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INTRODUCTION

The purpose of this thesis is to investigate the
properties of certain topologies for a countable product
of lattice isomorphic factor spaces. The idea of using
lattice isomorphisms between factors to define a topology
on a product space is due to Goolsby in [4]. Both the
usual and box topologies are well known. The saturating
topology was originated by the author in an effort to
describe a topology properly containing the usual topology,
but still preserving compactness. The example showing
that regualrity of the factor spaces does not guarantee
regularity of the saturating topology is also due to Goolsby
in a paper not published at the time of this writing. The
result that connectivity of the factor spaces does not
gaurantee connectivity of the box topology was first proved
by Knight in [5], but the proof given here is due to Professor
Jerry E. Vaughan of the University of North Carolina at
Greensboro.

A working knowlege of set theory and elementary

topology is assuned. The reader is referred to £xl, £21,

and [3] for definitions and results not covered in this thesis.
In Chapter I certain definitions and results regarding

lattice isomorphisms are reviewed. In Chapter II definitions

of the usual, saturating, and box topologies are given and
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and certain basic results are proved about them. In Chapter
III the semi-complete base and the basic similarity are |
defined, it is proved that a basic similarity may be extended
to a lattice isomorphism, and this result is applied to
the product topologies. In Chapter IV it is shown that for
Ty Tl' or T2 factor spaces, each of the three topologies
discussed is Tor Tyr Or Ty, respectively. Also in Chapter IV
an example is given to show that regularity of factor spaces
does not gaurantee regularity of the saturating topology.
In Chapter V it is shown that the saturating topology on
a product of connected factors is connected and an example
is given to show that connectivity of factor spaces does
not guarantee connectivity of the box topology. Also in
Chapter V it is shown that the saturating topology on
a product of separable spaces is lattice isomorphic to
a separable topology. Finally in Chapter V it is shown that
on a product of compact spaces the usual topology and the
saturating topology are the same.

Emphasis is given to the saturating topology throughout
this thesis. All Cartesian products referred to in this
thesis are indexed by the set of positive integers and the

simplified notation I U, is used to denote the product of

of sets. The closure of a set A with

When

the sequence U

respect to a topology T will be denoted by clT(A).

context makes the meaning clear cl(A) will be used.

v




CHAPTER I

PREPARATORY RESULTS

Definition 1. [1, Def. 1, p. 1] An ordered pair (X,R) is

called a partially ordered set provided X is a set and R

is a subset of XxX such that
(1) if aeX, then (a,a)eR,
(2) if a,beX, then if (a,b)eR and (b,a)eR,
then a=b, and
(3) if a,b,ceX, then if (a,b)eR and (b,c)eR,
then (a,c)eR.
If (X,R) is a partially ordered set, then (a,b)eR will

be denoted by aRb.

Definition 2. [l1, Def. 2,3; p. 11 Let (X,<) be a partially

ordered set. Let beX and let AcX. Then b is called a

lower bound of A provided if aeA, then b<a; and b is

called an upper bound of A provided if acA, then ac<b.

The element b is called a greatest lower bound of A

provided b is a lower bound of A and b is an upper
bound of the set of lower bounds of A. The element b is

called a least upper bound of A provided b is an upper

bound of A and b is a lower bound of the set of upper

bounds of A.




Definition 3. [1, Def. 4, p. 2] A partially ordered set

(X,<) is called a lattice provided every finite, non-empty
subset of X has both a least upper bound and a greatest

lower bound.

Definition 4. [1, Def. 6, p. 2] Let (K,<) and (L,<<) be

lattices and let £ be a one-to-one function from KX onto

L. Then f 1is called a lattice isomorphism from (K, <)

onto (L,<<) provided

(1) if a,beK and a<b, then f(a)<<f(b), and

1

(2) if c,deL and c<<d, then £ L(c)<£ 1(q).

To say that (K,<) is lattice isomorphic to (L,<<) means

that there is a lattice isomorphism from (X,<) onto (L,<<).

Theorem 1. Let (X,<), (¥,<<), and (2,<*) be lattices
and suppose f is a lattice isomorphism from (X, ) onto
(Y,<<) and suppose g is a lattice isomorphism from
(Y,<<) onto (Z,<*x). Then gef is a lattice isomorphism
from (X,<) onto (Z,<x).

Proof: This is clear from Definition 4.

The proofs of the remaining theorems in Chapter I may

be found in [1] and [3].

Theorem 2. [1, Th. 2, p. 3] Let (K,<) and (L,<<) be

lattices and suppose that f is a lattice isomorphism from

(K,<) onto (L,<<). Then the inverse function £ 1 is a

lattice isomorphism from (L,<<) onto (K,<).




Theorem 3. [1, Th. 6, p. 7] Let (X,T) be a topological

space. Then the usual subset relation defines a lattice on T.

The remainder of this paper is concerned with lattices
defined on topologies. In all cases the order will be defined
by the subset relation. When convient the topolpgies will

be refered to as lattices.

Theorem 4. [1, Th. 5, p. 4] Let (X,S) and (Y,T) be
topological spaces and suppose that F is a one-to-one
function from S onto T. Then F is a lattice isomorphism

from S onto T if and only if UcS implies
U{F (U) |Ue U}=F (u{U| UelU}) .

Theorem 5. [1, Ths. 9,10; pp. 8, 9] Let (X,8) and (Y,T)
be topological spaces and suppose F is a lattice isomor-
phism from S onto T. Then
(1) F(¢)=¢ and F(X)=Y,
(2) if U is a open cover of X, then {F(U)|UelU}
is an open cover of Y, and

if U is a finite subcollection of S, then
F(n{U|UeU})=n{F(U) | Uel}.

Theorem 6. [1, Th. 27, p. 32] Let (x,8) and (Y,T) be

topological spaces and suppose F is a lattice isomorphism

from S onto T. Then if (X,S8) and (y,T) are both Tl’

then (X,S) is homeomorphic to Y, T) .




Definition 5. [1, Def. 14, p. 10] ©Let (X,S) and (Y,T)

be topological spaces and suppose F is a lattice isomor-
phism from S onto T. The collection of closed subsets
of X will be denoted by CS and likewise the ciosed
subsets of Y will be denoted by CT. The function G
with domain CS defined by if MeCS, then G(M)=Y~-F (X-M)

will be called the dual of F and will be denoted by DF.

Theorem 7. [1, Th. 8, p. 8] Let (X,S) be a topological

space. Then the superset relation defines a lattice on CS.

Theorem 8. [1, Ths. 11, 12; pp. 10, 111 Let (X,S) and

(¥,T) be topological spaces and suppose F is a lattice

isomorphism from S onto T. Then DF is a lattice iso-

morphism from Cg onto C, and (vF)‘1=vF_1.

Theorem 9. [1, Ths. 5, 7; pp. 4,71 Let (X,8) and (¥,T)

be topological spaces and suppose F is a lattice isomorphism

from S onto T. Then if McCS, then

(1) DF(n{MlMeM})=n{DF(M)IMEM}, and
(2) if M is finite, then DF(U{M|M€M})=U{DF(M)|MEM}.
Theorem 10. [1, Ths. 9, 17; pp. 8, 15] Let (X,8) and

(Y,T) be topological spaces and suppose F is a lattice

isomorphism from S onto T. Then

(1) DF(¢)=¢ and DF(X)=Y, and

(2) if 0eS, then cl(F(O))=DF(c1(O)).




Theorem 11. [3, Th. 6, p. 4] Let (X,S) and (Y,T) be

topological spaces and suppose F 1is a lattice isomorphism
from S onto T. Let peX, 0eS, and MeCS. Then

(1) if Mc0O, then DF(M)cF(O),

(2) Mn0=¢ if and only if UF(M)nF(0)=¢, and

(3) if VeT such that anF(cl'({p}))#d», then
1

p is a member of F (V).

Theorem 12. [1, Th. 13, p. 13] Let (X,8) and (Y,T) bhe

topological spaces and suppose F is a lattice isomorphism

from S onto T. Let UeS and suppose peF(U). Then

there exists xeU such that if VeS and xeV, then peF(V).

Theorem 13. [1, Th. 20, 21; pp. 19, 22] Let (X,S) and

(Y,T) be topological spaces and suppose F is a lattice
isomorphism from S onto T. Then
(L) if (X,S) is connected, then (Y,T) is

connected, and

if (X,S) is compact, then (¥,T) is compact.




CHAPTER II

PRELIMINARY RESULTS

Definition 6. [4, Def. 1, p. 11 The ordered triple (X,T,F)

is said to be a lattice limit sequence provided X is a

sequence of sets, T is a sequence of topologies, and F

is a sequence of functions such that if i is a positive

integer, then
(1) Ti is a topology for xi, and

2) F. i i i i A .
(2) i is a lattice isomorphism from '1‘1+1 onto Ti

Suppose (X,T,F) is a lattice limit sequence. Then

if i is a positive integer, then F; will denote the
i+l

identity map from T, onto Ty Fy will denote Fio and

if j is a positive integer, then F;+j+l will denote
Fi+j°Fi+j’ Also if k and £ are positive integers and

k<f, then Eg will denote (Fﬁ)—l. Now, if m and n are

positive integers, then Fz is a lattice isomorphism from

Tm onto Tn'

Definition 7. Let [=(X,T,F) be a lattice limit sequence.

