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This   thesis  presents  some basic  theory  of analytic 

functions.     Beginning with  the  definition  of  the  deriva- 

tive,   necessary  and  sufficient   conditions   for a   function 

to be  analytic  at  a  point  are  developed. 

In  order  to  prove  that  the  derivative  of an  analytic 

function  is   itself analytic,   the  line  integrals  are 

defined.     Then  Cauchy's   theorem  and  Cauchy's   Integral 

formula  are  stated.     With  the  help  of Cauchy's  integral 

formula  the   theorem  that  an analytic   function has   deriva- 

tives   of all  orders   is  proved.     Proofs  for Morera's 

theorem and  Liouvllle's  theorem are  also  given. 
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INTRODUCTION 

This  paper  presents   some  basic   theory  of analytic 

function.     The  class   of  analytic   functions   is   formed by 

the   complex  functions  of  a  complex  variable  which  possess 

a  derivative wherever the   function  is  defined.     Bep;inninp; 

with  the  definition   of  the  derivative,   the  necessary   and 

sufficient  conditions   for a  function to  be  analytic  at a 

point  are  developed. 

In order to prove that the derivative of an analytic 

function  is  itself analytic,   the   line  integrals  are 

defined.     The exact   differential and its relation to  line 

integrals   are  discussed.     Then Cauchy's  theorem is  stated. 

Since  the  proof of  Cauchy's  theorem  is  so  complicated  and 

can  be   found  in  most   texts  on complex  variable,   it  is 

skipped. 

Lastly  Cauchy's   integral   formula  is  developed.     The 

formula is an ideal  tool  for the study of local properties 

of  analytic   functions.     Particularly  it  helps  to  show 

that  an  analytic  function has   derivatives  of all  orders, 

which are   then  analytic.     With this   result,   the  converse 

of Cauchy's theorem,  known as Morera's theorem,  can be 

proved.     Last,   the  paper discusses  Liouville's  theorem 

concerning  entire  function. 

vi 



CHAPTER  I 

ANALYTIC   FUNCTIONS 

1.      PRELIMINARIES 

Definition  1.1:     A neighborhood  of a  point   zQ  is 

the  set   of points   z   for which 

|z  -  zQ|   <  e 

where  e   is  some positive  constant. 

Definition  1.2:     A set  of  points   is  said  to  be open 

if  every  point  zQ  of the  set  has  a neighborhood  lying 

wholly within the  set. 

Definition  1.3:     An open  set  is   called a  connected 

open set  or a  region  If besides  being open,   it  has  the 

property  that  any   two  points  p,   q  of  the   set  can  be  joined 

by  a broken  line   lying wholly  within  the  set. 

Definition  1.1:     Let   z be  any  point  of some  6-neighbor- 

hood,   where   that  neighborhood  is within  the  region of 

definition of a  function  f.     Consider h as  our  complex 

variable,   the  derivative  f   or  df/dz  of f  at  z   Is  then 

defined  by  the  equation 

«,,   x       14.  f<z+h)   -  f(z) (1) f'(z) - lim h ' 
h+0 

if the limit exists.  That is, if the complex number 

f(z), the derivative, exists, then to every positive 

number c there corresponds a number « such that 



r(z+h)   -   f(z) 
h 

-   f'(z)     <   e {2) 

whenever  0   <   |h|   <  6. 

Note:     It  is  an  immediate  consequence  of equation   (1) 

that  f is necessarily continuous  at any point  z where its 

derivative  exists.     Indeed,   from 

f(z+h)   -  f(z)   -  h-[f(z+h)   -  f(z)]/h, 

we  obtain 

lim  [f(z+h)   -   f(z)]  -  O-f'(z)  -  0. 
h-»0 

If we write 

f(z)   -  u(z)  +  iv(z), 

it  follows,  moreover,   that u(z)   and v(z)   are both 

continuous. 

The usual rule  for forming the derivative of a sum, 

a  product,   or  a quotient   for  complex  functions  are  all 

valid.     The  derivative  of  a composite   function  is  deter- 

mined by  the   chain  rule. 

