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The saturating topology on a product set is between 

the usual and box topologies and is different from each. 

On a product of compact spaces the saturating topology is the 

same as the usual topology, and hence, it is compact.  On a 

product of connected spaces the saturating topology is con- 

nected.  On a product of a-regular spaces the saturating 

topology is regular.  On a product of separable spaces the 

saturating topology is lattice isomorphic to a separable 

topology. 
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INTRODUCTION 

The  purpose  of this  thesis  is  to  investigate  the 

properties  of certain topologies  for a countable  product 

of  lattice   isomorphic  factor  spaces.     The  idea of using 

lattice  isomorphisms  between  factors to define  a  topology 

on a  product  space  is  due  to Goolsby in  [4].     Both  the 

usual  and box topologies  are well known.     The  saturating 

topology was  originated by the  author in  an effort  to 

describe a   topology properly  containing  the usual  topology, 

but  still preserving compactness.     The example showing 

that  regualrity  of  the  factor spaces does  not guarantee 

regularity  of the  saturating  topology is  also due  to Goolsby 

in a paper not published  at  the  time of  this writing.     The 

result  that  connectivity  of  the  factor spaces  does  not 

gaurantee connectivity of  the box topology was  first proved 

by  Knight in   [5],   but the proof  given here  is  due  to Professor 

Jerry  E.  Vaughan of  the University of North Carolina at 

Greensboro. 

A working  knowlege  of  set theory  and elementary 

topology is   assuned.     The  reader  is  referred to  [13,   C2 3, 

and   [3]  for  definitions  and results  not covered in  this  thesis. 

In Chapter I certain definitions and results regarding 

lattice isomorphisms are reviewed. In Chapter II definitions 

of  the  usual,   saturating,   and box topologies  are  given and 
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and certain basic results are proved about them.  In Chapter 

III the semi-complete base and the basic similarity are 

defined, it is proved that a basic similarity may be extended 

to a lattice isomorphism, and this result is applied to 

the product topologies.  In Chapter IV it is shown that for 

Tn, T. , or T_ factor spaces, each of the three topologies 

discussed is TQ, T., or T», respectively.  Also in Chapter IV 

an example is given to show that regularity of factor spaces 

does not gaurantee regularity of the saturating topology. 

In Chapter V it is shown that the saturating topology on 

a product of connected factors is connected and an example 

is given to show that connectivity of factor spaces does 

not guarantee connectivity of the box topology.  Also in 

Chapter V it is shown that the saturating topology on 

a product of separable spaces is lattice isomorphic to 

a separable topology. Finally in Chapter V it is shown that 

on a product of compact spaces the usual topology and the 

saturating topology are the same. 

Emphasis is given to the saturating topology throughout 

this thesis.  All Cartesian products referred to in this 

thesis are indexed by the set of positive integers and the 

simplified notation  HnUn  is used to denote the product of 

the sequence U of sets.  The closure of a set A with 

respect to a topology T will be denoted by clT(A).  When 

context makes the meaning clear  cl(A)  will be used. 



CHAPTER  I 

PREPARATORY   RESULTS 

Definition 1. [1, Def. 1, p. 1] An ordered pair (X,R) is 

called a partially ordered set provided X is a set and R 

is  a subset  of     Xxx    such  that 

(1) if  aeX, then  (a,a)eR, 

(2) if  a,beX, then if  (a,b)eR and  (b,a)«R, 

then  a=b, and 

(3) if  a,b,ceX, then if  (a,b)eR and  (b,c)eR, 

then  (a,c)eR. 

If  (X,R)  is a partially ordered set, then  (a,b)eR will 

be denoted by  aRb. 

Definition 2. [1, Def. 2,3; p. 1] Let  (X,<)  be a partially 

ordered set.  Let be X and let AcX.  Then b  is called a 

lower bound of  A provided if  aeA, then b<a; and b is 

called an upper bound of  A provided if  aeA, then a<b. 

The element  b  is called a greatest lower bound of A 

provided b  is a lower bound of A and b is an upper 

bound of the set of lower bounds of A.  The element b  is 

called a least upper bound of  A provided b  is an upper 

bound of  A  and b  is a lower bound of the set of upper 

bounds of A. 



Definition 3. Cl, Def. 4, p. 2]  A partially ordered set 

(X,<)  is called a lattice provided every finite, non-empty 

subset of  X has both a least upper bound and a greatest 

lower bound. 

Definition 4. [1, Def. 6, p. 2]  Let  (K,<)  and  (L,<<)  be 

lattices and let  f be a one-to-one function from K onto 

L.  Then  f  is called a lattice isomorphism from  (K,<) 
 " ————*—■——— 

onto     (L,<<)     provided 

(1) if     a,beK    and    a<b,   then    f(a)<<f(b),   and 

(2) if    c,deL    and     c<<d,   then    f"1(c)<f_1(d). 

To  say  that     (K,<)     is_ lattice  isomorphic  to     (L,<<)     means 

that  there  is  a  lattice  isomorphism from     (K,<)     onto     (L,<<). 

Theorem 1.     Let     (X,<),   (Y,<<),   and     (Z,<*)     be  lattices   , 

and suppose f  is a lattice isomorphism from  (X, )  onto 

(Y,<<)  and suppose g is a lattice isomorphism from 

(Y,<<)  onto  (Z,<*).  Then g->f  is a lattice isomorphism 

from  (X,<)  onto  (Z,<*). 

Proof:  This is clear from Definition 4. 

The proofs of the remaining theorems in Chapter I may 

be found in Cl] and [31. 

Theorem 2. [1, Th. 2, p. 3] Let  (K,<)  and  (L,<<)  be 

lattices and suppose that  f is a lattice isomorphism from 

(K,<)  onto  (L,<<).  Then the inverse function  f"  is a 

lattice isomorphism from  (L,<<)  onto  (K,<). 



Theorem 3. [1, Th. 6, p. 7]  Let  (X,T)  be a topological 

space.  Then the usual subset relation defines a lattice on T. 

The remainder of this paper is concerned with lattices 

defined on topologies.  In all cases the order will be defined 

by the subset relation.  When convient the topologies will 

be refered to as lattices. 

Theorem 4. [1, Th. 5, p. 4]  Let  (X,S)  and  (Y,T)  be 

topological spaces and suppose that  F  is a one-to-one 

function from S onto T.  Then F  is a lattice isomorphism 

from S  onto T if and only if  UcS  implies 

u{F(U)|UeU}=F(u{U|UeU}) . 

Theorem 5. [1, Ths. 9,10; pp. 8, 9]  Let  (X,S)  and  (Y,T) 

be topological spaces and suppose  F  is a lattice isomor- 

phism from S onto T.  Then 

(1) F(<j>)=<f> and F(X)=Y, 

(2) if U     is a open cover of  X, then '{F(U)|Ueli} 

is an open cover of Y, and 

(3) if U     is a finite subcollection of  S, then 

F(n{U|UeU}) = n{F(U)|UeU). 

Theorem 6. [1, Th. 27, p. 32]  Let  (X,S)  and  (Y,T)  be 

topological spaces and suppose F  is a lattice isomorphism 

from S  onto T.  Then if  (X,S)  and  (Y,T)  are both T±, 

then  (X,S)  is homeomorphic to  (Y,T). 



Definition 5. [1, Def. 14, p. 10]  Let  (X,S)  and  (YfT) 

be topological spaces and suppose F is a lattice isomor- 

phism from S onto T.  The collection of closed subsets 

of  X will be denoted by C  and likewise the closed s 
subsets of  Y will be denoted by  C .  The function G 

with domain  C  defined by if Me C , then G(M)=Y-F (X-M) 

will be called the dual of F  and will be denoted by V  . 

Theorem 7. [1, Th. 8, p. 8] Let  (X,S)  be a topological 

space.  Then the superset relation defines a lattice on CQ. 

Theorem 8. [1, Ths. 11, 12; pp. 10, 11]  Let  (X,S)  and 

(Y,T)  be topological spaces and suppose F  is a lattice 

isomorphism from S  onto T.  Then Vp    is a lattice iso- 

morphism from Cs onto  CT and  (°F)~ 
=P
F-1- 

Theorem 9. [1, Ths. 5, 7; pp. 4,7]  Let  (X,S)  and  (Y,T) 

be topological spaces and suppose F is a lattice isomorphism 

from S  onto T.  Then if McCg, then 

(1) V   (n{M|MeM>) = n{P (M)|M«M}, and 

(2) if  M  is finite, then DF(u{M|MeM} )=u{0p (M) \W-U) . 

Theorem 10. [1, Ths. 9, 17; pp. 8, 15]  Let  (X,S)  and 

(Y,T)  be topological spaces and suppose F  is a lattice 

isomorphism from S  onto T.  Then 

(1) PF(*)=*  and  0F(X)=Y, and 

(2) if OeS,   then  cl(F(0))=Pp(cl(0)) . 



Theorem 11. C3, Th. 6, p. 4]  Let  (X,S)  and  (Y,T)  be 

topological spaces and suppose  F is a lattice isomorphism 

from  S  onto T.  Let peX,   OeS,   and MeCg.  Then 

(1) if    Mcfl,   then    P_(M)cP(0), 

(2) Mn0=<f>     if  and only if     V   (M)nF((?)=*,   and 
F 

(3) if VeT  such that VnP (cl({p)) M*, then 

p is a member of F~ (V). 

Theorem 12. [1, Th. 13, p. 13]  Let  (X,S)  and  (Y,T) be 

topological spaces and suppose  F is a lattice isomorphism 

from  S  onto T.  Let UeS and suppose peF(U).  Then 

there exists  xeU  such that if  VeS and xeV, then peF(V) 

Theorem 13. [1, Th. 20, 21; pp. 19, 22]  Let  (X,S)  and 

(Y,T)  be topological spaces and suppose  F is a lattice 

isomorphism from S onto T.  Then 

(1) if  (X,S)  is connected, then  (Y,T)  is 

connected, and 

(2) if  (X,S)  is compact, then  (Y,T)  is compact. 



CHAPTER II 

PRELIMINARY RESULTS 

Definition 6. [4, Def. 1, p. 1]  The ordered triple  (X,T,F) 

is said to be a lattice limit sequence provided X is a 

sequence of sets,  T  is a sequence of topologies, and F 

is a sequence of functions such that if  i  is a positive 

integer, then 

(1) T.  is a topology for X., and 

(2) F.  is a lattice isomorphism from T.,,  onto T,. l r l+l        l 

Suppose  (X,T,F)  is a lattice limit sequence.  Then 

if i  is a positive integer, then F*  will denote the 

identity map from T.  onto  T.,  F^   will denote F^ and 

if is a pos itive integer, then F*+3+1 will denote 

F-|-+;joF. ..  Also if k     and I     are positive integers and 
l   l+D 

k<l,   then  F? will denote (FT)" .  Now, if  m and n     are 

positive integers, then  P™ is a lattice isomorphism from 

T onto  T . 

