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1. Introduction. Mathematical theory has two important 

fields of application:  (1) to physical situations and (2) in the 

development of further mathematical theory which may in turn have 

practical applications.  It is logic or the deductive element in 

mathematical reasoning which enables us to produce a theory before 

we have observed the physical situation to which it is aDplicable. 

It is by induction that we are able to test our findings.  It is 

because these two types of reasoning are so closely interwoven in 

the development of mathematical theory that it is necessary to 

consider both the major fields of application in order to establish 

the validity and to understand more fully the implications of our 

mathematical knowledge. 

The line integral, with which this oaper is concerned is 

a part of the subject matter of advanced calculus. As such, it is 

necessary to the development of the theory of functions, and hence 

is of prime importance to that whole field of mathematics known as 

mathematical analysis. In this paper we shall define the line 

integral, present the theory which establishes its existence and 

show how such an integral is useful in both the major fields of 

appxication. 

2. Continuous and rectifiable curves.  In defining the 

line integral, we will be dealing with functions which are continu- 

ous and curves which are both continuous and rectifiable.  It is 

therefore necessary to recall what is meant by these concepts. 



A function such as x * x(t) is said to be continuous in 

an interval |_a, bj if it is continuous at every point in the interval. 

In order that x(t) be continuous at t = a, for any preassigned 

positive number ^ , there must be a positive number «f such that if 

1  t - a ]<£   , then I x(t) - yi(a.)\* &   .    Geometrically this means 

that the graph of x(t)  is unbroken at the point.    A curve given by 

x = x(t), y s y(t), i 3 l(t] is continuous in an interval if each 

of these coordinate functions is single—valued and continuous on the 

parameter range. 

A curve is rectifiable if it has finite length.    The length 

of a line joining two points, P0:(x0, yQ,  zQ)  and p-^Xp y-^ z]_) is 

[(x-,^ - XQ)
2

+  (y! - yo)2-*-   (zi " zo) J  '    We "^y denote this distance 

by d(p0, P2_).    Similarly the length of a polygonal curve formed 

by joining consecutively by straight line segments the points 

p0, plt  ...   , pn is given by d(pQ, px) +  d(px, p2)+   ... -*■ d(pn_1, pn) 

n 
- 2Z d(P-   i > P- ) •    The methods of the calculus afford a means of 

i«l 

defining the notion of the length for general curves given para- 

metrically by 

x = x(t), y = y(t),  z = z(t)    a^tib. 

Intuitively,  one would expect the length of such a curve C to be so 

defined that its length is greater than or equal to the length 

of any polygonal curve inscribed in C, yet such that there do exist 

inscribed polygons whose lengths are arbitrarily close to the length 

of C. 
n 

Let us denote by S(C:P)  the sum 21 d(Pi-].r Pi)' 

Geometrically S(C:P) is the length of the polygon inscribed in C by 



joining consecutively the points p0, p^,   ...   , p .    Nor; denote 

by S(C) the least upper bound of S(C:P).    If S(C) is finite,  the 

curve C is said to be rectifiable, and 3(C) is defined to be the 

length of C. 

3.    Properties of rectifiable curves.    Starting from this 

general definition of arc length, we can prove the following proper- 

ties concerning rectifiable curves.[9] 

(1)    For a continuous curve C defined by x s x(t), 

y z y(*)» a = z("t)> a = t r h, let C be an arbitrary value on 

a < t < b, and denote by C^ and C2 the curves defined by x = x(t), 

y r y(t),   z r z(t) for t on the sub-intervals a * t j c and 

c = t r b, respectively.    Then C is rectifiable if and only if 

both C-]_ and C2 are rectifiable.    Moreover if C is rectifiable 

S(C) z S(Ci)4  3(C2). 

For a partition P:a - t0 < t^ < ... < tn - b we shall 

define the norm of P, written N(P), as the greatest of the values 

t:  - t4_T.    The set of polygonal lengths S(CtP) is said to tend to 

the finite limit S,  or to converge to S, as the norm of P approaches 

zero, if to each t > 0 there corresponds a 4 > 0 such that 

Is - S(C:P)l< ^   for every partition P such that N(P)<<S" .    We 

write lim  , S(CiP) - 6«    In particular, if S(C:P)  converges 
N(P)-*0 

to S and N(P) approaches zero, we have for every sequence of parti- 

tions (Pm) satisfying lim N(Pm) 9 0 that lim S(C:Pm) = S. 

With the aid of these definitions, we can s^ate a second 

1.    Numbers in square brackets will hereafter be used to 
refer to books listed in the bibliography to this paper. 



property of a rectifiable curve. 

(2)    A continuous curve C defined by x - x(t), 

y r y(t)»  z ■ z(t) is rectifiable if and only if the set of poly- 

gonal lengths S(C:P) converges as Tl(F) approaches zero,    lloreover, 

for a rectifiable curve lini .,.      S(C:P) = 2(C). 

The discussion thus far gives necessary and sufficient 

conditions for a curve to be rectifiable, but does not provide a 

formula for computing the length of a rectifiable curve.    'Ye shall 

now consider continuous carves C : x s x(t), 7 - y(t), z - z(t) for 

•which the coordinate functions have derivatives x'(t), y'(t) and 

z'(t) that are piece-vn.se continuous on the interval [a, bj.    That 

is, there is a finite set of division points a = a0<a^<   ...< 

a,   - b such that on each of the sub-intervals these derivatives 

are continuous.    We can now establish the integral representation 

for the length of such curves.2 

Theorem 3:1    If a continuous curve C is defined by 

x ■ x(t), y = y(t),  z ■ z(t) and the coordinate fmotions have 

derivatives which are piece-wise continuous on|_a, bj, then C is 

rectifiable , and S(C) A (x'2 +  y'2-*- z'2)J dt. 

k.    Definition of the line integral.    We are now in a 

position to define the line integral.     "e will consider the curve 

C : x - x(t), y s y(t),  z = z(t) which is continuous and rectifiable 

on the interval [a, b] and suppose that lf(x« J» z) is a bounded, 

2.    The proof for this theorem is given in full by most 
textbooks on advanced calculus.    See for example [l],  [9], and   [13J. 



single-valued function of (x, y, z)  in a region of space containing 

the curve C.    In accordance with the usual method of the calculus, 

divide up the parameter range by a partition P : a = tQ <  t, <   ...< 

tn = b and let p^(xi, yi, zi) denote the point on C determined by 

t = ti«    Let A x, 4i y, A^ z represent the increments of the 

respective coordinates in the i-th interval of the partition; 

^i t : tj_ - ti-i* si * 3(.^±) and^i s B s± - B^ , where s(t) is the 

arc length along C measured from the initial point.    Let/*(P) 

denote  the maximum of the values^,   s. 

