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PART I 

An Introduction to Game Theory- 

Game theory, or the theory of games of strategy is a 

relatively new field in mathematics.    Very little was said about 

this theory prior to 19W* and the appearance of The Theory of Games 

and Economic Behavior by John von Neumann and Oskar Morgenstern. 

Since that time, both theoretical and practical aspects of the 

theory have been developed, and applications ranging from economic 

problems to warfare have been investigated. 

The theory of linear programming, dealing with maximizing and 

minimizing problems, has been applied to  the solution of games of 

strategy.    Most often,  however,  the applications of the theory 

involve such extensive computation that automatic computers are 

required for solution. 

Pure games of chance have no place in game theory.    The game 

theorist is concerned only with games of strategy or decision 

making on the part of rational players.    This is not to say that 

chance may not play an important role in a game of strategy. 

Poker is a prime example of a game where chance determines how 

the cards are dealt, and decision making, how the game will go. 

Indeed, a player's own choices are often determined by some chance 

1 
S, Vajda, The Theory of Games and Linear Programming 

(New York, 1961)77.II * 



device that he uses. 

In the material written on the subject, the theory of games 

has been developed from two standpoints:    l) in a language as 

mathematically rigorous as possible, with a thorough theoretical 

approach, and with applications involving this rigorous system, 

and 2) in a more intuitive manner, also with applications to 

practical problems, but in a more informal presentation.    In this 

paper,  the purpose of which is to provide an introduction to the 

thecry of games sufficiently complete to make understanding of 

the applications cf linear programming to some original games 

possible, a combination of the two approaches will be used. 

Intuitively speaking, a particular game is all of the rules 

of which it is made.    It is a sequence of rational moves on the 

part of players, a move being the occasion of a choice between 

alternatives.    Usually games are played for some end, and it is 

important in game theory to make all rewards in terms of money, 

that is, to arrange a payoff for winners and losers at the end 

cf seme specified sequence of moves. 

There are several features common to any game.    First, there 

must be at least two players since one player would have to be 

playing against nature, or chance, not a rational opponent. 

The first occurrence in a game is a move by one of the players 

and is performed by his deciding among alternatives.    There are 

two kinds of moves a player may make:    l) a personal move, where 

he makes a choice by his own free decision,  and 2) a chance »oye, 



whereby some chance device determines the choice for him.    This 

rove is followed by some prescribed situation which is set up in 

the rules and which somehow determines who is to make the next 

rove and what alternatives he may choose from. 

Each player may or may not know the choices his opponent has 

made; he may or may not possess full information.    Herein lies 

another field called information theory.    In games such as chess 

or tic-tac-tce, where each player is fully aware of all previous 

moves by his opponent, the players are said to have perfect 

information. 

Another feature of a game is a terminating rule.    Some 

situation must be defined as ending the game.    Finally, there must 

be a situation describing the payoff or winnings at termination. 

Rapoport sums this up by saying, "A particular game is defined 

when the choices open to the players in each situation, the 

situation defining the end of a play, and the payoffs associated 
2 

with each play-terminating situation have been specified." 

The game theorist is not concerned as much with how to play 

a particular game as he is with analyzing games in general.    He 

is also very much interested in the classification of games into 

different categories.    Games may be classified according to the 

number of players, how many moves the game has, whether the game 

p. 21. 
Anatol Rapoport, Two Person Qarae Theory (Ann Arbor, 1966), 



m 

is finite or infinite, and the amount of information available to 

players.    To say that a game is an n-person game does not necessar- 

ily mean that there are n players.    Bridge,  for example, is 

essentially a two-person game with partners acting as one player. 

Tic-tac-toe may be classified according to the number of moves 

since there are always exactly nine possible moves in this game. 

A finite game has a finite number of moves,   each involving a 

finite number of alternatives from which to chcose.    All other 

games are infinite.    Classification regarding the information 

available to players at any point in the game has been mentioned 

briefly above. 

The most simple game and the one on which most research has 

been conducted is the zero-sum,  two-person game.    A game i3 said 

to be zero-sum if the sum of all payments received by all the 

players at the end of the game is zero.    Expressed mathematically 

in the notation of Von Neumann, if a game has players P-j, P2,...,Pn 

and if pt    (i-1,2,...,n)    is the payment made to P± at the end of 

the play and if /U.P*  " 0, then the play is called zero-aim. 

Furthermore, if every possible play is a zero-sum play, then the 

game itself is said to be zero-sum.    Thus, a zero-sum, two-person 

game is a game with players ^ and Pg where p1 is the payment made 

to P    and p. is the payment made to P   at the end of a play, and 

p. ♦ p   - 0 for each play.    This is saying nothing more than that 

one player's winnings is the other player's losses.    Most often, 

zero-sum games are found in parlor games rather than in economic 



or warfare games where, in winning a particular play, one player 

may gain more than his opponent loses.    A non-zero-sum game has 

an elefiient similar to nature; by some outside doing, what one 

player wins is not the same as what his opponent loses, or vice 

versa. 