L, denoted by C(L), is the usual

The limit collection of

product of sets 1, X, - For each positive integer i, the

ifi projection of C(L),

tion from C(L) into T;, such that if

denoted by L is the usual projec-

feC(L), then

ng (E)=£(i).




Definition 8. Let L=(X,T,F) be a lattice limit sequence.

The usual topology on the limit collection of L, denoted by

u(L), is the usual topology generated by the collection BU'
to which a set 0 belongs provided there is a sequence U,
such that
(1) i€ icz’, then uUger,,
(2) there exists a positive integer M, such that
if ieZ+ and i2=M, then Ui=xi, and

(3) 0=Hn Un.

The collection Bu will be called the usual base for AU(L).

Definition 9. Let L=(X,T,F) be a lattice limit sequence.

The saturating topology on the limit collection of L, denoted

by S(L), is the topology generated by the collection BS’
to which a set (0 belongs provided there is a sequence U,
such that
-
(1) if ie2Z , then U;eT;,

(2) there exists a positive integer M, such that

. . 1+
if ezt ana i>M, then UicF; 1(Ui+1)'

i+ +
(3) if iez’, then X;=u{Fi**(Uj4x)|kez"), ana

(4) 0=nn U,-
will be called the usual base for S(L).

The collection BS

Definition 10. Let =(X,T,F) be a lattice limit sequence.

The box topology on the limit collection of [, denoted by

B(L), is the usual box topology generated by the collection




BB’ to which a set 0 belongs provided there is a sequence
U, such that
(1) if iez®, then U.eT;, and

(2) 0=nn u,-

The collection BB will be called the usual base for B(L).

Lemma 14.1. Let [L=(X,T,F) be a lattice limit sequence.
Let Bs be the usual base for S(L), the saturating topology
on C(L). Then if A,BeBS, then AnBeBS.

Proof: Let A,BeBs. Now there exist sequences U

and V, and there exist positive integers M and N, such

that

(1) if iez’, then UjeT, and VeT,,

(2) i iez+, then if i2M, then UicF§+l(Ui+l), and
i>N, then ViCFi+l(Vi+1):

(3) i iez+, then xi=u{F%+k(Ui+k)|keZ+} and

i +

xi=u{Fi+k(Vi+k)|keZ }, and
(4) A=IIn U, and B=Hn V-

Let W be the sequence defined by if j is a positive

int then W.=U.nV..
integer, e 5=U5 "V

(1) If iez*, then W;=U;V; and UjnV; is in Ty.
(2) 1f ie2¥ and i>M+N, then i>M and i>N, so

i+l
(U421 V541) 0

(Wi+1)'

Wi=Ui nViC Fl+1 (Ui+ a2 ) nF1+l (vi+l )=F

hence WicF1+1

but W, U

Tl T PO
(3) Let j be a positive integer. Clearly

j+k +
Xj:u{Fg (Wy45) [keZ7 )




Let xsxj and let K=M+N. Now, since

x-=F§(xK)=F§(U{F§+k(U ) |kezt})=

3
: K K+k

Flo
VIR o (Up

K+k
) | ke z2¥ 3=t F1§+k U +
|kez¥}=u{ y caxc) [K€27}0

there is a positive integer L, such that

K+Lu
J

5 K+L
integer Lv' such that xeFj V(VK+LV). Let

xe F (UK+Lu)' Likewise, there is a positive

=Lu+Lv. Then M<K+L,<L and NsK+LvsL, so

K+L K+L
xeFj (UK+L) and xeFj (VK+L)' Thus

K+L __K+
)nFj (VK+L)-Fj

K+L L i

K*L(
J

K+L

) W ).

K+L

Hence xeu{Fg+k(Wj+k)|keZ+}. It follows that

xjeu{Fg+k(wj+k)|kez+} and therefore

oo rpitk +
Xy u{Fj (wj+k)|kez ).

(4) The product nw, is a member of BS.

Suppose yeAnB, then yeA and yeB. So if i is a

positive integer, then ni(y)eUi and ni(y)eVi or

m; (y)eUj V=W, . Thus yell W , and so AnBell W, . Suppose

zel W , then if h is a positive integer, then wh(z)ewh,
n n :

or wy,(z)eUy, and my(2)eVh. Thus zell U =A and zel V =B.

Hence ze¢AnB. It follows that HnwnCAnB. Therefore

Hnwn=AnB and so AnB is a member of BS'

L be a lattice limit sequence and let BS

C(L). Then

Theorem 14. Let

be the usual base for the saturating topology on




BS is a base for a topology.

Proof: This is clear from Lemma 14.1.

Theorem 15. Let L be a lattice limit sequence. Let Bu
and BB be the usual bases for U(L) and B(L), respectively.
Then Bu and BB are bases for topologies.

Proof: The proofs are similar to that of Theorem 14.

Theorem 16. Let L be a lattice limit sequence. Then

U(L)cS(L)cB(L).
Proof: Let Bu, Bs,’and BB be the usual bases for

u(L), S(L), and B(L), respectively. Clearly, B cBgcBg,

hence U(L)cS(L)<B(L).

Example 1. Let X, T, and F be the sequences defined by
if i is a positive integer, then X, is the set of real
numbers, Ti is the usual topology for the set of real

numbers, and Fi is the identity lattice isomorphism from

T onto Ti' Let L=(X,T,F). Then L is a lattice

i+l
limit sequence such that U(L)#S(L) and S(LY#B(L).

Proof: Clearly, L is a lattice limit sequence.

Let U and V be the sequences defined by if i is

a positive integer, then U; is the open interval (-i,i),

and vy is the open interval (-1,1). Plainly, T U, is

a member of S(L), but not a member of U(L), hence

u(L)#s(L). Also, I V. is a member of B(L), but not a

member of S(L), hence S(L)#B(L).




Theorem 17. Let L=(X,T,F) be a lattice limit sequence.
Let T be either U(L), S(L), or B(L). Then if m is a
positive integer, then wm:(C(L),T)+(Xm,Tm) is both cqntinuous
and open.

Proof: Let m be a positive integer. From Theorem 16,
U(L)cT<B(L). .

Let WeTm, and let U be the sequence defined by if
i is a positive integer, then if i#¥m, then Ui=xi, and if

i=m, then U;=W. Now, n,u, is a member of U(L), and hence

is a member of T. Further, since n;l(w)=nnun, then w;l(w)

is a member of T. It follows that m is continuous.

Let 0eT, then 0eB(L). Let BB be the usual base
for B(L). Plainly, if BeBg, then “m(B) is open. Since
0=u{B|BeBg and Bc0}, then my(0)=u{ny(B)|BeB; and Bc0} is

a union of open sets, hence is open. It follows that T

is open.




CHAPTER III

THE SATURATING BASE

Definition 11. [3, Def. 3, p. 9] Let (X,S) be a topological

space. A base B for S is said to be semi-complete

provided if B, and B, are members of B, then B,nB,eB.

Definition 12. Let (X,S) and (Y,T) be topological

spaces and let B be a base for S. A one-to-one function
k with domain B and range a subset of T is called a
simulacrum of B in T provided if U is a subcollection
of B, then
(1) if v{U|UueU}eB, then k(u{U|UeU})=u{k(U)|UelU}, and
(2) if U is finite and n{U|UcU}eB, then

k(n{U|UcU})=n{k (V) |UcU}.

pefinition 13. Let (X,S) and (Y,T) be topological

spaces and let B be a base for S. Suppose that X a8 a

simulacrum of B in T. The natural extension of k to S

is the function with domain S defined by if 0eS, then

K(0)=u{k(U) |UeB and U<0}.

Definition 14. [3, Def. 4, p. 91 Let (X,8) and (Y,T) be

topological spaces and let BS and By semi-complete bases

for S and T, respectively. A function k is said to be

a basic similarity from By onto Boy provided k is a




one-to-one function with domain Bs and range B, such

that (1) k is a simulacrum of BS in T and (2) T
a simulacrum of BT in S. The bases BS and BT are said

to be basically similar if there is a basic similarity from

BS onto BT'

Lemma 18.1. Let (X,S) and (Y,T) be topological spaces
and let B be a base for S. Suppose that k is a simu-
lacrum of B in T. Then if A,BeB and AcB, then
k(A)<ck(B) .

Proof: Let A,BeB with AcB. Then B=AuB, hence

k (A) uk (B)=k (AuB)=k (B) and therefore k(A)ck(B).

Lemma 18.2. Let (X,S) and (Y,T) be topological spaces
and let BS and BT be semi-complete bases for S and T,
respectively. Suppose k is a basic similarity from Bg

onto BT. Let K be the natural extension of k to S.

Then if 0eT, then K(u{k™1(B)|BeBy and Bc<0})=0.
Proof: Let 0eT and let U={k™1(B)|BeB, and B<0}.