Note:     Observe   that  if  a  complex   function   is  real-valued, 

either  it  has  no  derivative  at  all  or  it   is  a  constant 

function.     To   illustrate  our point,   let   f(z)  be  a  real 

function of a complex variable whose derivative exists 

at   z  -  a.     Then  f'(z)   is  on  one  side  real,   for  it   is  the 

limit of the  quotients 

f(a-fh)   -  f(a) 
h 

as h tends to zero through real values.  On the other side 

it is also the limit of the quotients 



f(a+lh) - f(a) 
lh 

and as such purely imaginary.  Therefore f'(a) must be 

zero.  Thus f is a constant function. 

2.  ANALYTIC FUNCTIONS 

Definition 2.1:  A function f of the complex variable 

is analytic at a point zQ if its derivative exists not 

only at z„ but at every point z in some neighborhood of 

z  .     It is analytic in a region of the z plane if it is 

analytic at every point in that region. The terms 

"holomophic" or "regular" are sometimes introduced to 

denote analyticity in regions of certain types. 

Note:  It is possible for a function to have a derivative 

at a point without being analytic at the point.  For 

example, the function f defined by 

f(z) - |z|2 

has derivative at 0 but no other point of z plane. 

Definition 2.2:  An entire function is one that is 

analytic at every point of the z plane; that is, throughout 

the entire plane. 

The sum and the product of two analytic functions are 

again analytic. The same is true of the quotient f(z)/*(z) 

of two analytic functions, provided that g(z) does not 

vanish. 

When we consider the derivative 

., x   -,4  f(z+h) - f(z) f(z) - lim -* h  
h*0 



of a complex-valued function, It Is understood that the 

limit of the difference quotient must be the same regard- 

less of the way in which h approaches zero.  If we choose 

real values for h, then the imaginary part y is kept 

constant, and the derivative becomes a partial derivative 

with respect to x.  Writing 

f(z) - u(z) + iv(z), 

we have thus 

Similarly, if we substitute purely imaginary values ik 

for h, we obtain 

f'(z) - lim 
f(z+ik) - f(z) 
 Ik _i37   3y  3y" 

It   follows   that   f(«)  must   satisfy  the  partial  differential 

|£—iM (3) 
3x 3y 

which resolves into the real equations 

3u  3v  3u 
3x " W' 3y 

3v 
3x' 

(*) 

These are the Cauchy-Riemann differential equation which 

must be satisfied by the real and imaginary part of any 

analytic function. 

We remark that the existence of the four partial 

derivatives in CO is implied by the existence of f(z). 

Using (ft) m can write down four formally different 

expressions for f*(z): 



„,. ,   3u , .3v _ 3v  ,3u _, 3u   .3u   3v   ,3v 
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(3) 

The theorem which presents necessary conditions for the 

existence of f'(z) is now established. 

Theorem 2.1:  If the derivative f'(z) of a function 

f - u + iv 

exists at a point z, then the partial derivatives of the 

first order, with respect to x and y, of each of the 

components u and v must exist at that point and satisfy 

the Cauchy-Riemann conditions («).  Also, f'(z) is given 

in terms of those partial derivatives by formula (5). 

Conditions on u and v that ensure the existence of 

the derivative are given in the following theorem: 

Theorem 2.2:  Let u and v be real and single-valued 

functions of x and y which, together with their partial 

derivatives of the first order, are continuous at a point 

fx  v ).  If those partial derivatives satisfy the 

Cauchy-Riemann conditions at that point, then the deriva- 

tive f(zQ) of the function f = u + iv exists, where 

z = x + iy and zQ - xQ + lyQ- 

Proof: Since u and its partial derivatives of the 

first order are continuous at (xQ, yQ), those functions 

are defined throughout some neighborhood of that point. 

When (xQ ♦ Ax, yQ ♦ Ay) is a point in the neighborhood, 

we can write 

Au - u(x0 + Ax, y0 + Ay) - u(xQ, yQ) 

. |^x + f^Ay ♦ *!** + €2Ay' 



where 3u/3x and 3u/3y are the values of the partial 

derivatives at the point (xQ, yQ) and where cl  and e? 

approach zero as both Ax and Ay approach zero.  The above 

formula for Au is established in advanced calculus in 

connection with the definition of the differential of the 

function u. 