The games dealt with in this paper will be zero-sum, two- 

person <?ames.    This means there will be no discussion of coalitions 

for, in a zero-sum,  two-person game, the players are in such direct 

conflict as opponents that the "ethics" of the game prohibit co- 

operation or coalition on the part of the players.    It should be 

mentioned that there is a complete theory of co-operative,  as well 

as non-co-operative games. 

Almost all games are found originally in what the game theorist 

calls extensive form.    This is the sum total of the rules of an 

arbitrary game.    It is the complete and extensive game itself with 

all possible courses of action and every possible sequence of moves. 

Any extensive game in which the two players make their choices from 

alternatives belonging to a finite set is identical   to what is 

called the normal form of the game.    To normalize a game, or to put 

it in normal form, is to find the rectangular game equivalent to 

the extensive form.    One may think of the rectangular form of a 

■ame as a matrix describing the payoffs at each play. 

To completely describe rectangular form of a game, a few 

other definitions are necessary. First, strategy needs to be 

defined.    A strategy for a particular player is a complete plan of 



action throughout the particular game under consideration.    It 

contains much more information than the player will ever need to 

use because it tells him how to act ( that is, specifies his 

behavicr) under all conceivable circumstances of play.    A player 

adopts his strategy before the beginning of the game.    In game 

theory,  since it is assumed that each player is a rational being 

who la out to win, it is also assumed that each player will try 

to clay his best strategy — that he will not deliberately lose a 

game and that he is intelligent enough to be able to adopt such a 

strategy. 

Another definition needed in describing a rectangular game 

is that of matrix, which is often defined as a rectangular array of 

numbers, but which is more meaningfully defined in game theory as 

a real valued function of two variables. Thus, the function f(i,j), 

i = 1,2,...,mj i  - l,2,...,n, is defined by the equation f(i,j) - a±J 

and is represented as the m by n matrix 

• • • s 
Sll  812 

a '21 

11 

'22 
... ft_. • • • a 

*2j 2n 

12 
E13 — V 

SO.  am2 ••• amj •*• amnJ 

If one considers the function f(i,j) as the payoff function 

for a particular game and if rows 1,2,...m represent alternatives 



from which P-, may choose and columns l,2,...,n represent alterna- 

tives from which P,, may choose (with a      being the payoff to P      if 

he chooses alternative i and P- chooses alternative j), then the 

m by n rectangular array of numbers is called the payoff matrix of 

the game.    If a^ is positive, then Pp pays P.^ that positive amount 

since, as stated above, the numbers in the matrix represent payoffs 

to P    from P?.    This is the usual game-theoretic form.    On the 

other hand,  if an entry is negative,  it represents a positive amount 

paid by Pj to P2.    In other words, P-^ receives a negative payoff. 

A strategy for P.  or P„ includes which particular alternative he 

will choose under all situations.    For example, if P^s strategy 

were (l,0,0,...,0),  then he would be choosing his first alternative 

each time there is a choice to make, and his resulting payoff 

wculd thus be found in the row of the matrix for alternative one: 

*11     a12      a13  ''' al;J   ''* aln*    Whlch 0f theSe " Payoffs he reallv 

receives then depends on whether P    chooses alternatives l,2,...,j, 

..., or n from his collection of alternatives.    It should be 

apparent here why, in rectangular games, the number of alternatives 

open to a player must be finite if a finite optimal strategy is  to 

be found. 

Von Neumann himself defines strategy as a complete plan which 

specifies what choices a player will make in every possible 

situation, for every possible actual information which he might 

possess at that time, and in conformity with the pattern or informa- 

tion which the rules of the game provide for that particular 



situation. 

All of the possible strategies which a player may adopt are 

called his space of strategies; thus, in the n by m matrix,  a 

player's space of strategies is the set cf all n-tuples in which 

the sum of the n terms is one.    A strategy such as the (1,0,0,...,0) 

mentioned above is called a pure strategy for the player is 

choosing the same alternative always.    On the other hand, a 

strategy such as (£,0,£,0,0,...,0,£) is called a mixed strategy 

and states that the player is choosing his first alternative one- 

fcurth of the time, his third alternative one-half of the time, 

and his last alternative one fourth of the time.    This is just 

another way of saying that each element of a player's particular 

n-tuple strategy is the frequency with which he plays that cor- 

responding alternative.    So, for Pj to play pure strategy 1 is 

equivalent to his playing the mixed strategy (x-p ■»•»•*« x^) where 

x   - 1 and xk ■ 0 for each k ^ i.    Sm designates the set of all 

m-tuple strategies open to P^ and SR, the set of all n-tuple strat- 

egies open to P .    P 's strategies are represented by tfft Y2>"-> ?n 

It is obvious that the sum of the elements of each strategy, or 

each n-tuple and each m-tuple, must be one.    Thus,   2^ - 1 and 

hi •u 
Any game characterized by the elements and features previously 

). 

3John von Neumann and Oskar Morgenstern, The Theory, of Games 
and Economic Behavior (Princeton, 1953), pp. 79-ou. 



described, and found in extensive form,  may be normalized or changed 

into a rectangular game and given a payoff matrix.    The most im- 

portant question the game theorist seeks to answer, after the game 

is in rectangular form, is whether or not there is an optimal way 

of playing.    When Von Neumann proved the Fundamental Theorem for 

Arbitrary Rectangular Games ( which really marked the beginning of 

game theory), this question was answered with a definite yes. 