Definition 7.  Let L=(X,T,F)  be a lattice limit sequence. 

The limit collection of L,   denoted by  C(L), is the usual 

product of sets n  X .  For each positive integer  i, the 

i^ projection of C(L),   denoted by i^, is the usual projec- 

tion from  C(L)  into T±, such that if  ffCCL), then 

7ri(f)=f (i). 



Definition  8.     Let L=(X,T,F)     be a  lattice  limit  sequence. 

The  usual  topology on  the limit  collection of     L,   denoted by 

U(L),   is  the usual topology  generated by  the  collection     8,., 

to which a  set     0 belongs provided  there  is  a sequence     U, 

such  that 

(1) if     ieZ ,   then    U.ET. , 

(2) there exists  a positive  integer    M,   such that 

if     ieZ and    isM,   then    U.=X.,   and 

(3) 0=n     U   . 
n    n 

The collection  B.  will be called the usual base for  U(L). 

Definition 9.  Let  L=(X,T,F)  be a lattice limit sequence. 

The saturating topology on the limit collection of L,   denoted 

by S(L),   is the topology generated by the collection  8„, 

to which a set 0     belongs provided there is a sequence U, 

such that 

(1) if  ie Z , then U,eT^, 

(2) there exists a positive integer M, such that 

if ieZ+  and i>M, then UjePj+1 (Ui+1), 

(3) if  ieZ+, then Xi=u{FJ;
+k(Ui+k) |kc Z

+}, and 

(4) 0=nn un. 

The collection  B.  will be called the usual base for S(L). 

Definition 10.  Let  L=^(X,T,F)  be a lattice limit sequence. 

The box topology on the limit collection of L,   denoted by 

B{L),   is the usual box topology generated by the collection 



Bg, to which a set 0    belongs provided there is a sequence 

U, such that 

(1) if  isZ+, then  U.eT,, and 

(2) 0=nn un. 

The collection  8g will be called the usual base for B(L). 

Lemma 14.1,  Let  L=(X,T,F)  be a lattice limit sequence. 

Let  8<>  be the usual base for S(L),   the saturating topology 

on C(L).     Then if  A,BeB5, then AnBeB^ 

Proof:  Let  A/BeB,,.  Now there exist sequences  U 

and V, and there exist positive integers M and N, such 

that 

(1) if  ieZ+, then U.eT.  and V.eT., 

(2) if  ieZ+, then if  i>M, then U^cf^1 (Di+1), and 

if  i>N, then VJCPJ- (VJL+J), 

(3) if  ieZ+, then  Xi=u{F?;
+k(Ui+k) |k€ Z

+}  and 

Xi=u{FJ
+k(Vi+k)|keZ

+}, and 

(4) A=n  U  and B=n  V . n n n ii 

Let W be the sequence defined by if  j  is a positive 

integer, then W.=U.nV.. 
J J J 

(1) If     ieZ+,   then    Wi=UinVi    and    Uj riV^     is  in    T^. 

(2) If     if Z+    and    i>M+N,   then     i&M    and i>N,   so 

Wi-OinVicF*+1(Oi+1)nP1+1(V1+1)-F
i*1COi+1AVi+1), 

but    W.+1=Ui+1nV.+1,   hence    W.cFi+1(W.+1). 

(3) Let     j     be  a positive  integer.     Clearly 

>i+*t - "+' X.3u{F}+K(Wj+k)|keZ+}. 



Let    xeX.     and  let    K=M+N.     Now,  since 

Xj-FK(XK)=pK(u{pJ+k(UK+k) |kcZ+}) = 

u{FKoFK+k(u        )|k£Z
+}=u{FK+k(U     , )|k£Z+>, 

J     K K+K D K+k 

there  is  a positive  integer    L   ,   such that 

xeF 
KfLu(U K+L  ' *     Likewise,   there  is  a positive 

K+L, integer    L   .   such  that    xeF.     V(V„,T   ).     Let v K+L, 
L=Lu+Lv'     Then    MsK+I"USL    and    N<:K+LV<L,   so 

K-i 

j ■""y*<w and iaB?+l,(vK+L)- i,; 

X€
 Fj+L < W ttFfL (VK+L> =Fj+L <W VK+L> = 

FJ+L<WK+L>' 

Hence     xeu{Fl+k(W.+k)|keZ+}.     It  follows  that 

X.eu{F^+k(W... ) |keZ+}     and  therefore 

X. = u{F^+k(W.4.. ) |keZ+}. 

(4)   The product    n  W       is  a member  of    8„. 

Suppose     yeAnB,   then    ye A    and    ye 8.     So if    i     is  a 

positive  integer,   then    v^ly)eU^     and     i^fyJeV^     or 

*■ (y)eUinV.=Wi.     Thus    yennWn,   and so    An8cjinWn.     Suppose 

zen  W   ,   then  if     h     is  a positive  integer,   then    »h(z)eWh, 

or     irh(z)eUh    and     nh(z)eVh.     Thus     ze nnUn=A    and     zennVn=B. 

Hence     zeAn8.     It follows  that     nn
w

n
cAnB-     Therefore 

nnwn=An8     and so     An8     is  a member of     8S. 

Theorem  14.     Let     1     be a   lattice  limit sequence and  let    8^ 

be  the  usual base  for  the  saturating  topology on     C(L).     Then 
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B„  is a base for a topology. 

Proof:  This is clear from Lemma 14.1. 

Theorem 15.  Let L    be a lattice limit sequence.  Let 
U 

and  8g be the usual bases for U[L)     and B(L),   respectively. 

Then  B  and  B„ are bases for topologies. 

Proof:  The proofs are similar to that of Theorem 14. 

Theorem 16.  Let  L be a lattice limit sequence.  Then 

U(L)cS(L)cB(L). 

Proof:  Let 8,,, 8~, and BR be the usual bases for 

U(L),   S(L),   and B(L),   respectively.  Clearly,  8uc8scBg, 

hence U(L)cS(L)c8 (L)• 

Example 1.  Let  X, T, and F be the sequences defined by 

if i  is a positive integer, then X.  is the set of real 

numbers,  T.  is the usual topology for the set of real 

numbers, and F.  is the identity lattice isomorphism from 

T. ,  onto T. .  Let  /.= (X,T,F).  Then L     is a lattice 
l+l        i 

limit sequence such that U(L)^S(L)  and S{L)?B(L). 

Proof:  Clearly,  t  is a lattice limit sequence. 

Let U  and V be the sequences defined by if  i is 

a positive integer, then D^  is the open interval  (-i,i), 

and V.  is the open interval  (-1,1).  Plainly,  nnUR  is 

a member of S(L),   but not a member of U(L),     hence 

U(L)?S[L) .  Also,  JInVn  is a member of  B(t),  but not a 

member of S(L),     hence S(L)?B[L). 
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Theorem 17.  Let  L=(X,T,F)  be a lattice limit sequence. 

Let T be either U(L) ,   S(L),  or 8(L).  Then if m is a 

positive integer, then  IT: (C (L) ,T)-> (X ,T )  is both continuous • m mm 

and open. 

Proof:  Let m be a positive integer.  From Theorem 16/ 

U(L)cTcB(L). 

Let WeT , and let U be the sequence defined by if 

i  is a positive integer, then if  i^m, then u.:=x.;r   and if 

i=m, then Ui=W.  Now,  nnUn  is a member of U(L),   and hence 

is a member of  T.  Further, since  %1(w)=nn
u
n' 

tnen "^(W) 

is a member of  T.  It follows that irm is continuous. 

Let OeT,   then OeB(L).     Let Bg be the usual base 

for 8(L).  Plainly, if  BeBg, then  "m(B)  is open.  Since 

0=u{B|BeB8 and Bcf)}, then  Trm(0)=u{irm(B) \Be BQ  and Bc0}  is 

a union of open sets, hence is open.  It follows that nm 

is open. 

• 
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CHAPTER III 

THE SATURATING BASE 

Definition 11. [3, Def. 3, p. 9]  Let  (X,S)  be a topological 

space.  A base  8 for  S is said to be semi-complete 

provided if  Bj  and B2 are members of 8, then  B,nB2e8. 

Definition 12.  Let  (X,S)  and  (Y,T)  be topological 

spaces and let  8 be a base for S.  A one-to-one function 

k with domain  8 and range a subset of T is called a 

simulacrum of  8 in T provided if U     is a subcollection 

of  8, then 

(1) if u{u|Ueti}e8, then k(u{u|Ue U})=u{k(U) | Ue U> , and 

(2) if U    is finite and  n{u|Ueti}e8, then 

k(n{u|Ueli})=n{k(U) |UeU}. 

Definition 13.  Let  (X,S) and  (Y,T)  be topological 

spaces and let  8 be a base for S.  Suppose that k  is a 

simulacrum of  8  in T.  The natural extension of  k  to  S 

is the function with domain S defined by if  0eS, then 

K(0)=u{k(U)|Ue8 and Uc0}. 

Definition 14. [3, Def. 4, p. 9]  Let  (X,S)  and  (Y,T)  be 

topological spaces and let 8  and  BT  semi-complete bases 

for S  and T, respectively.  A function k is said to be 

a basic similarity from 8g onto 8T provided k  is a 
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one-to-one function with domain  8  and range B_( such s * 
that (1) k  is a simulacrum of  8_ in T and (2) k_1  is 

0 

a simulacrum of 8, in S.  The bases  8g  and 8  are said 

to be basically similar if there is a basic similarity from 

Bg  onto  8T. 

Lemma 18.1.  Let  (X,S)  and  (Y,T)  be topological spaces 

and let  B  be a base for S.  Suppose that k is a simu- 

lacrum of  B  in T.  Then if A,Be8 and AcB, then 

k(A)ck(B). 

Proof:  Let  A, Be 8  with  AcB.  Then  B=AuB, hence 

k(A)uk(B)=k(AuB)=k(B)  and therefore k(A)ck(B). 

Lemma 18.2.  Let  (X,S)  and  (Y,T)  be topological spaces 

and let  8„  and 8™  be semi-complete bases for S and  T, 

respectively.  Suppose k  is a basic similarity from Bg 

onto  B„.  Let K be the natural extension of  k to S. 