Corresponding to the arbitrary point (x^', y< • > ZJ') in 

this i-th interval, we can form the sum 

M(C:P) =£l MCa^t, T t, z±*)^± x. 
i=l 

The line integral of Vf(x, y, z) with respect to x along 

G is said to exist and be equal to I-,   if "(C:P)  tends to the finite 

limit I-, aSAt(P) approaches zero; that is, if to each £ > 0 there 

corresponds a<S > 0 such that \ I1 - M(CiP) I < £   for every partiti 

P such thatWP)*^ .    This integral when it exists, is written 

or. 

■L- •!(x, y,  z)  dx. 

Correspondingly the integral  1    N(x, y, z)  dy is said to 

exist and be equal to L, if the associated sum N(C:P)   = N 
i=l 

[x^it y.', z.')4i y converges to I2 asWP) approaches zero. 

Similarly       Q(x, y, z) dz exists and is equal to I3 1 



n 
if the sum Q(C:P) ■ 21   (x(x.', y.', z, t)A,  z converges to I„ 

1JL       i       1       i •    i 3 

astt(P) approaches zero. 

There are several sets of conditions under which the 

line integral can be shown to exist.    These will be given in the 

form of theorems but the proofs will be omitted.    Full proofs may 

be found in texts on advanced calculus or elementary function 

theory.3 

Theorem Utl    A necessary anc. sufficient condition for 

the line integral to e::ist is  that to each 6 > 0 there corresponds 

aS > 0 such that |M(CIP«) - ::(C:P")| < *   for all sums associated 

with arbitrary partitions ?•   and P" satisfying^.(P' )< 6 ,/u{?")<0  . 

At first glance, this theorem doe3 not seem to tell us 

much about the existence of the line integral for a soecific function 

and a given curve.    It is, however, the basis for the  oroof of the 

next theorem which is more readily applied. 

Theorem U:2    If "!(x, y, z) is continuous in a region 

containing a rectifiable arc C, then the integral along C exists. 

An extension of this theorem to apply to any curve mace up of a 

finite number of rectifiable arcs is mace possible by 

Tiio or em U:3    Suppose the curve C fiven by the usual para- 

metric equations is rectifiable and for a given c on a < c < b, 

let Cx and G2 denote the curves determined for t on the intervals 

[a, c] and [c, b] .    Then the line integrals along Cj and Cg exist, 

and the integral along C is equal to the sum of the   integrals along 

3.    See for example [$\t [?}• 



C, and C?  j  that is  I    !.!dx - 1      \'dx + I      "dx. 
* \ \ 

5.    Evaluation of the line integral.    3o far we have no 

method Tor evaluating the line integral.    The next theorem^ gives 

us a relation between the line integral and the definite integral, 

by means of which the line integral may be evaluated. 

Theorem 5:1    If :.l(x, y, z)  is continuous in a region con- 

taining continuous curve C whoso coordinate functions have piece- 

wise continuous derivatives on [a, bj   then 

I       (x,  y,  z)  dx -\ y, z) dx -\    ll(x(t), y(t),z(t)) x'(t) dt. 
»a 

In other words if we substitute for x, y, and z their 

equals   :n terms of t as given by the equation of the curve 0 and 

for dx its equal x'(t)  dt, we obtain an integral expressed in one 

/ariable t.    The limits are from a to t since as the curve C is 

traced out t varies from a to b. 

By similar reasoning the theorems of this section and the 

preceding one hold for the integrals I« and I, along C. 

If C is a plane rectifiable curve x = x(t), y = y(t) on 

[a, b], the definitions and properties of line integrals I    M(x,y) dx, 

\    N(x, y) dy are ottained from the above by considering z = 0. 

The method for evaluating these integrals is the same as far the line 

integral  in space. 

By way of illustration,  let us evaluate 
f(l,D 

)(0,0) 
fy dx + 

I.    Tor proof of this theorem see [?}, \l6\ 
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[x - y) dy along several curves.    First if we choose as the oath 

of integration the straight line connecting the two points (0, 0) 

and (1, 1), riven   >ara*ietrically by x = t, y - t,   the line integral 

becomes 

\ 
tV2 dt _ 2/3 ta/'H     = 2/3 

:   jvaluats this sane integral along the parabola x = t2, y - t, 

vre obtain 

r[tV2 (2t) -f (t2 - t)] dt = f1(2t3/2+ t2 - t) dt = 

fa/5 t?/2+  t3/3 - t2/2l    = li/5* 1/3 - 1/2 = 19/30 L J0 

Into -ration along a third path, the cubical parabola x = t, y = t-3, 

yields yet another result.    The integral becomes 

CL[t3/2+  (t - t3)(3t2)] dt =f (t3/2*  3t3 - 3t5) dt 

= [2/5 t5/2*   3A ^ - 3/6 t6J    = 2/$+ 3A - 1/2 = 13/20 

In general, a3 in this example, the value of the line 

integral aepends upon the path of  integration.    There are, however, 

conditions under which its value is seen to depend only on the end 

points of the path.    Under these conditions the line integral is said 

to be independent of the path.    For instance,  let us evaluate 

$ 

0,1) 

(0,0) 
(x2+  y2) dx + 2xy dy along the same paths as those used in the 

preceding example.    Integrating along the straight line x = t, y = t, 

we have 

(2t2+   2t2)  dt - li\    t2 dt - U/3 i i H- U/3. 

