The University o at Greensboro	f North Carolina
JACKSON L	IBRARY
Gift of Mabel Yvonne COLLEGE CO	GQ no. 1003 e Jackson OLLECTION

JACKSON, MABEL YVONNE. The Effects of Zinc Nutrition on the Copper and Iron Status of the Young Rat. (1972) Directed by: Dr. Aden C. Magee. Pp. 48.

The purpose of this study was to investigate the copper-zinc-iron interrelationship at low to normal levels of dietary zinc intake. The effects of supplements of copper, iron, and zinc on growth and mineral metabolism of young rats fed zinc deficient diets were observed over a period of four weeks.

Results of the experiments indicated that a ten ppm zinc supplement prevented the depressed growth and high hemoglobin levels of the animals receiving zinc deficient diets. Zinc supplements were associated with decreased liver copper and iron levels, and copper supplements were associated with decreased liver zinc levels. There was some indication that supplemental copper could cause a zinc deficiency in animals receiving marginal zinc diets. The relative proportions of copper, zinc, and iron seem to be an important factor in studying the complex interrelationship between copper, zinc, and iron.

r mograd with

1, 9,0

ten kran nd

18. 14 a Lawren

has the second

1000

and a state and

.....

NUMBER OF STREET

the decrease

a troom to an

BUT DALFUT BUT

the second in

the brance of a

Mis Annual

THE EFFECTS OF ZINC NUTRITION ON THE

THE YOUNG RAT

by

Mabel Yvonne Jackson

A Thesis Submitted to the Faculty of the Graduate School at The University of North Carolina at Greensboro in Partial Fulfillment of the Requirements for the Degree Master of Science in Home Economics

> Greensboro 1972

> > Approved by

Aden C. Magee Thesis Adviser

APPROVAL PAGE

This thesis has been approved by the following committee of the Faculty of the Graduate School at The University of North Carolina at Greensboro.

Thesis Adviser Aden C. Magee Tral Examination Aden C. Magee

Oral Examination Committee Members

in

ACKNOWLEDGMENTS

The author wishes to express her sincere appreciation to Dr. Aden Magee for his guidance throughout this study. Gratitude is also expressed to the members to the advisory committee, Dr. Joan Cassilly and Dr. Mildred Johnson, for their helpful suggestions and to Dr. Carole Hahn for her technical assistance.

TABLE OF CONTENTS

																								Page
ACKNO	OWLE	EDGI	MEN	TS																	•	•		111
LIST	OF	TAF	BLE	s.																	•			v
LIST	OF	API	PEN	DI	кт	AB	LES	S		•	•						•	•		•	•	•		vi
Chapt	er																							
Ι.	II	TRO	DDU	CTI	ION																		•	1
II.	RI	EVIE	EW	OF	LI	TE	RAT	ru	RE															2
III.	E	KPEH	RIM	ENI	CAL	P	ROO	CE	DU	RES	5													6
IV.	RI	ESUI	TS	AN	ID	DI	scu	JS	SI	ON												•	•	9
		Eff	fect	ts r a	of	VI	art		us Suj	Le ppl	eve	els	s c nta	of at:	Di	Let	tai	Sc	Z	inc		•	•	9
		Cop	of a	tei Zin r a	in nc and	Di i	ets ror	1	Suj	nta ppl	.er	nir ner	ng nta	vat	ior	1 1		Le Eg	· sg	•15	•	•	•	10
		4	Albi	umi Zin	n	Di.	ets •		Co:	nta •	· ·	nir •	ıg •	Va •	ari			·	·	•1s	•	•		14
v.	GI	ENEF	RAL	DI	sc	US	SIC	DN																17
VI.	SI	JMMA	ARY	AN	ID	RE	CON	IMI	EN	DAI	IC	ONS	3											20
		Sun Rec	nman comr	ry men	nda	ti	ons	•	foi	r A	.dd	iit	i	ona	i	ir	nve	st	i	gat	ic	on	:	20 21
LIST	OF	REF	ERI	ENC	ES																			22
APPEN	DI	ς.																						26
App	end	lix	AB		:	•	:	:	• •	:	•	•	•	:	:	•	• • •	• • •	•	:	•	•	•	26 29 40

LIST OF TABLES

Table			Page
1.	Effect of Zinc on Growth, Hemoglobin, and Liver Copper, Iron, and Zinc Levels		10
2.	Response of Rats to Zinc Deficient Diets Supplemented with Zinc, Copper, and Iron (Experiment 2)		12
3.	Response of Rats to Zinc Deficient Diets Supplemented with Zinc, Copper, and Iron (Experiment 3)		15

LIST OF APPENDIX TABLES

Table

Page

Appendix A

L .	Composition	of	the	Soy	Protein	Basal	Diet	•	•	27

2. Composition of the Egg Albumin Basal Diet . . 28

Appendix B

1.	Growth and Hemoglobin Data for Experiment 1	•	30
2.	Liver Copper, Iron, and Zinc Data for Experiment 1	•	31
3.	Growth and Hemoglobin Data for Experiment 2		32
4.	Liver Copper, Iron, and Zinc Data for Experiment 2		34
5.	Growth and Hemoglobin Data for Experiment 3	•	36
6.	Liver Copper, Iron, and Zinc Data for Experiment 3		38

Appendix C

1.	Analyses of Variance of Weight Gain, Hemoglobin, and Liver Copper, Iron, and Zinc Data for Experiment 1	•	41
2.	Analyses of Variance of Weight Gain, Hemoglobin, and Liver Copper, Iron, and Zinc Data for Experiment 2		42
3.	Analyses of Variance of Weight Gain, Hemoglobin, and Liver Copper, Iron, and Zinc Data for Experiment 3		43

CHAPTER I INTRODUCTION

The balance of nutrients in animal and human nutrition is recognized as being essential for proper metabolism of the various nutrients. It has been shown that an excess of some nutrients has an antagonistic effect on other nutrients. Zinc is of interest since toxic levels of zinc have been shown to interfere with the absorption and/or metabolism of calcium, copper, iron, magnezium, and phosphorus.

Several studies have shown an antagonism between copper and zinc in both copper toxicosis and zine toxicosis. The site of this antagonism is believed to be in the intestine during absorption. It is not known what effects copper and zinc have on each other when zinc is present in normal or marginal levels in the diet. Toxic levels of zinc have also been shown to effect iron metabolism, but the site of this interaction has not been determined. The present investigation was designed to study the zinc-copper-iron interrelationship when the dietary zinc levels are below the minimal level, marginal, and normal in order to gain further information about the extent of this interrelationship.

CHAPTER II REVIEW OF LITERATURE

The presence of zinc in living organisms and its role as an essential nutrient for plants and animals, including man, is well recognized. It was not until 1944 (1), when zinc was found to be an essential part of carbonic anhydrase, that a mode of action of this element could be explained. Since then, zinc has been found as a constituent of many metalloenzymes, including pancreatic carboxypeptidase, alkaline phosphatase, several dehydrogenases, and as a cofactor in several enzyme systems.

Relatively large amounts of zinc can be tolerated in the diet of most animals without causing harmful effects. Rats can tolerate up to 5000 ppm of zinc in the diet, an amount which is about 500 times their minimal requirement, before the signs of zinc toxicity appear (2,3). Zinc toxicity causes growth depression, severe hypochromic microcytic anemia, inhibition of some enzyme systems, and interference with copper and iron metabolism in the young rat (4-6).