Then if  0eT, then K(u{k-1 (B) |Be8T and Bc0})=0. 

Proof:  Let OeT and let U={k-1 (B) |Be 8T and B<=0). 

Now,  lic8_  and therefore  0cK(u{u|UeU}). s 
Let WeB  such that W<=u{u|UeU}.  Let  C={Wrtj|UeU}. 

S 

Since  B   is semi-complete,  C  is a subcollection of 8g. 

Plainly,  u{C|CeC}cW.  Let weW, then there exists  UweU, 

such that weU .  Now weWnU  and WnU  is a member of  C, W w w 

hence    weu{c|CeC).     Therefore    Wcu{c|CeC}.     It  follows  that 

W=u{C|CeC>. 
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Let DeC, then there exists U eU,   such that D=UQnW. 

Also, there exists VrfB^,   such that v c0 and U =k_1(V ). 

wv-1 -1 Now, D=k ■L(VD)nW, hence Dck~x(V).  From Lemma 18.1, 

k(D)ck°k-1(VD)=VDc0.  it follows that if C«C, then k(C)c0. 

Now k(W)=k(u{C|CeC})= {k(C)|CeC}c0.  it follows that 

if BeBg, such that Bcu{u|UeU}, then k(B)c0.  Thus 

K(u{U|UeU}=u{k(B) |BeBs and Bcu{U| Ue(J}}c0. 

Therefore  K(u{u|UeU})=0, also  {U|UeU>=-{k_1 (B) |BeBT and Bc0} 

by definition, so K(u{k-1(B)|BeBT and Bc0})=0. 

Lemma 18.3.  Let  (X,S)  and  (Y,T)  be topological spaces 

and let  B   and  8_ be semi-complete bases for  S and T, 

respectively.  Suppose k is a basic similarity from  B 

onto B .  Let K be the natural extension of k to S. 
T 

Then K  is one-to-one. 

Proof:     Let    U,VeS    such that    K(U)=K(V).     Let    BeBg 

such  that    BcU. 

Let  C={k(B) rik(W)|WeB  and WcV}.  The range of k  is 
s 

B , a semi-complete base, thus  C  is a subcollection of  8T- 

Clearly,  u{c|CeC}ck(B).  Furthermore, 

k(B)cu{k(W) |WeBs and WcU}=K(U) = 

K(V)=u{k(Z)|ZeBg and ZcV}. 

Therefore if bek(B), then there exists W^Bg, such that 

WbeV and bek(Wb), hence bek (B) rk (Wb) , which is a member 

of  C.  Thus  k(B)cu{c|CeC}, therefore k(B)=u{c|CeC}. 
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The inverse function k_1  is a simulacrum, so 

B=k"1(k(B))=k~1(u{c|CeC})=u{k"1(C)|CeC}= 

u{k_1(k(B) rik(W) (WeB., and WcV} = 

u{k_1(k(B)) nk_1(k(W)) |We8s and WcV}= 

u{BnW|WeBs and WcVjcV, 

or  BcV.  Since U is the union of the basic open sets 

contained in U, it follows that U<=v.  By a similar argument 

VcU, hence  U=V.  Therefore  K is one-to-one. 

Theorem 18. [3, Th. 9, p. 10]  Let  (X,S)  and  (Y,T)  be 

topological spaces and let  B„  and B_ be semi-complete 

bases for  S and T, respectively.  Suppose  k is a basic 

similarity from B„  onto  B„.  Let K be the natural 

extension of k to  S.  Then K is a lattice isomorphism 

from S  onto T. 

Proof:  The function K has domain S, and from 

Lemma 18.3  K is one-to-one.  Lemma 18.2 implies that K 

has range  T. 

Let  U,VeS  such that  U^V.  If BcU, then BcV; thus 

K(U)=u{k(B)| Be 8 and BcU}cu{k(B)|BeBg and BcV}=K(V). 

Let Q,R<?T  such that  Q<=R.  It follows from Lemma 18.2 that 

K"1(Q)=u{k"1(B)|Be8  and BcQ}cu{k~1(B)|BeBT and BcR}=K~ (R) . 

Therefore  K  is a lattice isomorphism from S onto T. 
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Theorem 19.  Let  L be a lattice limit sequence and let 8( 

be the usual base for the saturating topology, S(L).     Then 

8  is a semi-complete base. 

Proof:  This follows from Lemma 14.1. 

Theorem 20.  Let L    be a lattice limit sequence ana let 8 

be the usual base for either U(L)     or 8(L).  Then 8  is 

a semi-complete base. 

Proof:  The proof is similar to that of Theorem 19. 

Definition 15. [4, Def. 4, p. 15]  Let  L=(X,T,F)  be a 

lattice limit sequence.  Let X*, T*, and  I be the 

sequences defined by if  j  is a positive integer, then 

X*=X , T*=T , and I.  is the identity lattice isomorphism 

from T* ,  onto T*.  Then  (X*,T*,I)  is said to be the 

corresponding identity lattice limit sequence for  L  and 

will be denoted by L*. 

Definition 16.  Let  L=(X,T,F)  be a lattice limit sequence. 

Let G be the sequence defined by G1 is the identity 

lattice isomorphism from T  onto ^ and if  j  is a 

positive integer, then GJ+1=GJ°FJ
+1

.  Let  B be the usual 

base for either U(L),  S(L),   or  8(L).  Let k be the 

function with domain  B defined by if U is a sequence 

such that  nnUn  is a member of  B, then k(nnUn) = nn(Gn(Un)) 

Then  G  is called the identity matching map for  L  and k 

is called the transposing map of  8 into C{L*). 
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Lemma 21.1.  Let i-=(X,T,F)  be a lattice limit sequence and 

let  L*=(X*,T*,I)  be the corresponding identity lattice 

limit sequence.  Let G be the identity matching map for  L. 

Then  if  j  is a positive integer, then G.  is a lattice 

isomorphism from T.  onto T*. 

Proof:  Let J be the set to which a positive integer 

j belongs provided G-  is a lattice isomorphism from T- 

onto  T*.  From Definition 16,  G,  is a lattice isomorphism 

from T,  onto T,=T?, hence  leJ. 

Suppose meJ, then Gm is a lattice isomorphism from 

is a lattice iso- 

m 

m onto T*.  From Definition 6,  FJU 

morphism from  Tm+1 onto Tm, thus by Theorem 13, 

Gm+1=Gm°F
m
1
+1  is a lattice isomorphism from Tm+1 onto 

T*=T,=T* -. .  Therefore m+1 is a member of  J.  It follows m  1  m+1 
that if  jeJ, then  j+leJ.  Consequently, by induction,  J 

is the set of positive integers. 

If  j  is a positive integer, them jeJ, hence G- 

is a lattice isomorphism from T.  onto  T*. 

Lemma  21.2.  Let  L=(X,T,F)  be a lattice limit sequence and 

let  L*=(X*,T*,I)  be the corresponding identity lattice 

limit sequence.  Let B$     be the usual base for S(L)     and 

let  k be the transposing map of Bs  into  C(L).  Then k 

is one-to-one. 

Proof:     Let    A,8eBs     such  that    k(A)=k(B).     Let    G 

be  the  be  the  identity matching map  for     L.     If     j     is  a 
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positive integer, then G. (IT . (A) )=ir. (k(A) )=ir (k(8))=G.(n (B)) 
3  3     3 j       j  j 

and therefore 

A=nn(,n(A))=nn(G-
1(Gn(,n(A))))= 

nn(Gn1(Gn(l,n(5)) >>-Hn(irn<8) )«t. 

Thus  k  is one-to-one. 

Lemma 21.3.  Let  L=(X,T,F)  be a lattice limit sequence and 

let  f.*=(X*,T*,I)  be the corresponding identity lattice 

limit sequence for L.     Let 8„  be the usual base for S(L) 

and let  8* be the usual base for S(L*).     Then the trans- 

posing map of  8S  into C(L*)     has range B§. 

Proof:  Let  k be the transposing map of 8^  into 

C (/.*).  Let G be the identity matching map for L. 

Let  OeBS.  Then there exists a sequence U*  and a 

positive integer M  such that 

(1) if     ieZ+,   then     UteT*, 

(2) if     i«Z+     and    i^M,   then    U*clJ+1(U*+1), 

(3) if     ieZ+,   then    X*=u{I^+j(U*+j)|jeZ+},   and 

(4) 0=nnu*. 

Let  U be the sequence defined by if i  is a positive 

integer, then U-G^dJ*).  It follows that 

(1) if  i€Z+, then U^G^dJ*)^, 

(2) if  ie Z+  and  i2M, then 

,-l,Ti+l -1 U.=G7l(Ut)cGTMlfi(U*+1))=G. (U*+1) = 

.i+l.«-l i+1 
Ff

i»G::1(u*+1)=Fi   (Ui+1), 
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(3) if    ieZ+,   then 

Xi=Gi1(Xi)=Gi1(u{Ii+J(ui+jHJeZ+>) = 

Gi1(u{uJ+j|jeZ+})=u{Gr1(uJ+j)|jeZ+} = 

u{FJ+j(GiJj(Uj+j))|J£Z+}=u{Fj+i(Ui+j)|jeZ+}, 

and 

(4) thus     nnUneBs. 

Then,  k (nnUn)=nn(Gn (Un) )=nnU*=0.  Now, it follows that k 

has range  8J. 

Theorem 21.  Let  L=(X,T,F)  be a lattice limit sequence and 

let  L*=(X*,T*,I)  be the corresponding identity lattice 

limit sequence for L.     Let 8„ be the usual base for S (L) 

and let k  be the transposing map of  B^  into C(L   ). 

Then k  is a simulacrum of 85  in S(L  ). 

Proof:  Lemma  21.2 shows that k is one-to-one and 

Lemma 21.3 shows that k has range a subset of S(L*).     Let 

G be the identity matching map for L. 

If V and  W are members of  B<. and V^w,  then  if 

i  is a positive integer, then ■u± (V)c7I;L (W) , hence 

G. U- (V))cG- (w (W)).  Thus  if V and W are members of B$ 

and VcW, then k (V)=nn(Gn <irn(V))) =nn (Gn(nn (W)) )=k (W). 