Now, UCBS and therefore 0cK(u{U|UelU}).

Let WeBg such that Weu{U|UeU}. Let C={WnU|Uel}.

Since B is semi-complete, C is a subcollection of BS.

S
Plainly, u{C|CeC}cW. Let weW, then there exists Uel,

such that weU_. Now weWnU and WU, is a member of C,

hence wau{CICeC}. Therefore Wecu{C|CeC}. It follows that

w=u{c|CeC}.




Let DeC, then there exists UDeU, such that D=UDdW.
—1~-1
Also, there exists VDeBT, such that VDCO and UD-k (VD).
Now, D=k_1(VD)nW, hence Dck'l(VD). From Lemma 18.1,
k(u)ckok'l(vD)=cho. It follows that if CeC, then k(C)c<0.
Now k(W)=k(u{C|CeC})= {k(C)|CeC}cO. It follows that

if BeBg, such that Bcu{U|Uel}, then k(B)cO. Thus
K(u{U|UeU}=u{k (B) |Be Bg and Bcu{U|UeU}}<0.

Therefore K(u{U|UeU})=0, also {UIUeU}={k_1(B)|BeBT and Bc0}

by definition, so K(u{k—l(B)lBeBT and Bc0})=0.

Lemma 18.3. Let (X,S) and (Y,T) be topological spaces
and let BS and BT be semi-complete bases for S and T,
respectively. Suppose k is a basic similarity from BS
onto B_. Let K be the natural extension of k to S.

T
Then K is one-to-one.

Proof: Let U,VeS such that K(U)=K(V). Let BeBS

such that BcU.
Let C={k(B)nk(W)|WeBS and WcV}. The range of

BT’ a semi-complete base, thus C is a subcollection

Clearly, u{C|CeC}ck(B). Furthermore,

k (B)cu{k (W) |We Bg and WeU}=K(U)=

K(V)=u{k(Z) |2¢Bg and Z<V}.

Therefore if bek(B), then there exists WbeBS, such that

Wbev and bek(wb), hence bek (B) rk (W), which is a member

of C. Thus k(B)cu{C|CeC}, therefore k(B)=u{C|CeC}.




The inverse function k™1 is a simulacrum, so

B=k~1 (k (B))=k"1 (uic|cec})=0{k"L(c) |ce C}=
uik™L (k (B) rik (W) |We B, and WeV}=

U{k'l(k(B))rk"l(k(w))|WkBS and WeV)=

U{anlwess and WeV}cv,

or BcV. Since U is the union of the basic open sets
contained in U, it follows that UcV. By a similar argument

VcU, hence =V. Therefore K is one-to-one.

Theorem 18. [3, Th. 9, p.10] Let (X,S) and (¥Y,T) be
topological spaces and let BS and BT be semi~complete
bases for S and T, respectively. Suppose k is a basic
similarity from BS onto BT' Let K be the natural

extension of k to S. Then K is a lattice isomorphism

from S onto T.

Proof: The function K has domain S, and from
Lemma 18.3 K is one-to-one. Lemma 18.2 implies that
has range T.

Let 'U,Ves such that Ucv., If BcU, then BcV;
K(U)=o{k(B)|BeBs and BCU}cu{k(B)IBeBS and BcV}=K(V) .
Let Q,RéT such that QcR. It follows from Lemma 18.2 that
k"L (@)=u(k"1 () |BeB,, and Beg}cu{k™(B) [BeBy and BeR}=K ' (R).

Therefore K is a lattice isomorphism from S onto T.




Theorem 19. Let L be a lattice limit sequence and let Bs
be the usual base for the saturating topology, S(L). Then
B is a semi-complete base.

S
Proof: This follows from Lemma 14.1.

Theorem 20. Let L be a lattice limit sequence and let B
be the usual base for either U(L) or B(L). Then B is

a semi-complete base.

Proof: The proof is similar to that of Theorem 19.

Definition 15. [4, Def. 4, p.15] Let L=(X,T,F) be a

lattice limit sequence. Let X*, T*, and I be the

sequences defined by if j is a positive integer, then

x§=xl, T;=T1, and Ij is the identity lattice isomorphism

from Tf+l onto T;. Then (X*,T*,I) is said to be the

corresponding identity lattice limit sequence for L and

will be denoted by L*.

Definition 16. Let L=(X,T,F) be a lattice limit sequence.

Let G be the sequence defined by Gl is the identity
lattice isomorphism from Tl onto T, and if j is a
positive integer, then Gj+1=GjoFg+1. Let B be the usual

base for either U(L), S(L), or B(L). Let k be the

function with domain B defined by if U is a sequence

such that N U, is a member of B, then k(I,0,)=1,(Gy (Up)) .

Then G is called the identity matching map for L and k

is called the transposing map of B into C(L*).




Lemma 21.1. Let L=(X,T,F) be a lattice limit sequence and
let L*=(X*,T*,I) be the corresponding identity lattice
limit sequence. Let G be the identity matching map for L.
Then if j is a positive integer, then Gj is a lattice
isomorphism from Tj onto Tg.

Proof: Let J be the set to which a positive integer

j belongs provided Gj is a lattice isomorphism from Tj

onto Tg. From Definition 16, Gy is a lattice isomorphism

from Tl onto T1=Ti, hence 1leJ.

Suppose meJ, then G is a lattice isomorphism from

T, onto Tk. From Definition 6, F:+1 is a lattice iso-

morphism from Tm+l onto Tm’ thus by Theorem 13,

Gy 1™ moF$+l is a lattice isomorphism from Tp,7 onto
T$=T1= 1 Therefore m+l is a member of J. It follows
that if JjeJ, then j+leJ. Consequently, by induction, J
is the set of positive integers.

If j is a positive integer, them jeJ, hence Gj

is a lattice isomorphism from Tj onto T;.

Lemma 21.2. Let L=(X,T,F) be a lattice limit sequence and
let L*=(X*,T*,I) be the corresponding identity lattice

Let B be the usual base for S(L) and

S
let k be the transposing map of Bg into C(L). Then k

limit sequence.

is one-~to-one.

Proof: Let A,BeBS such that k(A)=k(B). Let G

be the be the identity matching map for E." "TE~ 3§ da.a




positive integer, then G, (v, (A))=n, (k(A))=n_ (k(B))=G, (v, (B))
J 3 J 3 -

and therefore

A=1_ (ng (A))=I_ (G5l (G (1, (A))))=

T, (651 (Gy (ny, (B)))) =My, (w, (B) ) =B.

Thus k is one-to-one.

Lemma 21.3. Let L=(X,T,F) be a lattice limit sequence and
let L*=(X*,T*,I) be the corresponding identity lattice
limit sequence for L. Let BS be the usual base for S(L)
and let B} be the usual base for S(L*). Then the trans-
posing map of BS into C(L*) has range Bj%.

Proof: Let k be the transposing map of BS into
C(L*). Let G be the identity matching map for L.

Let 0e8§. Then there exists a sequence U* and a
positive integer M such that

(1) if iez*, then Ufe T,

(2) if iez* and i>M, then upcritl(ui,p),

+9 :
(3) if iezt, then x{=u{Ii J(U{+j)ljez+}, and

(4) 0=n,UX.

Let U be the sequence defined by if i is a positive

integer, then Ui=Gzl(U§). It follows that
(1) if iez*, then U =Gyl (U)eTy,
(2) :&f iezt and i2M, then

29 -1,.i+1 St =
Ui=Gi (U{)CGi (Ii . (U§+l) )_Gi (Ui'*'l)
i+1 .~ s
Fy °Gi+1 (UI+1)—Fi (Ui+l) ’




(3) if iez+, then

xy=63 1 (xh) =67 (u13*I (0, ) [3ezth=

GIt (uiudyjl3eztH=ulert (U}, ) |jez*)=

-1 ; : ; .
145 (UEis)) [e241=0(r{*T (Ug 0 9) | 3e2%),

i+j

i)
U{Fi (G4

and
(4) thus T U eBg.
Then, k(N U, )=N,(G,(U,))=NUs=0. Now, it follows that k

has range B%.

Theorem 21. Let L=(X,T,F) be a lattice limit sequence and
let L*=(X*,T*,I1) be the corresponding identity lattice
limit sequence for L. Let BS be the usual base for S(L)
and let k be the transposing map of Bg into C(L"%).
Then k is a simulacrum of Bg in S(L¥).

Proof: Lemma 21.2 shows that k is one-to-one and
Lemma 21.3 shows that k has range a subset of S(L*). Let
G be the identity matching map for L.

If V and W are members of BS and Vc<W, - then if
i is a positive integer, then “i(V’C"i(W)' hence
Gi(ni(v))cGi(ni(W)). Thus if V and W are members of BS
and VcW, then k(V)=Hn(Gn(nn(V)))CHn(Gn(ﬂn(W)))=k(W)-

Let U be a subcollection of Bg and suppose that

u{U|Uel} is also a member of Bg. Let Uo=u{U|UeU}. If

Uel, then Uc<U,, hence k(U)Ck(Uo). Therefore
u{k (U) |UeU}ck (Uy)=k (u{U|UeUD).