Zinc toxicity has been shown to cause a copper deficiency. Davis (7) reported that an increase of dietary zinc caused a decrease in liver copper when the copper levels of the diet were borderline to normal. Supplementing copper to the diets of animals suffering from zinc toxicity raised the liver copper levels, increased hemoglobin levels, and helped to overcome depressed activities of catalase and cytochrome oxidase (6, 8, 9, 10).

Cox and Harris (5) reported a marked copper deficiency with 4000 ppm of zinc. Copper supplements increased the liver copper but further decreased the liver iron, which was lowered by the copper deficiency. Iron supplements increased the liver iron levels and prevented some loss of copper from the liver. Magee and Matrone (6) also showed that zinc interferes with iron metabolism and that copper supplements further decrease liver iron levels, but reported that iron supplements had no effect on liver copper. Magee and Matrone also suggested that zinc had an effect on copper metabolism and one on iron metabolism separately. Cox and Hale (11) reported no decrease in liver iron concentrations when pigs were fed zinc toxic diets.

Reciprocal effects between copper and zinc have been demonstrated in the pig (12-15) in that the development of copper poisoning can be alleviated by dietary supplements of zinc. O'Hara <u>et al</u>. (12) concluded that copper was affecting zinc storage and/or utilization, thus causing a zinc-deficient parakeratosis in the animals. Suttle and Mills (13) showed that 500 ppm of zinc or 750 ppm of iron lowers the serum levels of copper to normal. However,

only supplements of iron prevented anemia developed under these conditions.

Zinc deficiency is becoming more of a concern since naturally occurring zinc deficiencies have been found in pigs, cattle, and man (15-17). The requirement for zinc is dependent on several factors, one of which is the dietary protein source. The dietary requirement of zinc for the growth of rats was found to be 18 ppm when the dietary protein source was soy protein, 12 ppm with casein, and 12 ppm with egg white (3). However, as much as 60 ppm may be needed for normal reproduction and 100 ppm if the diet is soybean protein (18). Zinc deficiency causes a marked retardation of growth, skin lesions, changes in bone formation, impaired reproductive development and function, and impaired DNA synthesis (19, 20). Prasad (17) has described zinc deficiency symptoms found in villagers in Egypt and Iran. The men studied had severe retardation of growth, hypogonadism, a decrease in serum iron, increased iron binding capacity, and an increased serum copper level. Zinc supplementation to the diets resulted in growth, genital development, and appearance of secondary sex characteristics. The anemia was partially overcome by zinc supplementation and completely overcome when iron was given along with the zinc.

In studying the mechanism of the zinc-copper interrelationship, zinc was shown to interfere with $^{64}{\rm Cu}$

absorption from an intestinal segment of the rat (21). A significant depression in ⁶⁴Cu uptake was shown with a zinc to copper ratio of 500 to 1. The effect of zinc on copper was thought to be mediated through a direct effect of zinc on or in the intestine rather than an indirect effect of zinc levels in non-intestinal tissues or serum zinc levels (22). In studies on the mode of copper absorption from the gastrointestinal tract of chickens, Starcher (23) found that copper binds to a duodenal protein in the process of absorption. Zinc also binds to this protein, thus inhibiting copper absorption. Hill and Matrone (24) suggest that the basis for the zinc-copper interaction is the similarity of the electronic structures of their ions.

From these studies it is clear that there is an antagonistic effect between zinc and copper. These effects have been shown in conditions of zinc toxicity and copper toxicity. High levels of zinc decrease copper absorption, and high levels of copper decrease zinc absorption. Further investigation of this antagonism at less than toxic levels of copper and zinc would be helpful in defining the extent of the antagonism. Since zinc toxicity has also shown effects on iron stores, a study of the effects of iron supplements on lower levels of dietary zinc may provide useful information about this interrelationship.

CHAPTER III EXPERIMENTAL PROCEDURES

The purpose of this study was to investigate the zinc-copper-iron interrelationship in animal nutrition. Criteria to be used for indications of this interrelationship were weight gains, hemoglobin levels, and liver levels of zinc, copper, and iron of rats on experimental diets.

The study consisted of 3 experiments. Experiment 1 was designed to show the effects of various dietary levels of zinc on the parameters to be observed in the experimental animals. Experimental diets consisted of a commercially prepared zinc deficient basal diet and the basal diet plus 100 ppm, 500 ppm, 1000 ppm, and 2000 ppm of zinc. Experiments 2 and 3 were designed to show the effects of copper and iron supplementation to diets with differing levels of zinc. A 3 X 2 X 2 experimental design was used for these experiments. In experiment 2 the levels of zinc added to the basal diet were 500 ppm and 1000 ppm. The copper supplement was 200 ppm, and the iron supplement was 400 ppm. In experiment 3 the levels of zinc added to the basal diet were 10 ppm and 500 ppm; copper was supplemented at the 50 ppm level, and iron was supplemented at the 100 ppm level.

Weanling male albino rats¹ were used for all phases of the study. The animals were randomized into replications by initial body weight. Animals and test treatments within a replication were assigned at random to individual wirebottom stainless steel cages. Food and distilled water were given <u>ad libitum</u>. Each experiment lasted 4 weeks. Weekly weight records were kept for all animals.

Two basal diets were used. A soy protein diet² (Appendix A, Table 1) was used for experiments 1 and 2, and an egg albumin diet³ (Appendix A, Table 2) was used for experiment 3. The soy protein diet was calculated to contain 15.24 ppm of copper, 80 ppm of iron, and 7 ppm of zinc. Information supplied by the manufacturer indicated that the egg albumin diet contained 2.53 ppm of copper, 97.02 ppm of iron, and 4 ppm of zinc. Copper supplements were given as cupric sulfate, iron as ferric sulfate, and zinc as zinc carbonate. All supplements were mixed with the diet.

At the end of each experiment, blood samples were taken from the tail of each animal and hemoglobin determinations were made by the method of Shenk <u>et al</u>. (25). Rats from

¹Sprague-Dawley rats purchased from Holtzman Company, Madison, Wisconsin.

²Zinc deficient soy protein diet, Nutritional Biochemicals Corporation, Cleveland, Ohio.

³Zinc deficient egg albumin diet, General Biochemicals, Chagrin Falls, Ohio.

4 randomly selected replications were sacrificed, and the liver of each was removed and weighed. The whole livers in experiments 1 and 2 and a small portion of each liver in experiment 3 were dried at 35° in order to provide dry weight data. The livers were prepared for mineral analyses by ashing with nitric and perchloric acids on a hot plate. The ash of each sample was dissolved in 3 ml. of 0.6N HCl and brought to a volume of 25 ml. with redistilled water. Zinc determinations were made by the method of McCall, et al. (26). Copper and iron determinations were done by the methods of Parks, et al. (27) and Kitzes, et al. (28), respectively, as modified by Matrone et al. (29).

CHAPTER IV RESULTS AND DISCUSSION

Effects of Various Levels of Dietary Zinc

Detailed data showing the effects of zinc deficiency, 100 ppm, 500 ppm, 1000 ppm, and 2000 ppm of supplemental zinc on the weight gains, hemoglobin levels, and liver copper, iron, and zinc levels are given in Appendix B, Tables 1 and 2. Mean values of these criteria are presented in Table 1.