1 



Choosing x = t2, y - t as the nath of integration, we ^et 

f> (t"♦   t2)(2t) ♦   2t-' 

■[ '64   "    7' 

1 - ■ J (2t^4   Jit3)  dt 

„ 

If we :nte-rate along the cubical parabola x * t,  y ■ t3,  it is 

interesting to note that  the result is still the same.    Thus the 

line integral becomes 

i: [ * t6) ♦  2tL(3t2) 

= [t3/3 + 7t7/7j   = I1/3 

x dt 

Integrals which are independent of the path will be more 

fully discussed and the conditions necessary for an integral to be 

of this type will be further investigated in section 7. 

The discussion so far has dealt with curves given oara- 

->etrically.  There a-*e many instances in which it is preferable to 

use parametric representation of a curve. One case in which this 

is true is in dealing with curves which cannot be expressed as the 

;us of an ecmation giving one of the coordinates as a sin--le- 

/alued function of the other coordinate. Such a case is illustrated 

by the circle x2* y2 = a"  wl ich has the parametric representation 

x = a cos t, y = a sin t C i t t &{ 

where t is the radian measure of an associated central angle of the 

circle. 

Parametric representation is also convenient when the sense, 

or direction in which the curve is traced, needs to be preserved. 

He  will say that a curve is described in the positive direction if 
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it is described so that a nan walking alone the curve in the direc- 

tion of description has the enclosed area always on his left. 

It is of prime importance when working with line integrals 

that  the  direction of integration be preserved.     7or it follows from 

the definition of the line integral that f   Mcbc = -I     "dx where c' 

is the same curve as 0 but traced in the opposite direction. 

However, when a curve can be defined by an eauation giving 

coordinates as a single-valued function of the other and 

when there is no danger of confusing direction,  then it may be 

si-pier in  specific  examples to use the eouation of the  curve   -dven 

in the form y = f(x),   a = x r b.     With the eouation in this form 

and with f'(x) a continuous function, then dy = f'(x) dx, and 

su1 stitution in the line integral gives the definite integral with 

respect to x;  that is 

[    •:(>:,/)  dx ■»■ N(r,y)  dy = \    [ll(x,   f(x)) ♦ N(x,   f(x))  f'xj dx 

7or example if we wished to evaluate 

ra, 3) 
3  , o> 

vre would have 

fx2ydx -f (x2 - y2) dy]  along the curve given by y = 3x2, 

(   [x2(3x2) + (x2 - 9x]l)(6x)] dx - V  (3x;' + 6x3 - £la*)dx 

- f3x%+ 6^/1 - $hx6/6\\ 3/5+ 3/2 - 9 =-69/10. 
0 

6.    Green's Theorem, fa will now consider a theorem which 

gives a relation between the line integral in the plane and a double 

integral, thereby providing another method for evaluating the line 
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integral and riving a basis for some conclusions which may be 

drawn concerning independence of the path of integration of certain 

integrals.    This is Green's Theorem. 

Theorem 6:1.    if M(x, y) and N(x, y), ?! and W are contin- 

uous, single-valued functions over a closed region R, bounded by 

the curve C, then 

$ 
Hdx* Ndy ■if ^-^ )dxdy 

) 

the  double integral being  taken over the  riven region,  and the 

curve  C being described in the nositive direction. 

A continuous  closed curve which does not  cut itself is 

called simple.     At first let us  consider the region R bounded by 

the  simple  closed curve  C which  also has the property that no line 

parallel tc either of the coordinate axes  intersects  C in more  than 

two  joints.     Tf the line  is drawn oarallel  to OY then it intersects 

C in two points; 

where y = y^ on the 

lower boundary and 

7 = 72 on the u^per 

boundary.    Let a and 

b be the extreme 

values of x for points 

in R.    Now let M(x, y) 

be any function 

which is continuous 

in the region R  and 

I 

^2 
-i 

R 
\ 

yl 

0 a 
Figu re 6:1 

) 
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along its boundary C and  1'or which HI is  continuous.     :ie  shall 

consider the double integral of ?21 over the region R".    The 

\\    H. dxdy - (     dx I    *L1 dy 
JJ   lT>V 'a       K*j 

/"b 
= \   [*'(*, y2) - M(x, yx)J dx 

= -\     M(x, y-^dx - 1     I/(x, y2)dx. 

itit by the definition of a line integral, the expression on the 

right is, excent for sign, the line integral of }'dx around C in 

the positive direction.    Hence we have 

[[  V dxdy = -C   Mdx. 
).p»y Jc 

Similarly, if N is another function of x and y contin- 

uous in R and on C,  and such that'll is continuous in R, we nay 
"% -r "ax 

s .ow that 

&»**■*< 
Ndy 

?or if we let c and d be the extreme values of y in the region R 

and draw a line parallel to OX cutting 0 in points where x = xlf 

x - x2, we have 
r r C^ f x2 
I f    t£ dxdy =1     dy   I    ?I dx 

- \    [N(3^, y) - N(xx, y)]  dy 

sd /-c 
= \    N(x2, y)dy-f V     V(r-i, y)dy 

Again by definition of the line integral,   the expression 

on the right is the line integral of Ndy around G in the positive 

• 
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direction. By add- 

ing equals to equals, Y 

we have finally 

{ 
■S 

Kdx + Ndy 

C&N --3M)dxdy. 
R h>x    -Dy) 

Figure 6:2 

We have proved this result for a simple region R which 

also possessed the property that the boundary would be cut only 

twice by a line parallel to either of the coordinate axes.    Our 

theorem may easily be extended to regions bounded by any contin- 

uous curve C such that it is possible to draw a finite number of 

lines which divide 

the region into sub- 

regions,   each of the 

type considered in 

proving the theorem. 