Before stating this theorem,  it may be profitable to discuss 

briefly a player's expectation function. 

In general, if P    chooses alternative i, he can be assured 

of obtaining at least the minimum payment in the ith row,  that is, 

the rain a...    But since he can choose any row he wants, he can 
j 

make the min a,, . as large as possible.    It must be remembered 
j 

that P    is seeking to make his winnings as great as he can.    There 

is one choice he can make which will give him at least max min a    j 
i    i    1J 

this is the largest of the minimum payments considered by rows. 

In a similar way, P. hopes to minimize his losses.    (It is well to 

think of P 's seeking to maximize gain and P «8 seeking to minimize 

loss since the payoff matrix is written in terms of payoff to 

P. from P .)    If P    chooses alternative j, he can be assured of 

losing not more than the maximum payment in the jth column, or 

max ij-, and by choosing the proper column, he can expect to 

minimize these maximuras, thus finding min max a^.    In summary, 

then, P    is assured of max min a    , and ?2 is assured of min max a^. 
1 i      j      1J J      1 

In any m by n matrix A,  since the matrix can be regarded as a real 
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valued function f(i,j) - a    , max ndn a. . £min max a,,. 

The expectation of a player is defined by McKinsey, who says 

that if P, uses mixed strategy X - (x^ x ,   ..., xm) and if P? 

uses mixed strategy I - (y. y?,..., y ), then the mathematical 
» n _ 

expectation of P1 is given by E(X,Y) -  &  3\a±3 Xi yj*    Thi8 Can 

also be expressed as the product of the two strategies and the 

matrix, E(X,Y) - X«A      •!.    If it happens that, for some X* in P., 's 
mxn 1 

space of strategies and for some Y* in Pg's space of strategies, 

E(X,Y*)*E(X*,Y*)*E(X*,Y) for each X and Y in the respective 

spaces of strategies, then X* and Y* are optimal strategies for 
h 

P, and P , and E(X*,Y«) is called the value of the game. 

If the value of a game is zero, the game is called fair.    If 

v, and v    exist where ▼..   ■ max min E(X,Y) and v? - min max E(X,Y) 
12 1       1     Y *        Y     X 

and if v, and v. are equal, then the condition above is satisfied, 

and the game has value v « ^ - v2, and optimal strategies exist. 

The fundamental theorem guarantees that this will always be true ~ 

that v1 ■ v    in each rectangular game. 

Expressed simply, the fundamental theorem of game theory states 

that every rectangular game has a value and that a player of a 

rectangular game always has an optimal strategy.    Mere formally 

expressed by J. C C. McKinsey:    Let the matrix A equal to 

J. C. C. McKinsey, Introduction to the Theory of Games 
(New York, 1963), pp. 21-25. 
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lV 

"in 

mn 

11 

be any matrix, and let the expectation function 

E(X,Y) for any X - (x , r.^..., x ) and any Y - (y , y2»..., yR) 

that are members of S    and S    respectively, be defined as follows: 

E(X.Y) - £.   Ika,, x^ y .    Then the quantities max min E(X,Y) and 
' PI 3 ij    i    j X      Y 

min max E(X,Y) exist and are equal.    A proof of this theorem may be 
Y     X 5 

found in KcKinsey's book. 

Sometimes a same has what is called a saddle point.    A saddle 

point is just a pair of integers (i, j) such that a^ is simulta- 

neously the row minimum and the column maximum or, expressed 

differently, both the maximum of the row rrdnimums and the minimum 

cf the column maximums.    If a matrix has a saddle point at a.       , ■'■oJo 

then the optimal strategies of P1 and Pg are pure strategies of 

playing alternatives iQ and j . Also, f(i0, iQ)  is called the 

value of the game. The chances that a matrix of random numbers will 

have a saddle point decreases rapidly as the deminsion of the 

matrix increases. 

The solution of a rectangular game consists cf X, Y, and the 

value of the game (X and Y here are optimal strategies for P^ and 

P» respectively). Because of the convexity of strategy sets, a 

rectangular game has either Just one solution or infinitely many 

solutions. 

McKinsey, pp. 31-37. 



There are many interesting and important properties of 

optimal strategies,  some of which are investigated,  discussed, 

and proved by McKinsey, who uses Von Neumann's language in many 

instances.    The following theorem, somewhat restated, is dealt 
6 

with by McKinsey I    Let E be the expectation function of an m by n 

rectangular game, and let X* and Y* be members cf Sm and 3 

respectively.    Then the following conditions are equivalent: 

i) X* is an optimal strategy for P    and I* is an optimal 

strategy for P.. 

ii) If X is any member of S    and X is any member of SR, then 

E(X,Y#)£E(X»,Y*)SE(X«,T). 

iii) If i and j are any integers such that lfii*m and 

1 «J*n,  then E(x , Y*)±E(X*,X*)£E(X*, yj).    (x± is 

the member of S    whose ith component is 1, and y. is the 
m v 

member of S    whose jth component is 1.) 
n 

Before going into the application of linear programming theory 

to the solution of games of conflict or strategy, it will be well 

to discuss relations of dominance,  the skew-symmetric game, and the 

strictly determined game. 