Let 0  be a subcollection of B^ and suppose that 

u{u|UeU}  is also a member of Bs.  Let U0=u{u|UeU>.  If 

UeU, then  UcUQ, hence  k(U)ck(UQ).  Therefore 

u{k(U) |UeU}ck(U0)=k(u{U|U£U}). 
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Let pek(u{u|Ue(i}) .  Let H be the sequence defined 

by if  i  is a positive integer, then H*  is the dual of the 

lattice isomorphism 0*.  Let D be the sequence defined by 

if  i  is a positive integer, then D-=cl * ({TT. (p) }) .  since 

pek(U0), if  i  is a positive integer, then TTi (p)e t^ (k (UQ)) . 

Also, if i  is a positive integer, then iTj^pJeDj.  Thus if 

i  is a positive integer, then wi (p)*^ (k(UQ) )nDif hence 

TT£ (k (UQ)) nDi  is not empty.  From Theorem 12, if  j  is a 

positive integer, then Gj (IT . (k(UQ))) nHT
1(D.)  is not empty. 

Moreover, if  j  is a positive integer, then 

Gj1 (TT j (k (UQ)) )=Gj
1 (WJ (nn (Gn (irn (UQ) ) ) ) ) = 

GT1 (G . (ir • (»_)-> )=ir • (Un) . 

Therefore,   if     j     is  a positive  integer,   then    it . (U^nHT1 (D .) 

is  not  empty.     Consequently,     nn(irn (UQ) nHn   (Dn))      is not 

empty.     Let    qenn (irn(U0) nH"1 (Dn)) .     Now,   if    j     is  a positive 

integer,   then     TT . (q)e TT . (UQ) nH\   (D-),  hence    n . (q)e TT . (UQ) . 

By hypothesis,     0oc8s,   so    qenn (TTn(U0) )=UQ.     But     VQ=v{v\VeU), 

so  there  exists     Ue U    such that    qeU.     If     j     is   a positive 

integer,   then     TT J (q)e TT J (0)     and so    it ^ (q)e TTJ (U)nHj    (Dj). 

Consequently,   if     j     is  a positive integer,   then     the  set 

TT . (0) nHT1(D.)     is not empty.     Therefore,  by Theorem 12,   if 
-1 -1 ~ 

i     is  a positive  integer,   then    1ri(p)e(Gi   )      (*£ (U) )=G± (TTJ (U)) 

Therefore    pe nn (Gn (rrn(U)) )=k(U)cu{k(U) |Ue U}.     It  follows 

that    k(u{u|U€U})cu{k(U) |Ue(i}.     Thus    k (u{u|u£U})=u{k (U) | UeU). 
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A parallel argument shows that if V     is a subcol- 

lection of B^     such that  n{v|Vel/}  is a member of  8,,, 

then k(n{v|VeU}) = n{k(V) |Vel/}.  It follows that k  is a 

simulacrum of  83 in S(L*). 

Theorem 22.  Let  i  be a lattice limit sequence and let L* 

be the corresponding identity lattice limit sequence for  L. 

Let  8S  and  Bj be the usual bases for S(L)     and S(L*)f 

respectively.  Let k be the transposing map of  B<j  into 

C(L*).     Then k   is a simulacrum of  83  in S{L). 

Proof: Lemma 21.2 shows that k is one-to-one, 

hence k is a function. Plainly k-1 is one-to-one. 

Lemma 21.3 shows that k has range 8*, hence H" has 

domain 8|.  Plainly k"1 has range  8S, a subset of S(L). 

The proof that if U    is a subcollection of 8<j, then 

(1) if  u{u|U£U}£B|, then k"1(u{u|u«U})=u{k"^L (U) |Ue U}, 

and 

(2) if  n{u|U£U}eB|, then k"1 (n{u|Ueli})=n{k"1 (U) |Uc U) , 

is similar to the proof of Theorem 21.  It follows that k"1 

is a simulacrum of  8$  in S(L). 

Theorem 23.  Let L    be a lattice limit sequence and let  L* 

be the corresponding identity lattice limit sequence for  /-. 

Let Bs    be the usual base for S(L)     and let k be the 

transposing map of 85  into C(L*).     Then the natural 

extension of k  to S(L)     is a lattice isomorphism from 

S(L)     onto S(L*). 
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Proof:  Let B| be the usual base for S[L*).     From 

Lemma 21.2  k is one-to-one.  Lemma 21.3 shows that k 

has range  Bj.  Theorem 19 shows that both  B<. and B£  are 

semi-complete bases.  Theorem 21 shows that k is a simu- 

lacrum of  8<,  in S(L*)     and Theorem 22 shows that k 

is a simulacrum of Big  in S(L).     Therefore k is a basic 

similarity from 8,, onto  8*.  Thus by Theorem 18, the 

natural extension of k to S(L)     is a lattice isomorphism 

from S(L)     onto S(L*). 

Theorem 24.  Let L    be a lattice limit sequence and let L* 

be the corresponding identity lattice limit sequence for  /-. 

Let T be either U{L)     or B(L)     and let T* be either 

U{L*)     or  B(L*).  Let  B be the usual base for T     and let 

k be the transposing map of  8  into C(L*).     Then the 

natural extension of k  to T  is a lattice isomorphism 

from  T  onto T   . 

Proof:  The proof is similar to that of Theorem 23. 
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CHAPTER IV 

SEPARATION AXIOMS FOR THE PRODUCT TOPOLOGIES 

Theorem 25.  Let  L=(X,T,F)  be a lattice limit sequence 

such that if  j  is a positive integer, then  (X.,T.)  is 

Hausdorff.  Then (C(L),S(L))     isHausdorff. 

Proof:  Let p  and g be distinct points of C(L). 

Then there exists a positive integer i  such that 

TT. (p)A. (q) •  But  (X.,T.)  is Hausdorff, so there exist 

disjoint members  U  and U  of T±     such that  ni(p)eUp 

and  Tri(q)eUq. 

Let A and B  be the seguences defined by if j  is 

a positive integer, then if j^i, then A..=B..=X.., and if 

j=i, then A.=U  and B..=Uq.  Let A=nnAn  and let  8=11^. 

Now,  A  and  8  are in S(L)     and peA and geB.  If 

reAnB, then  T^ (r)« Tt. (A) n1ri (8)=UpnUg=*, which is impossible. 

Thus  An8=*.  It follows that (C{L),S(D)     is Hausdorff. 

Theorem 26.  Let  L=(X,T,F)  be a lattice limit seguence 

such that if  j  is a positive integer, then  (X^Tj)  is 

T0 (Tj) (T2).  Let T be either  U(U, S(L),   or B(L). 

Then (C(L),T)     is T0 (Tj) (T2). 

Proof:  The proofs are similar to that of Theorem 23. 
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Theorem 27.  Let  L=(X,T,F)  be a lattice limit sequence. 

Let M be a sequence such that if  j  is a positive integer, 

then  M.:  is closed in  (X-.T-).  Then  n M  is closed in 
J 3     j n n 

(C(L),S(L)). 

Proof:  Let B^  be the usual base for S(L).     Let 

P6Cl(nnMn). 

Let m be a positive integer.  Let AeTm such that 

ir_(p)eA.  Let V be the sequence defined by if i  is a 

positive integer, then if i=m, then V^=A and if  i/m, 

then Vi=Xi.  Then nnVn  is a member of Bs    and P^n^. 

Therefore  n^nn^ is not empty.  Let qennVnnnnMn.  Then 

TTm(q)eVm=A and ■nm{q)eMm,   hence M^A is not empty.  It 

follows that if A*eTm and *m(p)eA*, then M^A*  is not 

empty.  Therefore Trm(p)£cl(Mm)=Mm.  Now, it is concluded 

that if  j  is a positive integer, then  n.-(p)£M...  Thus 

P*nnMn. 

It follows that cl(nnMn)cnnMn.  Plainly,  n^ccl (nnMn) 

and so  nn^=cl(nnMn).  Therefore nnMn  is closed. 

Theorem 28.  Let  L=(X,T,F)  be a lattice limit sequence. 

Let T     be either  U(i-)  or 8(L).  Let M be a sequence 

such that if  j  is a positive integer, then Mj  is closed 

in  (Xj,Tj).  Then nnMn  is closed in (C(L),T). 

Proof:  The proof is similar to that of Theorem 27. 

Theorem 29.  Let  L=(X,T,F)  be a lattice limit sequence. 
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Let W be a sequence such that if j is a positive integer, 

then WJCXJ. Let S(L) be the saturating topology on C(L). 

Then  nncl(Wn)=cl(nnWn). 

Proof:  Let penncl(Wn).  Let  B$ be the usual base 

for S(L)     and let BeB„  such that peB.  If  j  is a 

positive integer, then v . (p)ecl (W.)  and  IT . (p>6 IT- (B) ,  but 

ir.(B)eT.f so  TT • (B) nWj  is not empty.  Therefore  nn (nn (B) nWn) 

is not empty.  But nn(Ttn (B) nWn)cnn(irn(B)) nnnWn,  and thus 

nn^1tn^B^)nnnWn=BnnnWn is not emPfcy* It  follows that if 

B*e8s  such that peB*, then B*nnnWn?*<t>. Therefore 

pecl(nnWn).  Now, it follows that nncl(Wn)cCl(nnWn). 

Clearly,  n W en cl (WJ  and by Theorem 27,  JI cl (W ) n n n   n •»   " 
is closed, hence cl(nnWn)cnncl(Wn).  Thus nncl(wn)=cl(nnWn). 

Theorem 30. £4, Th. 4, p. 10]  Let L=(X,T,F)  be a lattice 

limit sequence.  Let T be either U(L)  or B(L).  Let W 

be a sequence such that if  j  is a positive integer, then 

WjCXj. Then nnci(wn)=clT(nnwn). 

Proof:  The proof is similar to that of Theorem 29. 

Theorem 31. C2, Th. 14.4, p. 93]  Let  L=(X,T,F)  be a 

lattice limit sequence such that if  j  is a positive integer, 

then  (X.,T.)  is regular.  Then (C(L),IUL))     is regular. 

Proof:  Let OeU(L)     and let pet).  Let  B(J  be the 

usual base for U{L).     Then there exists BeBu     such that 

p£B.  Since BeBu, there exists a sequence U and a positive 

integer M such that 
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(1) if     i£Z+,  then    HkeTj, 

(2) if     ieZ+    and    i>M,   then    Ui=Xi,   and 

(3) B=nnV 

If  j  is a positive integer, then  ir.(p)eU..  But if  j  is 

a positive integer, then  (X.,T.)  is regular.  Therefore, 

there exists a sequence W such that if  j  is a positive 

integer, then W-eT .  and ■.(p)eW.ccl(W.)cu..  Let V be 

the sequence defined by if i  is a positive integer, then 

if  i<M, then Vi=Wi and if i^M, then Vi=Xi.  Plainly, 

nnVn  is a member of  By.  If j  is a positive integer, then 

IT • (p)cW.cV. .  Therefore  pennVn.  If  j  is a positive 

integer, then 

(1) if  j<M, then cl(Vj)=cl(Wj)cUj, and 

(2) if  jaM, then  cl(V.)=cl(Xj)=Xj=Uj. 