Such a region is 

shown in Figure 6:3« 

If we draw the addi- 

C 
tional lines KL,  GH, Figure 6:3 

and PS, we have four subregions of the type used in the proof of the 

theorem. By adding the integrals obtained for each of the subregions, 

we obtain the integral along the whole curve plus the integrals along 
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KL, OH, and PS.    examination of the arrows in the figure shows that 

we have integrated twice along each of these lines, but in onoosite 

directions.    The integrals  along these lines therefore  cancel, 

leaving only the integral around C,  traversed continuously in the 

positive direction. 

The theorem is  also true  for a region bounded by nore than 

on° curve.    For example, in Figure 6:U by drawing KL and OH the region 

is turned into one 

bounded by a single 

continuous curve. 

:ain the two inte- 

grations along KL and 

""' cancel and we have 

le*t the integrals 

around the boundary 

curves each traversed 
0 

Figure 6:u 

in the positive direction. 

A re-ion which bar;  the property that any curve connecting 

two points  in the region may be  gradually deformed into  any other 

curve connecting the same two points without passing out of the rerion 

is called a simply connected region.    Thus, regions bounded by a 

circle,   a rectangle,  or an ellipse  are  simply connected.     The  region 

•••    -mre  6:J.  outside  C.,  and  ^  and  inside ^ is rot simply connected 

because  an  arc of a circle conrectinr joints on  opposite  sides of 

C2 cannot be deforned into a straight line without passing out of 

the region E.     In other words,   regions  that have  holes  in them are 

not sirply connr-cted regions;   such  re-ions  are  called multioly connected. 
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7« Trdenendence of_ the -rt.h of Integration. Using 

"rreen's Theorem we are now able to derive conditions which are 

necessary and sufficient that the line integral connecting two points 

nd B of a region depend only on these ooints and not on the curve 

connecting them. 

Theorem 7:1.  Let !,' and N be two functions of x and y, such 

■ 4 V.,  N, "?_, and Hi are continuous and sinrle valued at every point 

of a simply connected region R.     The necessary and sufficient condi- 

tion that \ Vdx + Ndy be independent of the curve C is that*l_ = 
Jc "by 

3'" at all noints o" the region R. Tn this case the line integral 
«:; 

is a function of the end joints only. 

In the 

'Mrst r-lace, we can 

see "ro''1 the figure 

that if the line 

integral along CT 

from A to 3 is equal 

to that along C2 

from. A to B, then the 

integral along the 

closed curve formed by going from A to 3 along C^ and from B to A 

along C2 is zero. Hence, since the points A and B may be any two 

points and the curves Cj and C2 any two curves, the statement that 

the line integral between two ooints is independent of the path of 

integration is eouivalent to the statement that the line integral 

Y 

co             B 

7 

JLS 
A  * <£—=*-<! 

0 
Figure 7:1 
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around any closed curve containing the two points is zero. 

Green's Theorem gives us the relation 

\     I.'dx +  Ndy . 1 f  C|g - -aM)dxdy 
'R (is   "»y) 

From this formula,  it is evident that if«*i ="»M at all points of 
■»x   Try 

R, then the integral on the left is equal to zero. This then is 

a sufficient condition that a line integral around any closed path 

is zero. 

This condition is also necessary. For suppose"^ /dM at 
1x  ~by 

some interior point A of R and hence"*N -3^ must be either positive 
3x   iy 

or negative throughout a suitably chosen neighborhood of A. Then 

the double integral could not vanish when taken over this region, 

and consequently the line integral which is equal to it could not 

vanish. Therefore, the condition is necessary for the line integral 

to vanish. 

Thus we have proved that the condition^ alK is a 

i necessary and sufficient condition that \    Kdx + Ndy vanish.    For 
'C 

reasons given immediately preceding the proof of this theorem, this 

is equivalent to saying that the condition*!! ="»M is a necessary 
-ax   »y 

, 
and sufficient condition that \    Mdx •*• Ndy be independent of the 

'C 

path of integration. 

When evaluating integrals in section 5 we saw that 

f(1, 1) 

1(0, 0) 
(x2 + y2)dx + 2xydy = U/3 when integrated along the straight 
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line,  the parabola,   and the cubical parabola connecting the tiro pointt. 

Applying our test for independence which we have just developed, we 

see that 

so that 

M s 2y        VL - 2y 
^x »y 

1X     -jy 

and we conclude that the value of the integral would be the same along 

any curve connecting (0, 0) and  (1,   1). 

A theorem in space which corresponds to Green's "heoren. 

in the plane  and which ^-ives the basis for a  test  for independence 

or the oath of integration in space is Stokes's Theorem.^ 

Theorem 7; 2.    Let lf(x, y,   z), N(x, y, a) and Q(x, y, z) and 

their partial derivatives with respect to x, y and z be continuous 

and single valued functions in a region containing the surface S 

il   is bounded by the closed curve C.    Let dS be the element of 

area of S,   and let cosfl , cos^ and cos/-  be the direction cosines of 

the exterior normal to dS.     Then 

B <*   + f  (Mdx* Ndy + Odz) = If   [(22-211) cot 
Jc ))    ['v     -iz) 

(51-12)    COS*   +    (511 ->£)   COS/I   dS. 
(»2      »x) (>x     »y) J 

By means of thjs  theorem it is possible  to derive  a test 

-'rr'inendence of the path of integration in space sirilar to that 

derive! for the plane by means of Green's  Theorem.     The derivation 

J>.     This theorem will 're rriven without proof since the  proof 
involves  surface integrals which will not be discussed  in this paper. 
For oroofs see tests on advanced calculus, especially llOj and [13]. 

■ 
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is ouite similar to that of the test for independence in the plane. 