A mixed strategy X is said to dominate a mixed strategy X' if, 

for each pure strategy y    for Pg, E(X, yj)CE(X', y^), and there 

exists at least one strategy y. for Pg such that E(X, yj)*E(X', y^), 

In the payoff matrix itself, a pure strategy x± dominates another 

McKinsey, pp. U2,U3. 
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pure strategy x    if each element in the ith row is,  term for term, 

greater than or equal to its corresponding term in the jth row, with 

at least one term being strictly greater than its corresponding 

term.    A similar explanation goes for column dominance except that, 

since P?'s payoffs are expressed as losses, the dominance occurs 

where terms are less than their corresponding terms. 

In solving a game which has dominated rows cr columns, the 

dominated row,  say row i, cr column, say column j, may be deleted 

and a zero substituted in the strategy of P,  in the ith position 

and in the strategy of P. in the jth position, for these dominated 

rows and columns would logically be played none of the time.    Dom- 

inance of this type is called strict dominance.    Non-strict dom- 

inance occurs when, although the elements in a particular row (or 

column) are not all smaller (greater) than the elements in another 

rcw (coluTin), they are all smaller than certain convex linear 

combinations of the corresponding elements of the entries in that 

rcw (column). 

A skew-symmetric matrix always has value zero and is thus always 

a fair game,  since, by definition, a fair game is one with zero 

value.    However,  a game may be fair — that is, it may have value 

zero ~ without    being skew-symmetric.    The optimal strategies in 

a skew-symmetric game are the s?me for both players, and each 

player can avoid loss, no matter what his opponent does, if he 

plays his optimal strategy. 

A strictly determined game is one in which both optimal 



11* 

strategies are pure strategies;   thus,  if a game has a saddle 

point, it is a strictly determined game. 
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PART II 

The Linear Programming Method of Solution 

A two by two matrix game can be solved with relative ease 

without the use of linear programming methods. Per instance, 

in the game of matching pennies, where if both players match with 

two heads or two tails, P. wins, and if they fail to match with a 
H       T 

head and a tail, Pg wins, the matrix is 

: [.: i • 
If x equals 

the amount of time P^^ plays heads, then 1 - x represents the amount 

of time he plays tails, and his expectation function E is then 

or 

depending upon whether Pg plays heads or tails.    Performing the 

multiplication, E - x - (l-x) or E - -x + (l-x).    Thus 

E * 2x - 1 or E + -2x + 1, and solving for x, x - \ and (l-x) ■ \. 

Therefore,  the optimal strategy for Px is (£, \).    In like manner, 

this is also the optimal strategy for ?2 because he has expectation 

function 

I' H I.\ "i 
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and the solution is the same.    The matrix for Pp is the transpose 

cf the matrix for P .    So each player will be doing best if he plays 

heads one half the time and tails one half the time.    It is here 

that chance may come in because the best way to assure himself that 

Ks opponent will not figure out what he will   do next is to let some 

sort of chance device determine for him whether to play heads or tails 

at each move.    In fact, he could flip a coin to decide for himself. 

After passing two by two matrix games, the number of unknowns 

soon becomes so great that this method is not practical.    Linear 
7 

programming theory here provides an excellent method of solution. 

The method is perhaps best explained by an example.    Suppose the 

game with matrix 

1 

0 

2 

2 

1 

3J 

is to be solved. 

Denoting any strategy for P1 by (x, y, z) so that 

x * y + z - 1 

xKO, y*6,  zfcO, 

P's expectation against any of Pg's three pure strategies are 

be + 2y,    x + 2z, and 2x * y * 3z.    Letting g represent the smallest 

of these three payoffs, Ux + 2y »g,    x + 2y ft g, and 2x + y + 3z*g. 

7 
The following discussion of the simplex method of linear 

programming relies heavily upon Glicksman's Linear Programnlng 
and the Theory of Games. 



In this example all the entries of the original matrix are positive. 

Many times this is not the casej if, however, any entry were 

negative, all entries could be made positive by adding a positive 

quantity equal to the absolute value of the smallest negative entry. 

This   may be done first if there are negative values in the payoff 

matrix.    Adding the same number to each entry in the matrix does 

not affect the optimal strategies of the game; it does,  however, 

change the value of the game by the amount of the number added. 

Dividing the statements x + y + z -1, x?0, y*0, zSO, 

liz + 2ycg, x + 2y»g,  and 2x + y + 3z*g, by g, one gets 

£ + £ + *•£    *B0    y.r0     1 
gglf»f»l»I 

jft+fe.l      S+^el      2x + Z+3zEl> 
g        g "   >    g        g      '      g      g        g 

I *■ 
Player I can maximize g by minimizing g. If the notation x1 - g, 

y     z       1 
y' ■ g, z1 - g, and m - g is introduced, then P wants to find 

x'»0, y* 2 0, and z'z.0 such that 

fUx' ♦ 2y'»l 

x' * 2z' -Z.1 

2x* + y1 + 3z*Xl 

and so that x'  + y' + z« - m is minimized.    This is a full-fledged 

linear programming problem which can be solved by the simplex method. 