Let pek(u{U|UelU}). Let H be the sequence defined
by if i is a positive integer, then Hy is the dual of the
lattice isomorphism G;j. Let D be the sequence defined by
if i is a positive integer, then Di=C1T{({"i(P)])' Since
pek(Uy), if i is a positive integer, then my (Plemy (k(Ug)) .
Also, if i is a positive integer, then m;(P)eD;. Thus if
i is a positive integer, then “i(P)i"i(k(Uo))“Di' hence
m; (k(Uy))nD; is not empty. From Theorem 12, if j is a
positive integer, then Ggl(nj(k(uo)))nﬂgl(Dj) is not empty.

Moreover, if j is a positive integer, then
3L (ms (k (U)))=63L (ms (1, (6, (7, (Up)))))=
3 V3o g 73V in 'S n Vs
_.1 SANIrON
Gj (GJ ('ﬂ'J (UO) ¥ )-'Tfj (UO) .

Therefore, if j is a positive integer, then wj(UO)nﬂgl(Dj)
-1 5
is not empty. Consequently, I (w,(Uy)nH, (D,)) is not

empty. Let qenn(wn(Uo)nﬂgl(Dn)). Now, if j is a positive

: -1 ;
integer, then nj(q)ewj(Uo)nHj (Dj), hence nj(q)enj(Uo).

By hypothesis, UgeBg, so gqell (m, (Uy))=U,. But U,=u{U|Uel),
so there exists Uel such that qeU. If j is a positive
integer, then nj(q)eﬂj(ﬁ) and so wj(q)ewj(ﬁ)nﬂgl(Dj).
Consequently, if 3j is a positive integer, then the set
nj(ﬁ)nﬂgl(Dj) is not empty. Therefore, by Theorem 12, if

i is a positive integer, then ni(p)e(GIl)-l(wi(ﬁ))=Gi(wi(ﬁ)).
Therefore pell, (Gp (m, (8)))=k(U)cu{k(U)|UeU}. It follows

that k(0{U|Uel})cu{k(U)|Uel}. Thus k(u{U|UeU})=u{k(U)|UelU}.




A parallel argument shows that if V is a subcol-
lection of Bg such that n{V|VeV} is a member of BS,'
then k(n{V|VeV})=n{k(V)|VeV}. It follows that k is a

simulacrum of BS in S(L¥%).

Theorem 22. Let L be a lattice limit sequence and let L®
be the corresponding identity lattice limit sequence for L.
Let Bg and B; be the usual bases for S(L) and S(L*),
respectively. Let k be the transposing map of Bg into
C(L*). Then k™! is a simulacrum of B; in S(L).

Proof: Lemma 21.2 shows that k is one-to-one,
hence k™1 is a function. Plainly x~1 is one-to-one.
k-l

Lemma 21.3 shows that k has range Bg, hence has

domain B;. Plainly k1 has range Bg, a subset of S(L).

The proof that if U is a subcollection of Bg, then
(1) if u{U|UeU}eBy, then x~L(u{u|vetd)=uv{x"t(u) |veu},
and
(2) if n{U|UeU}eBY, then k™~ 1(n{U|UeU})=nix"1(U)|veu},
is similar to the proof of Theorem 21. It follows that x~1

is a simulacrum of B in S(L).

Theorem 23. Let L be a lattice limit sequence and let

be the corresponding identity lattice limit sequence for

Let BS be the usual base for S(L) and let k be the

transposing map of Bg into C(L*). Then the natural

extension of k to S(L) is a lattice isomorphism from

S(L) onto S(L¥*).




Proof: Let B§ be the usual base for S(L*). From
Lemma 21.2 k is one-to-one. Lemma 21.3 shows that k
has range Bg. Theorem 19 shows that both Bg and 8; are

semi~-complete bases. Theorem 21 shows that k is a simu-

lacrum of Bg in S(L*) and Theorem 22 shows that k™%

is a simulacrum of B in S(L). Therefore k is a basic
similarity from Bs onto B;. Thus by Theorem 18, the
natural extension of k to S(L) is a lattice isomorphism

from S(L) onto S(L¥).

Theorem 24. Let L be a lattice limit sequence and let L*
be the corresponding identity lattice limit sequence for | 12
Let T be either U(L) or B(L) and let T* be either

u(L*y or B(L*). Let B be the usual base for T and let

k be the transposing map of B into C(L*). Then the

natural extension of k to T is a lattice isomorphism

from T onto T*.

Proof: The proof is similar to that of Theorem 23.




CHAPTER IV

SEPARATION AXIOMS FOR THE PRODUCT TOPOLOGIES

Theorem 25. Let L=(X,T,F) be a lattice limit sequence
such that if j is a positive integer, then (Xj,Tj) is
Hausdorff. Then (C(L),S(L)) is Hausdorff.

Proof: Let p and gq be distinct points of C(L).
Then there exists a positive integer i such that
ni(p)#wi(q). But (xi,Ti) is Hausdorff, so there exist
disjoint members Up and Uq of T, such that "i(p)€Up_
and ni(q)qu.

Let A and B be the sequences defined by if j is

a positive' integer, then if j#i, then Aj=Bj=Xj, and if

and let B=nan.

j=i, then Aj=Up and Bj=Uq' Let A=nnAn

Now, A and B are in S(L) and peA and qeB. If

reAnB, then ni(r)eni(A)nwi(B)=Uanq=¢, which is impossible.

Thus AnB=¢. It follows that (c(L),S(L)) is Hausdorff.
Theorem 26. Let L=(X,T,F) be a lattice limit sequence
such that if j is a positive integer, then (xj,Tj) is

T, (T;) (T,). Let T be either U(L), S(L), or B(L).

Then (C(L),T) is To (T;) (T3).

Proof: The proofs are similar to that of Theorem 23.




Theorem 27. Let L=(X,T,F) be a lattice limit sequence.

Let M be a sequence such that if j is a positive integer,
then Mj is closed in (xj,Tj). Then HnMn is closed in
(C(L) ,S(L)).

Proof: Let BS be the usual base for S(L). Let
pecl (M M ).

Let m be a positive integer. Let AeT, such that
mT.(P)eA. Let V be the sequence defined by if i is a
positive integer, then if i=m, then V;=A and if i#m,
then V;=Xj. Then 1.V, is a member of Bg and pell \V .
Therefore IInVnnI[nMn is not empty. Let qell V. nll M,. Then
nm(q)th=A and w,(q)eMp, hence MpnA is not empty. It
follows that if A*eTm and nm(p)eA*, then MmeA* is not
empty. Therefore nm(p)ecl(Mm)=Mm. Now, it is concluded
that if j is a positive integer, then wj(p)eMj. Thus
pel'[nMn.

It follows that cl(nnMn)cHnMn. Plainly, nnMnCCI("nMn)

and so nnMn=c1(nnMn). Therefore I M, is closed.

Theorem 28. Let L=(X,T,F) be a lattice limit sequence.

Let T be either U(L) or B(L). Let M be a sequence

such that if j is a positive integer, then Mj is closed

in (xj,Tj). Then nnMn is closed in (C(L),T).

Proof: The proof is similar to that of Theorem 27.

Theorem 29. Let L=(X,T,F) be a lattice limit sequence.




Let W be a sequence such that if 3j is a positive integer,
then WjCXj. Let S(L) be the saturating topology on C(L).
Then N cl(W )=cl(m W ).

Proof: Let penncl(wn). Let Bg be the usual base
for S(L) and let BeBS such that peB. If j is a
positive integer, then nj(p)ecl(wj) and wj(p)enj(B), but

nj(B)eT., so nj(B)nWj is not empty. Therefore Hn(nn(B)an)

J
is not empty. But ﬂn(nn(B)nwn)cnn(nn(B))nnnwn, and thus
nn(nn(B))anWn=Bnnnwn is not empty. It follows that if
B*eBS such that peB*, then B*nnnwn#¢. Therefore
pecl(nnwn). Now, it follows that nncl(Wn)ccl(nnwn).
Clearly, nnwncnncl(wn) and by Theorem 27, nncl(wn)

is closed, hence cl(nnwn)cnncl(wn). Thus HnCl(wn)=Cl(Hnwn)'

Theorem 30. {4, Th. 4, p. 10] Let L=(X,T,F) be a lattice

limit sequence. Let T be either U(L) ox B(L). Let W

be a sequence such that if j is a positive integer, then

W.cX.. Then anl(Wn)=clT(nan).

J-0d

Proof: The proof is similar to that of Theorem 29.

