sudden influx of labelled nucleoside into  the medium 

(Billings  et al.,   1969;   Puckett and Darnell, 1975). 

3. Polysome isolation procedures   (Wettstein et al.,   1963) 

(see Methods)  may be used to  isolate cytoplasmic 

messengers.     It may be possible to detect hormone- 

stimulated changes  in polysome preparations by 

separation of RNA using oligo d(T)-cellulose chromatog- 

raphy   (Aviv and Leder,   1972; Bantle et al.,   (1976)   and 

polyacrylamide-agarose electrophoresis  (see Methods). 

62 

* 
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4.     Inhibitors cycloheximide  (protein),   a-amantim (RNA 

polymerase B)   and low doses of actinomycin D  (RNA 

polymerase A)  might be used with and without  the 

hormone  to determine the importance of each 

inhibited substances to steroid action.     Inhibitors 

might be given before or after cortisol as well as 

simultaneously in these experiments. 

5.     Electrophoretic separation of cellular soluble 

protein could be done to determine if the hormone 

does stimulate or inhibit the early synthesis of 

an "induced protein". 
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