This test6 is riven by 

Theorem 7:3.    Let the region of space considered be one 

in which lf(x, y,   z),  i:(x,  y,   »)   and Q(x,  y,  »)  and their partial 

derivatives are continuous and single-valued functions of x, y,  and 

z.    Then the necessary and sufficient condition that 

i Mdx + Ndy + Odg 

be independent of the path of integration  is that 

\2 -*!• 
>y " *z *55        »X 

JH.1JI, 
»x " »7 

P.    Area inside  a closed curve.    Having defined the  line 

integral and discussed conditions for its existence, having found 

methods for evaluating it, and having observed some of its properties, 

we are now ready to see how such an integral can be useful. 

The line integral ray be used to find the area inside a 

closed curve. First consider the simple closed curve C such that 

a line parallel to 

either coordinate 

axis cuts it in only 

two points. Let 0 

^e bounded by the 

lines x = a-, , x = «u, 

y = b^ and y ■ b2 

which are tangent to 

!  at A,, A«, B,   and 

Y 

*2 

B2 

jX\ A2 

Al 

^ 
Rl 

0 a 
1 Figure 8:1 ^2 

6.    For derivation see [l3J« 
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Bg, respectively.    Clearly C cannot be single vslued.     Therefore, 

let the  eauation of A1 31 A? be  -iven by y1 = f^x)   and the  equation 

of Ax B? A2 by y2 - f2(x) where f (x)  and f (x) are single valued 

functions.    By use of definite integrals we can establish a  formula 

for area which can be shown to be eouivalent to a line integral 

expression.    For by definite integrals 

A - \       y dx - \       y-dx 
)P1 J&1 

= - \       72^ ~ \       7]d    = " J     ydx^ 
/ a2 / a-i * C 

Similarly,  if x-± ■ ?1(y) is the eouation of B,  A- Bg andx2= Fg(y) 

is the eouat?on of B,   A- BU, then 

A = \       x«dy - 1 
Jb1 J 

Xndy 

'1 

xdy. 

1 2 

In each of these formulas the Integral around C is taken in the 

positive direction, thus keeping the area oositive.    By adding these 

integrals we get a formula which is a line integral expression in 

1 the   rorm  \    Mdx+ Kdy, namely 

= 1/2 \    (xdy - ydx). 

In many cases this formula has the advantage over the 

definite integral  for cc-putnng area in that it is easier to evaluate, 

"^or instance,  if we Utah to find the area inside the ellipse given 

by the  equations 

x = a cos 9, y = b sin 9 
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by definite integrals, we have 

•0 

JW/2 
.kf: 

Jo 
ydx - - hab \ _      sin2 ©d© = - Lab 

J1T/2 
-  cos 2© de 

- 9ab k (~0 „  sin 29*] 

= 1fab. 

z - ?ab [-1T/2] 

The line integral formula in this case is mo~e easily evaluated, for 

we have 

J 
r2ir 

A = 1/2 \ xdy - ydx = 1/21    ab cos
2 ©d© +• ab sin2 ©d© 

/0 

= ab/2 \       d© = ab/2| el      = ah/2 [217J 
/C 0 

=1Tab 

To  illustrate further the use  of this formula the   areas 

of the triangle and the circle, which we already kmw from geometry 

will be found. 

First we will find the  area of the ri~ht triangle formed 

by the line x/a ■+• y/b = 1 and the coordinate axes.    From the line 

integral formula, we have 

A = 1/2 \    xdy - ydx. 

Cur rurve C in this case is made uo of the x axis from 0 to A, the 

line x/a+ y/b = 1 from A to B and the y axis from B back to 0.    Along 

line AS    y = - b/a x+b and dy:- b/a dx.    Along the y axis x - 0. 

dx = 0.    The  area of  tho triangle 0A' can  therefore be expressed by 

the integral 

•0 
1,1/2   \      [- b/a x -  (-b/a x-f  b)] dx 
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*: 
= -b/2\      dx = -b/2[x]    =-b/2[-a] 

3(0,  b) 

Ala, Oj x 

Figure 8:2 

The process of finding the area of the circle  is similar 

to that of finding  the area  of the ellipse which has already been 

shown.     The circle may be  given by the equations 

x = a cos 9, y = a sin © 

From the line integral formula 

*i. (2T\ 
1/2 \     xdy- ydx = 1/2 \       (a2  cos? © 4- a2  sin2 Q)d9 

C '0 

- a2/2 [2ir]«1Ta2. 
0 

Thus by applying the line integral formula to these curves 

we see that our results agree with those we have from geometry; that 

is, the area of the triangle is half the base times the altitude and 

the area of the circle is IT times the radius squared. There are many 

curves, however, which lend themselves more readily to the methods of 

the calculus than to the methods of geometry. One such curve is the 

hypocycloid. 
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If we wish to find the area of the hypocycloid of four 

cusps given by the equations 

x = a cos3 e,    y = a sin3 e, 

we have 

dx - - 3a2 sin ©d©, dy . 3a sin2 © cos ©d© 

Applying the line integral formula, we have 

r2ir 
A . 1/2 \  (3a2 cos*! © sin2 © + 3a2 sink © cos2 ©)d© 

2T 

( 2 )( 2 ) 

f2^ C2K 
- 3a2/2\       cos2 © sin2 ©d© • 3a2/2 I     (1 *■ cos 2©yl - 

JO -'0(2 )( 

= 3a2/8   I      fl - (1 - cos to)! de m 3a2/8   f e . 8ln ^ 
JoM       2        )J L2    "~5—J 

21T 

0 

3a2/8 [1T] . 3/817a2 

Y 

Figure 8:3 

We can also find the area enclosed by the loop of the 

strophoid given by the equations 

x »(1 .t|t^ y = t(l - t2)/(L+ t2Jl 

We have 

dx S-Utdt/(1+ t2)2, dy =ll - H2 - t%ft + t2)2 
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Figure 8:U 