Therefore, by Theorem 30,  cl(nnVn)=nncl(Vn)cnnUn=Bc0.  Now, 

pennVnccl(IInVn)c0.  It follows that if 0*eU{L)     and p*£0*, 

then there exists A*eU(L)  such that p*eA*ccl(A*)=0*. 

Therefore  (C (I) ,(i<l))  is regular. 

Theorem 32.  Let  L=(X,T,F)  be a lattice limit sequence 

such that if  j  is a positive integer, then  (X^Tj)  is 

regular.  Then  (C(L),B(D)  is regular. 

Proof:  The proof is similar to that of Theorem 31. 

Example 2. [5, Ex. 1, p. 1] There exists a lattice limit 

sequence  L=(X,T,F)  such that if  j  is a positive integer, 

then  (X.,T.)  is regular, but (Ca),S(L))     is not regular. 
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Proof:  Let L    be the sequence of intervals in the 

plane defined by if i  is a positive integer, then 

L.={(X,i) |xe[0,l)}.  Also, let L={(x,0)|xeC0,1)}.  Let W 
I     i u 

denote the set of non-negative integers.  Let X=u{L.|ieN}. 

Let  8  be the collection to which B  belongs provided 

BcX  and either 

(1) there exists  ieZ+ and xe(0,1)  such that 

B={(x,i)}, 

(2) there exists  ie Z+  such that  (0,i)eB, BeL. , and 

L.-B  is finite, 

(3) there exists meZ+  and xe(0,l)  such that 

B={(x,0)}u{(x,i)|ieZ+ and i> m), or 

(4) either B=X or B=$. 

Let  T  be the topology for  X generated by  B. 

Let X, T, and F be the sequences defined by if j 

is a positive integer, then  Xj=X, Tj=T, and  Pj  is the 

identity lattice isomorphism from Tj+1 onto T^.  Then, let 

L=(X,T,F).  Plainly,  I.  is a lattice limit sequence. 

The intersection of two elements of  B  is an element 

of  8, thus  8  is a basis for T.  The topological space 

(X,T)  is regular since each element of  8  is both open and 

closed.  Consequently, if j  is a positive integer, then 

(X-,T.)=(X,T)  is regular.  Suppose (C(L),S(L))     is regular. 

Let H be the sequence defined by if  j  is a positive 

integer, then H.:( 0,1)^  is the function defined by if 

»( 0,1), then H.(x)={(x,0)}u{(x,£)|i£Z
+ and  i»*>. 
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Let     V:(.0,1)*T    be   the  function defined by  if 

xe(0,l),   then     f(x)=u{H. (z) |ac[z,l)}.     If     j     is  a positive 

integer,   then     L.     has  a  finite   (empty)   complement  in     £., 

hence     £.«8.     Let    W    be  the  sequence  defined by  if    j     is   a 

positive  integer,   then  if     j=l,   then    ».=£■]_,  but  if    j#l, 

then     W.=u{L. [keZ+  and ksj}ut/(i).     If    j     is  a positive 
3 K J 

integer,   then    W.     is  a  union of members  of  the  topology    V, 

thus     Vl-eT. 

Let    I     be  a positive  integer.     If     (x,y)=X,   then 

either 

(1) there  exists     i-: Z*     such  that     (x,y)el±,   hence 

(x,y)eW£+i,   or 

(2) (x,y)€LQ,   thus     x<-C0,l)     and    y=0 ,   consequently 

there  exists     j«Z+     such  that     jfcj,   and  thus 

It follows   that  if    ■    is  a positive  integer,   then 

V=X^{Wm+k|lceZ+}. 

If     j     is   a positive  integer,   then    W^W^^F^   (W.J+L) 

Therefore     H  W       is  a member of  the  usual  baue   tor    S(L). 

Let    q     be   the  sequence  defined by  if    i     is  » positive 

integer,   then  if     i-1,   then    %««&*W>.   but  if     iAl-   tft«a 

qi=(i,0).      Now,      qcnnWn.      Since      (C(U.S(L>>      *    -"....r, 

there  exists  an  open  set    0     such   that    q<. O.-cl (0)-W 

Let     8S     be  the  usual  base   tor    SO).      '"»-n   bltttt 

exists     B,8S     such  that    ***%.     PL-u-Iy,     o-l(»)-cl (0) . 
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Since   . BeB<j,   there  exists a sequence    U    and a positive 

integer    M     such that 

(1) if    ieZ+,   then    OJCTJL, 

(2) if    ±eZ+    and    i>M,   then    DJCF|
+1

 (Ui+1)=Ui+1, 

(3) if     ieZ+,   then    X.=u{FJ;+k(Ui+k) \ke Z+}=u{Ui+k|keZ+}, 

and 

(4) B=n  U   . n n 

If  j  is a positive integer, then v-(q)£Uj. 

Now X=XM=u{UM+k|keZ
+}, but LQ     is an uncountable 

subset of X, therefore there exists a positive integer m 

such that m>M and £0
nUm is uncountable'  But  um 

is a 

member of Tm=T, so if  (x,0)cUm, then there exists a positive 

integer  j  such that  (x,0)eH.(x)cum, because  {Hi(x)|ieZ
+} 

is the collection of base elements that contain  (x,0).  Let 

N:( 0,l)-»-Z+ be the function defined by if xe(0,l), then if 

(x,0)tVm,   then N(x)=l, but if  (x,0)eUm, then N(x) is the 

least integer in the set  {i|ieZ+ and (x,0)£H.(x)cUm). 

Let  K=u{HN(x) (x) | (x,0)£Um).  Then KcUm, and thus 

if  j  is a positive integer, then KcU\. .  Let k:LQr\Vm-*K-L0 

be defined by if x  is a real number such that  (x,0)eZ,0nUm, 

then 
fe((x,0))=(x,- -). 

'N(x)+1 

Plainly,  fe  is one-to-one.  Therefore the range of k    is 

uncountable, but the range of fe  is a subset of K-LQl   thus 

K-L       is uncountable. 
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The set K-L  is a subset of X-£0=u{L.|ieZ
+}.  Thus 

there exists a positive integer  T  such that (K-L0)nL       is 

uncountable.  Clearly, (K~LQ)nL  =K nL   .     If x  is a real 

number such that  (x,-)cKniT, then  (x,-)tir. . (x), hence 

T>N(X).  Let  P be the sequence defined by if  j  is a 

positive integer, then if  J<T, then  P.=4>, but if  j^t, 

then  PJ :KnLT->Kn£j  is the function defined by if x  is a 

real number such that  (x,T)eKn£T, then  P. ((x,T) )=(x,-) . 

If  j  is a positive integer, then  P.  is one-to-one.  Thus, 

if  j  is a positive integer and j^t, then KnL.     is uncount- 

able.  Recall that KcUm, then if  j  is a positive integer 

and  JST, then U_nL.  is not countable, hence not finite. 

Let  t=m+i.  Now,  t>r  so UmnZ-t  is not finite. 

Let  DeB  such that  (0,i)eD.  Now, Lt~D     is not finite. 

Therefore,  U nD  is not empty.  It follows that if D*e B 

such that  (0,^)eD*, then UmnD* is not empty.  Therefore, 

(0,|)ecl(Um).  But  t>m, thus  (0,^)  is not a member of 

u{L. |keZ+ and k<m} uV (g) -%.  Consequently,  cl (Uj is not 

a subset of Wffl.  By Theorem 29  fB<Cl(B) )-ql(»m(B) )-ol(Um). 

Thus  7T (cl(B)) is not a subset of Wm and so  cl(B)  is 
m 

not a subset of B^.  But recall that '.cl (B)ccl (0)  and 

cl(0)cn W , thus  cl(B)cnnWn.  This is a contradiction. 
n n 

It follows that IC(L),SU))   is not regular. 

Definition 17.  Let  (X,S)  be a topological space and let 

OeS.     A subcollection  U of S  is said to be a o-regular 
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cover of 0    provided 0= {u|UeU}  and if U«U, then 

cl(U)<=0.  A topological space is called o-regular provided 

every open set has a countable a-regular cover. 

Theorem 33.  Every metrizable space is o-regular. 

Proof:  Let  (X,T)  be a metrizable space and let d 

be a metric on X which induces  T.  Let [0,-*)  denote the 

set of non-negative real numbers.  Let B:Xx[0,-»)+T be the 

function defined by if xe X and re [0,-O, then 

B(x,r)={y|yeX and d(x,y)<r>. 

Let  8={B(x,r) |xeX and re[0,->)}.  Then  8 is a base for T. 

Let  0eT.  Let U be the sequence defined by if  j 

is a positive integer, then 

U.=u{B(x,^r) |xe0 and B(x,i)c0}. 

If     j     is  a positive integer,   then    UJCO,   thus     u{Uk|keZ+}c0. 

Let    qe0.     Then  since    B     is  a  base  for    T,   there  is  a pos- 

itive  real  number     r    such  that    qeB(q,r)cO.     Then  there 

exists   a positive  integer    m    such  that    m>?.     Now,     5<r 

and     q£B(q,i)cB(q,i)cB(q,r)cO.      Thus     qe U^u {ujke Z+} .      It 

follows  that1" 0cu{Uk|k€Z
+>     and therefore     0=u{U,Jke Z+}. 

Let     i     be  a positive  integer  and  let     pecKl^). 

Then    Kp^-JnOi     is  not empty.     Let    xe B (Pfi-)nO^     Since 

xeU.,   there^xists     ye0     such that     »B (y,^) -B(y,i) c0. 

Thus     d(p,x)<i    and    d(x,y)<^-,   and hence 
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d(p,y)sd(p,x)+d(x,y)   <  Ji+jr = T- 

Therefore     peB(p,—)c0.     it  follows  that    cl(U.)c0.     Now,   it 

follows  that if    j     is  a positive  integer,   then    cl(U.)c0. 

Therefore        {U,|keZ   }     is a  o-regular cover of     0.      Plainly, 

{Uk|keZ   }     is   countable.     It follows  that every open set has 

a countable     a-regular  cover.     Therefore     (X,T)   is   a-regular. 