Theorem 31. [2, Th. 14.4, p. 93] Let L=(X,T,F) be a
lattice limit sequence such that if J is a positive integer,
then (Xj,Tj) is regular. Then (c(L),U(L)) is regular.
Proof: Let Ocl(L) and let pe0. Let By be the
usual base for U(L). Then there exists BeB; such that

peB. Since BeB|, there exists a sequence U and a positive

integer M such that




. : ot

(1) if ieZ™, then UieTi,

(2) if iez* and i2M, then U;=X;, and

(3) B=I_U, .
If j is a positive integer, then nj(p)er. But if j is
a positive integer, then (xj,Tj) is regular. Therefore,
there exists a sequence W such that if j is a positive
integer, then WjeTj and nj(p)echcl(wj)cuj. Let V be
the sequence defined by if i is a positive integer, then
if i<M, then V;=W; and if i>M, then V;=X;. Plainly,
n,V, is a member of By. If j is a positive integer, then
wj(p)echvj. Therefore pel,V,. If J is a positive
integer, then

(1) if j<M, then cl(Vj)=cl(Wj)ch, and

(2) if 3j2M, then cl1(V4)=cl(Xy)=X4=U;.
Therefore, by Theorem 30, cl(HnVn)=anl(Vn)cnnUn=BCO. Now,
pell Vyccl(n v )<0. It follows that if O*el(L) and p*e0%*,
then there exists A*clU(L) such that p*eA*ccl(A*)cO*.

Therefore (C(L),U(L)) is regular.
Theorem 32. Let L=(X,T,F) be a lattice limit sequence

such that if j is a positive integer, then (xj,Tj) is

regular. Then (c(L),B(L)) 1is regular.

Proof: The proof is similar to that of Theorem 31.

[5, Ex. 1, p. 1] There exists a lattice limit

Example 2.
sequence L=(X,T,F)
is regular, but (C(L),S(L)) is not regular.

such that if j is a positive integer,

t S
hen (xJ, J)




Proof: Let I be the sequence of intervals in the
plane defined by if i is a positive integer, then
5,={(x,3) |xe[0,1)). Also, let L,={(x,0)|xe(0,1)}. Let N
denote the set of non-negative integers. Let X=U{Li|ieN}.

Let B be the collection to which B belongs provided
BcX and either

(1) there exists ie2t and xe(0,1) such that

B={ (x,])},
(2) there exists iez% such that (0,%&5B, BeLy s and
Li-B is finite,
(3) there exists mezt and xe(0,1) such that
B={(x,0)}u{(x,%)|iez+ and i>m), or
(4) either B=X or B=¢.
Let T be the topology for X generated by B.

Let X, T, and F be the sequences defined by if
is a positive integer, then xj=X, Tj=T, and Fy is the
identity lattice isomorphism from Tj ; onto Tj' Then, let
L=(X,T,F). Plainly, L is a lattice limit sequence.

The intersection of two elements of B is an element
of B, thus B is a basis for T. The topological space
(X,T) is regular since each element of B is both open and
closed. Consequently, if J is a positive integer, then
(xj,Tj)=(X,T) is regular. Suppose (c(L),S(L)) is regular.

Let H be the sequence defined by if j .is a positive

integer, then Hj:(0,1)+Tj is the function defined by if

xe(0,1), then Hj(x)={(x,0)}0{(x,%-)|ieZ+ and i 3}.




SIS Py e

Let V:(0,1)»T be the function
x<(0,1), then V(x)=4{Hl(z)::<ﬁx,l“
integer, then Lj has a finite
hence LjeB. Let W be the segquence
positive integer, then if j=1, then

then Wi=u{ly|kez" and ksjluv(d). If

-

integer, then Wj is a union of members

thus WjeT.

Let £ Dbe a positive integer. £ (=,p)e then
either
(1) there exists ie3*t such th (x,y)eL., hence
(x'y)‘WZ+i' or
(x,y)eL,, thus x<( 0,1) I ¥ consequently

there exists je<z¥ 2=, and thus

3 -3 T |
ngzZ:q" so (x,y)eV(-

-

It follows that if m is a positive

If j is a positive integer, then W.cW.

Therefore I W is a member of the usual base oI
nn

Let g be the seguence defined by 1f is a positive

integer, then if i=1, then qL=(é,L“ but if 1i#l, then

) ) is regular,

qi=(;,0). Now, gqel W . Since (c(L),s (L)

L(0)all

there exists an open set (¢ such that qe Qeel( nhe

rhen there

Let 8S be the usual base

exists BeBS such that q;BcBS




Since .BeBg, there exists a sequence U and a positive
integer M such that
(1) if iez, then U.eTy,
. s ot . i+l L
(2) if iez™ and i>M, then U cF; " (Uj4y)=Uj43r
. s ot s i+k i +
(3) if dez”, then X ,=u{Fj (Ug4p) | ke 2T 3=0{Uy ) |ke2™},
and
(4) B=nnUn.
If j 4is a positive integer, then wj(q)er.
Now X=XM=U{Um+k|keZ+}, but I, is an uncountable
subset of X, therefore there exists a positive integer m
such that m>M and IL,nU, is uncountable. But U, is a

member of T, =T, so £ (x,O)eqn,then there exists a positive

integer 3j such that (x,O)eHj(x)c s because '{Hi(x)liez+}
(x,0). Let

is the collection of base elements that contain

N:( 0,1)»2z% be the function defined by if xe(0,1), then if

(x,O)éUm, then N(x)=1, but if (x,O)eUm, then N(x) is the

least integer in the set {i]iez* and (x,0)eH; (x)<Up}.

Let K=u{HN(x)(x)|(x,0)eUm}. Then KcUy, and thus

if j is a positive integer, then Kch. Let k:L nUp»K-L,

be defined by if x is a real number such that (x,O)eLonUm,

then 1
k((x,O))—(x,N(x)+l)-
Plainly, k is one-to-one. Therefore the range of b ia

uncountable, but the range of Bk is a subset of K-Lo, thus

K—Lo is uncountable.




The set K-IL, is a subset of X—L0=U{Li|iez+}. Thus
there exists a positive integer 1 such that (K—Lo)nLT is
uncountable. Clearly, (K—LO)nLT=KnL1. If x is a real
number such that (x,%)eKnLt, then (x,%)eHN(x)(x), hence
™N(x). Let P be‘the sequence defined by if j -is a
positive integer, then if j<t, then Pj=¢, but if j=2r1,
then Pj:KnLT+KnLj is the function defined by if x is a
real number such that (x,%)eKnLT, then Pj((x,%))=(x,¥).

If j is a positive integer, then Pj is one—to—one.J Thus,

if j is a positive integer and j2Tt, then KnLj is uncount~-

able. Recall that KcUm, then if j 1is a positive integer
and j271, then Uanj is not countable, hence not finite.
Let t=m+t. Now, t>T soO Uant is not finite.
Let DeB such that (0,%)eD. Now, Lt-D is not finite.
Therefore, UnD is not empty. It follows that if D*eB

such that (0,%)eD*, then UmnD* is not empty. Therefore,

1 :
(0,%)ecl(um). But t>m, thus (0,f) is not a member of

u{LklkeZ+ and ksm}uV(%)=wm. Consequently, c¢l(Uy) is not

a subset of W, . By Theorem 29 wm(cl(B))=c1(nm(B))=c1(Um),
Thus nm(cl(B)) is not a subset of Wp and so cl(B) is
not a subset of I W . But recall that ‘cl(B)ccl(0) and
This is a contradiction.

cl(O)cHnWh, thus cl(B)cl Wy,.

Tt follows that (C(L),S(L)) is not regular.

Definition 17. Let (X,S) be a topological space and let

A subcollection U of S is said to be a o-regular

Oes.




cover of 0 provided 0= {U|UcU} and if Uel, then
cl(U)c0. A topological space is called o-regqular provided

every open set has a countable o-regular cover.

Theorem 33. Every metrizable space is o-regular.

Proof: Let (X,T) be a metrizable space and let d
be a metric on X which induces T. Let [0,») denote the
set of non-negative real numbers. Let B:Xx[0,»)»T be the

function defined by if xeX and rel0,»), then
B(x,r)={y|yeX and d(x,y)<r}.

Let B={B(x,r)|xeX and re(0,+)}. Then B is a base for T.

Let O0eT. Let U be the sequence defined by if j

is a positive integer, then

- 1 i
Uj-u{B(x,zj)lxeo and B(x,J)CO}o

If j is a positive integer, then UjCO, thus u{UkaeZ+}c0.

Let qe0. Then since B is a base for T, there is a pos-

itive real number r such that geB(g,r)<0. Then there

1 1
exists a positive integer m such that m>z. Now, o<r

' +
and qu(q,f%)cs(q,%)cB(q,r)CO. Thus qumcu{UkaeZ }o ' FE

follows that OCU{UklkeZ+} and therefore 0=u{Uk|keZ+}.

Let i be a positive integer and let pecl(Ui).

1 .
Then B(p,%;)nui is not empty. Let XEB(p'EI)nUi' Since

1 1
xeU, , there exists ye0 such that xeB(y,EI)cB(y,I)co.

: 1
Thus d(p,x)<é%- and d(x,y)<7I, and hence




e | 1
d(p,y)=d(p,x)+d(x,y) < §_i+%=f'

1
Therefore peB(p,7)<0. It follows that cl(U;)<0. Now, it

follows that if j is a positive integer, then cl(Uj)CO.