A  similar  formula may   be written   for Av.     Therefore, 

Af -  f(zQ+Az)   -  f(zQ)   -  Au +  iAv 

= J^X + fy^ + eiAx + e2Ay 

+  i(§7Ax   +  lyAy   +  E3AX  +  E^Ay)- 

Assuming  now  that  the   Cauchy-Riemann  conditions  are 

satisfied at the point   (xQ,  yQ) , we can replace  3u/3y 

by  -3v/3x  and   3v/3y  by   3u/3x  and write  the   last  equation 

in the   form 

Af  -  |H(Ax  +  iAy)  +   ig(Ax  +  lAy)   +61Ax  + «2Ay, 

where  S1   and  62  approach  zero as  Az  approaches   zero 

(Az  =  AX  +  iAy).     It   follows   that 
(6) Af       3u   .   ^jv M +   6„4y-- 

Ai- = Ix" +  *B  +   61AZ       °2ti 
Since   |Ax|   <   IAz|   and   |Ay|   <   |A*| ,   then 

so  that   the  last  two  terms   on the  right  of equation   (6) 

tend  to   zero with  Az.     Therefore,   at  the point   zQ, 

f'(z) 
,4m Af _   3u  +  ,*v; 
\lnL       Ai"       Sf * *« 

that  is,   the  derivative   f'(zQ)   exists,   and  the   theorem 

is  proved. 



We   shall see later that analyticlty at a point   zQ, 

puts   a  very  severe   restriction  on a  function.     It   Implies 

the  existence  of all  higher derivatives   In a neighborhood 

of  zn.     This   is  in marked  contrast   to  the behavior  of 

real-valued  functions where  it  is  possible  to  have  existence 

and  continuity  of  the  first  derivative  without  existence 

of the  second  derivative. 



CHAPTER II 

COMPLEX INTEGRATION 

1.  PRELIMINARIES 

Definition 1.1: A continuous arc in the plane is 

defined as a set of points (x, y) such that 

x = x(t),  y - y(t)   (tx £ t *  t2)     (1) 

where x and y are continuous functions of the real parameter 

t.  The definition establishes a continuous mapping of 

the points t from the interval [t,, t2] to the arc and an 

ordering of the points (x, y) according to increasing 

values of t. 

Definition 1.2:  If no two distinct points of t 

correspond to the same point (x, y), the arc is called a 

Jordan arc. 

Definition 1.3:  If *(\"i m  *<V and y(tl) = y(t2) 

and no other two values of t correspond to the same point 

(x, y), the continuous arc is called simp_le closed curve 

or a Jordan curve. 

Definition l.k:     The opposite arc of equation (1) 

is the arc x - x(-t), y - y(-t), -t2 i t S  -*r  Opposite 

arcs are denoted by c and -c. 

Definition 1.5:  If the functions in equation (1) 

have continuous derivatives x'(t) and y'(t) which do not 

vanish simultaneously for any value of t, the arc has a 



continuously   turning  tangent.     The  arc or  curve  is   then 

said to  be  smooth.     Its   length  exists  and  is   given  by  the 

formula 

L - /   2  / [x'(t)2 + y'(t)2] dt 
cl 

Definition  1.6:     A  contour is   a  continuous  chain  of 

a   finite  number of smooth  arcs.     If  the   contour is   closed 

and does  not   intersect   itself,   it  is  a piecewise  smooth 

Jordan  curve,   called  a  closed  contour. 

2.      LINE   INTEGRALS 

Definition  2.1:     Let   f(z)  be  continuous  at  all 

points   of a  curve  c   (Figure   1)  which we  shall  assume  has  a 

finite   length,   i.e.,   c  is  a  rectlfiable  curve. 

Subdivide  c  into  n  parts   by means   of points 

z.,  z2 >  zn-l 

chosen arbitrarily, and call 

a V b On each 

to z. arc joining zk-1 ou *k 

(where k = 1, , n) 

choose  a  point   £R.     Form the 

sum 

Figure  1.   A  Rectlfiable  Curve 

Sn  .   f(C1)(z1  -  a)  +   f(C2X
z2 "  Zl} 

♦   ...  ♦  f(Cn)(b - *„.!>• (2) 
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On writing zR - z({_1 - AzR, this becomes 

n 

n 
Z f(C„)(«u - Bk-1 ) 

f(C„)Az„.   (3) 
k-i    B  n   *"*   k-1    "  " 

Let the number of subdivisions n increase in such a 

way that the largest of the chord lengths |AzR| approaches 

zero.  Then the sum Sn approaches a limit which does not 

depend on the mode of subdivision and we denote this limit 

by 

/  f(z)dz    or /  f(z)dz (*) 
a c 

called the complex line Integral or briefly line integral of 

f(z) along the curve c, or the definite Integral of 

f(z) from a to b along the curve c.  In this case f(z) 

is said to be integrable along c. 