It may be  concluded that every metrizable  space  is   o-regular. 

Theorem 34.     Let     (X,T)     be  a topological  space.     If     (X,T) 

is   a-regular,   then     (X,T)     is regular. 

Proof:      Suppose     (X,T)     is  a-regular.     Let     OcT    and 

let    peO.     There  exists  a o-regular  cover     Li    of    0.     Now, 

0=u{u[UeU}.     Thus  there  exists    Ue U     such  that    peU.     Also, 

since     U     is  a  o-regular  cover,     UeT    and    cl(U)c0.     Thus, 

peUccl(U)cO.     It  follows  that  if     0*eT    and    p*«0*,   then 

there  exists     U*«T     such  that    p*eU*ccl(U*)c0*.     Therefore, 

(X,T)      is  regular. 

Theorem 35.     Let     (X,S)     and     (Y,T)     be  topological   spaces 

and  suppose     F     is  a  lattice  isomorphism  from    S    onto    T. 

Let    06S.     Then if     U     is  a  a-regular  cover of     0,   then 

{F(U)|UeU}     is  a a-regular cover  of     F(0). 

Proof:     Let     U    be a  a-regular  cover  of     0.      Then  by 

Theorem 2,     F (0)=F (u{u| Ue t/})=u{F(U) |U£U). 

Let     VF     be  the  dual  of    F.     Then  if    U.U,   then by 

Theorem 10,     cl(F(U))=Pp(cl(U)),  but     cl(U)c0,   so by 
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Theorem 11, Vp (cl (U) )cF(0) .  Thus if U«U, then cl(F(U)). 

is a subset of F(0).  Therefore, {F(U) |UeU}  is a a-regular 

cover of 0. 

Corollary 35.1.  Let  (X,S) and  (Y,S)  be topological spaces 

and suppose F  is a lattice isomorphism from S onto T. 

Then if  (X,S)  is a-regular, then  (Y,T)  is a-regular. 

Proof: This is clear. 

Theorem 36. Let L=(X,T,F) be a lattice limit sequence 

such that if j is a positive integer, then (Xj,T.) is 

a-regular.  Then (C[L),S(L))   is regular. 

Proof:  Let Bs be the usual base for S(L).  Let 

0     be a member of B„    and suppose peO.     Since  OeBs, there 

exists a sequence U and a positive integer M such that 

(1) if    ieZ+,   then     V^eT^, 

(2) if    ieZ+,   and     i£M,   then     UicF*+   (Ui+1), 

(3) if    i*Z+,   then    Xi=u{FJ;+k (Ui+k) |ke Z+},   and 

(4) 0=n u  . n n 
Now, if  j  is a positive integer, then v^(p)eVy     If  j 

is a positive integer, then  (X^T.)  is o-regular, and 

therefore regular, by Theorem 34.  Also, if  j  is a positive 

integer, then V.eT.     and  ^(phO..  Therefore, there exists 

a sequence  W such that if  j  is a positive integer, then 

^.(p^W.ccMWjJcUj.  Let  Z  be the sequence defined by if 

j  is a positive integer, then  Z.  is a sequence such that 

{Z.(k)|keZ+}  is a a-regular cover of Uj. 
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Let V be the sequence defined by if  i  is a 

positive integer, then (1) if  i<M, then V.=W., and (2) if 

i>M, then V.  is the union of the sets W., Ff-1(V. ,), and 
-L 1     1      X x 

u{Fk(Z (i-k))|keZ+ and M*k<i}. 
i  K 

Let  J={k|keZ+ and cl(Vk)^Uk>.  Suppose that J is 

not empty.  Then there exists a least member  t of J.  But 

t is not less than or equal to M, else cl (Wt)=cl (Vt)*Ut, 

contradicting the definition of W.  Therefore  t>M.  Then 

t-l>M, so u
t_i

cFt-i *ut* * Also' t_1 is not a mernber of J' 

hence cl^.^U,.^. Thus cl tV^-il*^.! (Ut} ■ Let G be 

the dual of F^"1, then by Theorem 11, 

G(cl(vt_1))cF£
-1t»|_!(ut))=Ut. 

Also, by Theorem 10,  •(«lfrt.1))«el(f|"
1(Tt.1)).  Therefore 

cl(Ft-1(V   ))CU..  A similar argument shows that if k is 

a positive integer and M*k<t, then cl(F£(Zk(t-k)))cufc. 

Thus  u{cl(Fk;(Zk(t-k)))|k€Z
+ and M<k<t}  is a subset of Ufc. 

Since  {Fk(Zk(t-k))|keZ
+ and Msk<t}  is finite, then 

cl(u{Fk(Zk(t-k))|keZ
+ and Msk<t})= 

u{cl(Fk(Zk(t-k)))|keZ
+ and M<k<t}cUt- 

Plainly,  cl(Wt)cUt.  But Vfc is the union of the sets Wt, 

Ft_1<Vt-l)' and  utFt(zk(
t-k))lkeZ+ and ^k<t}.  Thus  cl(Vt) 

is the union of the sets  cl(Wt), cl (F^
1 (V^) ), and 

cl(u{Fk(Zk(t-k))|kcZ
+ and MSk<t}), each of which is a subset 

of Ut!  Therefore At*^     and hence,  t  is not a member 



35 

of J.  But  t is the least member of J.  This is a contra- 

diction.  It follows that J is empty.  Thus if  j  is a 

positive integer, then cl(V.)cU..  Therefore, by Theorem 29, 

cl(nnVn)=nncl(VcnnUn=0- 

Clearly, if  j  is a positive integer, then V.eT.. 

If  j  is a positive integer and J2M, then  j+l>M, hence 

F-] 1(V.)  is a subset of V. ...  Therefore, if  j  is a 
'Xl ' '4-1 

positive  integer and    j*M,   then    V.=FJ      (Fj+i<
V

J>)cFj      (vj+l>• 

Let     i     be a positive  integer.     It is  clear that 

u{F^+k(Vi+k) |keZ+}cXi.     Let    JfisX^     Since    nnUne8s, 

Xi=F?(XM)=F5!(u{FjJ+k(UM+k) |keZ+})= 
M ,„M+k 
i(FM      l"Mfk U(FV(FM 

!i,,,.u))|keZ+}=u{Ffk(UM+k)|keZ
+}. 

Therefore, there exists a positive integer N such that 

).  Now,  {ZM+N(k)|keZ
+}  is a a-regular cover M+N , 

xe Fi      (U 'M+NJ 

of    UM+N,   thus  by Theorem  35,     {ff+N(ZM+N(k))|keZ
+}     is  a 

a-regular  cover  of    F^+N(UM+N).     Thus  there  exists  a positive 

integer     K     such that    xeF^+N(ZM+N(K)).     Let    m=M+N+K. 

Then    M<M+N<M+N+K=m,   therefore 

m. M+N OW*"'*!^ *ZM+N m 
m, .-(M+N))))cFV,(Vjn). 

..m+i 
Now,   M<m,   so    B?(VcPf   (V»H.i>-     ThuS     ""T'GWi*     and 

therefore     x,u{F*+k(Vi+k)\keZ+}.     It  follows  that    X±     is 

a  subset of     u{pj+k (Vi+]c) |fe. Z+>,   thus       {rj+k (V.+k) |ke Z+> 

is  equal  to    X±.     It  follows  that if     j     is  a  positive 

integer,   then    XJ=U{F!J
+

   (Vj+k)|keZ   }. 
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It is concluded that  n V  is a member of  Bc.  If n n o 

j     is   a positive  integer,   then    W.cV..     Therefore,   II  W 

is  a  subset  of.    nnV"n.     Recall that    peIInWn,   thus    pennVn. 

Now,     Pen
n
v

n
ccl(n

n
vn^c0,     Xt follows t*1^ if    °*     is  a 

member  of     8^     and    p*e0*,   then there  exists    BeBg     such 

that     p*eBccl(B)cO*.     Therefore     (C{L),S{L))     is  regular. 
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CHAPTER V 

TOPOLOGICAL PROPERTIES   OF THE 

PRODUCT   TOPOLOGIES 

Definition   18.     Let     L=(X,T,F)     be a  lattice limit sequence 

and   let     /.*= (X*,T*,I)     be the  corresponding  identity  lattice 

limit  sequence  for     L.     Let     D    be a  subset of     X^.     A se- 

quence    xeC{L*)     is  called an echoing  sequence  in    C(L*)     if 

there  exists a positive  integer    M    such that if    je Z+    and 

J2M,   then     IT . (X)=TTM(X) .     The  echo of     D    in     C(L*)     is  the 

set  to which    y    belongs provided    y    is an echoing  sequence 

in     CI.L*)      and if     j     is a positive  integer,   then    Tr.-(y)eD. 

The  echo of     D    in     C(L*)     will be denoted by    E(D,L*). 

Theorem 37.     Let     i-=(X,T,F)     be a  lattice  limit  sequence  and 

let     L*=(X*,T*,I)     be  the  corresponding identity  lattice 

limit  sequence  for     L.     Let     D    be  a  subset of     X±    such 

that     D    is  dense  in     (X^) .     Then     E(D,L*)     is dense  in 

(C(L*),S(L*)). 

Proof:     Let     8S     be the usual base  for    SU*)     and 

let     0     be   a non-empty member of    85.     Then  there exists  a 

sequence    U    and a positive  integer    M    such  that 

(1) if     ieZ+,   then     U±eT*, 

(2) if    i«Z+     *nd    i-M'  then    UicUi+l' 

(3) if    UZ+,   then    Xi=u{U.+k|Xe Z+},   and 

(4) 0=nnun. 
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If     i     is  a positive  integer,   then    U.eT*=T..,  hence 

U. nD    is  not empty.     Therefore,   there  exists  a sequence    q 

such  that  if     i     is  a positive  integer,   then    q.eU.nD.     Then 

qe     U =0.     Let     p    be  the  sequence  defined by if     i     is a 

positive  integer,   then 

(1) if     i<M,   then    p.=q- ,   and 

(2) if     i*M,   then    P^q^ 

Now,     peC(L*)     and if     j     is  a positive  integer,   then  there 

exists  a positive  integer    k     such  that     TI . (p)=p .=qkeUknDcD, 

hence    peE(D,L*).     If     j     is  a positive  integer,   then   (1)   if 

j<M,   then     IT . (p)=p -=q .eU.nDcU .,   and   (2)   if    j£M,   then 

„ . (p)=p.=qMeUMnDcUM'=U..     Thus  if    j     is   a positive integer, 

then     TT.(P)CU..     Therefore    P«nnUn=0.     Now,     peE(D,L*)   and 

p«0,   so    P€0nE(D,L*).     It  follows  that  if    0     is  a non-empty 

member  of     8S,   then  there exists    peC(L*)     such that    p    is 

a  member  of    8nE(D,L*).     Therefore,     E(D,L*)     is  dense  in 

(C(l*),S(L*)). 