All the animals on all soy protein diets had very poor growth. The ones showing the greatest weight gain, a mean of 45 gm. for 4 weeks, were on the zinc deficient basal diet. The addition of zinc produced a significant decrease $(p \le 0.01)$ in weight gain. It was expected that the animals on the zinc supplemented diets would gain weight at a normal rate since none of the levels of zinc used were toxic. The reason the animals gained little weight is not clear. A rancid odor, however, was detected in the soybean diet which would suggest that this feed had deteriorated on storage and had become unpalatable to the animals.

There was no significant difference in the hemoglobin levels. After an initial drop in liver zinc levels, there was a significant increase ($p \le 0.01$) in the liver zinc at higher levels of zinc supplementation. The addition of zinc had no significant effect on the copper levels. The liver iron was significantly decreased $(p \le 0.01)$ with the addition of zinc to the diet. However, the data indicated that the iron accumulation reached a low point with 1000 ppm of zinc and showed an increase when 2000 ppm of zinc was added.

TABLE 1

Level of	a		Liver constituents ^b					
zinc	at 4 weeks	Hemoglobin ^a	Cu	Fe	Zn			
ppm	gms.	gm./100 ml.	mcg./	'gm. dry	weight			
None	45 ^b	14.48°	25.27	727.25	36.24			
100	24 ^d	16.95 ^d	22.91	675.69	18.57			
500	9	15.30	22.51	591.68	85.08			
1,000	36 ^b	14.78 ^b	23.34	464.63	102.67			
2,000	27	15.15°	26.77	549.14	113.02			

EFFECT OF ZINC ON GROWTH, HEMOGLOBIN, AND LIVER COPPER, IRON, AND ZINC LEVELS

^aEach figure is the mean of $\boldsymbol{6}$ animals unless otherwise indicated.

^bMean of 4 animals. ^cMean of 3 animals. ^dMean of 5 animals

<u>Copper</u> and <u>Iron Supplementation to Soy Protein Diets</u> <u>Containing Various Levels of Zinc</u>

Detailed data showing the effects of copper and iron supplements on weight gains, hemoglobin levels, and liver copper, iron, and zinc levels in animals fed either zinc deficient diets or diets containing 500 or 1000 ppm of zinc are given in Appendix B, Tables 3 and 4. Mean values of these criteria are given in Table 2.

Again, the animals on the zinc deficient diet gained the most weight. All supplements to the basal diet significantly lowered ($p \le 0.01$) the weight. All the animals receiving diets supplemented with iron alone died. However, when iron and 500 ppm of zinc were given, no deaths occurred, but the animals failed to maintain their initial weights. The animals receiving 1000 ppm of zinc along with the iron supplements gained an average of 21 gms. All the animals did poorly in the presence of both copper and iron.

The analysis of the data indicated that the addition of zinc had little effect on hemoglobin levels. Copper and iron tended to increase the hemoglobin levels, although copper alone had no effect in the presence of zinc.

The copper accumulation in the livers was not affected significantly by the addition of zinc and only slightly raised when iron was added to the diet. Copper supplements raised the liver copper levels greatly, as was expected. These elevated levels were reduced progressively by the addition of increasing amounts of zinc and also by the addition of iron.

The liver iron levels showed no pattern. All the animals receiving iron supplementation to a zinc deficient

TABLE 2	
---------	--

RESPONSE OF RATS TO ZINC DEFICIENT DIETS^a SUPPLEMENTED WITH ZINC, COPPER AND IRON (EXPERIMENT 2)

			Liver constituents ^d				
Supplement to basal diet ^b	weight gain at 4 weeks ^c gm	Hemoglobin ^C	Cu	Fe	Zn		
	gms.	gm./100 ml.	mcg.	/gm. dry we	ight		
None Cu	41 ^e 10	14.40 ^e 16.05	20.97 655.84	505.64 511.43	14.20 24.70		
Fe Cu + Fe 500 ppm Zn 500 ppm Zn + Cu 500 ppm Zn + Fe 500 ppm Zn + Cu + Fe 1000 ppm Zn + Cu 1000 ppm Zn + Cu 1000 ppm Zn + Fe 1000 ppm Zn + Cu + Fe	-11 ^f 5e 12 -9e -5f 29e 24 21 -16g	16.54 f 15.21e 14.52 17.43d 18.00f 13.77e 13.97 14.91 15.84g	24.98 ^f 19.06 546.49 22.89 446.48 ^f 20.07 400.79 24.34 283.61g	596.09 ^f 571.15 481.88 630.87 495.63 ^f 418.70 433.41 496.41 632.80 ^g	46.70 ^f 21.59 34.89 36.34 41.92 ^f 12.66 21.11 30.33 50.72 ^g		

^aZinc deficient soy protein diet.

^bSupplements were 200 ppm of copper and 400 ppm of iron.

^CEach figure is the mean of 6 animals unless otherwise indicated.

d_{Mean} of 4 animals. f_{Mean} of 2 animals.

^eMean of 5 animals. ^gMean of 3 animals.

diet died. Copper may have helped to overcome some of the adverse effects of the iron on the animals because 2 of the 6 animals receiving copper and iron supplements on the zinc deficient diet lived. The supplements of 500 ppm of zinc slightly raised the liver iron levels, and the addition of iron to this diet produced higher iron levels. Increasing the zinc supplement from 500 to 1000 ppm then lowered the liver iron in the iron supplemented animals. Copper tended to lower the iron levels except at the 1000 ppm of zinc diet to which iron had also been added.

The accumulation of zinc was significantly increased $(p \leq 0.01)$ with supplements of copper and iron, with the greatest increase occurring when both copper and iron were added. The addition of 500 ppm of zinc raised the liver zinc levels above those of the basal diet, but 1000 ppm of zinc caused no change.

Because such poor results were obtained on the soy protein diets and the levels of supplements of iron increased the mortality of the animals, a third experiment was planned. The third experiment was designed like experiment 2, but a zinc deficient egg albumin diet was used. Ten ppm or 500 ppm of zinc was added to the diet, and copper and iron were supplemented at the 50 and 100 ppm levels, respectively.

Copper and Iron Supplementation to Egg Albumin Diets Containing Various Levels of Zinc

Detailed data showing the effects of copper and iron supplementation to the zinc deficient, 10 ppm, and 500 ppm of zinc diets are given in Appendix B, Tables 5 and 6. Mean values of these criteria are given in Table 3.

The weight gain of the animals was significantly increased ($p \le 0.01$) when zinc was added to the diet, although no additional improvement was observed above the 10 ppm level. Copper seemed to antagonize the effect of added zinc, producing slightly reduced weight gains.

Supplementing the diets with 10 ppm of zinc significantly increased ($p \le 0.05$) liver zinc levels, while a supplement of 500 ppm of zinc was associated with a highly significant increase ($p \le 0.01$) in liver zinc levels. Zinc supplements significantly decreased ($p \le 0.01$) hemoglobin, liver copper, and liver iron levels.

The addition of copper to the diet was associated with a rise in copper accumulation in the liver in all cases and a lowering ($p \le 0.05$) of the zinc accumulation in the liver. Copper supplementation appeared to significantly reduce ($p \le 0.01$) liver iron levels in the animals receiving 500 ppm of zinc, but was associated with slight increases in iron levels in the animals receiving 10 ppm of zinc.