Tron the prea formula 

1 
A - 1/2 (   la - £Hi - H2 - th+ t(i -12)(+ uj dt 

) -it (14- t2)3 3 

= 1/2 P    1 - t2 - th + t6 dt m l/2 f
1 (t2 - l)2rtt,      l/2 (] (i_     J:t2     I 

Tn order to evaluate this last integral, make the substitution 

t = tan z .Then t r 1 

Then dt = sec2 zdz z = 1TA 

t - - 1 

z = -1T/L 
* 

Substituting 

fTT/J 

dt 

; -1T/U 

f 1T/L 

1 _ J,  tan2 z)   sec2 zdz r 1/2 \   _,   (sec2 z - li sin2 z)dz 
ie^"z  ) /^1/t 

IT/], 

rW/i 

= 1/2 \ [sec2  z - 2(1 -  cos 2z)l   dz = 1/2ftan  z - 2z + sin 2zj , 
J-1T/1 % 

1/2 [(1 - IT/2 + 1) -  (-l*H/2 - 1) J 

. 2 - IT/2 
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The formula for area3 is also applicable to areas included 

between two curves.    For instance, we can find the area included 

between the parabola y2 = 9x and the straight line y = 3x.    Along the 

parabola x ■ y2/9> dx * 2/9 ydy.    Along the straight line y - 3x, 

dy a 3dx. 

Solving 

these equations simul- 

taneously we find 

that they intersect 

at (0, 0)  and (1, 3). 

Integrating in the 

positive direction 

around the closed 

curve made up of the Figure 8:£ 

straight line from the origin to the point (1, 3) and the parabola 

from (1, 3) back to the origin, we have 

A - 1/2 C 3xdx - 3xdx -t- 1/2 C   (y2/9 - 2y2/9)dy 

= -i/2[y3/27]    =- I/2    [" 27/2?] 

X 

■ 1/2. 

9. Attraction of material curves. Another way in which 

the line integral is used is in finding the attraction of material 

curves. According to Newton's law of universal gravitation, each 

particle of matter in the universe attracts each other particle with 

a force whose direction is that of the line joining the two, and 

whose magnitude is directly proportional to the product of their masses 
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and inversely proportional to the square of their distance apart. 

That is 

F   = K «j«2/d2 

where m-|  and n^ are the masses of the particles and d is their distance 

apart.    The constant of proportionality K depends upon the units used. 

In practice,  one is usually concerned, not with material 

Darticles, but with continuously distributed matter.    The natural 

procedure is then to think of dividing this body of matter into small 

parts,   sum the vector forces corresponding to these parts, and consider 

the limiting value of this sum as the maximum dimensions of the parts 

approach zero. 

A material curve is often referred to as a wire.    More 

specifically, a material curve may be thought of as a wire of circular 

cross-section, with the centers of these cross-sections lying along a 

smooth curve C,  a smooth curve being one which has at each point a 

tangent line whose direction changes continuously along the curve. 

The mass of the portion of the wire between any two planes perpendicular 

to C is  thought of as being concentrated along C between these planes. 

Linear density D of a curve is the limit of the ratio of the mass of 

a segment to the length of this segment as the length of the segment 

tends toward zero.    If D is a constants is said to be homogeneous. 

Let us consider the attraction of the smooth material curve 

C, whose density D - D(s)  is a continuous function of arc length along 

0,  on a particle Pl(Xl, 7l,   •*) not on C.    Corresponding to a partition 

of C,  consider the massA±nof the piece of C corresponding to^sas 

as concentrated at a point p^', y-,  »tO  of this piece.    Tnen this 

mass particle mil exert on a unit particle at <*,, 7l,  *±) a force 
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whose magnitude is-ii * « D(si')Ji 3 where dL  is the distance between 
V        a-2— 

(xjS Jj,', ij,1) and (xx, yp zx) and ^ ■ = D(a1*)^±  S is derived 

from the fact that the mass of C along^ s lies between the products 

of the least and greatest values of D(s) on this piece byjj_ s, the 

length of the piece. By continuity there is some value s^'  such that 

D(si')^i s =^± m.    Now the direction cosines of the segment from 

p. to p,'     are fri'  - xl), V±' ' *h and (zi' - zl>. 1 "75 *T~ di 
Hence the components of force due to this piece are 

4 .  x _ D(si')(xi' - xi)Jj s3   iji j = D(sj')(yi' - yikfi ■ 
di3 V 

J     Z = D(3j')(zi' - *i)Ji » 

d7 
I 

Summing and taking the limits of these components as the maximum 

length o£J2± s approaches zero, we are led to the following line 

integrals Riving the components of the force exerted by the material 

curve on a unit particle at (x1, f^$  B^)* 

_      f    D(s)(x - Xj)  d      y     f   D(s)(y - yi)  ds,  Z =  f   D(»K» ' '!> ds 

where  (x, y, s) is r.ny point on the curve C. 

By way of illustration suppose that we wished to find the 

attraction of a straight homoCeneous wire at any point p, of space, 

not on the Wire.     In this  case D(s)  is a  constant D,   and d, is the 

Perpendicular distance of p,, from the wire.    If » let the wire 

.s contain pp we wi 
coincide with the x axis and let the y 

have 



27 

Y . Pi(0, dx) 

\ d = J x2+  dx
2 

0 (a, 0)                          (b, 0) 

Figure 9:1 

ds - dx 

X * D 

r 
T - DI 

) a 

fb fb 

]* {* +  ±,2)3/2    "      2   )a(x2^  ^2)3 

arctan b/d-i 

2^3/2 

b 

r 

_   Q-idX 
- - A 

2+ ^2)3/2 

/•arctan b/^ *   neo2 zd2 

| arctan a/^   [a^d* tan-aj /2 

,  ?T, /arctan b/cL r ,arctan b/dn 
. -    1      ( ^ cos zdz - r£J sin zj 

3 J arctan a/d1 dj_ L arctan e/^ 
i3 

d. L/ + d, 7,  -r d]   J 
Since a ;;lane may be par; ed containing a straight line and any point 

not on the line,  there vail be no Z component of this force. 