Since P2 wants to minimize his payoff, his problem is the 

dual problem of linear programming theory.    Because of the minmax 

theorem,  the solutions to both players' problems can be read from 

the solution matrix of either player's problem.    And since the 



18 

original matrix of the game does not have to be transposed to form 

P.'s problem, his, perhaps,  is the better to  solve. 

If Pp's strategy is denoted by (p, q, r) so that p20, qs0, 

and rSO, the amount P. expects to pay for each of P-i's pure 

strategies is lip + q + 2r, 2p + r, and 2q + 3r. Furthermore, if, 

for each (p, q, r), h is the maximum of these three payoffs, then 

lip + q + 2r^h, 2p + r*-h, and 2q + 3r^h. Dividing as before, 

this time by h, 

E + a + r _ 1 
h* gtO,    f«0,    ^0, and 

Also, Jffl + £ + fc.X|  2E + t »1( and M + 2l-l. 
hhhhh* hh 

Since P    desires to minimize h, he can do this by maximizing h. 
2 E fl £ I 

Letting p'  - h, q' - h, r*  - h, and M - h, Pg wants to find p'«0, 

q'*0, and r'?0 so that 

Up' + q' * 2r'£l 

2p' + r'«l 

2q' + 3r' ftl 

and so that p' ♦ q* + r* ■ M is maximized. 

Thus, from its form,it can be seen that ?2's problem is also 

a linear programing one and is the dual of P^'s problem. 

Putting it into linear programming matrix form tc be handled 

by the simplex method, three slack variables a, b, and c are first 

introduced to change the inequalities to equations.    Then, p'2 0, 

q'»0, r'«0, a *0, b«0, c «0, 
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Ip'  • q'  + 2r'  + a - 1 

2p'   + r'  + b - 1 

2q«  + 3r' + c - 1 

and p* * q'  ♦ r1 ■ M is to be maximized. 

This yields the matrix 

[U    1    2    1    0    0    l] 

2    0    10    10    1 

0    2    3    0    0    11 

Ll    1    1    0    0    0    I; 

The three by three submatrix in the upper left corner is the original 

game matrix. 

The simplex method cf solution starts with changing entries 

in the last row so that each element in that row is less than or 

equal   to zero.    One begins, then, by choosing one of the columns 

with last entry greater than zero,  say the first in this example. 

Then, by forming the ratios $ and £, that is, by comparing by 

division the positive numbers in the last column with the cor- 

responding positive numbers in the column chosen and selecting the 

smallest of these ratios, |, a pivot point is found at the entry h. 

C©  1    2    1    0   0   l' 

2    0    10    10   1 

0 2    3    0    0    11 

1 1 1 0 0 0 Mj 

All other elements in this column must be made zero by dividing row 

one by h and then adding to row two -2 times row one, to row three, 
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0 times row one, and to row four -1 times TOW cne. 

1 1 1 1 
1 I 

1 
2 I 

1 
0 0 t 

1 
0 "2 0 ~2 1 0 2 

0 2 3 0 0 1 1 

0 I 1 
2 

_1 
h 0 0 

1 

Three-fcurths and one-half are both positive numbers in row four, 

sc a pivot point is to be found in the column containing U, or in the 

cne whose last entry is 2.    Taking the third column, 3    2,  so 3 is 

the second pivot point if column three is chosen next. 
Ill 1 

1      5      I      f      9      o      k 

0      "2 0-2 1 0 2 

0 2      Q      0        0 

o     b     2    ~u     o 

1 

0 

1 
1 

Using the same process as before to get all other elements in the 

third column to be zero and the pivot point entry to be cne, the 

resulting matrix is 

1 1 1 l 
1 "12 

1 
0 I 

1 
0 -z 12 

1 
0 

2 
0 "2 1 0 

1 
2 
1 

0 3 1 0 0 3 3 
S_ 1 1 JL 

0 12 0 "I 0 -6 M-12 

Since 12 is the only positive entry remaining in row four, the 

column containing 12,   the second column,   contains the third pivot 
2 

point which can be 3 only.    Thus, a-plying the same method, the 

result is 



0 

0 

1 

0 

21 
1       1 1 t 
i 4 
i 
2 0 

4 -f  o -1 

l 

l t 
l 
2 

1 I 
i 
l 
2 

M - 

Since the first column originally contained the coefficients of 

p', if the entries in the first column of the resulting matrix are 

all zerc excetvt for one, the entry in the last column and the row of 
| 

the cne non-zero entry is the value of p'.    So p'  in this game is 8. 
1 

Likewise, q'  = 2.    Since the r' cclumn does net satisfy the conditions 

previously described,  r1 ■ 0. 

For Player 1, x*, y', and z1 may be read off the solution 

matrix as the negative values of the last entries in the columns 

of the slack variables a, b, and c.    Thus, x' - H, y1 - 0, and 

z' ■ 8.    K equals 8 in this game; since H - h, h, or the value of 
8 8 

the game, is %;  thus g is also 1>.    To find optimal strategies for 

each player,  the substitutions p - p'h, q - q'h, r - r'h, x- x'g, 

y - y'g, z - z*g yield the values p - 5, q 5, r - 0, I, y - 0, 

and z - 5.    So Player l's optimal  strategy is (5, 0, 5), and 
1    h 

Player 2's optimal strategy is G, 5, 0).    Thus the game is solved 

by the simplex method of linear programming.    This same method may 

be employed to solve any rectangular game. 
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PART III      . 