Therefore {Uklkez+} is a o-regular cover of 0. Plainly,
'{Uklkez+} is countable. It follows that every opén set has
a countable o-regular cover. Therefore (X,T) is o-regular.

It may be concluded that every metrizable space is o-regular.

Theorem 34. Let (X,T) be a topological space. If (X,T)
is o-regular, then (X,T) is regular.

Proof: Suppose (X,T) is o-regular. Let 0¢T and
let pe0. There exists a o-regular cover U of 0. Now,
0=u{U|UcU}. Thus there exists UelU such that peU. Also,
since U is a o-regular cover, UeT and cl(U)c0. Thus,
peUccl(U)c0. It follows that if 0*T and p*c0*, then

there exists U*T such that p¥*eU*ccl(U*)c0*. Therefore,

(X,T) is regular.
Theorem 35. Let (X,S8) and (Y,T) be topological spaces

and suppose F is a lattice isomorphism from S onto T.

Let O0eS. Then if U is a o-regular cover of 0, then

{F(U) |ueU} is a o-regular cover of F(0).

Proof: Let U be a o-regular cover of 0. Then by

Theorem 2, F (0)=F (u{U|UeU})=u{F (U) |UeU}.

Let DF be the dual of F. Then if UelU, then by

Theorem 10, cl{F(U))=DF(c1(U)), but cl(U)c0, so by




Theorem 11, DF(cl(U))CF(O). Thus if Uel, then cl(F(U))
is a subset of F(0). Therefore, {F(U)|UclU} is a o-regular

cover of 0.

Corollary 35.1. Let (X,S) and (Y¥,S) be topological spaces

and suppose F is a lattice isomorphism from S onto T.
Then if (X,S) is o-regular, then (¥,T) is o-regular.

Proof: This is clear.

Theorem 36. Let L=(X,T,F) be a lattice limit sequence

such that if j is a positive integer, then (Xj,Tj) is
o-regular. Then (C(L),S(L)) is regular.

Proof: Let Bs be the usual base for S(L). Let
0 be a member of BS and suppose pe0. Since 0eBg, there
exists a sequence U and a positive integer M such that

(1) if iez*, then UeTy,
J.+1(U

(2) if iez*, and i2M, then U;cFi” (Uj41),

(3) if iez*, then X;=U{F}™* (Ui, ) |kez®}, ana

(4) 0=nnUn.
Now, if 3j is a positive integer, then nj(p)er. Tt
is a positive integer, then (xj,Tj) is o-regular, and
therefore regular, by Theorem 34. Also, if j is a positive

integer, then UjeTj and nj(p)er. Therefore, there exists

a sequence W such that if j is a positive integer, then

"j(p)echcl(wa)ch. Let 2z be the sequence defined by if

j is a positive integer, then zj is a sequence such that

{Zj(k)lkez+} is a o-regular cover of Uj'




Let V be the sequence defined by if i is a

positive integer, then (1) if i<M, then V,=W,, and (2) if

i>M, then V., is the union of the sets W, F%'l(vi_l), and
u{FK (3, (i-k)) |kez* and Msk<i).

Let J={k|keZ* and c1(V})¢U,}. Suppose that J is
not empty. Then there exists a least member t of J. But
t is not less than or equal to M, else cl(Wt)=c1(Vt)¢Ut,
contradicting the definition of W. Therefore t>M. Then
t-1>M, so Ut_ICFE_l(Ut). Also, t-1 is not a member of J,
hence cl(Vt_l)CUt_l. Thus cl(Vt_l)CFE_l(Ut). Let G be

the dual of Fz'l, then by Theorem 11,

t-1, .t =

G(ecl(Vy_q))cFy (Fi_1(U))=U,.
-1

Also, by Theorem 10, G(cl(Vt_l))=c1(FE (Vt_l)). Therefore

cl(F:'l(vt_l))CUt. A similar argument shows that if k is

a positive integer and Msk<t, then cl(Ft(Zk(t—k)))cUt.

Thus u{cl(F]é(Zk(t—k)))IkeZ+ and Msk<t} is a subset of U,..

Since {Ft(zk(t—k))|kez+ and M<k<t} is finite, then

el (0 {FK (2 (t-K)) | ke z* and Msk<t})=

U{cl(Ft(zk(t—k)))|kez+ and Mck<t}<U, .

Plainly, cl(wt)cUt. But Vg is the union of the sets W,

- - o +
ptoloyog) cantt | VIR (k) ) ke 57 and Mek<t Thus cl (V)

t-1
is the union of the sets cl(W.), cl(Fg (Vt-l))' and

cl(U{Ft(Zk(t-k))Ikéz+ and Msk<t}), each of which is a subset

of Ug. Therefore cl(V,)<Ug and hence, t is not a membexr




of J. But t is the least member of J. This is a contra-
diction. It follows that J is empty. Thus if j is a .

positive integer, then cl(Vj)cU Therefore, by Theorem 29,

'S
cl(nnvn)=nncl(Vn)cnnUn=0.
Clearly, if j 1is a positive integer,‘then VjeTj.

If j 4is a positive integer and j=M, then j+1>M, hence

Therefore, i€ 3 is a

FJ (Vj) is a subset of V.,
I+l

j+l j+ +1°

positive integer and j2M, then VJ—F (F 1(V ))CF (v,

3+1)
Let i be a positive integer. It is clear that

k + ;
(Vi) |keZ7}eX,. Let xeX;. Since N, UpeBg,

k
x.=).="."()(M)—F’."(U{Fﬁ+ (Upax) |ke 21y =

{FM(FﬂJ'k( M+k))|kez+} U{F k(ulthk)lkez"}.

Therefore, there exists a positive integer N such that

M+N + . 1
xaFi (UM+N)’ Now, { M+N(k)lkez is a o-regular cover

+ 3
of U,y thus by Theores 33, (FYN (2 () [Rez®) is a
M+N

c-regular cover of F. (UM+N) Thus there exists a positive

integer K such that xaF (ZM+N(K)) Let m=M+N+K.

Then Ms<M+N<M+N+K=m, therefore

M+N

Fy (K))=Fy (T (Zygyy (M= (M4N) ) ) ) €FY (V)

(2 M+N

m+i
Now, M<m, SO F'i“(vm)cyi (Vi) - Thus XeFy and

therefore xeu{Fi+k(Vi+k)[keZ+}. It follows that Xj is

i i+k @
a subset of u{Fi+k(Vi+k)|keZ+}, thus {F{ (Vi+k)|kez }
is equal to X;. It follows that if j is a positive

: j+k +
integer, then xj=u{Fg (Vj+k)|kez ).




It is concluded that IInVn is a member of BS' If

j is a positive integer, then chvj. Therefore, 1N W,

is a subset of ann. Recall that pennwn, thus pennvn.
Now, peHnVnccl(nnVn)CO. It follows that if 0* is a
member of Bs and p*0*, then there exists BeBg such

that p*eBccl(B)cO*. Therefore (C(L),S(L)) is regular.




CHAPTER V
TOPOLOGICAL PROPERTIES OF THE

PRODUCT TOPOLOGIES

pefinition 18. Let L=(X,T,F) be a lattice limit sequence

and let L*=(x*,T7*,I) be the corresponding identity lattice
limit sequence for L. Let D be a subset of X;. A se-

quence xeC(L*) is called an echoing sequence in CiL") .. 1¢

there exists a positive integer M such that if jez* and

j2M, then nj(x)=wM(x). The echo of D in C(L*) is the

set to which y belongs provided y is an echoing sequence
in C(L*) and if j 4is a positive integer, then nj(y)eD.

The echo of D in C(L*) will be denoted by E(D,L%).

Theorem 37. Let L=(X,T,F) be a lattice limit sequence and
let L*=(x*,7*,I) be the corresponding identity lattice

limit sequence for L. Let D be a subset of X; such

that D is dense in (Xl,Tl). Then E(D,L*) is dense in

(CAL*) S LF) )
Proof: Let BS be the usual base for S(L*) and

let 0 be a non-empty member of Bs. Then there exists a

sequence U and a positive integer M such that
(1) if iezt, then UieT;,
(2) if jezt¥ and i2M, then U;cUj.4,
; = +
(3) if iez*, then Xi—u{Ui+k|keZ }, and

(4) O0=n,U,.
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If i is a positive integer, then UieT;=Tl, hence
UinD is not empty. Therefore, there exists a sequence ¢
such that if i is a positive integer, then g,€U;nD. Then
qe nUn=0' Let p be the sequence defined by if i is a
positive integer, then

(1) if 4i<M, then P;=d; and

(2) if 4iz2M, then P;=dy-
Now, peC(L*) and if j is a positive integer, then there
exists a positive integer k such that nj(p)=pj=qkeUknDcD,
hence peE(D,L*). If j 4is a positive integer, then (1) if
j<M, then wj(p)=pj=qjeujnDCUj, and (2) if j=M, then

nj(p)=pj=quUMnDcUMch. Thus if j is a positive integer,

then wj(p)er. Therefore pennUn=0. Now, peE(D,L*) and

pe0, so pe OnE(D,L*). It follows that if 0 is a non-empty

member of Bg, then there exists peC(L*) such that p is

a member of OnE(D,L*). Therefore, E(D,L*) is dense in
(CEL™) SELT)) .