Note:  If f(z) is analytic at all points of a region R 

and if c is a curve lying in R, then f(z) is certainly 

integrable along c. 

Definition 2.2:  If M(x, y) and N(x, y) are real 

functions of x and y continuous at all points of curve c, 

then real line integral of Mdx + Ndy along c can be 

defined in a manner similar to that given above and is 

denoted by 

/ [M(x, y)dx + N(x, y)dy]       or      /, Mdx ♦ Ndy (5) 
c 

the second notation being used  for brevity. 

Note:     If c  is   piecewise  smooth  and  has  parametric  equations 

x  -  x(t),  y  -  y(t)  where  ^ f t  I tj,   the  value  of   (5) 

can  be  given  by 
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c2 
/t (M[x(t), y(t)]x'(t)dt + N[x(t), y(t)dt}. 

If f(z) « u(x, y) + iv(x, y) ■ u + iv the complex 

line integral CO can be expressed in terms of real line 

integral as 

/c f(z)dz ■ /  (u + iv)(dx + idy) 

= / rudx - vdy] + i/ Tvdx + udy].       (6) c c 
For this reason (6) is sometimes taken as a definition of 

a complex line integral. 

If f(z) and g(z) are integrable along c, then we have 

the following important properties of integrals: 

(1) /cCf(z) + g(z)]dz - /cf(z)dz + ;cg(z)dz 

(2)  / Af(z)dz - A/ f(z)dz c c 

(3) /af(z)dz - -/bf(z)dz 

where A ■ any constant 

b m D 
(1)  / f(z)dz ' f   f(z)dz + / f(z)dz where points a, b, a a m 

m are on c. 

(5)  1/ f(z)dz| £ ML 

where |f(z)| < M, i.e., M is an upper bound of |f(z)l on 

c, and L is the length of c. 

An important class of integrals is characterized by 

the property that the integral over an arc depends only 

on its end points.  In other words if ^ and c2 have the 

same initial point and the same end point, we require 

that /  Mdx + Ndy - f'       Mdx + Ndy.  To say that an 
cl c2 

integral depends only on the end points is equivalent to 
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saying that the integral over any closed curve is zero. 

Indeed, if c is a closed curve, then c and -c have the 

same end points, and if the integral depends only on the 

end points, we obtain 

/. -/. 'c -c c 
and  consequently   /    -   0.     Conversely,   if Cj and c?   have 

the   same  end points,   then c,   -  c2  is  a closed  curve,   and 

if the  integral over any closed curve vanishes,  it   follows 

that 

cl   c2 
The following theorem gives a necessary and sufficient 

condition under which a line integral depends only on the 

end points. 

Theorem 2.2:     The  line  integral   /fl  Mdx  +  Ndy,   defined 

in a  region R,   depends  only  on  the  end points  of c   if and 

only   if there  exists   a  function  U(x,   y)   in R with   the 

partial  derivative   3U/3x -  M,3U/3y  -  N. 

Proof:     The  sufficiency follows  at  once,   for  if the 

condition is   fulfilled we can write,  with the usual 

notations, 

/c Mdx ♦ Ndy - t\ t{§*'<t> ♦ gy*(t)]dt 

■ /
8 aTCx(t)' y(t)]dt 

-  U[x(b),  y(b)3  - U[x(a), y(a)], 

and   the  value  of this  difference  depends   only  on  the  end 

points.     To prove  the  necessity  we  choose  a  fixed  point 



13 

(xQ, yQ)eR, Join it to (x, y) by a polygon c, contained in 

R, whose sides are parallel to the coordinate axes (Figure 2) 

and define a function by 

U(x, y) ■ /„ Mdx + Ndy. c 

Figure  2.   A  Polygonal  Curve 

Since   the  integral  depends  only  on  the  end points,   the 

function  is well-defined.     Moreover,  if we choose the  last 

segment  of  c   horizontal,   we  can  keep y   constant  and  let   x 

vary  without   changing the   other  segments.     On  the   last 

segment   we  can  choose x   for parameter and obtain 

U(x,  y)   - f*   M(x,  y)dx  +  const., 

the  lower  limit  of the  integral  being  irrelevant.     From 

this  expression  it   follows  at  once  that   3U/3x  =  M.     In 

the  same  way,   by  choosing the  last  segment  vertical,  we 

can  show  that   3U/3y  ■ N. 