The addition of iron to the diet lowered the liver zinc levels on the zinc deficient diet, but significantly

m A	DI	 2	
1 4	D 1	 	
		_	

RESPONSE OF RATS TO ZINC DEFICIENT DIETS^a SUPPLEMENTED WITH ZINC, COPPER, AND IRON (EXPERIMENT 3)

Supplement to	Woight goin		Liver constituents ^d				
basal diet ^b	at 4 weeks ^c	Hemoglobin ^c	Cu	Fe	Zn		
	gms.	mg./100 ml.	mcg	./gm. dry we	ight		
None Cu Fe Cu + Fe 10 ppm Zn 10 ppm Zn + Cu 10 ppm Zn + Fe 10 ppm Zn + Cu + Fe 500 ppm Zn 500 ppm Zn + Cu 500 ppm Zn + Fe 500 ppm Zn + Cu + Fe	64 69 71 162 130 167 150 161 134e 161 156e	15.79 15.59e 15.79f 16.01e 13.12 12.47e 12.78f 13.65 12.64 12.66e 13.39 12.72	21.29 259.00 11.56 598.49 11.97 182.20 12.67 189.26 16.42 89.83 10.52 49.43	556.49 560.30 699.57 1192.19 312.39 388.23 538.82 407.23 311.34 191.46 317.45 209.42	47.58 26.73 29.14 41.74 49.80 41.30 58.31 47.08 76.80 45.16 103.56 54.44		

^aZinc deficient egg albumin diet.

^bSupplements were 50 ppm of copper and 100 ppm of iron.

c_{Each} figure is the mean of 7 animals unless otherwise indicated.

d_{Mean of 4 animals.}

^eMean of 6 animals.

f_{Mean of 5 animals.}

increased ($p \le 0.01$) the level on the 500 ppm diet. Iron significantly decreased ($p \le 0.05$) the copper level on the zinc deficient diet but had no effect on the 10 ppm of zinc diet. Iron significantly increased ($p \le 0.01$) the iron levels in all cases.

Regardless of the level of zinc in the diet, the presence of both copper and iron supplements resulted in decreases in liver zinc deposition. Interestingly, on the zinc deficient diet, the addition of copper and iron together increased both the copper and iron levels of the liver to a greater extent than when each one was added separately. This did not occur on the diets containing zinc. On the zinc supplemented diets, copper caused a decrease in iron accumulation, and iron caused a decrease in the copper levels.

CHAPTER V GENERAL DISCUSSION

Results of the present investigation give additional information about the copper-iron-zinc interrelationship at low to normal levels of dietary intake of zinc. A 10 ppm supplement of zinc alleviated the growth depression and high hemoglobin levels associated with zinc deficiency in the rat. Above this level of supplementation, there was no further improvement in growth, which is consistent with the results of Williams and Mills (30). Zinc supplements were also associated with decreased levels of copper and iron in the liver, and a slight increase in the liver zinc levels. Animals receiving supplemental copper showed decreased liver zinc levels. Van Campen, et al. (22, 31), suggest that the effects of copper on lowering liver zinc levels, and the effect of zinc on lowering liver copper levels is due to mutual antagonism during the process of absorption. The results of the present study tend to support this theory since increasing the dietary levels of zinc does not raise the liver zinc levels very much but has great effect on the liver copper and iron levels. In addition to this apparent antagonism, zinc, copper, and iron may be interrelated at sites other than absorption. Evaluation of the data in this study suggests that both copper and iron adversely affect liver zinc levels when animals were receiving zinc deficient diets. There is the possibility that copper and iron may have caused an increased mobilization of zinc from the liver of the animals on the zinc deficient diet since the liver zinc levels of those animals receiving copper and iron supplements were lower than the animals receiving the zinc deficient diet. This would indicate that the interrelationship between these metals may be more than just an antagonism during absorption.

Animals receiving supplements of copper and iron on the zinc deficient diet had greatly increased liver copper and iron levels as compared to the animals receiving either copper or iron supplements. It would appear that copper enhanced the accumulation of iron in the liver and that iron enhanced the accumulation of liver copper. However, animals receiving supplements of both copper and iron on the marginal zinc diets had liver copper accumulation about the same as the animals receiving just copper supplements, but the animals had lower liver iron levels than those receiving only iron supplements. Furthermore, on the 500 ppm of zinc diets, the animals receiving both copper and iron supplements had less liver copper and iron accumulation than the animals receiving either copper or iron supplements. This suggests a complex interrelationship among these metals which may depend on their relative

proportions in the diets of the animals. This explanation may be why Magee and Matrone (6), and Cox and Harris (5) failed to observe the zinc depressing effect of copper in their zinc toxicity studies. With a high zinc to copper ratio, this effect would be small. In the present study, the ratios of zinc and copper were small, and their reciprocal effects were observed. The ratio of iron to the copper and zinc levels also needs to be considered in studying the extent of this interrelationship. In this study, zinc lowered liver iron levels, but iron supplements appeared to raise the liver zinc levels in the presence of zinc. Additional information is necessary to see if this trend holds true.

Possibly, if the experiment had been extended for a longer period of time, a zinc deficiency would have been produced in the animals receiving copper supplements to the marginal zinc diets. The liver zinc levels of the animals receiving 10 ppm of zinc plus copper supplements were below the levels of the animals on the zinc deficient diet. Their weekly weight gains and final weight gains were less than the animals on the 10 ppm of zinc supplemented diets without additional copper. It would appear that copper was lessening the beneficial effects of the added zinc.

CHAPTER VI SUMMARY AND RECOMMENDATIONS

Summary

Young rats were fed diets containing various levels of zinc in the presence or absence of copper and iron. Under these conditions, the effects of zinc, copper, and iron supplements on the growth, hemoglobin, and liver copper, iron, and zinc levels were observed.

Results of the study showed that the depressed growth and high hemoglobin levels of animals receiving zinc deficient diets could be prevented with supplements of zinc. Supplements of zinc were associated with decreased liver copper and iron levels, and supplements of copper were associated with decreased liver zinc levels. There was some indication that supplemental copper could cause a zinc deficiency state in animals receiving marginal zinc diets over a period of time longer than 4 weeks.

These data tend to support the theory that the reciprocal interrelationship between copper and zinc may take place at the site of absorption. However, copper and iron lowered liver zinc levels in the absence of dietary zinc which would indicate an interrelation in addition to that of absorption. The relative ratios of copper, zinc, and iron seem to be important in studying their interrelationship.

Recommendations for Additional Investigation

Since the results of this study indicate that supplemental copper may cause a zinc deficiency in animals on marginal levels of zinc, a study for an extended period of time will be necessary to see if this would actually occur. Studies concerned with long range effects of copper supplements to a marginal zinc diet are necessary to the understanding of the effects of added stresses to animals receiving diets with marginal levels of essential nutrients.

Because the ratios of zinc, iron, and copper are important in the effects they have on each other, further studies need to be done involving variations in the ratios of one metal to the others in order to help to determine the extent of the interrelationship of these metals. The effects of iron, in particular, need further study.