Z = C 

If we lengthen the irire indefinitely in both directions, the resulting 

force is defined'as the  forse due to the infinite wire.    Fro* the 
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a'-ove results we have by substituting 

a - -°<i b = +**, 

X - 0 

Therefore the resulting force is perpendicular to the wire. 

1" if C"1''■£ = *[>-<-**«* 
oe the attraction of the infinite wire on a unit particle outside 

the wire  is enual to twice the linear density divided by the parpen- 

licular     : stance of the particle fron the wire. 

10. '.York.    Suppose that a "orce P . F(x, y) rets at every 

ooint in the :•:, y - plane;  in general \;t is x-orce varies fron point 

to -oint in magnitude and direction*    ffe now propose to find the 

work done on a particle as it roves along some curve G in the region 

joining p^x-p y^) ana P2(x2, y2). 

First let C be the straight line connecting D, and p„. -  -1 '2 

If F is constant in magnitude and the direction of F is along PnP?* 

the work done by the force in roving the particle is defined to be 

force times displacement.    But suppose that F makes an angle G with 

p-,Pp.    The components are | F| cos 6 and | F| sin 6, respectively. 

The work done by I T| cos 0 which acts alon." p-j_p2 is force times 

displacement or I F| A cos Q.    Since the particle remains on the line 

p, o? ^
e cc-ponent of force perpendicular to this line causes no 

notion;   therefore wo  say that it does no work,   and the work done by 

F in moving the particle from p. to p.  along the stwd gat line segnent 

is 

W - | F | d cos © 
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Now let X ond Y be the x - and y - components of F,   and 

let*  denote the angle that p^p. makes with the positive x axis. 

Ti.en the projection of F on p1p2 is equal to the sum of the projections 

of   C and Y on p^,  and  | F I cos G = X cos* +   Y sin«v.    Since 

Y 

P2 

0 
Figure 10:1 

How we consider the general case where F varies continuously 

in magnitude and direction throughout a region in the xy - nlane, and 

consider the work done by this force in moving a particle along a 

curve C:x - x(t), y B y(t), lying in this region and joining the 

ooints A and B.     Corresponding to an arbitrary partition of the para- 

re ter range for Z, we replace the actual curve C by the polygonal 

oath with  successive vertices p.,  p,,  p?,   .   .   .  ?  ,   end instead of 

the actual force we consider a substitute force which along the 

segment p.     p. is constant and equal to the given force at an inter- 

mediate point  (x.', y.')•    Then the rork done by this substitute 

force as the particle moves alone the -oolygon from A to 3 is 
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Tie limit o." thia egression as the maximum length of any serpent 

A.  s of the partition approaches zero is eoual to the line integral 

h X(x, y)dx+Y(x, y)dy, 

.•: ich is the work done by F on the ^article as it moves along C from 

A to B. 

To  illustrate: tldr   l.->e  of v.'or!:,   mo-iose  that there is 

a meteor, which --ay be regarded as a particle, which is attracted 

by the sun (considered at rest) and by all the rest of the ratter 

in the solar system.    It moves from a point A to a ooint B, which 

are at distances of r-j_ and v^ respectively from the sun.    According to 

Newton's Law, the force which the sun exerts on the meteor is 

IF I r — since the meteor is considered to be of unit mass.    Since 
d2 

d is variable in this problem ,we will let r be the distance between 

the bodies in order to prevent confusion in the notation. 

From  similar  figures we have 

-    X 

Figure 10:2 
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X    __x 
FT        r 

Knx 
7~ irr = -z 

,..^ 

z 

Z = - Kng 
5 r-' 

-  £ 
r 

Mow applying the formula, we have 

.'•"ork = -  f S» (xdx + ydy + zdz). 

But r2 = x2*    y2 +   z2 

rdr ■ xdx + ydy + zdz 

Tl ^refore 

./ork a - Km (" i£ * - Km F - ll 2 = Km |  1_ _ 1_ 1 

If we apply the independence test of section 7, we see that 

*y     'iz ^5     ?X Jx    ^jr 

and so the work done by the sun is independent of the path of motion 

of the meteor.    A field of force which possesses this- pro-^erty is 

called conservative or lamellar. 

As a further illustration of work, let us suppose that 

the components of a force are 

X = x3,        I s y2 - z2. Z r kt 

and let us find the work done by the   ~orce as a particle roves alone 

the curve y = ::,  z = x2 from  (1, 1, 1)   to  (2, 2,  !*). 

Jork = I     x-^dx + (y2 - z2)dy +• -.zdz 
)c 

2 
- ~ [x3 +. x2 - x^-t- kx2(2x)J dx 

- f2  (9x3 # x2 _ xli)dx .1 9±     x3 _ x£|2 

" )l L  h       3      5J1 
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=   (36 * £- 32) _ (9.1 . 1) 
3      5 I;     3     f 

- 1122 
6o 

Again testing for independence we have 

t£S0, *Ir-2z 
-*y T>7- 

and "Li I ~^L and our test fells and the work done is seen to de-iond 
* y     "b z 

on the curve as well as the end points.    For if we l°t C be the 

straight line connecting (1,  1,  1)  and (2, 2,  h) "iven by equations 

—— = V ~ 1 = z " ?-.    fro™ wi ich x = y, z = 3x - 2 
1 1 3 

f2 
iVork = \    [x3 4-  (x? - 9x2 +. 12x _ ],) + j,(3x _ 2)0)1 dx 

■H (x3 - 8x2 + k&x - 28)dx 

.fork ■ fit- M* Jifi£- aaJ  .(&-&» 96 - ») - ft - fi +afc - 20 
La     3     2        Ji   (    3 )   B   3 ) 

= 32£ 
12 

According to Newton's laws, the rotion of a particle of mass 

is determined by the eouations 

X = mx», T = my", ?, - r.z" 

-.There x", y" and z" denote derivatives wit!   respect to tine.     If we 

~ultiply these eouations by x', y'   and z' resnectively and integrate 

from tn to t-i we have 

■fork = n   \   1 dx d2x dt .   dy_ d£y dt .   dz d2z  dt 
) tn dt dt? dt dt? dt dt? 
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2L(dt) (dt) (dt)Jtr, 

Lch is equal to the change in kinetic energy of the particle. 