It   is   customary  to  write dU  -   (3U/3x)dx   +   (3U/3y)dy 

and  to   say  that  an  expression  Mdx  + Ndy  which  can  be  written 

in  this   form   is  an  exact   differential.     Observe  that  M, 

N  and   U  can  be  either real  or complex.     The   function  U,   if 
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It  exists,   is   uniquely determined up  to  an additive 

constant,   for   If  two   functions  have  the  3ame  partial 

derivative    their difference must be constant. 

When is  f(z)dz - f(z)dx + if(z)dy an exact differen- 

tial?    According to the definition there must  exist a 

function F(z)   in R with the partial derivatives 

3F(z) 
dx f(z) 

32<£i - lf(z). dy 
If this is so, P(z) fulfills the Cauchy-Riemann equation 

3F „  .3F. 
ax"  *x3y' 

since  f(z)   is by assumption continuous   (otherwise 

/     f(z)dz  would  not  be  defined)     F(z)   Is  analytic  with  the 

derivative  f(z)   (Chapter 1, Section 1).     Therefore,   the 

integral  /    fdz, with continuous f,  depends  only on the 

end  points'of  c  if and only  if  f Is  the  derivative  of an 

analytic   function  in R. 

Note:     Under  these   circumstances  we  shall  prove  later that 

f(z)   is   itself analytic. 

As   an  immediate application  of  the   above   result we 

find  that 
/     (z  -  a)ndz  =■  0 (7 

for all   closed  curves  c,   provided  that   the  integer n  is 

*  0.     in   fact,   (z  -  a)n  is   the  derivative  of   (z  -  a)n+1/ 

(n + 1),   a function which is analytic  in the whole plane. 
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If n is negative, but i>  -1, the same result holds for all 

closed curves which do not pass through a, for in the 

complementary region of the point a the indefinite integral 

is still analytic and single-valued. 

For n - -1, (7) does not hold.  Consider a circle c 

with the center a, represented by the equation 

.10 

we obtain 

a + re 

dz 
;c (z - a) 

0 S 6 i 2n 

2TT 
/   id© = 2iti. 
o 

3.  CAUCHY'S THEOREM—THE CAUCHY-GOURSAT THEOREM 

Definition 3.1:  A region is called simply-connected 

if it has the property that whenever a closed contour c 

lies within R, all points inside c are also in R.  A 

region which is not simply-connected is called 

multiply-connected. 

Theorem 3.1:  If a function f is analytic at all 

points interior to and on a closed contour c then 

r    f(z)dz - 0. 
c 

(l) 

This fundamental theorem often called Cauchy's integral 

theorem or briefly Cauchy's theorem is valid for both 

simply- and multiply-connected regions.  It was 

first proved by use of Green's theorem with the added 

restriction that f'(l) be continuous in R.  However, 

Ooursat gave a proof which removed this restriction.  For 

this reason the theorem is sometimes called the 
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Cauchy-Goursat   theorem  when  one  desires   to  emphasize  the 

removal  of this  restriction.     Goursat's  detail  proof  for 

Cauchy's   theorem  can be   found  in most  texts   on  complex 

variables   and  usually  consists   of  three  parts.     The  theorem 

is  first  proved  for the  case  where c   is  a  triangle  and 

then  where  c   is  an  arbitrary  polygon  and  finally   for  the 

case  where  c   is  an  arbitrary  contour. 

Now  let   f(z)  be  analytic   in a  simply-connected  region 

R,  Then the following theorems hold. 

Theorem 3.2:     If a and z are any  two points   in R, 

then 
7. 