Also, studies should be devised that measure parameters other than those measured in this study, such as blood levels of zinc, copper, and iron, and enzyme levels during various dietary levels of copper, iron, and zinc in order to help determine where these metals are interfering with the metabolism of each other. Radio isotope studies would be beneficial in future studies.

aldenoidelerredai

No COSTANDE

22

LIST OF REFERENCES

LIST OF REFERENCES

- 1. KEILIN, D., and MANN, T. 1944. Activity of purified carbonic anhydrase. Nature, 153:107.
- SUTTON, W. R., and NELSON, V. E. 1937. Studies in zinc. Proc. Soc. Exptl. Biol. Med., 36:211.
- FORBES, R. M., and YOKE, M. 1960. Zinc requirement and balance studies with the rat. J. <u>Nutrition</u>, 70:53.
- 4. GRANT-FROST, D. R., and UNDERWOOD, E. J. 1958. Zinc toxicity in the rat and its interrelation with copper. <u>Australian J. Exptl. Biol. Med. Sci.</u>, 36:339.
- COX, D. H., and HARRIS, D. L. 1960. Effect of excess dietary zinc on iron and copper in the rat. J. Nutrition, 70:514.
- MAGEE, A. C., and MATRONE, G. 1960. Studies on growth, copper metabolism, and iron metabolism of rats fed high levels of zinc. J. Nutrition, 72:233.
- DAVIS, G. K. 1958. Mechanisms of trace element function. <u>Soil Sci.</u>, 85:59.
- SMITH, S. E., and LARSON, E. J. 1946. Zinc toxicity in rats. Antagonistic effects of copper and liver. J. Biol. Chem., 163:29.
- VAN REEN, R. 1953. Effects of excessive dietary zinc in the rat and the interrelationship with copper. Arch.Biochem. Biophys., 46:337.
- DUNCAN, G. D., GRAY, L. F., and DANIEL, L. J. 1953. Effect of zinc on cytochrome oxidase activity. Proc. Soc. Expt. Biol. Med., 83:625.
- COX, D. H., and HALE, O. M. 1962. Liver iron depletion without copper loss in swine fed excess zinc. J. Nutrition, 77:225.
- O'HARA, P. J., NEWMAN, A. P., and JACKSON, R. 1960. Parakeratosis and copper poisoning in pigs fed a copper supplement. Austral. <u>Vet. J.</u>, 36:225.

- SUTTLE, N. F., and MILLS, C. F. 1966. Studies on the toxicity of copper to pigs. I. Effects of oral supplements of zinc and iron salts on the development of copper toxicosis. <u>British J. Nutrition</u>, 20:135.
- RITCHIE, H. D., LEUCKE, R. W., BALTZER, B. V., MILLER, E. R., ULLREY, D. E., and HOEFER, J. A. 1963. Copper and zinc interaction in the pig. J. Nutrition, 79:117.
- TUCKER, H. F., and SALMON, W. D. 1955. Parakeratosis or zinc deficiency disease in the pig. <u>Proc</u>. Soc. Exptl. Biol. Med., 88:613.
- LEGG, S. P., and SEARS, L. 1960. Zinc sulphate treatment of parakeratosis in cattle. <u>Nature</u>, 186:1061.
- 17. PRASAD, A. Zinc Metabolism. Springfield, Ill.: Charles C. Thomas, 1966, pp. 250-293.
- SWENERTON, H., and HURLEY, L. S. 1968. Severe zinc deficiency in male and female rats. J. Nutrition, 95:8.
- 19. UNDERWOOD, E. J. <u>Trace Elements</u> in <u>Human and Animal</u> <u>Nutrition</u>, 3rd ed. New York: <u>Academic Press</u> Inc., 1971, pp. 222-224.
- 20. SANSTEAD, H. H., and RINALDI, R. A. 1969. Impairment of deoxyribonucleic acid synthesis by dietary zinc deficiency in the rat. J. <u>Cell</u>. <u>Physiol</u>., 73:81.
- VAN CAMPEN, D. R. 1966. Effects of zinc, cadmium, silver, and mercury on the absorption and distribution of ⁶⁴Cu in rats. J. Nutrition, 88:125.
- 22. VAN CAMPEN, D. R., and SCAIFE, P. 1967. Zinc interference with copper absorption in rats. J. Nutrition, 91:473.
- STARCHER, B. C. 1969. Studies on the mechanism of copper absorption in the chick. J. Nutrition, 97:321.
- 24. HILL, C. H., and MATRONE, G. 1970. Chemical parameters in the study of <u>in vivo</u> and <u>in vitro</u> interactions of transition elements. <u>Fed. Proc.</u>, 29:1474.

- SHENK, J. H., HALL, J. L., and KING, H. H. 1934. Spectrophotometric characteristics of hemoglobins. I. Beef blood and muscle hemoglobins. <u>J. Biol</u>. Chem., 105:741.
- McCALL, J. T., DAVIS, G. K., and STEARNS, T. W. 1958. Spectrophotometric determination of copper and zinc in animal tissues. Anal. Chem., 30:1345.
- PARKS, R. Q., HOOD, S. L., HURWITZ, C., and ELLIS,
 G. H. 1943. Quantitative chemical microdetermination of twelve elements in plant tissue. Ind.
 Eng. Chem., Anal. Ed., 15:527.
- KITZES, G., ELVEHJEM, C. A., and SCHUETTE, H. A. 1944. The determination of blood plasma iron. J. Biol. Chem., 155:653.
- MATRONE, G., PETERSON, W. J., BAXLEY, H. M., and GRINNELLS, C. D. 1947. Copper and iron in the blood serum of dairy cows. J. <u>Dairy</u> <u>Sci.</u>, 30:121.
- WILLIAMS, R. B., and MILLS, C. F. 1970. The experimental production of zinc deficiency in the rat. British J. Nutrition, 24:989.
- 31. VAN CAMPEN, D. R. 1969. Copper interference with the intestinal absorption of ⁶⁵zinc by rats. J. Nutrition, 97:104.

25: SHENX, J. H. Spectrophot I. Beer bi Chem., 105:

- 6. McCALL, 6. McCapitoli Spectrophot sinc in ani
- 27. PARKS, R. R. R. G. H. 1943 Bion of two Eng. Chem.

28. KITZES, 0., 80 1944. She 1. 9201. 21

29. MATEGNE, 0., ORINNELLE, blood serve

org Estates pro

. VAN CAMPAN, . Intestilate Nutrision.

APPENDIX A

COMPOSITIONS OF BASAL DIETS

T	AR'	I.F	1
-	nD.		-

COMPOSITION OF THE SOY PROTEIN BASAL DIET

Constituents	gm./kg.
Soy Protein	150
Glucose	628
011, Corn	110
Alphacel	30
Salt Mix	37
Calcium phosphate, monobasic Cupric sulfate, pentahydrate Cobalt chloride, hexahydrate Ferrous sulfate, heptahydrate Magnesium carbonate Manganese sulfate, monohydrate Potassium carbonate Potassium iodide Sodium chloride Sodium fluoride	26.196 0.060 0.400 1.384 0.121 5.043 0.004 3.737 0.008
Vitamin Diet Fortification Mixture Vitamin A concentrate Vitamin D concentrate Alpha tocopherol Ascorbic acid Inositol Choline cloride Menadione p-Aminobenzoic acid Niacin Riboflavin Perodoxine hydrocloride Thiamin hydrocloride Calcium pantothenate Biotin Folic acid	55 mg./kg. 99.2 5.5 110.2 992.1 110.2 1653.5 49.6 110.2 99.2 22.0 22.0 22.0 66.1 0.44 1.98

TABLE	2
	_

COMPOSITION OF THE EGG ALBUMIN BASAL DIET

Constituents	g/kg
Egg white solids, spray dried	200.00
Dextrose, hydrate, technical	631.053
Fiber, non-nutritive	30.00
0il, corn	100.00
Salt mix	
Calcium carbonate Calcium phosphate, dibasic, dihydrate Cobalt chloride, hexahydrate Cupric sulfate, pentahydrate Ferric citrate, pentahydrate Magnesium sulfate, heptahydrate Manganese sulfate, monohydrate Potassium iodide Potassium phosphate, dibasic, trihydrate Sodium chloride	9.94405 3.1489 0.00185 0.009945 0.911542 3.38106 0.008791 0.026518 14.0044 5.55198
Vitamin mix	
Biotin B12 Calcium pantothenate Choline chloride Chlortetracycline Folic acid Menadione Niacin PyridoxineHCl Riboflavin Thiamin HCl Vitamin A palmitate Vitamin D2	0.004 0.020 0.016 1.5 0.25 0.0005 0.00033 0.025 0.004 0.006 0.01 IU/kg 10,000.000 1,250.000 110.000