11.   Integrals  of complex functions.    When real rurbers  are 

combined by addition,  subtraction, multiplication or division with 

a non-vanishing civisor, the results are real numbers;  such numbers 

Torn a closed system for those operations.    But this is not always 

the case in root extraction,   for no real number can be the souare 

root of a negative real number.    Therefore our number system has 

been extended to include complex numbers of the form a+ bi where 

a and b are real and i = /-l.    The complex numbers include the real 

numbers and form a closed system with respect to addition,  subtraction, 

multiplication,  division, and root extraction.    For the most part, 

the rules for manipulating co™"lex "umbers are the  same as those for 

real numbers. 

The definition of the  derivative for a  function of a 

c^o'-nlex variable is formally the prmo as for a function of a real 

variable.    ".7e say '-hat f(z) haa a derivative f'(z) at z if 

lim    f(s»4 z)-  f(s)   - ft(z) 
A z-K) a z 

A function of a complex variable z s Xf iy is said to be 

analytic in the region R if a single value of f(z) is defined for 

each z inside the region,  and the function f(z) has a finite deriva- 

tive.    A function is said to be analytic at z if it is analytic in 

some circular region including z as an interior point. 

For a given function,  a value of z that cannot be included 

in any circle G within which the function is analytic is called a 

singular point.     For the elementary functions, the singular ooints 
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include those values which make the function or its derivative infinite 

airing to the presence of a. zero denominator.    The elementary functions 

are analytic except for singular points. 

Suppose w m f(z) is a function of the complex variable 

z = x ■*• iy for all values of z in R,  any region of the xy - plane, 

and v,- = f(z) is an analytic function,    ..e denote the real part of 

w by u and the  i- ?"inary part by v so that 

W s tt ♦ iv. 

The values  o'' x and y determine  z  and hence determine f(z).     Thus 

u and v are functions of z and y so that 

f(x* iy) = u(x, y) ♦ iv(x, y). 

Taking f(z) as an analytic function, we can derive the 

"Jauchy-"lier.ann differential equations' Ifhich are satisfied by u and 

v.    On the other hand, we can prove that if the partial derivatives 

of u(x, y) and v(x, y) are continuous and satisfy the Cauchy-Riemann 

equations in the given region R, then the function u *■ iv is an 

analytic function of z « x ♦ iy in R.    These equations are 

VI _ \v    rjld   T>v _ _"bu. 
"fc x     'by tax       R> y 

It follows from the Cauchy-Riemann eouations that 

conseouently 

■O-U ^2v    1 2-- >2U 

Ix2 >Xly    *7dx V 
o             0 

7> u      1     . 

T>x2      V 
0. 

7.    For derivation see [2],  [)i\,  and [?] 
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This is known U Laplace's aquation in two dimensions.    It nay be 

shown that  any function u(x,  y)  that  satisfies  Laolace's eouation 

at all noints of a region R necessarily has continuous partial 

derivatives of all orders at any interior point of R.pflj [•]. 

Let us recall the method for rrapl ing conolex numbers. 

Since  the  corpl^x ouantity z = x -t- iy involves  tvro variables x  and y, 

we need the whole xy - Diane for z.    If we wish to take the integral 

of f(z)   from z-y  to z? it is evident that z must vary along some curve 

Z,    The integral of the complex function f(z) alonr a path C is 

defined as the line integral   along C of 

f (z)dz a, (u 4- iv)(dx •♦- idy) 

- (udx - vdy) 4- i(vdx-*- uiy) 

That is 

\     f(z)dz r  1    «dx - vdy 4 i \ v.'x 4 udy. 

0 

z0 = xc iy2 

x 

Figure 11:1 

dach of the integrals on the right is a real line integral and could 

be evaluated by the methods already given. 
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Let G be the complete boundary of a region R of the type 

[ in section 6.    Suppose further that u + iv = f(z) is an analytic 

function of z for all values of z in R and on C.    Then we ray use 

C as the path of integration and can transform the right member of 

the integral by Green's Theorem. 

\     (wdx - vdy) + i \     (vdx-f   udy) 

= [[     (-21 - *ii)dxdy 4- i ff    (ju _ fcvjdxay. 

Since f(z) is  analytic in R, the  Cauc jr-Riemann equations hold and 

the integrands on the right are zero.    Hence the left number is also 

zero and 

f(z)dz = 0 I 
That is,  the integral of f (z) is zero over every closed path G 

such that f(z)  is analytic at all points on the path G and in the 

re-ion R which has C as its complete boundary.    This is known as 

Sauchy's integral theorem.    It follows that the value of the integral 

of a complex function between two fixed points of a sirrply connected 

region R is independent of the path of integration,  restricted to 

lie in R,  providing the function is analytic in   .. 

Here we have an application of the line integral theory, 

rot to a physical problem,  but to the development of further mathemati- 

cal theory.    The theory of the complex variable in turn has practical 

applications.     It also serves to simplify methods we already have for 

dealing with certain physical oroblems.    Evaluation of certain real 

definite integrals is made simpler by a knowledge of poles and 
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residues, which is a part or conolex-variable theory. Many 

mathematical results ray be stated more Simply, and obtained more 

readily, by the use of complex quantities in the intermediate stages, 

even if the final results involve real numbers only. 
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