Definition  19.     Let     L=(X,T,F)     be  a  lattice  limit sequence 

and  let     L*     be  the corresponding  identity lattice  limit 

sequence  for     L.     Let    D    be a subset of    Xr     The  sequence 

of  partial  echos  of     D    in     C(L*)     is  the  sequence    E 

defined  by  if     j     is  a positive  integer,   then    E.     is   the 

set  to which    p     belongs  provided    peE(D,L*)     and  if     i 

is   a positive  integer  and    i*j,   then     ^ (p)=irj (p) - 



39 

Definition 20.  Let  i.= (X,T,F)  be a lattice limit sequence 

and let L*     be the corresponding identity lattice limit 

sequence for L.     Let D be a subset of  X^ and let p be 

a member of C(L*).     Let i be a positive integer.  The 

i*  linear mimic of  D in C(L*) through p, denoted by 

[,. (p,D) , is the set to which q belongs provided q is a 

member of  E(D,L*)  and if  j  is a positive integer and 

i^j, then ir . (q)=Tr. (p) . 

Theorem 38.  Let  L=(X,T,F)  be a lattice limit sequence and 

let  L*  be the corresponding identity lattice limit sequence 

for L.     Let  D be a subset of X  and let E be the se- 

quence of partial echos of D  in  C(L*).  Then  E(D,L*)  is 

equal to  u{Ek|keZ
+}. 

Proof:  From Definition 19, if i  is a positive 

integer, then E^E(D,L*).     Therefore,  u{Ek|k Z+}cE (D,L*) . 

Let peE(D,L*).  Then p is an echoing sequence, hence 

there exists a positive integer M such that if j  is a 

positive integer and  j^M, then ^ (p)=nM(p) •  Thus p£EM. 

It follows that  u{Ek|keZ+}3E(D,L*)  and therefore  E(D,L*) 

is equal to  u{Ek|k«Z
+}. 

Theorem 39.  Let  L=(X,T,F)  be a lattice limit sequence and 

let  L*=(X*,T*,I)  be the corresponding identity lattice 

limit sequence.  Let E be the sequence of partial echos 

of X  in OIL*)     and let S  be the relative topology for 

B,  from S(L*).  Let f be the restriction of the 
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projec tion     TT     to E   . 
1 

Then f    is a homeomorphism from 

(E-^S) onto (X|, T*). 

Proof Clearly, f    has  domain E..     Let     x< X*.     Let 

p    be the  sequence defined by if    i is a positive  integer, 

then Pi=x. Now PeElf since X£X*= mv Then     f (p) ■ =TT, (p)=x. 

It follows that  f has range  X . 

Suppose q and r are members of E,  such that 

f(q)=f(r).  If  ieZ+, then ■n± (q)=ir1(q)=f (q)=f (r)=ir1 (rHir^r) . 

Thus q=r.  It follows that f  is one-to-one. 

The continuity of  f  follows from that of -n, .     Let 

Bs  be the usual base for S(L*)     and let OcBs.     Then there 

exists a sequence U and a positive integer M such that 

(1) if     ieZ+,   then    U^TJ, 

(2) if     ie Z+     and    i^M,   then    ui
cU

i+1' 

(3) if     ieZ+,   then    X*=u{Ui+k|k£Z+},  and 

(4) 0=n  U   . n n 
Let     aeOnE^     Then    aeE-^   so if     i    is  a positive  integer, 

then     f<a)-if1(a)-iri(a)«01.     Hence,   f(a)en{Uk|k£Z
+} .     Thus 

f(0nE1)cn{Uk|k£Z
+}.     Let    yen {uj k*Z+} .     If    i     is  a positive 

integer,   then  since     f     (y)e-E1, 

ni(f"
1(y))=^(f"1<y))=f<f"1(y))==yeUi- 

Therefore,     f"1 (y)* nnUn=0.     Hence,   f"1 (y)eOfi*v     It  follows 

that     n{Uk|keZ+}cf(0nE1).     Thus     n{Uk| k* Z+}=f tOoMj) . 

Clearly,     n{Uk|keZ+}cn{Uk|k£Z+  and k,M>.     Let     z    be 

a member  of     n{ujk£ Z+  and k,M}.     If    i     is  a positive 
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integer, then (1) if  i£M, then zcU., and (2) if  i>M, then 

zeUMcu. .  Thus  zen{n |keZ
+).  It follows that  n{U.|keZ+} 

contains  n{Uk|keZ
+ and k<M}  and therefore  n{U |keZ+}  is 

equal to  n{Uk|keZ
+ and ksM}.  The set  {Uk|keZ

+ and k<M} 

is a finite subcollection of T*, thus  n{uJkeZ+ and ksM} 

is a member of T*  Therefore  f(0nE )«T*.  It follows that 

if OeBs,   then  f(0nE )eT*.  Since  {Br^ |Be8s}  is abase 

for S, then  f  is an open function.  Therefore,  f is a 

homeomorphism from  (E^,S)  onto  (X »T-,) • 

Theorem 40.  Let  L=(X,T,F)  be a lattice limit sequence and 

let  L*=(X*,T*,I)  be the corresponding identity lattice 

limit sequence for  L.  Let i be a positive integer and 

let peC(L*).  Let L be the ith linear mimic of X1     in 

C(L*) through p  and let  S be the relative topology for 

L from S(L*).     Let f be the restriction of the pro- 

jection  IT-  to L.  Then  f is a homeomorphism from  (L,S) 

onto  (X?,T*). 

Proof:  Clearly,  f has domain L.  Let wxj.  Let 

q be the sequence defined by if j  is a positive integer, 

then  (1) if  j-i, then q.=x, and (2) if W,   then 

qj^p).  Now, q,L  and  f (q)=*. (q) "<-«.  It follows that 

f has range X*. 

Suppose    u     and    v    are members  of    L    such  that 

f(u)=f(v).     If     j     is  a positive  integer,   then   (1)   if     j=i, 

then     ltj(u)=1ri(u)=f(u)=f(v)=,i(v)=n.(v),   and   (2)   if     j*L, 
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then     IT . (U)=TT . (p)=ir. (v) .     Thus    u=v.     It  follows  that     f    is 

one-to-one. 

The continuity of    f    follows  from that of     -n- .     The 

function     f     is  open since  if    0     is  a member  of  the usual 

base  for     S(L*),   then    f (On L)=TT. (0nL)=7r. (0)     which is  in    T? 

by Theorem 17.     It follows  that    f    is  a homeomorphism  from 

(L,S)     onto     (X?,T?). 

Corollary   40.1.     Let     1=(X,T,F)     be a lattice  limit sequence 

and  let     L*=(X*,T*,I)     be the corresponding identity  lattice 

limit sequence  for     L.     Let    D    be  a subset of    X±.     Let    i 

be a positive  integer and  let    peE(D,L*).     Let    L^P/D)     be 

the  ith  linear mimic of    D    in    C(L*)     through    p    and     let 

S    be  the  relative  topology  for    Li(p,D).     Let    f    be  the 

restriction of  the projection    ir±     to    Li(p,D).     Then     f     is 

a homeomorphism from     (Li(p,D),S)     onto     (D, (0$)^) . 

Proof:     This   follows   from Theorem  40. 

Lemma  41.1.     Let     L=(X,T,F)     be a  lattice  limit sequence  and 

let     L*=(X*,T*,I)     be  the  corresponding  identity  lattice 

, .   . , c i        tot-     n    be a subset of    X,     and  let limit  sequence  for     L.   .Let    u    ua  a ou~ -j^ 

E    be  the  sequence  of partial echos  of    D    in     C(L*).     Let 

i    be  a positive  integer.     Then    Ei+1=u{Li (p,D) |p€E±}     and 

¥Ei+r 
Proof:  Let q,Ei+1  and let r be the sequence 

defined by if  j  is a positive integer, then (1) if j<i, 

then  rj-VjCf). and (2) if  j2i' then rJ=,Ti+l(q)' 
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Clearly,  r  is a member of E. .  If j  is a positive 

integer and  j^i, then (1) if  j<i, then  TT , (q)=r ,=ir, (r) , 
3    3 3 

and (2) since qeEi+1, if  j>i, then IT . (q)=iti+1(q)=r . = *. (r). 

Thus  q  is a member of L.(r,D), hence qe u{L. (p,D) |peE. }. 

It follows that  Ei+1cu{LA (p,D) IpeEj^}.  Let s be a member 

of  u{L.(p,D)|peE.}.  Then there exists  p eE-  such that 

seL. (p ,D)   If  j  is a positive integer and  j>i+l, then 
1  s 

J7<i and therefore  TT . (s)=n . (ps)=ir^ (pg)=ir^+-L (ps)=ii£+1 (s) . 

Hence,  s«Ei+1.  It follows that  u{Li(p,D)|peEi)cEi+1, and 

therefore  Ei+1=u{Li(p,D)|peEi).  Plainly,  E±  is a subset 

Of  u{L±(p,D) |peEi}=Ei+1. 

Theorem 41.  Let  i=(X,T,F)  be a lattice limit sequnce such 

that if  j  is a positive integer, then  (Xj,Tj)  is connected. 

Then (C(L) ,S(U)  is connected. 

Proof:  Let  L*=(X*,T*,I)  be the corresponding iden- 

tity lattice limit sequence for  L.  If  j  is a positive 

integer, then  (X*,T*)=(X1,T1)  is connected. 

The remainder of this proof is concerned with subspaces 

of  (C (L*) ,S (i.*)) .  When convienent a subset of  C(L*)  will 

be refered to as the corresponding subspace. 

Let  E be the sequence of partial echos of Xx  in 

C(L*).     Let  J={j|jeZ+ and E. is connected}.  Then  leJ, 

since by Theorem 39,  Ex  is homeomorphic to  (X^), which 

is connected by hypothesis. 
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Suppose     m    is a member  of    J.     Then    E       is    con- 

nected.     If    peEm,  then    **   (p,X,)     is  connected,   since by 

Theorem  40,     ^(P/Xi)     is  homeomorphic to     ^^•WXJ/TJ.) . 