COMPOSIT

sanoud b dano

Rgg white solids, Dextrose, hydrate, Fiber, non-nurlel

011. 0019

Salt mi

Celeton onon Cobalt anlor Copris all Perris altra Magnetin au Potsuatum in Potsuatum in

cim nims fiv

81051

Caleium part Guoline ania Onlortetracy Folio seld Menacione Fyricolo Byricolavin Aleofavin Friania SCI

Vitanin D2 Vitanin E a

APPENDIX B

GROWTH, HEMOGLOBIN, AND LIVER MINERAL DATA

m	AB	IF	1
Ŧ	AD	LE	+

GROWTH AND HEMOGLOBIN DATA FOR EXPERIMENT 1

			Treatm	nents			
	l - Basa 2 - Basa 3 - Basa	l diet 1 + 100 pp 1 + 500 pp	m Zn m Zn	4 - Basal 5 - Basal	+ 1000 ppr + 2000 ppr	n Zn n Zn	
			Repli	lcations			
Treatments	1	2	3	4	5	6	Mean
		4 weel	Grown s weight	th gain (gms.)			
1 2 3 4 5	40 28 14 2	 11 17 35	59 34 3 49 34	41 28 0 35 32	19 19 33	38 20 9 49 29	44 26 9 42 28
		m	Hemogle g./100 ml	obin . blood			
1 2 3 4 5	19.37 16.14 	 15.26 16.83 14.34	14.23 15.57 14.94 15.06 14.04	15.37 17.20 13.20 16.03	13.40 18.66 13.03 15.69	15.80 15.80 15.26 14.03	14.48 16.96 15.30 14.83 15.15

TABLE 2

LIVER COPPER, IRON, AND ZINC DATA FOR EXPERIMENT 1

		Treat	ments		
1 - Basa 2 - Basa 3 - Basa	1 diet 1 + 100 ppm 1 + 500 ppm	zn Zn	4 - 5 -	Basal + 100 Basal + 200	0 ppm Zn 0 ppm Zn
		Repli	cations		
Treatments	1	2	3	4	Mean
		COP	PER		
1 2 3 4 5	24.39 25.31 24.50 26.98 32.11	32.48 20.15 24.89 24.37 29.32	21.75 20.64 19.75 18.56 21.62	22.44 25.52 20.90 23.46 24.03	25.27 22.91 22.51 23.34 26.77
		IR	ON		
1 2 3 4 5	579.78 688.66 592.02 534.02 648.46	812.61 659.29 536.16 466.95 511.06	685.77 636.94 609.59 415.27 548.31	831.17 718.38 628.95 442.29 488.73	727.25 675.69 591.68 464.63 549.14
		ZIN	NC		
1 2 3 4 5	37.43 21.12 96.54 150.71 192.44	49.06 15.09 46.73 77.20 100.38	29.72 19.49 106.20 98.64 100.38	28.74 18.58 90.85 84.12 58.88	36.24 18.57 85.08 102.67 113.02

GROWTH AND HEMOGLOBIN DATA FOR EXPERIMENT 2									
				Trea	tments				
	1 - Bas 2 - Bas 3 - Bas 4 - Bas	al diet al + C_1 al + F_2 al + C_1	t u e u + Fe		7 - Ba 8 - Ba 9 - Ba 10 - Ba	sal + 500 p sal + 500 p sal + 1000 sal + 1000	opm Zn + F opm Zn + C ppm Zn ppm Zn +	e u + Fe Cu	
	5 - Bas 6 - Bas	a1 + 50 a1 + 50	00 ppm Z 00 ppm Z	n n + Cu	11 - Ba 12 - Ba	asal + 1000 asal + 1000	ppm Zn + ppm Zn +	Fe Cu + Fe	
				Replicat	ions				
Treatment		1	2	3	4	5	6	Mean	
			4	Gro weeks weigh	owth ht gain (gms.))			
1 2 3	3	81	50 14	45 7	52 15	29 11	3	41 10	
4 5 6 7 8	1	4	-11 -2 8 -4	 0 18 -15	-11 9 5 -10	 17 	12 7 	-11 5 12 -9	
9 10 11 12		23 21 31	25 27 11 -23	40 22 30 -9	32 31 23	24 22 25 -17	23	29 24 21 -16	

H	AND	HEMOGLOBIN	DATA	FOR	EXPERIMENT

ALC: NOT THE REPORT OF

CHOKEN NED HENOGEOBIN DELY SON SAFENITAMIN S

PABLE 3

TABLE 3--Continued

Replications									
Treatment	1	2	3	4	5	6	Mean		
	1997	-	Hemoglo mg./100 ml	bin . blood					
1 2 3 4 5 6 7 8 9	13.86 17.09 17.32 13.03 14.86 12.69	14.23 12.00 17.72 15.06 15.37 17.20 18.80 13.77	15.14 17.20 15.49 13.86 19.86 14.94	13.40 18.23 15.37 11.46 17.20 17.83 13.12	15.37 15.80 14.34 17.20 14.34	16.03 16.72 13.29 	14.40 16.05 16.54 15.21 14.52 17.43 18.00 13.77		
10 11 12	13.40 13.40 	13.57 14.43 12.86	14.34 17.09 17.09	13.12 14.63	15.49 15.57 17.57	13.94 14.34 	13.97 14.91 15.84		

ω

LIVER COPPER, IRON, AND ZINC DATA FOR EXPERIMENT 2

	1.5.5	Treatm	ents		
1 - Basal	diet	7	- Basal	+ 500 ppm 2	Zn + Fe
2 - Basal	+ Cu	8	- Basal	+ 500 ppm 2	Zn + Cu
J - Basal	+ re + Cu $+$ Re	0	- Bagal	+ 1000 ppm	72
5 - Basal	+ 500 ppm Zn	10	- Basal	+ 1000 ppm	2n + Cu
6 - Basal	+ 500 ppm Zn	+ Cu 11	- Basal	+ 1000 ppm	Zn + Fe
	12 - Basa	1 + 1000	ppm Zn +	Cu + Fe	
		Repli	cations	11	Moon
Treatments	1	2	3	4	Mean
		COPP	ER ^a		
1	23.17	20.80	19.89	20.04	20.97
2	718.15	451.63	928.19	525.40	655.84
3		601 22		227 64	501 48
4	22 41	18 70	17.44	17.62	19.06
6	298.76	813.08	737.19	336.92	546.49
7	23.31	23.21	20.30	24.73	22.89
8		381.18		509.78	446.48
9	16.06	18.48	20.63	25.10	20.07
10	373.44	586.38	327.80	315.57	400.79
11	24.12	20.43	257.97	235.43	283.61
	357.42		-511.51		
		IRON	a		
1	459.38	574.91	487.95	500.09	505.64
2	508.06	499.18	505.39	533.09	511.43
3		511 76		680.43	596.09
4	545 71	616.95	525.69	596.24	571.15
6	516.70	461.80	401.68	547.36	481.88
7	649.54	600.17	573.36	700.41	630.87
8		567.20		424.07	495.63
9	385.77	408.51	417.80	462.74	418.70
10	455.17	463.71	403.15	528 07	433.41
11	450.60	590.08	507 65	679 65	632.80
2	711.10		501.05	019.05	052.00

	Replications								
Treatments	1	2	3	4	Mean				
		ZIN	ca						
1 2 3 4 5 6 7 8 9 10 11 12	23.32 33.68 14.21 38.35 44.07 11.06 25.26 21.02 31.96	9.33 11.61 56.85 26.42 39.35 35.35 35.42 18.76 25.68 35.42	18.25 45.86 17.65 43.65 40.52 12.92 11.14 37.43 53.73	5.91 7.66 36.58 28.10 18.22 25.43 48.43 7.89 22.35 27.44 66.47	14.20 24.70 46.70 21.59 34.89 36.34 41.92 12.66 21.11 30.33 50.72				

^aExpressed as mcg./gm. dry weight.