/     f(z)dz 

Is  independent  of   the  path  in  R joining  a and  z 

Proof:     By  Cauchy's  theorem, 

y 

Figure 3. A Simply-Connected Region 

or 

'ADBF.A 
f(z)dz " ° 



17 

'ADB f(z)dz + 'BEA f(z)dz = °- 

Hence      /ftDB f(z)dz - -/BEA - /AEB ««)«■. 

Thus      /   f(z)dz - /   f(z)dz - /z f(z)dz 
cl c2 a 

which yields the required result. 

Theorem 3.3:  If a and z are any two points in R and 

F(z) - /. f(w)dw (2) 

then F(z) is analytic in R and F'(z) - f(z). 

Proof:  We have 

F(z+Az) - F(z) _ f(z) . 1 £.     f(w)dw - /  f(w)dw] - f(z) 
Az o* a a 

..  z+Az 
\-I [f(w) - f(z)]dw. 
Az Z 

(3) 

By Cauchy's theorem, the last integral is independent of 

the path joining z and z+Az so long as the path in R. 

In particular, we can choose as path the straight line 

segment Joining z and z+Az provided that we choose 

|Az| small enough so that this path lies in R. 

Now by the continuity of f(z) we have for all points 

w on this straight line path |f(w) - f(z)| < e whenever 

|„ - z| < 6, which will be certainly true if |Az| < 6. 

Furthermore, we have 

|/Z+AZ[f(w) - f(z)]dwl < e|*z (1) 

so that from (3) 

F(Z+AZ) - F(z) _ f(z) 
AZ | AZ| 

Z+AZ 
/    [f(w) - f(z)]dw < e 



lft 

for |Az | < 6.  This, however, amounts to sayinp; that 

i.e., F(z) is analytic and F'(z) - f(z). 

Theorem 3.1*:  If zQ and z are any two points in R 

and P'(z) - f(z), then 

/ X f(z)dz - P(B.) - F(z0) zQ 1      a 

Proof:     By   the  preceding theorem,   the  Integral  can 

differ  at  most   from F(z)  by   additive  constant, 

/   1   f(z)dz  «  F(z)   +  k. 
z0 

Let   z  -   z0,   this   implies  k   -  -F(zQ).     Then  if  E  =   z^ 

the  desired  result   is  obtained 

z 
r 
z 

2 
/   *   f(z)dz  -   F(Zj>   -  F(z0). 

z0 
Theorem 3-5:  Let f(z) be analytic in a region R 

bounded by two contours Oj and c2 and also on Cj and c2 

Prove that 

/   f(z)dz - /_  f(z)dz, 
e,       c2 

where 0j and c2 are traversed in the positive sense 

relative to their interiors [counterclockwise in 

Figure l»].      "^- 

Pigure 
Multiply-Connected Region 
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Proof:     Construct  cross-cut  DE.     Then  since  f(z) 

is   analytic   in  the  region  R,  we  have  Cauchy's   theorem 

'DEFGEDHJKLD 
f(z)dz * ° 

or 

'BE   f(z)dZ   +  'EFGE   
f(z)dZ  +   ;ED   f(z)dZ   +   VjKLD   f(z)dz   =   °' 

Hence  since 

/DE turn = -/ED f(z)dz, 

r DHJKLD 
f(2)dZ    =   -/EpQE   g(z)dZ   -    /EGpE    f(Z)dZ 

or 

/       f(z)dz   =  /       f(z)dz. c1 c2 

k.      CAUCHY'S   INTEGRAL   FORMULA 

Through  a very  simple application  of Cauchy's   theorem 

it  becomes  possible  to  represent an  analytic   function 

f(z)   as  a  line  integral   in which  the  variable   z  enter 

as   a  parameter.     This   representation,  known  as  Cauchy's 

integral   formula,   has  numerous   important  applications. 

Above  all,   it  enables   us   to  study  the  local  properties   of 

an  analytic   function  in  great   detail. 

Theorem  H.l:     Suppose  f(z)   is  analytic  within  and  on  a 

closed  contour c.     If *Q   Is  any  point   interior  to  c,   then 

'<V -afro i^dz- (1) 

where  the  integral   is   taken  in  the  positive   sense  around  c. 