Definition 19. Let L=(X,T,F) be a lattice limit sequence

and let L* be the corresponding identity lattice limit

sequence for L. Let D be a subset of X,. The sequence

of partial echos of D in C(L*) 4is the sequence E

defined by if j 1is a positive integer, then Ej is the

set to which p belongs provided peE(D,L*) and if i

is a positive integer and izj, then ni(p)=nj(p).




Definition 20. Let L=(X,T,F) be a lattice limit sequence

and let L* be the corresponding identity lattice limit
sequence for L. Let D be a subset of X; and let p be
a member of C(L*). Let i be a positive integer. The

iEE linear mimic of D in C(L*) through p, denoted by

Li(p,D), is the set to which g belongs provided gq is a
member of E(D,L*) and if j is a positive integer and

i#j, then ﬂj(q)=wj(p)-

Theorem 38. Let L=(X,T,F) be a lattice limit sequence and

let L* be the corresponding identity lattice limit sequence

for L. Let D be a subset of x1 and let E be the se-~

quence of partial echos of D in C(L*). Then E(D,L*) is

equal to U{Ek|kez+}.

Proof: From Definition 19, if i is a positive
integer, then EiCE(D,L*). Therefore, U{Eklk zt1cE(D,L¥).
Let peE(D,L*). Then p is an echoing sequence, hence

there exists a positive integer M such that 1£c. 9 daBa

positive integer and j2M, then wj(p)=wM(p). Thus peEy.

It follows that U{EklkeZ"'}DE(D,L*) and therefore E(D,L¥)
is equal to u{EklkeZ+}.

Theorem 39. Let L=(X,T,F) be a lattice limit sequence and

let L*=(x*,T7*,1) be the corresponding identity lattice

limit sequence. Let E be the sequence of partial echos

of X, in c(L*) and let S be the_relative topology for

E; from s(L*). Let £ be the restriction of the




projection % to El. Then £ is a homeomorphism from

(El,S) onto (x*,Tl).

Proof: Clearly, f has domain E Let xex*. Let

i 1

p be the sequence defined by if i is a positive integer,

i : *
then p;=x. Now peEl, since xexl=x

1 Then f(p)=n1(p)=x.

It follows that f has range X;.
Suppose q and r are members of Eq such that
£(q)=f(r). If iez*, then my (q)=r,(q)=£(q)=f(r)=m; (r)=m4 (r).
Thus g=r. It follows that £ is one-to-one.
The continuity of £ follows from that of LI Let

Bg be the usual base for S(L*) and let 0cBg. Then there

exists a sequence U and a positive integer M such that
. : *
(1) if iez*, then UieTi,

. . + .
(2) if 1ieZ2 and i>M, then UiCUi+1’

(3) if iezt, then x;=u{ui+k|kez+}, and

(4) 0=HnUn.
Let aeOnE,;. Then acE;, so if i is a positive integer,
then f(a)=nl(a)=ni(a)eUi. Hence, f(a)en{UklkeZ+]. Thus
f(OnEl)cn{UklkeZ+]. Let yen{Uk|keZ+}. If i is a positive

integer, then since f—l(Y)GElr
=] -1 Sk ——
n,; (£ (y))=m, (£ (y))=£(f “(y))=yeU;.

a5 -1
Therefore, £ 1 (y)e nnunzo . Hence, f “(y)e OnEl . It follows

Lk
that n{UklkeZ+}Cf(0nE1)' Thus n{UklkeZ }=£(0nE,) .

; :
Clearly, n{UklkeZ+]cn{Uk|keZ and ksM}. Let z be

a member of h{UkaeZ+ and k<M}. If i is a positive




integer, then (1) if is<M, then zeU,, and (2) if i>M, then
2eUycU, . Thus zeh{Uk|k€Z+}. It follows that h{Uk|k5z+}‘
contains n{Ukaez+ and k<M} and therefore n{UklkeZ+} is
equal to n{UklkeZ+ and ksM}. The set {Uk|kez+ and ks<M}

is a finite subcollection of TI, thus n{Uk\IkeZ+ and ksM}
is a member of TI. Therefore f(OnEl)eT;. It follows that
if 6683, then f(bnEl)eT;. Since '{BnEllBeBs} is a base

for S, then £ is an open function. Therefore, £ is a

homeomorphism from (E,,S) onto (XI,TI).

Theorem 40. Let L=(X,T,F) be a lattice limit sequence and
let L*=(x*,T*,I) be the corresponding identity lattice
limit sequence for L. Let i be a positive integer and
let peC(L*). Let L be the ith jinear mimic of X, in
c(L*) through p and let S be the relative topology for

L from S(L*). Let £ be the restriction of the pro-

jection w4 to L. Then f is a homeomorphism from (L,S)

onto (X¥,T¥).
gl

Proof: Clearly, £ has domain L. Let xexi. Let

g be the sequence defined by if j is a positive integer,

then (1) if 3j=i, then qj=x, and (2) if 3j#i, then

qj=nj(p). Now, geL and f(q)=ni(q)=qi=x. It follows that

f has range x;.

Suppose u and Vv are members of L such that

f(u)=f(v). If j is a positive integer, then (1) if Jj=i,

then wj(u)=ni(u)=f(u)=f(V)=ﬂi(V)=ﬂj(V), and (2) if Jj#i,




then wj(u)=wj(p)=wj(v). Thus u=v. It follows that £ is
one~to-one.

The continuity of £ follows from that of LI The
function £ is open since if (0 is a member of the usual
pbase for S(L*), then f(0nL)=ni(0nL)=ni(0) which is in T;

by Theorem 17. It follows that £ is a homeomorphism from

(L,S) onto (x;,'r;) y

Corollary 40.1. Let L=(X,T,F) be a lattice limit sequence

and let L*=(x*,T*,I) be the corresponding identity lattice
limit sequence for L. Let D be a subset of X,. Let i
be a positive integer and let peE(D,L*). Let L;(p,D) be

the itP linear mimic of D in C(L*) through p and let

S be the relative topology for Li(p,D). Let £ be the

restriction of the projection m; to Li(p,D). Then £ is

a homeomorphism from (Li(p,D),S) onto (D{(T;)D)-

Proof: This follows from Theorem 40.

Lemma 41.1. Let L=(X,T,F) be a lattice limit sequence and

let L*=(x*,T*,I) be the corresponding identity lattice
L. 'Let D be a subset of X1 and let
of D im C(L*)s Let

limit sequence for

E be the sequence of partial echos

i be a positive integer. Then Ei+1=u{Li(p,D)|peEi) and

e T
Proof: Let qeEj.;
is a positive integer, then (1) if

and let r be the sequence

defined by if j J<i,

then rj=wj(q), and (2) if jzi, then rj="i+1(q)'




Clearly, r is a member of E;. If j is a positive
integer and j#i, then (1) if j<i, then 1, (q)=r.=v,(r),

J 1 LSS
and (2) since qui+l, if j»>i, then wj(q)=ni+1(q)=rj=wj(rL
Thus q is a member of L, (r,D), hence qu{Li(p,D)lpeEi}.
It follows that Ei+1cu{Li(p,D)|peEi}. Let s be a member
of U{Li(p,D)|peEi}. Then there exists P By such that
seLi(ps,D). If 3j 4is a positive integer and 3j2i+l, then
j#i and therefore nj(s)=ﬂj(ps)=ni(ps)=ni+l(ps)=ni+1(s).
Hence, se¢E;,;. It follows that u{Li(p,D)IpeEi}cEi+l, and

therefore Ei+l=u{Li(p,D)|psEi}. Plainly, E; is a subset

of U{Li(p,D)IPEEi}=Ei+l.

Theorem 41. Let L=(X,T,F) be a lattice limit sequnce such

that if j is a positive integer, then (Xj,Tj) is connected.

Then (C(L),S(L)) is connected.

Proof: Let L*=(X*,T7*,I) be the corresponding iden-
tity lattice limit sequence for L. If j is a positive
integer, then (X;,T;)=(X1,Tl) is connected.

The remainder of this proof is concerned with subspaces

of (C(L*),S(L*)). When convienent a subset of C(L*) will

be refered to as the corresponding subspace.

Let E be the sequence of partial echos of X, in

C(L*). Let J={j|Jjez* and Ej is connected}. Then 1leJd,

since by Theorem 39, E; is homeomorphic to (Xl,Tl), which

is connected by hypothesis.




Suppose m is a member of J. Then E, is con-
nected. If peEp, then Lm(p,xl) is connected, since by
Theorem 40, L_(p,X;) is homeomorphic to (X;,T;)=(X1,Tl).