					п	reatments				
	1 -	Basa1	diet			1 cuomento b	7 - Basal	+ 10 pr	om Zn + Fe	2
	2 -	Basal	+ Cu				8 - Basal	+ 10 pr	m Zn + Ci	1 + Fe
	3 -	Basal	+ Fe				9 - Basal	+ 500 1	n Zn	
	4 -	Basal	+ Cu	+ Fe			10 - Basal	+ 500 1	n m Zn + (Cu
	5 -	Basal	+ 10	ppm Zn			11 - Basal	+ 500	opm Zn + H	7e
	6 -	Basal	+ 10	ppm Zn	+ Cu		12 - Basal	+ 500 1	opm Zn + (Cu + Fe
						Replicat	ions			
		1		2	3	4	5	6	7	Mean
Treatment										
						Growth				
				4	weeks	weight gai	n (gms.)			
1		56		70	48	50	75	77	71	64
2				59	38	68	80	64	105	69
3				66		70	77	68	74	71
4		95	5	86	67	67	68		44	71
5		184	ł.	164	155	164	162	132	171	162
6		184		134	178	161	73	134	45	130
7		178	3		104		180	184	191	167
8		69)	206	175	159	131	146	161	150
9		168	3	191	160	146	172	144	144	161
10		147	7	109	118		144	128	160	134
11		161	L	165	186	191	114	157	152	161
12		183	3	182	122	168	129	149		156

GROWTH AND HEMOGLOBIN DATA FOR EXPERIMENT 3

A COLUMN AND AND A

TABLE 5--Continued

	Mean			15.79	15.95	15.79	16.01	13.12	12.47	12.78	13.65	12.64	12.66	13.39	
	7			14.94	13.86	16.72	16.49	13.94	1	13.40	13.49	12.94	12.00	14.14	
	9			13.77	17.09	14.03		12.94	13.40	12.60	14.34	12.43	12.94	12.34	
ß	5		ġ	16.6	15.80	16.37	16.60	13.12	13.12	11.46	14.03	13.20	13.66	14.14	
plication	4		loglobin ml. bloo	17.97	15.37	17.09	13.86	12.86	10.77	1	12.34	12.94	1	12.09	
Re	3		Hem mg./100	16.72	17.09	1	16.26	13.20	12.52	12.94	14.43	12.94	12.00	15.69	
	2	-		16.03	16.49	14.74	17.57	13.28	11.46	1	14.43	12.86	13.12	11.92	10 01
	1			14.86	1	1	15.26	12.52	13.57	13.49	13.49	11.16	12.26	13.40	
		Treatment		1	2	3	4	2	9	7	8	6	10	11	

TABLE 6

LIVER COPPER, IRON, AND ZINC DATA FOR EXPERIMENT 3

		Tre	atments		
1 - Basa 2 - Basa 3 - Basa 4 - Basa 5 - Basa 6 - Basa	1 diet 1 + Cu 1 + Fe 1 + Cu + Fe 1 + 10 ppm 1 + 10 ppm	Zn Zn + Cu	7 - Basal 8 - Basal 9 - Basal 10 - Basal 11 - Basal 12 - Basal	+ 10 ppm + 10 ppm + 500 ppm + 500 ppm + 500 ppm + 500 ppm	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
		Repli	cations		
Treatmen	1 ts	2	3	4	Mean
		CO	PPER ^a		
1 2 3 4 5 6 7 8 9 10 11	12.40 177.19 10.30 538.27 12.16 137.29 10.06 227.51 12.83 67.32 14.00 71.89	25.73 284.24 9.27 437.38 9.88 234.66 13.52 125.79 14.31 41.04 6.47 59.49	32.51 315.57 13.56 947.56 10.93 131.90 18.10 151.75 9.87 123.44 11.32 31.87	14.52258.9913.10470.6514.93224.949.00251.9829.11127.5310.3034.37	21.29 259.00 11.56 5 8.49 11.97 182.20 12.67 189.26 16.42 89.83 10.52 49.43
		:	IRON ^a		
1 2 3 4 5 6 7 8 9 0	590.72 389.71 814.86 1537.96 259.09 434.39 701.71 506.06 261.20 168.35 333.65 200	472.67 591.47 527.19 725.49 326.79 448.31 276.49 322.38 344.22 136.80 580.77 185.39	679.80 737.23 713.48 1679.98 373.34 262.93 554.72 307.36 195.49 188.25 206.91 199.75	482.79 522.79 742.76 825.34 290.35 407.40 622.38 493.13 444.46 272.45 148.47 185.38	556.49 560.30 699.57 1192.19 312.39 388.23 538.82 407.23 311.34 191.46 317.45 209.60

		Replic	ations		
	1	2	3	4	Mean
Treatme	ents				
		Z	INC ^a		
1	21.51	28.08	79.68	75.03	47.58
2	15.60	24.68	28.25	38.37	26.73
5	20.12	19.09	46.50	81.24	41.74
5	53.00	58.55	50.51	37.12	49.80
6	20.43	42.68	55.10	46.98	41.30
8	20.90	50.90	94.77	75 80	47.08
9	48.77	120.98	91.13	46.33	76.80
10	15.52	43.90	85.37	35.84	45.16
11	108.46	81.73	151.32	72.75	103.56
12	36.84	68.50	76.10	76.32	54.44

^aExpressed as mcg./gm. dry weight.