Proof:      Let  cQ be  a  circle  about   zQ,   |Z -   z0l ■ v, 

whose radius rQ is small enough that cQ is interior to c. 
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The   function  f(z)/(z-zQ)   is  analytic  at  all   points 

within  and  on  c   except   the  point  z».     Hence   the  integral 

around  the  boundary  of the   ring-shaped  rep-ion between  c 

and  CQ   IS   zero,   according  to  the  Theorem  3-5;   that   is 

/_!**• -/ 
f(z) 

c  z-z. dz  - 0 , 
-0 "0   -  *0 

where   both  integrals  are  taken  counterclockwise.     Since 

the   integrals  around  c  and  cQ  are  equal,   we  can  write 

f       f(z)    ,_   _   „/_    x, dZ dz = f(z„)/. 
C Z-ZQ " '0'' Cg Z .'       C 

+ / 
0   "0 

f(z)-f(zQ) 

z-z dz. 
0 

But z ~ zn   - r„e  on cQ and dz ■ irQe d©, so that 
^0 0* 

/. dz 
coz-zo 

2* 
i/Q   dO  -   2*1, 

(2) 

(3) 

for every  positive  rQ.     Also,   f  is  continuous  at  point  zQ. 

Hence,   if we  select  any  positive  numbere, then  a positive 

number S   exists  such  that 

|f(z)   -   f(zQ)l   <   e       whenever  |z  -   zQ|   <  «. 

We  take  rQ  equal  that number «.     Then   I z  -   zQ|   =  6 ,   and 

f(z)-f(z„) 
/     — dz 

c0     z"zo SV 
f(z)-f(z0) 

|Z-ZA| 
dz -(2iio)  -  2ne . 

The  absolute  value  of the   last   integral  in  equation   (2) 

can  therefore  be  made  arbitrarily  small  by   taking  rQ  suffi- 

ciently  small.     But  since  the other  two  integrals   in  the 

equation are   independent  of rQ,   in view  of  equation   (3),   this 

one  must  be   independent  of  rQ  also.     Its  value  must   therefore 

be  zero.     Equation  (2)   then  reduces  to  the   formula 
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/   LiJLLdz  -  2nif(zn),  and  the   theorem  is  proved. 
GZ   zQ 

The   representation   formula  (1)   gives  us  an  ideal   tool 

for  the  study  of the  local  properties  of analytic   functions. 

In particular we  can now  show that  analytic   functions  have 

derivatives  of all orders, which are then also analytic. 

This   is  not  necessarily  true   for  functions  of real   variables. 

Theorem  4.2:     If  f(z)   is  analytic within  and  on  the 

closed  contour c  and  that  zQ  is  within  C  then 

'•<'«) -^'c-^ 
dz (2) 

Proof:     We  have,   according  to  Cauchy's   integral   formula 

f(z0+Az0)-f(z0) 

Az 
0 

l       r   (     ■*- 
2TT1AZ0 

; C^Z-ZQ-AZQ z-z 
-)   f(z)dz 

0 

1/ f(z)dz 
"  2*i  c   (z-zn-izJ(z-zn) 

The last integral approaches the integral /( 
f(z) dz 

c  <*-*(>>' 
as 4zQ  approaches  zero;   for  the  difference  between  that 

integral  and  this  one  reduces  to 

A       / f(z)dz 
Z°    c(z-z0)2(z-z0^z0) 

Let M be the maximum value of I f(z)| on c and let L be the 

length of c.  Then, if dQ is the shortest distance from zQ 

to c and if |AzQ| < dQ, we can write 

AzJ, 
f(z)dz ML[AZQ_ 

"O'C (z_Zo)^(z-Z0-n&Z0) |  V(d0-|AZ0|) 

and the last fraction approaches zero when AzQ approaches 

zero.  Consequently, 
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lim 
AZ„+0 

f(yA«0)-f(»0) !      f(z)dz 
2iri   Jc,_   „   x2   ' ^z, '0'w ""0 

and  formula   (2)   is  established. 

<«-v 

Theorem  4.3:     Under the  conditions  of Theorem ^.2 

we  have 

f<"<.0) 
nl      , f(z) 2,rl     c   («-«„) n+1 dz o,l,2,.   .    .   (3) 

Proof:     The  cases  where  n  ■   0  and  1  follow  from 

Theorem 1.1  and Theorem  4.2  respectively provided  we define 

f(0)(zQ)   -  f(zQ)   and  0!   -   1. 