Some Original Games 

The following are original zero-sum,  two-person games, which 

are worthless as far as providing interesting pastimes as games, 

but which may be of some value when considered from the point of 

view cf game theory.    The objective in devising these games was to 

develop a game whose matrix would create a pattern as the dimension 

of the matrix increased,   to generalize the game to an m by n matrix, 

an^ then, after solving the first few games cf small dimension, to 

predict the solution to the m uy n matrix game.    Some success was 

achieved in developing matrices which followed a pattern as their 

dimensions increased and in generalizing a few of the games tc nth 

form, but nc method of predicting a solution to the nth game in 

any one of the examples presented itself.    The games and some 
8 

solutions follow. 

SAME ONE 

Rules 

Player 1 chooses to hold a certain number of cents covered in 

his hand.  (Player 2 knows the total amount of money which Player 1 

possesses at the beginning cf the game.) Player 2 then attempts to 

8 
Some of the games have more than one solution even though 

only one is given. 
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jruess the amount held by Player 1.    If he guesses correctly, he gets 

the amount held.    If he guesses incorrectly, he receives the dif- 

ference between the two amounts provided that both his guess and 

the amount played are as much as or more than one half the total 

amount possessed by Player 1 at the beginning.    Otherwise, Player 1 

<*ets the difference. 

Since this game would be rather meaningless if played with 

only one cent,  the first matrix is the two-cent game. 

[: :] 
For any strategy (x., xrt,..., x ) of Player 1 in this game, x means ■L 2 n 1 

playing one cent, x? means playing two cents, etc. Likewise, in 

any strategy (y , y2,..., y ) for Player 2, y means guessing one 

cent, y means guessing two cents, etc. The solution reached by 

methods described above is 

v ■= -1 

Pl (1' 0) 

P2 (1, 0) 

since there is a saddle point at the first element in the matrix. 

The three-cent game has no saddle point. 

-112 

1 -2      -1 

2 -1      -3 J 

Solution:    v h, p, cfe, h, h), p? (h,h, 15). 



This solution was reached by first setting the problem up as a 

linear programming problem with inequalities.    Before this is done, 

hcwever, it is necessary to add the absolute value of -3, the 

smallest entry in the matrix, to each entry in the matrix sc all 

entries will be positive.    This yields the matrix 

2 h 5 

It 1 2 

5 2 0 

The set of inequalities then is 

f2j> + lq + $r i h 

lip • q + 2r   % h 

5p + 2q * h 

p*0, q2 0, r«0 

and p + q + r * 1 
R 3. 

Dividing each expression by h and letting p' - h, q'  - h, and r' 

f2p« + Uq' + 5r' * 1 

liP» + q' + 2r' * 1 

5p« ♦ 2q' S 1 

lp'«0, q'«0, r**0 

r 
- h, 

and p' + q* • r' - h . 

The next step is to introduce slack variables a, b, and c so 

that the inequalities will be equations. These variables must 

also be positive. 
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2p» + Uq*  + 5r'  + a = 1 

(Up*  + q' + 2r'  + b = 1 

V + 2q'  + c «= 1 

p1    0, q'    0, r1    0, a    0, b    0,  c    0 

pi  + qi + ri  - h « M 

Ihe matrix tc be solved by the simplex method turns cut to be 

"2li5l001 

h       l       2       0       1       0       1 

5200011 

1 1        1 0 0 0        M 

The three-cent game does not have strict dominance, either, 

but some rows and columns are dominated, as the solution reveals. 

-1   1   2   3] 

1-2-1-2 

2 

3 

-1 

-2 

-3 

-1 
2 

-1 

Solution: * - ?, Px (5, 0, 5, 0), P? (£, 5, 0, 0). 

3enerslizing the game now, the n by n matrix takes on one of 

twc forms, depending upbn whether n is an odd or even integer. 

If n is an even integer, the payoff matrix is 
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1 1 2 3 

1 -2 1 2 

2 1 -3 1 

3 2 1 -h 

n 
2 

n-l 

2 "* 

1-3 

n-2 

8-? 

- 2 

n-3 

n i 

--3 
2 J 

n-l; . . . 