=

40 APPENDIX C ANALYSES OF VARIANCE

ANALYSES OF VARIANCE OF WEIGHT GAIN, HEMOGLOBIN, AND LIVER COPPER, IRON, AND ZINC DATA FOR EXPERIMENT 1

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
	Weight	; gain	and a subscription of the second
Total	24	6271	
Replications	5	398	79
Treatments	4	4184	1046**
Error	15	1689	112
	Hemogl	obin	
Total	21	59	
Replications	5	4	0
Treatments	4	23	5.8
Error	12	32	2.7
	Liver C	opper	
Total	19	267	
Replications	3	125	41
Treatments	4	52	13
Error	12	99	8
	Liver	Iron	
Total	19	244537	
Replications	3	4916	1638
Treatments	4	171710	42928**
Error	12	67911	2326
	Liver 2	linc	
Fotal	19	42982	dia a
Replications	3	6136	2045
Freatments	4	27737	6934**
Fror	12	9109	159

******Highly significant ($p \leq 0.01$).

ANALYSES OF VARIANCE OF WEIGHT GAIN, HEMOGLOBIN, AND LIVER COPPER, IRON, AND ZINC DATA FOR EXPERIMENT 2

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
	Weight	gain	
Total Replications Treatments Error	49 5 10 34	23137 264 20948 1925	53 2095** 57
	Hemoglob	oin	
Total Replications Treatments Error	49 5 10 34	221 14 116 91	12** 3
	Liver Cop	oper	
Total Replications Treatments Error	38 3 10 25	3022576 56753 2543805 422018	18918 254380 ** 16881
	Liver In	on	
Total Replications Treatments Error	38 3 10 25	334136 22186 215288 96662	7395 21523 ** 3866
	Liver Zi	nc	
Total Replications Treatments Error	38 3 10 25	9435 252 6544 2639	84 654 ** 106

**Highly significant ($p \leq 0.01$).

0.000

ANALYSES OF VARIANCE OF WEIGHT GAIN, HEMOGLOBIN, AND LIVER COPPER, IRON, AND ZINC DATA FOR EXPERIMENT 3

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
	Weight gain,	Diets 1-8	
Total Replications Treatments Zn Cu Fe ZnCu ZnFe CuFe ZnCuFe Error	49 6 7 1 1 1 1 1 1 1 36	142568 1236 99883 97278 311 1046 758 224 323 34 41449	206 14269** 97278** 311 1046 758 224 232 34
	Weight gain, Die	ts 1-4, 9-12	
Total Replications Treatments Zn Cu Fe ZnCu ZnFe CuFe ZnCuFe Error	49 6 7 1 1 1 1 1 36	118753 1702 102626 99036 611 825 1198 129 228 598 14407	284 14661** 99036** 611 825 1198 129 228 598 400

(10)

au soruo

-10440

rolling h

ALC: NOT THE OWNER

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
	Weight gain,	Diets 5-12	
Total	51	54418	
Replications	6	4356	726
Treatments	7	5716	817
Zn	. 1	8	8
Cu	ī	2730	2730
Fe	ī	1909	1909
ZnCu	ī	50	50
ZnFe	ī	13	13
CuFe	1	85	85
ZnCuFe	1	920	920
Error	38	44346	1167
	Hemoglobin,	Diets 1-8	
Total	48	168	
Replications	6	3	0
Treatments	7	120	17**
Zn	1	114	114**
Cu	1	0	0
Fe	ī	1	1
ZnCu	ī	0	0
ZnFe	ī	1	1
CuFe	ī	2	2
ZnCuFe	ī	2	2
Error	35	54	2
	Hemoglobin, Die	ts 1-4, 9-12	
Total	40	188	
Replications	6	10	1
Treatments	7	132	19**
Zn	1	129	129**
Cu	1	0	0
Fe	1	1	1
ZnCu	1	1	1
ZnFe	1	0	0
CuFe	1	0	0
ZnCuFe	1	1	1
Error	36	46	1

We starting the start

Total Serillantin Trastments Sn Sn Sn2 Sn2 Sn2 Sn2 Sn2 Sn2 Sn2 Sn2

Source of Variation	Degrees of Freedom	Sum of Squares		Mean Square
	Hemoglobin, D)iets 5-12		
Total	50	46		
Replications	6	6		1
Treatments	7	10		î
Zn	1	10	0	ō
Cu	î		õ	Ő
Fo	ī		2	2
7001	1		1	1
ZnEa	1		ō	i i
2nre CuFe	1		1	1
Cure	1		Ē	5
ZnCuFe	27 1	20	2	2
Error	37	30		1
	Liver Copper,	Diets 1-8		
Total	31	1351714		
Replications	3	20080		6693
Treatments	7	1153158		164737**
Zn	1	12	2142	122142**
Cu	1	68	5913	685913**
Fe	1	50	6953	56953**
ZnCu	1	114	4222	114222**
ZnFe	1	5:	1762	51762*
CuFe	1	6	3390	63390*
ZnCuFe	1	5	8739	58739*
Error	21	178476		8499
	Liver Copper, Di	ets 1-4, 9-12	2	
Total	31	1374213		
Replications	3	31127		10376
Freatments	7	1188791		169827**
	1	262	2188	262188**
Zn		1128	3850	#38850**
Zn Cu	1	430		430030
Zn Cu Fe	1	40	186	40186
Zn Cu Fe ZnCu	1 1 1	40	186	40186 253700**
Zn Cu Fe ZnCu ZnEe	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 253 70)186 3700)688	40186 253700** 70688**
Zn Cu Fe ZnCu ZnFe CuFe	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 253 70 49)186 3700)688)544	40186 253700** 70688** 49544*
Zn Cu Fe ZnCu ZnFe CuFe ZnCuFo	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 253 70 49)186 3700)688)544 3632	40186 253700** 70688** 49544* 73632**

ASS. SANATA

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
	Liver Copper,	Diets 5-12	
Total Replications Treatments Zn Cu Fe ZnCu ZnFe CuFe ZnCuFe Error	31 3 7 1 1 1 1 1 1 21	189617 3533 162762 26450 105340 741 27495 1458 399 840 23322	1178 23252** 26450** 105340** 741 27495** 1458 399 840 1111
	Liver Iron,	Diets 1-8	
Total Replications Treatments Zn Cu Fe ZnCu ZnFe CuFe ZnCuFe Error	31 3 7 1 1 1 1 1 21	31 32176 220610 2119646 927132 97130 520710 152490 140185 39451 242556 791920	73537 302807** 927132** 97130 520710** 152490 140185 39451 242556** 37710
	Liver Iron, Die	ts 1-4, 9-12	
Total Replications Treatments Zn Cu Fe ZnCu ZnFe CuFe ZnCuFe Error	31 3 7 1 1 1 1 1 1 21	3847323 102382 3096175 1957617 36993 319380 262197 281794 124525 113669 648765	34127 442311** 1957617** 36993 319380** 262197** 281794 124525** 113669** 30894

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
	Liver Iron, D	iets 9-12	
Total Replications Treatments Zn Cu Fe ZnCu ZnFe CuFe ZnCuFe Error	31 3 7 1 1 1 1 1 1 21	675043 31754 349211 190190 40186 36430 14782 24466 19110 24070 294078	10585 49887* 190190** 40186 36430 14782 24466 19110 24070 14004
	Liver Zinc,	Diets 1-8	
Total Replications Treatments Zn Cu Fe ZnCu ZnFe CuFe ZnCuFe Error	31 3 7 1 1 1 1 1 21	14318 5947 3166 1313 392 60 66 158 473 657 5255	1982 445 1313* 392 60 66 158 473 657 250
Total Replications Treatments Zn Cu Fe ZnCu ZnFe CuFe ZnCuFe Error	Liver Zinc, Die 31 7 1 1 1 1 1 1 1 21	ts 1-4, 9-12 35764 5955 18864 10477 3121 905 1954 1226 340 841 10945	1985 2695** 10477** 3121* 905 1954 1226 340 841 521

TABLE 3--Continued

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
	Liver Zinc, D	iets 5-12	
Total	31	28939	
Replications	3	7360	2453
Treatments	7	12155	1736**
Zn	1	4371	4371**
Cu	1	4095	4095**
Fe	1	1815	1815
ZnCu	1	1300	1300
ZnFe	1	504	504
CuFe	1	52	52
ZnCuFe	1	11	11
Error	21	9429	449

*Significant (p≤0.05).

**Highly significant (p≤0.01).

10 soupel

Total Bopilestions Treatments So Ev Ev En Es CuPe Total