Also, if peEm, then the intersection of E, and Ly (PrXq)

contains p, hence is non-empty. Therefore, if peEp, then
EmuLm(p,xl) is connected. Clearly, n{EmuLm(p,xl)|peEm}

is not empty. Therefore,

Em+l=EmUEm+1=Emu(U{Lm(p,xl)|peEm})=

{E ULy (p,X;) | peEy)

A A ol A S il SRl

is connected. Thus m+l is a member of J. It follows
that if jeJ, then 3j+leJ. Therefore, by induction, J is
the set of positive integers. Hence, if i 1is a positive
integer, then E; is connected.

Clearly, if i is a positive integer, then ElcEi.

 L*)=0{E) [keZ™)

Thus n{Ek|keZ+} is not empty. Hence, E(X,

is connected. By Theorem 37, E(xl,L*) is dense in
(C(L*),S(L*)), thus (C(L*),S(L*)) is connected. But by

Theorem 23, S(L*) is lattice isomorphic to S(L). Thus

by Theorem , tCLLY S (L)) ‘is connected.

Theorem 42. Let L=(X,T,F) be a lattice limit sequence such

that it 3 18 a positive integer, then (Xj,Tj) is con-

nected. Then (C(L),U(L)) is connected.

Proof: This follows from the connectedness of

(c(L),S(L)) by Theorem 41, and the fact that U(L)eS(L)

by Theorem 16.




Example 3. Let X, T, and I be the sequences defined by
if j is a positive integer, then xj is the set of real'
numbers, Tj is the usual topology for the set of real
numbers, and Ij is the identity lattice isomorphism from
Tj+l onto Tj' Let L=(X,T,I). Then L is a lattice
limit sequence such that if 3j is a positive integer, then
(xj,Tj) is connected, but (C(L),B(L)) is not connected.

Proof: Plainly, L is a lattice limit sequence.

It is well known that the usual topology for the set of real
numbers is connected [2, Ex. 26.9, p. 193]. Therefore, if

j is a positive integer, then (xj,Tj) is connected. Let
B be the usual base for B(L).

Let C be the set of convergent sequences of real
numbers. Then C is a subset of C(L). Let peC and let
L be the limit of the sequence p. Let U be the sequence
defined by if i is a positive integer, then Uy is the
open interval (ni(p)—(l/i),ni(p)+(l/i)). Clearly, n,U,

is a member of B and pel U . Let qell U, and let €  be

a positive number. Since p is convergent to L, there

exists a positive integer M such that if i is a positive

integer and izM, then Iﬂi(p)—L|<e/2. Since Qqel U, i€ 1

|wi(p)~ni(q)]<l/i. There exists

is a positive integer, then

a positive integer N such that N>2/e, then 1/N<e/2. -

Now, if i is a positive integer and i2M+N, then
Iﬂi(q)-L|=|ni(q)-ni(p)+ni(p)—L|SIni(q)-ﬂi(p)|+|ni(p)—L| and

Ins (@) -ng (p) | < (1/4) < (1/N)<(e/2) and |73 (p)-L]| <e/2, hence




|ni(q)—L|<(e/2)+(e/2)=e. Therefore q converges to L.

Thus q is a member of C. It follows that n,U,cC. Now,

it may be concluded that if p* is a member of C, then
there exists BeB such that p*eBcC. Thus C is open.

Let D=C(L)-C and let reD. Let V be the sequence
defined by if i 1is a positive integer, then V; is the
open interval (ni(r)-(l/i),wi(r)+(l/i)). Let sell,V, and
suppose s is a convergent sequence. Then a similar
argument to that above shows that r is a convergent se-
quence. But reD=C(L)-C, thus r is not a convergent se-
quence. This is a contradiction. Thus s is not a convergent
sequence, hence seD. It follows that N,VhcD. Now, it may
be concluded that if r* is a member of D, then there exists
BeB such that r*eBcD. Thus C(L)-C=D is open and hence,

¢ is closed. But C is also open and clearly neither C=¢

nor C=C(L). Therefore (C(L),B(L)) is not connected.

Theorem 43. Let L=(X,T,F) be a lattice limit sequence

such that (X;,T;) is seperable. Let L*=(x*,T*,I) be the

corresponding identity lattice 1imit sequence for L. Then

(c(L*),S(L*)) is seperable.

Proof: Let D be a countable subset of Xl such

that D is dense in (Xl'Tl)' Let E be the sequence of
partial echos of D in C(L*). Let J be the set to which
j belongs provided j is a positive integer and Ej is

countable. Now leJ, because Theorem 39 implies that the
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restriction of the projection LAY to E; is a one-to-one
function with range D. -
Suppose m is a member of J. Then E, is coun-
table. If peE , then Lm(p,D) is countable, since
Corollary 40.1 implies that the restriction of the projection
T, to Lm(p,D) is a one-to-one function with range D.
Now, Ep41= {Lm(p,D)|peEm} is a countable union of coun-
table sets, hence is countable. Thus m+l is a member
of J. It follows that if 3jeJ, then Jj+leJ. Therefore,
by induction, J is the set of positive integers. Thus, if
i is a positive integer, then E; is countable.
Now, E(D,L*)=U{Ek|kez+} is a countable union of
countable sets, hence is countable. By Theorem 37 E(D,L*)

is dense in (C(L*),S(L*)). Therefore (C(L%),S(L*)) is

seperable.

Theorem 44. Let L=(X,T,F) be a lattice limit sequence

such that if j is a positive integer, then (Xj,Tj) is

both T, and seperable. Then (C(L),S(L)) is seperable.
Proof: Let L* be the corresponding identity lattice

limit sequence for L. Then by Theorem 23, S(L) is lattice

isomorphic to S(L*). By Theorem 26, both (C(L),S(L)) and

(C(L*),S(L*)) are T,. Therefore, by Theorem 6, (C(L),S(L))
Then (C(L),S(L)) is

is homeomorphic to (C(L*),S(L*)).

seperable, since by Theorem 43, (C(L*),S(L*)) is seperable.




Theorem 45. 2, Th. 17.8, p. 120 Let L=(X,T,F) be a
lattice limit sequence such that if j is a positive
integer, then (xj,Tj) is compact. Then (C(L),U(L)) is

compact.

Theorem 46. Let L=(X,T,F) be a lattice limit sequence
such that if j is a positive integer, then (xj,T.) is

J
compact. Then u(L)=S(L).

Proof: Let Bu and BS be the usual bases for U(L)

and S(L), respectively. Let OeBS; Then there exists a
sequence U and a positive integer M such that

(1) if dez*, then U.eT,,

(2) if ezt and i:M, then UcFitl(ug,,),

(3) if iez*, then X;=u{Fi™"

(Uj4) |kez*}, and
(4) 0=nnUn.
T ticul e ) ka3 c
n particular, M Mtk | ke is an open cover of Xu.
But (XM,TM) is compact. Therefore, there exists a finite

subset K of 2%t such that {Fﬁ+k(UM+k)|keK} is a cover

of X Let K be the largest positive integer in K. If

M*

s . L. . 2 M+K
j is a positive integer and M<j<kK, UM+chM+j(UM+K)’ thus

M+ M+3j ,_M+K __M+K
Fyu (UM .)CFM (FM+j(UM+K))'FM (UM+K)' It follows that

XM=U{Fﬁ+k(UM+k)|keK}=Fﬁ+K(Um+K). Then by Theorem 4, Upmix

is equal to X, - If j is a positive integer and j2K,

= M+j = M+j v ). Now, b
then X, . =U, .c ek (Uny4) » hence Xt k=F MK (O3 ow, by

Theorem 4, if j is a positive integer and Jj2K, then

UM+j=xM 3 Therefore 0=N,U.eB,. It follows that BgcBy.
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Therefore S(L)cU(L). By Theorem 16, U(L)<S(L), thus

u(L)=S(L).

Example 4. Let X, T, and I be the sequences defined by

if i is a positive integer, then X;={0,1}, T; is the

i
discrete topology on X;, and I; is the identity.lattice
isomorphism from Ti+1 onto Ti' Let L=(X,T7,I). Then L
is a lattice limit sequence such that if i is a positive
integer, then (Xi,Ti) is compact, but (C(L),S(L)) is not
compact.

Proof: Clearly, L is a lattice limit sequence and
for each positive integer 28 (xi'Ti) is compact. But C(L)

is infinite and B(L) is discrete, hence CCLEY SBiLY ) 18

not compact.

Theorem 47. Let L=(X,T,F) be a lattice limit sequence
such that if j is a positive integer, then (Xj,Tj) is
compact. Then (C(L),S(L)) is compact.

Proof: By Theorem 46, (c(L),S(LY)=(C(L) U(L)), which

is compact by Theorem 45.




SUMMARY

In this thesis the saturating topology for a countable
product of lattice isomorphic factors has been defined and
investigated. It has been shown that among the topological
properties inherited by the saturating topology from the
factor spaces are TO' Tl' Tz, connected, and compact. It
was shown that the saturating topology does not inherit
regularity from the factor spaces, but that if the factor
spaces are o-regular, then the saturating topology is regular.

It is not known whether the saturating topology inherits

o-regularity from the factor spaces. The saturating topology

on a product of separable spaces was shown to be lattice

isomorphic to a separable topology, but it is not known

whether such a saturating topology is itself separable.
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