£-1 n 
2 h . ..    n-l 

2~2 2"1 
n 
2      . .    n-2 

1 * 2~3 2 Z 
n 
2-1 .    n-3 

£ i 1 % u .     nJi 

n 
"2 

-1 

n 
"2 

-1 -2       ... 
-a 

2 

*»» -1       ... 
a i 

■ • • 
• • • 
• • • 

(2"1) -df-2)... -n 

But if n is odd, then the matrix is as follows: 

-1 

1 

2 

3 

£3_ 
2 "2 
n 1 
2"2 

E+l 
2 2 

n-l 

1 

-2 

si 
2 2 
a^ 
2 2 
n 1 
2"2 

n-2 

2 

1 

-3 

1 

Si 
2"2 

ai 
2"2 

2 "2 

*_2 
2 2 
S-l 
2 2 

§4 
2 2 

n-3   n-U 

Si n 1 n 1 1 

2"2 2"2 2 2 n-l 

ij a.2 n 1 
2"2 2^ g-g ...      n-2 
Hi U al 
2-2 2 2 2 "2 n-3 

S £ nl S-2 
2-2 

• 
2 "2 

• 
2 2 

• 
n-U 

• 
• 

n 1 
-(2T) 

• 
• 

1 

• 
• 

2 

• 

n'l 
...      2*2 

n 1 n 1 
1 -(2*2) -1 ...   -(2-2) 

a.2 a_2 
2 
• 

-1 
• • 

...   -(2"2) 
• 

• • 

all 
-(2 2) 

• 
• 

n 1 
-(2-2) 

• 
• 

• ••       -n 
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GAME TWO 

This game is almost identical to game one except fcr a slight 

change in the rules, which makes the matrices and solutions quite 

different from those above. 

Rules 

Player 1 chooses to hold in his hand a number of coins. 

(Player 2 knows the total number of cdns Player 1 has at the 

beginning cf the gpme.) Player 2 then tries to guess the number 

cf coins held by Player 1. If both the number held and the number 

guessed are odd integers, or if both are even integers, Player 1 gets 

the difference between the two numbers. If one is odd and the 

ether even, Player 2 gets the difference. 

The two-coin matrix is 

-1   -ll 

[-1   -2 

There is a saddle point at the first entry in the matrix.    Thus,  the 

solution is 

v ■ -1 

P-L  (1,0) 

P2  (1, 0) 

The three-coin matrix takes the form 

-] -1 2l 

-1        -2 1 

2-1-3 
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Again, the*re is a saddle point. This time it is in the first row 

and the second column at -1. The solution here is 

v • ■ -1 

Pl (1,   0,   0) 

P2 (0,  1,  0) 

The four-coin game, 

"-1 -1 2         -3 

-1 -2 -1           2 

2 -1 -3       -1 

-3 2 -1         -h 

has solution, 

-fe 
23  |6 23 23 

P, (llF, 115", 115, 115) 
1 23  U6 23 23.^ 
Pg (115", 115", IB, 115") 

Generalizing in this game,  the n-coin matrix has two forms again, 

depending upon whether or not n is odd or even.    If n is even, the 

first sign in each - and 5 combination in the following matrix applies; 

if n is odd, the second sign applies. 

-1 -1 2 

-1 -2 -1 

2 -1 -3 

-3 2 -1 
• • • 

-(n-2)   7(n-3)    *(n-U) 

+(n-l)    t(n-2)    ?(n-3) 

-3      ... t(n-2) +(n-l) 

2 *(n-3) t(n-2) 

-1 Un-h) *(n-3) 

-it          ... 7(n-5) Un-k) 
• 

• • • 
• 

+(n-5)... -(nil) -[n-(n-l 

-(n-U)..» -[n-(n-D] -n 
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GAiME THREE 

Rules 

Player 1 has a certain quantity of money at the beginning of 

this game. Player 2 always knows exactly how much his opponent 

has. Player 1 chooses to held n cents in his hand. Player 2 then 

tries to guess the amount held by Player 1. He makes his guess. 

Hearing this guess and knowing whether it is right or wrong, 

Player 1 then has the option of either betting that Player 2 has 

made a wrong guess or not betting. (logically, his only reason 

for betting in the case that he knows Player 2 has guessed incor- 

rectly would be tc bluff his opponent.) Player 2, having heard 

whether or not his opponent is betting that he is wrong, then 

decides whether or not he wants to bet that he is right. A summary 

of the Dayoffs is as follows: 

a. Neither bets: 

If Player 2 guesses correctly....Player 2 receives n* 

If Player 2 guesses k^n Player 2 pays (n-k)* 

If Player 2 guesses k*n Player 2 receives (k-n)* 

b. Both bet: 

If Player 2 guesses correctly....Player 2 receives 3n* 

If Player 2 guesses k / n Player 2 receives (|n-k|+l)* 

c. Only Player 1 bets: 

If Player 2 guesses any k Player 2 receives 1* 

d. Only Player 2 bets: 

If Player 2 guesses correctly....Player 2 receives 2ntf 
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If Player 2 guesses k / n Player 2 pays 1# 

Just by reading the rules and observing the payoff schedule, 

one gets the impression that the game is not advantageous to 

Player 1, and it is not. 

In the matrices for this game, the first row strategy means 

playing one cent and not betting; the alternative represented by 

row two means playing one cent and betting, etc.    Likewise, the 

alternative represented by column one means guessing one cent and 

not betting, while column two is guessing one cent and betting, etc. 

The one-crnt game would not be meaningful here, either, since 

there would be no chance for Player 2 to guess incorrectly.    The two- 

cent game is as follows! 