To  establish  the  case  where  n -  2,  we  use  the  same 

method  that was  used  to  establish   formula  (2).     For  it 

follows   from  formula  (2)   that 

2iri 
f (z0 + Az0)-f'(zQ) 

Az« 

_1        1 -j   f(z)dz 
cL(z-z0-Az0)2  "   (z-z0)2        AZ0 

/.[ 

2(z-zQ)-Az0 

c   (z-z0-Az0)^(z-z0) 
2   f(z)dz 

Following the same procedure that was used before,we can 

show that the limit of the last integral, as AZQ approaches 

zero, is 

2/ 
f(z)dz 

c(z-z0)
: 

and  formula  (3)   for n  -   2   follows   at  once. 

in  a  similar manner we  can  establish  the result   for 

n • 3, *.  •  •   • 
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We have now established the existence of the derivative 

of thr function f at each point zQ interior to the region 

bounded by the curve c. 

We recall our definition that a function f is analytic 

at a point z, if and only if there is a neighborhood about 

z. at each point of which f*(z) exists.  Hence f is analytic 

in some neighborhood of the point.  If the curve c used 

before is a circle Iz-z. r, in that neighborhood, then 

f"(z) exist at each point inside the circle, and therefore 

f is analytic at z. .  We can apply the same argument to the 

function f to conclude that its derivative f" is analytic 

at z , etc.  Thus the following fundamental results are the 

consequences of formula (3)- 

Theorem ft-Ms  If a function f is analytic at a point, 

then its derivatives of all orders, f, f", .... are also 

analytic functions at that point. 

Theorem ft.5: If tit)   has all derivatives f•, f", 

ft, i     , f(n), ... at z, then f has a first 

derivative f at each point in some neighborhood of z. 

Theorem ft.6:  If ««) has a first derivative at each 

point in some neighborhood of E, then it has all its 

derivatives (derivatives of all orders) at z. 

The fact that the derivative of an analytic function 

is again an analytic function can be used to prove the 
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following converse  of  Cauchy's   theorem,   known  as  Morera's 

theorem. 

Theorem 4.7:      if  f(z)   is   defined  and  continuous   in  a 

simply-connected  region  R,   and  if,   for every  closed  contour 

c   in  R, 

f c   f(z)dz  -  0 

then f(z)   is  analytic  in R. 

Proof:     The  hypothesis  implies,   as  we  have  already 

remarked  in  Section  2.2,   that   f(z)   is  the  derivative  of an 

analytic   function  P(z).     We  know now  that  f(z)   is  then 

itself analytic. 

We  end  this   section with  Liouville's   theorem  concern- 

ing entire   function. 

Theorem 4.8:     An  entire   function  can not  be bounded 

unless   it  reduces   to  a  constant. 

Proof:     For  the  proof we  make  use  of a  simple  estimate 

derived   from  (3).     Let  the   radius  r  be  p,   and  assume  that 

|f(z)|   <   M on  r.      If  we apply   (3)   with   Zg -  a,  we  obtain  at 

once 

| f(n)(a)|   <   Mn!p"n. O 

For Liouville's theorem we need only the case n - 1.  The 

hypothesis means that | f(z)| < M on all circles.  Hence we 

can let P tend to », and (M leads to f'(a) - 0 for all 
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a.  We conclude that the function Is constant. 

Liouville's theorem leads to an almost trivial proof 

of the fundamental theorem of algebra.  Suppose that p(z) 

If a polynomial of decree > 0.  If p(z) were never zero, 

the function l/p(z) would be analytic in the whole plane. 

We know that p(z) - as z -, and therefore l/p(z) 

tends to zero.  This implies boundedness, and by Liouville's 

theorem l/p(z) would be constant.  Since this is not so, 

the equation p(z) - 0 must have a root. 
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SUMMARY 

In  this  thesis   it was   pointed out   that  analyticity 

at a  point  zQ  puts  a  very  severe  restriction  on  a   function. 

It   Implies  the  existence  of all  higher derivatives   in a 

neighborhood  of  z».     This   is   in marked  contrast   to  the 

behavior  of real-valued  functions,  where  it  is  possible 

to have  existence  and  continuity  of  the   first derivative 

without  existence  of the  second derivative.     With  this 

important   result,   Morera's   theorem was   proved.     Finally, 

Liouville's   theorem was  discussed. 
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