Also,   if    PeE
m»   then  the  intersection of    Em    and    I^^X-^) 

contains     p,   hence is non-empty.     Therefore,   if    peEm,   then 

EmuLm(p'Xl)     is  connected.     Clearly,     n{EmuLm(p,X1)|p«Em} 

is  not empty.     Therefore, 

Em+l
=EmuEm+l

=Emu (u<"*<*'*!> \" V>" 

is  connected.     Thus    m+1     is a member of    J.      It follows 

that if     jeJ,   then    j+l«J.     Therefore,  by induction,     J     is 

the set of  positive  integers.     Hence,   if    i     is  a positive 

integer,   then     Ei     is  connected. 

Clearly,   if    i    is  a positive  integer,   then    BjeE^ 

Thus     n{E. |keZ+}     is not empty.     Hence,   E(Xr L*)=u{Ek|keZ+} 

is   connected.     By  Theorem 37,     EiX^L*)     is  dense  in 

(C(L*),S(L*)),   thus     (C(L*),S(L*))     is  connected.     But by 

Theorem 23,     S(L*)     is  lattice  isomorphic  to    S(L).     Thus 

by  Theorem       ,      (C(L),S(D)     is  connected. 

Theorem 42.     Let     L=(X,T,F)     be  a  lattice  limit  sequence such 

that if     j     is  a positive  integer,   then     (X.,T.)     is  con- 

nected.     Then     (C(L),U(D)     is  connected. 

Proof:     This  follows  from the  connectedness  of 

ICIL),SU))     by Theorem 41,   and  the  fact that     U(L)cS(L) 

by  Theorem  16. 
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Example 3.  Let X, T, and I be the sequences defined by 

if j  is a positive integer, then X.  is the set of real 

numbers,  T.=  is the usual topology for the set of real 

numbers, and  I.  is the identity lattice isomorphism from 

T. + 1  onto T..  Let J.= (X,T,I).  Then L     is a lattice 

limit sequence such that if  j  is a positive integer, then 

(X-,T.)  is connected, but (C(L),B(L))     is not connected. 

Proof:  Plainly,  L  is a lattice limit sequence. 

It is well known that the usual topology for the set of real 

numbers is connected [2, Ex. 26.9, p. 193].  Therefore, if 

j  is a positive integer, then  <xj'Tj)  is connected.  Let 

B be the usual base for  8(L). 

Let C be the set of convergent sequences of real 

numbers.  Then C  is a subset of C(L).     Let peC and let 

L be the limit of the sequence p.  Let U be the sequence 

defined by if  i  is a positive integer, then U±  is the 

open interval  U. (p) - d/i) r«± <P> + U/i) > •  Clearly,  nnUR 

is a member of  8  and ptl^.  Let *y^  and let e  be 

a positive number.  Since p is convergent to  L, there 

exists a positive integer M such that if  i  is a positive 

integer and i^M, then  |».<P)-L|<e/2.  Since q^W if  i 

is a positive integer, then  |^(p)-*4<«> I< 1/i■  There exists 

a positive integer  N such that N>2/e, then  l/N<e/2. 

Now, if  i  is a positive integer and UM+N, then 

Ui(q)-LhUi(q)-i(p)+H(p)-Ll5l1'i(q)-7Ii(p)| + llTi(p)"L|   and 

|1ri(q)-,i(p)|<(l/i)<d/N)<^/
2)  and \Hto)-t>}<*A.   hence 

J 
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| IT - (q)-L| < (e/2)+(e/2)=e.     Therefore    q    converges  to     L. 

Thus     q     is  a member of    C.     It  follows  that    nnUncC.     Now, 

it may be  concluded that if    p*     is  a member of    C,   then 

there  exists     Be 8     such  that    p*eBcC.     Thus     C    is  open. 

Let    D=C(L)-C    and let    reD.     Let    V    be the  sequence 

defined by if     i     is  a positive integer,   then    V^     is  the 

open  interval     (irj (r)- (1/i) ,ir± (r) + (l/i)) .     Let    se nnVn     and 

suppose     s     is  a convergent sequence.     Then a similar 

argument to  that above shows  that    r    is  a convergent  se- 

quence.     But    rcD=C(L)-C,   thus    r  is not a convergent  se- 

quence.     This  is  a  contradiction.   Thus     s    is  not a  convergent- 

sequence,   hence     seD.     It  follows  that    nnVn=D.     Now,   it may 

be  concluded  that  if    r*  is  a member of    D,   then there  exists 

Be 8     such  that     r*eBcD.   Thus     C(L)-C=D    is open and hence, 

C     is  closed.     But    C is  also open and clearly neither    C-* 

nor    C=C(L).     Therefore     (C(L),B(L))     is  not  connected. 

Theorem  43.     Let     l=(X,T,F)     be a lattice limit sequence 

such  that     (X1/Tl)     is  seperable.     Let     L*=(X*,T*,I)     be  the 

corresponding identity  lattice  limit sequence  for     L.     Then 

(C(L*),S(L*))     is  seperable. 

Proof:     Let    D    be  a countable  subset of    Xx     such 

that     D     is  dense  in     (X^).     Let    E    be  the  sequence of 

partial  echos of    D    in     C( L*) .     Let    J    be  the set to which 

j     belongs  provided     j  is  a positive  integer  and    E-     is 

countable.     Now     leJ,  because Theorem 39  implies  that  the 
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restriction of the projection IT,  to E,  is a one-to-one 

function with range D. 

Suppose m is a member of J.  Then E  is coun- 

table.  If PeEm» then Lm(p,D)  is countable, since 

Corollary 40.1 implies that the restriction of the projection 

JI   to  L (p,D)  is a one-to-one function with range D. 

Now,  Em+1= {^(P/D) IpeEj,,}  is a countable union of coun- 

table sets, hence is countable.  Thus m+1 is a member 

of  J.  It follows that if  jeJ, then j + leJ.  Therefore, 

by induction,  J  is the set of positive integers.  Thus, if 

i  is a positive integer, then E^     is countable. 

Now,  E(D,L*)=u{Ek|keZ
+}  is a countable union of 

countable sets, hence is countable.  By Theorem 37  E(D,L ) 

is dense in  (C(I*),S(L*)).  Therefore (C(L*),S{L*))     is 

seperable. 

Theorem 44.  Let  L=(X,T,F)  be a lattice limit sequence 

such that if  j  is a positive integer, then  (Xj/Tj>  is 

both T2  and seperable.  Then (C(L),S(D)     is seperable. 

Proof:  Let  L*  be the corresponding identity lattice 

limit sequence for  L.  Then by Theorem 23, 5 <U  is lattice 

isomorphic to  SU*).  By Theorem 26, both  (C(L),S(U)  and 

(C{L*),S(L*))     are T^  Therefore, by Theorem 6, (C(L),S(D) 

is homeomorphic to  (C (L*) ,S (L*) ) .  Then  (C (U ,S (L) ) is 

seperable, since by Theorem 43, t*U*MU«»  *■ seperable. 
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Theorem 45.  2, Th. 17.8, p. 120  Let L=(X,T,F)  be a 

lattice limit sequence such that if  j  is a positive 

integer, then  (X.,T.)  is compact.  Then  (C (L) ,(J (/.))  is 

compact. 

Theorem 46.  Let  JL=(X,T,F)  be a lattice limit sequence 

such that if j  is a positive integer, then  (Xj'Tj>  is 

compact.  Then U(L)=S(L). 

Proof:  Let 8.. and B  be the usual bases for  U(L) 

and S[L),   respectively.  Let OeB^     Then there exists a 

sequence  U and a positive integer M such that 

(1) if    icZ+,   then     U^T^ 

(2) if    ieZ+     and    i*M,   then     OjcfJ*1 (Oi+1>« 

(3) if    ieZ+,   then     Xi=u{F|+k(U±+k)|k€Z+>,   and 

(4) 0=nnun. 

in particular,  {FJJ
+JC(UM+k)\keZ+}  is an open cover of XM- 

But  (XM,TM)  is compact.  Therefore, there exists a finite 

subset K     of  Z+  such that  (F^+k(UM+k) |keK>  is a cover 

of  XM.  Let K be the largest positive integer in K.     If 
M+K L 

j  is a positive integer and M<j^K, UM+j
cF
M+j

(UM+K}' thuS 

A+K 

^i^^^<:>-))-^-"" M M+K 
) .  It follows that M+j M+K 

Mfj'" M (FM+jluM+Ky 

Vi<^<Wll"*HPE<W- Then by Theorem 4, UM+K 

is equal to XM+R. If j is a positive integer and j*K, 

then XM+K=UM+KCF^(UM+j), hence X^-^J<%>J> • 

Theorem 4, if j  is a positive integer and  *«, then 

M+ 
I-I-TI  n «fl   It follows that 8OCBM. .=XM+..  Therefore  0=nnUneB(J.  it 5  u 
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Therefore  S(L)cU(JL).  By Theorem 16,  U(L)cS(L)f thus 
r 

U(L)=S(L). 

Example 4.  Let  X, T, and  I be the sequences defined by 

if  i  is a positive integer, then X-={0,1}, T^  is the 

discrete topology on X^,   and 1^  is the identity lattice 

isomorphism from T.+.  onto T..  Let  L=(X,T,I).  Then L 

is a lattice limit sequence such that if i is a positive 

integer, then  (Xj,^)  is compact, but (C(L),S(L))   is not 

compact. 

Proof:  Clearly,  L  is a lattice limit sequence and 

for each positive integer i, (Xi,T±)  is compact.  But C (L) 

is infinite and  8(L)  is discrete, hence  (C(L),B(L))  is 

not compact. 

Theorem 47.  Let  L=(X,T,F)  be a lattice limit sequence 

such that if  j  is a positive integer, then  (X..,T..)  is 

compact.  Then {C(L),S(L))     is compact. 

Proof:  By Theorem 46, (C (L) ,S(L)) = (C(L) ,U(I)) , which 

is compact by Theorem 45. 
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SUMMARY 

In this thesis the saturating topology for a countable 

product of lattice isomorphic factors has been defined and 

investigated.  It has been shown that among the topological 

properties inherited by the saturating topology from the 

factor spaces are  T , T , T , connected, and compact.  It 
U     X      m 

was shown that the saturating topology does not inherit 

regularity from the factor spaces, but that if the factor 

spaces are a-regular, then the saturating topology is regular. 

It is not known whether the saturating topology inherits 

o-regularity from the factor spaces.  The saturating topology 

on a product of separable spaces was shown to be lattice 

isomorphic to a separable topology, but it is not known 

whether such a saturating topology is itself separable. 
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