-1 -2 1 1 

-1 -3 -1 -2 

-1 1 -2 -h 

-1 -2 -1 -6 

Eliminating dominated rows and columns, the following matrix 

is the result: 

-1-2 1 

-1        -3        -2 

-1 1        -h 

and adding the absolute value of -h  to each element of the matrix, 

3 2 * 

3 1 2 

3   5  0 
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, 0, £),    P2 (1, 0, 0).    And checking, 

M -1 

-1 

-1 

-2 

-3 

1 

1 

-2 -    -1 

-1 -3 

-1 1 

-1 -2 

-2 1 

-1 -3 

The three-coin game is 

-21121 

-1      -2      -1      -3 

-2      Ji        1        1 

_1      _6      -1      -2 

-1        1-3-6 

-1      -2      -1      -9 

Notice that with each one-cent increase in n,  the corresponding 

matrix increases in dimension by two rows and two columns.    Thus, 

arriving at a solution of a game of this size scon becomes impos- 

sible without the use of a computer.    However,  in this matrix, 

since there is dominance, the simplex method is net too complicated. 

The matrix resulting after dominated rows and columns have been 

eleminated is 

T-l        -2 1 1 

1        -2        -U 

-2 1-1 1        -6j 

A solution to  this matrix by the simplex method of linear 

programming is v - 4    ■$ <£ °> b.    P2 <* *• °» °' 0):    ^ th* 

original matrix game v - X    *    fa °> °> °> t 0)' P2 * E.0,0,0,0). 

The matrix for this game played with n cents follows. 
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I j 

rH CM -H 

C                      C                                   C C C 
H       C        rH      ^       H      "»f   •   •    • H      --y   • •    »H CM CM       rr\ 

^-x                    '-x                    «■"-»                                *—» r-» i-H 

T           "V          7                1 £ £ 
rH      v5        Hw        H       ^    •    •    'H       5    . •    .(^ ^ r-4        CM 

CV                 (*>                 «4l                               I _ £7£T,,!:7,,W7,,"rr777 c : J ...:.:         .    . . ; .  9 
•   •    •  ^~»    • •**«         •• •'",**, 
• •          •       H         •      CM                     *         * * T T 

•H                  Jl                   -H       -H C C 
H    T<     H    w    H    <Y • •  *<y    "7*  ■ *  ' M Hf rt    Sf 

iH iH 

I         H          ?        rH           •         rH    •    •    • iH        7     * *    ■*¥ H ^f        7 
•H        7         -H           I         iH          I                        •           I I . '            '. 

• • • 
                         .          1 . ' •           * 

• !!!••                   ,CV • P-\ •      CM 

H        rr,        rH        CM        N£>        <>\    •     •    • r-l       -<f    * *    * r_l ^T T 

•H C C 
CM        H        rH        r-t        <T\       rj)     •    •     »^j-       rH     • •     • >-• rH w        rH 

7 'Y 7 
•H C C 

rH        CM        -3       M3        rH        CM    »    •  .»H       >-j»    * *    * r"1 *"f "       f 

•H C C 
H        H        CM         rp        rH        rH  ••    •    *<f       rH    • «>    *»-f ft        7 

pH 

c 
CM        fr,        rH        CM        H        »    •    •    »H        ijl     * •    »H *-' rH          ^ 

5 f 1 
rj»        H         rH        rH        CM        rH     •    •    -^       rH     • •    «w 7^7, 



CORRECTION 

PRECEDING IMAGE HAS BEEN 
REFILMED 

TO ASSURE LEGIBILITY OR TO 
CORRECT A POSSIBLE ERROR 



•1 -2 1 1 2 1 • • .    i-1 1     ...       n-2 1 n-1 1 

1 -3 -1 -2 -1 -3 • • .     -1 -i     ...       -1 -(n-1) -1 -n 

1 ] -2 -k 1 1 • • .    i-2 1    ...      ra-3 1 B-2 1 

1 -2 -3 -6 -1 -2 • • .     -1 -(i-D...   -1 -(n-2) -1 -(n-1) 

2 1 -1 1 -3 -6 •  • .    i-3 1    ...      n-ii 1 n-3 1 

1 -3 -1 -2 -1 -9 • • .     -3 -(i-2)...   -1 -(n-3) -1 -(n-2) 

• • • • • • • •                                           • • • • 

• • • • • • • •                                          • • • • 

(i-l) 
• 
1 -(i-2) 

• 
] 

• 
-(i -3) 

• 
1 • • 

• 
.     -i -2i  ...    n-l-i 1 n-i 1 

1 -i -1 -(i-1) -1 -(i-2) ... -1 -31 ...     -l -(n-i) -1 -(r-i+1) 

• • • • • • • •                                   • • • • 

• • • • • • • •                                   • • • • 

■(n-2) 
• 
1 -(n -3) 

• 
1 -(n -h) 

• 
1 • • .     -(n- .1-1) 

•                                   • 
1    ...      -n -2(n-l) 1 1 

•1 -(n -1) -1 -(n -2) -1 -(n -3) ... 1 -(n-1)... -1 -3 (n-1) -1 -2 

•(n-1) 1 -(n -2) 1 -(n -3) 1 • • .    -<n- ■i) l    ...     -l 1 -n -2n 

•1 -n -1 -(n -1) -1 -(n -2) ...-1 -(n-i+l)~.-l -2 -1 -3n 

Pi 

~"-«»ai. I^^H^HHMjj 
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